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Abstract— Safe and successful deployment of robots requires
not only the ability to generate complex plans but also the
capacity to frequently replan and correct execution errors.
This paper addresses the challenge of long-horizon trajectory
planning under temporally extended objectives in a receding
horizon manner. To this end, we propose DOPPLER, a data-
driven hierarchical framework that generates and updates
plans based on instruction specified by linear temporal logic
(LTL). Our method decomposes temporal tasks into chain of
options with hierarchical reinforcement learning from offline
non-expert datasets. It leverages diffusion models to generate
options with low-level actions. We devise a determinantal-
guided posterior sampling technique during batch generation,
which improves the speed and diversity of diffusion generated
options, leading to more efficient querying. Experiments on
robot navigation and manipulation tasks demonstrate that
DOPPLER can generate sequences of trajectories that progres-
sively satisfy the specified formulae for obstacle avoidance and
sequential visitation. Demonstration videos are available online
at: https://philiptheother.github.io/doppler/.

I. INTRODUCTION

Robots and autonomous agents are increasingly expected
to safely perform complex tasks specified by high-level,
temporally extended instructions. Linear Temporal Logic
(LTL) provides a formal language to specify such tasks,
enabling agents to reason about sequences of events over
time [1], [2]. However, planning under LTL constraints
poses significant challenges, especially in offline settings
where agents must learn from fixed datasets without active
exploration. Traditional data-driven policy learning methods
struggle with the non-Markovian nature of LTL rewards, and
offline RL further complicates the issue due to distributional
shifts.

In this work, we propose Diffusion Option Planning by
Progressing LTLs for Effective Receding-horizon control
(DOPPLER), an offline hierarchical reinforcement learning
framework that generates receding horizon trajectories to
satisfy given LTL instructions. Our key insight is to leverage
diffusion models to represent options within the hierarchical
RL framework. By integrating diffusion-based options, we
can generate diverse and expressive behaviors while ensuring
that the generated trajectories remain within the support
of the offline dataset. To address the challenges of option
selection and policy regularization in the offline setting, we
introduce a diversity-guided sampling approach that pro-
motes exploration of different modes of the data distribution
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Fig. 1. Overview of DOPPLER framework. The model is trained using
non-expert trajectory data and LTL specifications. Trajectories are sampled
from the diffusion model to generate options, which are then used to form
transition tuples that include the state (s), option (o), and LTL formula
(φ). These tuples are processed with LTL progression to produce the next
state (s′), next option (o′), updated LTL formula (φ′), and reward (r). The
hierarchical RL loss is then computed to guide the learning process.

without straying into out-of-distribution actions.
Compared to prior work, the most closely related methods

are those that use diffusion models for trajectory planning
under temporal constraints [3] and hierarchical diffusion
frameworks for subgoal generation [4], [5]. However, these
approaches either lack the ability to perform closed-loop,
hierarchical planning or require expert-level demonstrations,
limiting their applicability in offline settings with non-expert
data. In contrast, DOPPLER combines hierarchical RL with
diffusion-based options to enable closed-loop control under
LTL constraints using only offline data. To our knowledge,
DOPPLER is the first work to integrate diffusion models into
a hierarchical RL framework for data-driven LTL planning
in an offline setting.

Our experiments demonstrate that DOPPLER significantly
outperforms strong baselines on tasks specified by LTL for-
mulas, achieving higher success rates in satisfying temporal
specifications. In simulation, DOPPLER effectively handles
complex, long-horizon navigation tasks that prior methods
struggle with. On the real robot, DOPPLER exhibits robust
behavior in the presence of control noise and external pertur-
bations, successfully accomplishing LTL tasks where other
methods fail.

DOPPLER represents a step toward enabling autonomous
agents to perform complex, temporally extended tasks speci-
fied by LTL instructions in offline settings. In summary, this
paper makes three key contributions:
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• A hierarchical RL approach designed for data-driven
LTL planning with diffusion-based options;

• A diversity-guided sampling approach for diffusion
models that enhances option discovery and policy reg-
ularization;

• Experimental results that validate the effectiveness of
receding horizon planning for LTL tasks and demon-
strate robustness to runtime deviations.

By integrating diffusion models into hierarchical RL and
introducing diversity-guided sampling, DOPPLER enables
agents to effectively learn and plan under complex temporal
constraints from offline data, paving the way for more
capable and reliable autonomous systems.

II. PRELIMINARIES

In this work, we aim to train an agent using an offline
dataset to learn policies that generate trajectories satisfying
Linear Temporal Logic (LTL) specifications. Our approach
employs offline hierarchical reinforcement learning, where
options are represented using diffusion models. In this sec-
tion, we provide a succinct review of LTL, hierarchical
reinforcement learning, and diffusion policies.

A. Formal Task Specification via LTL

To unambiguously define the task, we employ Linear
Temporal Logic (LTL). LTL is a propositional modal logic
with temporal modalities [6] that allows us to formally
specify properties or events characterizing the successful
completion of a task. These properties and events are drawn
from a domain-specific finite set of atomic propositions P .
The set of LTL formulae Ψ is recursively defined in Backus-
Naur form as follows [7], [8]:

φ := p | ¬φ | φ ∧ ψ | ⃝ φ | φUψ,

where p ∈ P and φ,ψ ∈ Ψ. ¬ (negation) and ∧ (and)
are Boolean operators while ⃝ (next) and U (until) are
temporal operators. These basic operators can be used to
derive other commonly-used operators, true = φ ∨ ¬φ,
φ ∨ ψ = ¬ (¬φ ∧ ¬ψ) and 3φ = trueUφ (eventually φ).

LTL formulae are evaluated over infinite sequences of truth
assignments σ = ⟨σ0, σ1, σ2, . . .⟩, where σt ∈ {0, 1}|P| and
σt,p = 1 iff p is true at time step t. ⟨σ, t⟩ |= φ denotes
σ satisfies φ at time t ≥ 0, which can be initially defined
over atomic propositions and then extended to more logical
operators according to their semantics. Given a σ, an LTL
φ can be progressed to reflect which parts of φ have been
satisfied and which remain to be achieved [1]. The one-step
progression of φ on σ is defined as follows:

• prog (σ, p) = true if σp = 1, where p ∈ P
• prog (σ,¬φ) = ¬prog (σ, φ)
• prog (σ, φ ∧ ψ) = prog (σ, φ) ∧ prog (σ, ψ)
• prog (σ,⃝φ) = φ
• prog (σ, φUψ) = prog (σ, ψ) ∨ (prog (σ, φ) ∧ φUψ)

We also overload prog (σ0:k, φ) to indicate multistep pro-
gression over σ0:k. To facilitate effective LTL learning on a
dataset of trajectories, we restrict our consideration to LTL
formulas that can be satisfied or falsified within a finite

number of steps. This categories includes co-safe LTLs [9]–
[11] and finite LTLs [12]. In this work, we focus on the
former, which allows for evaluation over arbitrarily long
sequences.

B. Hierarchical RL with options

We formulate RL within the framework of Markov deci-
sion processes (MDPs) [13]. An MDP M = (S,A, p, r, γ)
consists of state space S, action space A, transition prob-
ability function p : S × A → P (S)1, reward function
r : S × A → R and discount factor γ ∈ [0, 1). Given a
policy π : S → P (A) and an initial state s0 ∼ µ0 ∈
P (S), an agent generates a trajectory τ = (st,at)

∞
t=0

based on the distributions specified by π and p. The agent
receives a discounted return R (τ ) =

∑∞
t=0 γ

tr (st,at)
along its trajectory and aims to maximize the expected
return Eµ0,π,p [R (τ )]. The action-value function Qπ (s,a) =
Eπ,p [R (τ ) |s0 = s,a0 = a] represents this expected return
conditioned on a specific initial s and a. In RL, p and r are
unknown [14] to the learner.

The option-based framework incorporates temporally ex-
tended behaviors termed options into MDPs [15]. An option
o = ⟨I, πo,B⟩ is available to the agent in s iff s belongs
to the initialization set I ⊆ S. Once the agent takes o, it
follows πo until o terminates, which occurs after t steps
according to the probability B : St → [0, 1]. Policies
are defined over both primitive actions A and options O,
i.e., π : S → P (A ∪O). The corresponding option-
value function is Qπ (s, o) = Eo,π,p [R (τ ) |E (oπ, s)], where
E (oπ, s) denotes the event that o is initiated in s at t = 0,
terminates at t with probability B (s1, . . . , st), and π is
followed after o terminates.

C. Diffusion-based Policies

Existing diffusion-based policies directly generate a finite
trajectory τ0:k = (st,at)t∈[k+1]

2 by training on a pre-
collected dataset of trajectories. These policies can be trained
using expert demonstrations for imitation learning [16],
or with offline datasets guided by a Q function for pol-
icy improvement [17]. Formally, a step-dependent neural
network sθ is trained to approximate the score function
∇τ i

0:k
log pi

(
τ i
0:k

)
with denoising score matching objec-

tive [18]:

min
θ

Ei,τ i
0:k,τ

0
0:k

[∥∥∥sθ (τ i
0:k, i

)
−∇τ i

0:k
log p

(
τ i
0:k|τ 0

0:k

)∥∥∥2] ,
(1)

in which τ i
0:k ∼ p

(
τ i
0:k|τ 0

0:k

)
is the data trajectory τ 0

0:k ∼
p0

(
τ 0
0:k

)
corrupted with noise by an N -step discrete ap-

proximation of forward diffusion process p
(
τ i
0:k|τ

i−1
0:k

)
and

i ∼ U{1, 2, . . . , N}. For example, in Denoising Diffu-
sion Probabilistic Models (DDPM) [19], p

(
τ i
0:k|τ 0

0:k

)
=

N
(√
ᾱiτ

0
0:k, (1− ᾱi) I

)
, ᾱi :=

∏i
j=1 αi, αi := 1 − βi

and {βi} is a sequence of positive noise scales 0 <

1P (S) defines the space of probability distributions over a set S.
2The subscript 0 : k indicates that a vector has k + 1 elements, indexed

by integers 0, 1, . . . , k. [N ] denotes the set of integers {0, 1, . . . , N − 1}.



β1, β2, . . . , βN < 1. Diffusion models can generate plans
conditioned on a start state by inpainting [17] or classifier-
free guidance [20].

III. METHOD: DOPPLER

In this section, we introduce DOPPLER, our offline hierar-
chical reinforcement learning framework for Linear Tempo-
ral Logic (LTL) instructions. At a high level, DOPPLER in-
tegrates hierarchical RL with diffusion models to effectively
address the challenges of planning under LTL constraints in
an offline setting (see Figure 1).

We begin by presenting our offline hierarchical RL ap-
proach for LTL instructions. This includes the construction
of a product MDP to handle the non-Markovian nature of
LTL rewards, the definition of options and rewards, and the
learning of the option-value function from an offline dataset.
Next, we describe how we represent options using diffusion
models and introduce a novel diverse sampling technique.
This approach allows us to obtain a rich set of options that are
both expressive and within the support of the offline dataset,
ensuring effective policy regularization.

A. Offline Hierarchical RL for LTL Instructions

Recall that we adopt an options framework for hierar-
chical reinforcement learning and our agent is tasked with
generating behavior that satisfies a given Linear Temporal
Logic (LTL) formula φ ∈ Ψ. The first challenge is that LTL
satisfaction is evaluated over an entire trajectory. As such,
defining a standard Markov Decision Process (MDP) M over
the native states S is problematic since a non-Markovian
reward function cannot be defined over single states.

To address this issue, we construct a product MDP MΨ

such that the optimal Markov policies in MΨ recover
the optimal policies for the non-Markovian reward func-
tion in M [21], [22]. More formally, we define MΨ =
(SΨ,A, pΨ, rΨ, γ), where SΨ = S × Ψ. We assume that
the properties or events related to a temporal task can be
detected from the environmental state/action information and
define a labeling function L : S × A → {0, 1}|P| that
maps each state-action pair (st,at) to a truth assignment
σt = L(st,at). We consider LTL progression [1], [21] as
part of the transitions, and thus, the transition probability
in MΨ is defined as pΨ (⟨s′, φ′⟩|⟨s, φ⟩, a) = p(s′|s, a) if
φ′ = prog (L(s,a), φ) (and 0 otherwise).

Options and Rewards. We incorporate options into MΨ

as described in Section II-B. We defer the detailed option
definition to the next section and it suffices to assume that
each option is a trajectory o = τ0:k = (at, st+1)

k−1
t=0 . At

state s0, the agent follows option o, which terminates after
k steps. We assume that the options have an initiation set I
covering the entire state space.

Next, we develop an option reward function such that the
agent can either (i) accomplish the instructed LTL formula
φ within the k steps of an option or (ii) transition to a state
that enables completion of φ in the future. In our product

Algorithm 1 Offline Hierarchical RL for LTL objectives
Require: Datasets D =

{
τ (d)

}
and DΨ, Diffusion Model p̂θ(o|s).

1: Initialize critics Qϕ1 , Qϕ2 and targets Qϕ′
1
, Qϕ′

2
2: for e = 0 to E do
3: Sample

{
τ (b)

}
b∈[B]

uniformly from D
4: Sample

{
φ(b)

}
b∈[B]

uniformly from cl (DΨ)

▷ Execute following in parallel for all b ∈ [B].
5: Construct transition

(
s
(b)
0 , φ(b), o(b), r

(b)
Ψ , s

(b)
k , φ

(b)
k

)
6: Propose M target options o′

(b)

(m) ∼ p̂θ
(
·|s(b)k

)
7: Select best o′(b) by Qϕ′

1

8: Get clipped Gaussian noised version õ′(b)

9: Get loss ℓ
(b)
j by Eq. (4) with double Q-learning

10: Update ϕj ← ϕj − η∇ϕj
1
B

∑
b ℓ

(b)
j , j ∈ {1, 2}

11: if e mod e0 then
12: ϕ′

j = λϕj + (1− λ)ϕ′
j , j ∈ {1, 2}

13: end if
14: end for
15: return Qϕ1

MDP MΨ, the agent receives a reward at (st, φ) given by:

rΨ (st, φ,at) =


1 if prog (σt, φ) = true and φ ̸= true

−1 if prog (σt, φ) = false and φ ̸= false

0 otherwise.
(2)

where σt = L(st,at). The option reward is then defined as
rΨ (s0, φ, o) =

∑k−1
t=0 γ

trt, where rt = rΨ (st, φt,at) and
φt = prog (σ0:t, φ).

Learning an Option Critic. With the above definitions, we
can now proceed to learn an option-value function using
an offline dataset. A high-level summary of our learning
algorithm is shown Algorithm 1. According to the Bellman
equation, the optimal option-value function has the form:

Q∗ (⟨s, φ⟩, o) = rΨ (s, φ, o)+

γk
∑
s′,φ′

p (s′, φ′|s, o)max
o′

Q∗ (⟨s′, φ′⟩, o′) (3)

where rΨ (s, φ, o) = EpΨ

[
r0 + · · ·+ γk−1rk−1

]
and

p (s′, φ′|s, o) is the probability of transitioning to s′ and
φ′ when executing option o under pΨ. We aim to obtain
an option critic Q (⟨s, φ⟩, o) that approximates Q∗. In our
offline setting, we are provided with a dataset of non-
expert trajectories D and a non-exhaustive dataset of LTL
specifications DΨ; in our experiments, we use tasks from
prior work [3], [22].

We represent Q using a neural network that takes in state-
option pairs and LTL formula embeddings. LTL embeddings
can be obtained by using Graph Neural Networks (GNNs)
that process graph representations of LTLs [23]–[25]. In
this work, the LTL formula embedding is computed using
a Relational Graph Convolutional Network (R-GCN) [26],
which we found performs well on new LTL formulae with
the same template structure seen during training.



We train Q by minimizing a temporal difference loss,(
rΨ (s0, φ, o)+γ

k max
ok∈Osk

Q (⟨sk, φk⟩, ok)−Q (⟨s0, φ⟩, o)
)2

(4)
using transition tuples (s0, φ, o, rΨ, sk, φk) constructed using
the dataset, the option set Osk , and the training LTL space.
Specifically, we sample a short-horizon trajectory τ0:k ∼
p0 (τ0:k) from the dataset. Each τ0:k = (st,at)

k
t=0 includes

current state s0, option o = (at, st+1)
k−1
t=0 and next state sk.

We use L to obtain a truth assignment sequence σ0:k and
compute the reward rΨ (s0, φ, o) =

∑k−1
t=0 γ

trt. The next
LTL φk is obtained via LTL progression. We construct the
training LTL space from the progression closure of formulas
φ ∈ DΨ, denoted cl (DΨ). The loss function Eq. (4) is trained
by uniformly sampling trajectories from dataset and LTL
instructions from cl (DΨ).

To stabilize the training, we leverage several popular
techniques for Q networks. This includes using time delayed
version of Q [27], clipped double Q-Learning [28], [29], and
smoothing the target policy by injecting noise into the target
actions [29], [30].

B. Options with Diffusion

Thus far, we have not yet fully defined our option set.
Ideally, we would like a rich option set that is expressive
enough to cover the diverse requirements of LTL instructions.
However, one crucial issue is that in the offline setting, the
dataset available to the learner is fixed and exploration is not
permitted. As such, the options should generate trajectories
within the support of the offline dataset to ensure reliable
Q-value estimation.

To address this problem, we propose to regularize the
policy space using diffusion options, i.e., we represent our
option set O using a diffusion model and limit the policy’s
co-domain to be O (instead of A∪O). Diffusion models form
a rich policy class that can capture multimodal distributions,
while generating samples within the training dataset.

Once a diffusion model p̂θ(τ0:k|s) is trained on the dataset,
it can be used to sample options o = τ0:k ∼ p̂θ(τ0:k|s).
However, during both training (Eq. 4) and deployment, we
need to search over options to maximize the Q function. With
diffusion models, finding the optimal option by sampling
may require a large sample size to reduce approximation
error. In addition, the samples may lack diversity, with many
similar trajectories from a few modes of the distribution.

Q-Guidance. One potential way forward is to leverage the
trained Q-network to perform conditional sampling. This
form of classifier guidance can be achieved by methods such
as posterior sampling. However, we find that in practice, Q-
guided generation tends to produce low-quality trajectories
(see Section V-B).

Diversity Sampling. We propose an alternative sampling
approach that covers different modes of data distribution,
while keeping the sample batch size M as small as possible.

The key idea is that each generated trajectory should be
distinct from the others in the batch. A standard diffusion

model generates options using an approximate conditional
score sθ (·|s0) ≈ ∇τ i

0:k
log pi

(
τ i
0:k|s0

)
. We instead pro-

pose to sample from a posterior that conditions on the
M − 1 other samples with the conditional score function
∇τ i

(1)
log pi

(
τ i
(1)|

{
τ̂ (m)

}
m=2,...,M

)
. In the following text

we omit the subscripts 0 : k and conditioned state s0 for
clarity.

With this change, the M samples are no longer indepen-
dent. We leverage Bayes’ rule and sample estimation [31]
to express the conditional score as the sum of two terms:
∇τ i

(1)
log pi

(
τ i
(1)

)
and ∇τ i

(1)
log p

( {
τ̂ (m)

}
m=2,...,M

|τ̂ (1)

)
,

where the noiseless trajectory τ̂ (1) is estimated via Tweedie’s
formula [32] τ̂ (1) =

1√
ᾱi

(
τ i
(1)+(1− ᾱi)∇τ i

(1)
log pi

(
τ i
(1)

))
and pi

(
{τ̂ (m)}m=2,...,M | τ i

(1)

)
is approximated by point

estimation p
(
{τ̂ (m)}m=2,...,M | τ̂ (1)

)
.

We model this conditional probability using a differen-
tiable probabilistic model. To encourage sample diversity,
the conditional probability should be high if τ̂ (1), . . . , τ̂ (M)

are pairwise dissimilar, and low if any of them are similar.
Thus, the unnormalized probability of the generated set can
be modeled by a similarity matrix analogous to determinantal
point processes [33],

p
(
τ̂ (1)|

{
τ̂ (m)

}M

m=2

)
= p

(
τ̂ (1)

)
det (LM ) /Z, (5)

where LM is the similarity matrix with elements indexed
by integers (u, v), 1 ≤ u, v ≤ M measuring the similarity
(e.g., cosine similarity) between τ̂ (u) and τ̂ (v), and Z =∫
τ̂ (1)

p
(
τ̂ (1)

)
det (LM ) dτ̂ (1) is a normalizing constant [34].

Since the normalizing constant Z does not depend on τ̂ (1),
the gradient of the point estimate becomes

∇τ i
(1)

log p
({

τ̂ (m)

}M

m=2
|τ̂ (1)

)
= ∇τ i

(1)
log det (LM ) .

(6)
This gradient can be plugged into the reverse process for
posterior sampling as summarized in Algorithm 2. Our
approach maximizes the determinant of the similarity matrix,
biasing the generated trajectories to be distinct from one
another, thus promoting diversity.

Algorithm 2 Diversity Guided Batch Sampling
Require: N , sθ , M , {ζi}Ni=1

▷ Execute following in parallel for all m ∈ [M ].
1: τN

(m) ∼ N (0, I), m ∈ [M ]
2: for i = N − 1 to 0 do
3: ŝ(m) ← sθ

(
τ i
(m), i

)
4: Predict τ̂ 0

(m) via Tweedie’s formula
5: Reverse one step to get τ i−1

(m)

6: Lu,v = cos
(
τ̂ 0

(u), τ̂
0
(v)

)
, u, v ∈ [M ]

7: τ i−1
(m) ← τ i−1

(m) + ζi∇τ i
(m)

log det (L)

8: end for
9: return

{
τ̂ 0
(m)

}
m∈[M ]

IV. RELATED WORK

LTL is widely-used to specify high-level, temporally ex-
tended requirements in robot tasks [1], [2], [35]. Many
existing data-driven methods for LTL planning learn in an



TABLE I
SATISFACTION RATE (%) (↑) ON DIFFERENT LTLS IN MAZE2D.

Env. Method Training LTLf s Testing LTLf s

Planning Rollout Planning Rollout

Medium
DIFFUSER 15.0±0.7 13.4±0.6 11.6±1.4 10.1±1.2
LTLDOG-S 77.9±5.7 31.8±2.6 68.4±6.7 28.7±3.5
LTLDOG-R 51.8±1.8 39.5±1.6 43.3±4.4 30.6±1.9
DOPPLER 95.3±0.8 90.2±3.3 95.7±0.6 89.6±2.1

Large
DIFFUSER 13.5±0.4 12.8±0.1 11.6±2.3 11.5±1.7
LTLDOG-S 73.8±2.4 32.6±1.4 66.6±2.7 24.9±1.7
LTLDOG-R 66.9±0.6 47.4±0.8 57.5±2.3 39.0±2.9
DOPPLER 95.4±0.3 92.0±0.5 94.1±1.6 89.8±2.0

TABLE II
PERFORMANCE ON DIFFERENT LTLS IN PUSHT

Method\Performance LTL Set Satisf. rate (%) ↑ Score ↑

DIFFUSION POLICY
Training 21.8±1.02 0.388±0.006
Test 32.8±1.48 0.385±0.028

LTLDOG-S Training 28.7±1.30 0.294±0.006
Test 38.9±2.91 0.300±0.023

LTLDOG-R Training 71.9±1.77 0.289±0.001
Test 62.9±1.72 0.353±0.004

DOPPLER
Training 87.4±0.84 0.386±0.022
Test 94.1±1.85 0.432±0.042

online fashion [21], [22], [36]–[38]. These methods can be
effective but may also lead to unsafe interactions during the
trial-and-error learning process.

Here, we focus on offline learning that do not require
interactions with the environment. Existing offline methods
typically rely on knowledge of the environmental dynamics,
are limited to certain types of LTL specifications [39], [40],
or require events to be explicitly labeled in the dataset [41].
The closest related work is our previous model LTLDOG [3],
which uses posterior sampling with diffusion models and
LTL model checkers to generate plans under LTL instruc-
tions. However, LTLDOG is restricted to non-hierarchical
open-loop planning. Subgoal generation via hierarchical dif-
fusion frameworks has been explored using methods such as
graph search [4] and keyframe discovery [5]. However, these
methods are not designed for satisfying LTL specifications.
To our knowledge, we are the first to successfully com-
bine offline hierarchical RL with diffusion-based options for
LTL planning, enabling effective closed-loop control under
complex temporal specifications. DOPPLER learns without
access to task-oriented expert trajectories and as experiments
will show, can produce effective long-horizon trajectories to
comply with novel LTL instructions.

V. EXPERIMENTS

Our experiments aim to evaluate DOPPLER’s ability to
learn and plan for temporal tasks that are not explicitly
demonstrated in the dataset. First, we compare DOPPLER to
state-of-the-art (SOTA) data-driven methods with temporally
extended instructions in simulated benchmark environments.
Then, we demonstrate DOPPLER’s robustness in dealing with
control noise and external perturbations in real-world tasks
through a case study on a quadruped robot (Figure 4). The
section concludes with an ablation study on our diversity
sampling approach.

TABLE III
RESULTS FOR REAL-WORLD NAVIGATION TASKS.

Environment Method\Performance Satisfaction rate (%) ↑
LTL Perturbation

Lab LTLDOG 70 45
DOPPLER 95 95

Office LTLDOG 30 15
DOPPLER 95 85

A. Experimental Setup

Environments. We conduct experiments in benchmark sim-
ulation environments —Maze2d [17], [42] and PushT [16]
— and on a real quadruped robot. In Maze2d (Fig. 2), tasks
specified by LTL formulae require complex, long-horizon
navigation beyond simple goal-reaching. LTL properties and
events are determined by the agent’s presence in key regions
of the maze. We adopt the LTL setting in prior work [3],
where the regions of states and actions for each atomic
proposition in P are disjoint. In the PushT task (Fig. 3),
the agent manipulates a T block via a controllable mover to
accomplish temporal instructions. In real-world experiments,
we test LTL tasks on a quadruped robot in indoor environ-
ments (Fig. 4). To increase problem difficulty, we perturbed
the robot by moving it manually to a different position during
the rollout (reminiscent of the kidnapped robot problem).
This was to test if the planner could recover from large
deviations from the intended plan.
Compared Methods. We compare DOPPLER against other
data-driven planning methods: DIFFUSER and DIFFUSION
POLICY, which are diffusion-based methods for sampling
plans but lack the ability to plan over temporal constraints.
The most relevant work is LTLDOG [3], which generates full
trajectories under LTL instructions. We evaluate performance
using the average LTL satisfaction rate during planning
and rollout, averaged over 10 random start locations for
each LTL. In the real-robot experiment, we executed 80
trajectories in total for each method.

B. Results

Comparative Analysis of Methods. Tables I and II present
the performance under randomly-generated LTL specifica-
tions using the Until sampler, as in [3], [22] (200 for
Maze2d and 36 for PushT), which contain different se-
quences of regions to visit and avoid. We observe that
DOPPLER achieves substantially higher success rates than
all baselines. These results demonstrate that DOPPLER ef-
fectively discovers compositions of skills and benefits from
closed-loop planning.

Illustrated examples in Figure 2 show that DOPPLER’s
closed-loop nature successfully handles long trajectories that
exceed the fixed horizon on which LTLDOG was trained.
Note that some tasks may be impossible to accomplish due
to physical limitations such as the agent’s starting location,
obstacles, or the arrangement of propositional regions in the
maze, which limits performance below 100%.
Real-World Study on Quadruped Robot. As shown in
Table III and Figure 5, DOPPLER’s outperforms LTLDOG,
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Fig. 2. Setup and sample trajectories for Maze2D environments. (a) and (d) depict Maze2D Medium and Large, each containing six non-overlapping
regions (hatched squares labeled with px) used to evaluate atomic propositions in P . The agent is tasked with visiting specific regions in different
temporally extended sequences. (b) and (e) illustrate the trajectories generated by LTLDOG and our proposed method (DOPPLER) (from blue to red) under
the specification φ = ¬p3 U (p0∧ (¬p1 U p4)). (c) and (f) show trajectories generated under the specification φ = ¬p0 U (p3∧ (¬p4 U p5)). Our method
(DOPPLER) successfully satisfies these complex LTL specifications by avoiding regions with ¬ propositions (red zones) before reaching the designated
green regions, as demonstrated in panels (e) and (f).

TABLE IV
ABLATION STUDY ON DIFFERENT LTLS IN MAZE2D-LARGE.

Method\Performance
Training LTLs Testing LTLs

Satisf. rate (%) ↑ Failure rate (%) ↓ Successful Steps ↓ Satisf. rate (%) ↑ Failure rate (%) ↓ Successful Steps ↓
Planning Rollout Planning Rollout Planning Rollout Planning Rollout Planning Rollout Planning Rollout

Q-Guidance 82.4±1.0 80.1±0.7 2.6±0.5 2.6±0.3 759.4±13.7 819.4±4.0 79.1±1.2 76.1±0.9 2.8±0.5 2.6±0.9 814.9±10.8 905.5±15.5
Ours (w.o. diversity) 91.0±0.8 91.0±0.7 4.6±2.3 5.6±2.1 515.1±13.8 572.5±14.2 89.5±0.7 88.4±2.2 4.0±2.7 5.4±3.2 587.9±8.0 647.3±13.1
Ours (DOPPLER) 95.4±0.3 92.0±0.5 2.2±0.4 2.8±0.6 386.9±5.2 445.7±12.4 94.1±1.6 89.8±2.0 1.8±0.7 2.4±0.6 429.1±10.0 516.7±14.5

(a) PushT Setup (b) LTLDOG (c) DOPPLER (Ours)

Fig. 3. The PushT manipulation environment. (a) A robot arm’s end
effector (circles filled in blue) should manipulate the T block (gray) to a goal
pose (green) and visit some regions (hollow circles marked with px) under
different temporally-extended orders before completion. (b) LTLDOG-R
does not comply with the LTL nor completes the manipulation. (c) In
contrast, DOPPLER can satisfy the LTL and complete the manipulation task.

(a) Studio-like Lab (b) Office room (c) Unitree Go2

Fig. 4. Real world environments for quadruped robot navigation.

achieving significantly higher satisfaction rates. LTLDOG
lacks replanning capabilities and was prone to task violations
when perturbed to be close to avoidance regions. In contrast,
DOPPLER exhibits much more robust behavior, with only a
few failure cases; these failures typically occurred in out-
of-distribution areas, where the diffusion model struggled to
generate valid options.
Ablation Study on the Diversity Sampling. Our proposed
diversity sampling method significantly outperforms standard
sampling and Q-guidance (see TABLE IV). The gap between
Q-guidance and the other methods is relatively large, which
we posit is due to mismatched Q-guidance gradients with
the denoising updates in diffusion.

VI. CONCLUSION, LIMITATIONS AND FUTURE WORK

In this paper, we introduced DOPPLER, an offline hi-
erarchical reinforcement learning framework that leverages
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Fig. 5. Results in real-world rooms. Each room has 4 key locations ((a)
and (d)). The instructed LTL is ¬TableU (Screen∧ (¬KitchenUDoor)) for
lab (first row) and ¬DoorU (Corridor∧ (¬TableU Seat)) for office (second
row). LTLDOG is unable to recover from perturbations (b) and cannot
generate a valid plan (e), while ours ((c) and (f)) can achieve both.

diffusion-based options to satisfy complex LTL instructions.
Our approach effectively integrates diffusion models into
a hierarchical RL setting, enabling the agent to generate
diverse and expressive behaviors while adhering to the con-
straints of the offline dataset. Experiments in both simulation
and real-world environments demonstrated that DOPPLER
significantly outperforms state-of-the-art methods in satisfy-
ing temporal specifications and exhibits robustness to control
noise and external perturbations.

A limitation of our method is its reliance on the availability
of relevant behavioral fragments within the offline dataset.
When the required behaviors cannot be constructed from
fragments of trajectories in the dataset, DOPPLER may not
to find a suitable option. Future work includes exploring
techniques to overcome this limitation.
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