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Abstract

We argue that a unified world model is a foundational mechanism for integrating
perception, reasoning, and decision-making in embodied agents. Concretely, we
define a visuo-conceptual, reconstructive latent state learned jointly with dynamics
and policy that connects pixel-grounded 2D/3D scene understanding to language
and action. By enabling internal simulation with decodable futures, such a model
supports long-horizon planning, cross-modal knowledge transfer from multimodal
LLMs, and end-to-end optimization in closed-loop settings. We synthesize converg-
ing evidence from world-model reinforcement learning, vision–language–action
systems, diffusion-based control, and applications in robotics, autonomous driv-
ing, and open-ended environments. We outline a concrete research agenda: (i) a
bidirectional scene memory that decodes to images, video, and affordance fields;
(ii) differentiable imagination for evaluating and selecting actions; (iii) grounding
language priors in latent 3D and temporal structure; and (iv) rigorous sim-to-
real evaluation with uncertainty. We distill design patterns, failure modes, and
actionable benchmarks to accelerate progress.

1 Why a unified world model is the cornerstone

Classical modular pipelines place vision, mapping, prediction, and planning behind brittle interfaces.
They under-specify what must be preserved for control and make credit assignment across modules
difficult. In contrast, a unified world model learns predictive latent states that support imagination and
control, with strong evidence for sample efficiency and long-horizon competence in diverse domains
(e.g., Dreamer-style agents) [1]. The crucial step is a visuo-conceptual latent that (1) is optimized
for decision-making and (2) remains decodable to pixels, depth, flow, occupancy, or video, so the
agent can both think ahead and show its work. Reconstruction—including action-conditioned video
synthesis—acts as a powerful self-supervision signal that shapes temporally consistent, controllable
latents.

Design principle. Treat representation zt as an actionable scene memory: it fuses multi-view 2D/3D
cues, task context, and language priors; it can be rolled forward by a dynamics model p(zt+1|zt,at)
and decoded to images/video p(xt|zt), affordance/goal fields, and safety costs. This collapses “see”
and “simulate” into the same substrate, enabling tight perception–control coupling.

2 Unified world model meets MLLMs and VLAs: knowledge meets
grounding

Recent embodied MLLM/VLA systems demonstrate that injecting web-scale knowledge and rea-
soning into grounded policies improves generalization and instruction following. PaLM-E streams
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visual tokens into a pretrained language model to reason over scenes and plan robot behaviors [2];
RT-2 tokenizes actions and co-trains with internet V+L tasks to yield emergent semantic control [3];
open-source VLAs (e.g., OpenVLA) leverage Open X-Embodiment for cross-robot transfer [4, 5].
These models benefit from language priors yet still lack explicit internal simulation. Our thesis:
marry VLA semantics with reconstructive world models. Language supplies abstract goals and
commonsense; the world model supplies temporally coherent, physically plausible futures on which
to plan.

3 From observation to simulation to decision: an integrated loop

End-to-end optimization aligns the encoder, dynamics, and policy with downstream reward/costs,
avoiding error cascades and letting intermediate features emerge task-adaptively [6]. Concretely:

1. Encode. Multi-camera video (and proprioception) → latent scene zt with 3D inductive
biases (BEV, slots, Gaussian splats, or neural radiance).

2. Imagine. Roll out imagined futures {zt:t+H} under candidate actions; decode to video for
self-supervision and to occupancy/flow/contact to query constraints.

3. Evaluate. Score imagined futures with differentiable value/cost heads (task, safety, comfort),
optionally guided by LLM-inferred subgoals or constraints.

4. Act. Optimize actions (gradient-based planning or actor) and execute; update memory and
uncertainty; learn from both real and imagined data.

Diffusion policies are a natural fit for multi-modal action distributions and can be nested in this
loop as the action sampler or as the video/trajectory generator [7]. For driving and robotics, unified
transformers with streaming histories (e.g., DriveTransformer/UniAD line) show how to couple
perception, prediction, and planning around shared features [8, 9].

4 Applications

Robotics. Household and mobile manipulation benefit from VLA priors (object affordances, tool
use) combined with reconstructive latents to plan contact-rich behaviors. RT-2-style action tokeniza-
tion can coexist with latent MPC over imagined futures. Open X-Embodiment enables cross-robot
pretraining; the world model adds temporally grounded control [3, 4].

Autonomous driving. Planning-oriented stacks increasingly unify tasks; adding action-conditioned
video generation and 3D occupancy decoding provides closed-loop counterfactuals for safe explo-
ration and contingency planning [8–10]. Generative simulators learned from data bridge sim↔real
when paired with uncertainty and causal interventions [11].

Open-ended environments (e.g., Minecraft). LLM-powered agents like Voyager show the value
of curriculum, skill libraries, and code synthesis [12]. Adding a reconstructive world model yields
more stable long-horizon execution and safety validation before acting.

5 Practical implementation guidelines and ablation protocol

We operationalize the proposed approach with five tightly coupled components that can be imple-
mented incrementally and ablated systematically. First, learn a spatiotemporal latent with explicit
3D structure (e.g., BEV or object/slot-centric) that serves as a visuo–conceptual scene memory,
jointly optimized with reconstruction losses (RGB, depth, optical flow) and control-aware auxiliaries
(affordance/goal heatmaps). Second, enable differentiable imagination by rolling out H-step latent
futures under candidate actions and decoding action-conditioned video; regularize with physics priors
and differentiable consistency checks to suppress implausible trajectories. Third, couple the world
model with a VLA/MLLM planner by summarizing the scene into compact tokens, using the LLM to
propose subgoals and constraints, and grounding them back into differentiable masks or penalties so
that credit propagates to perception and dynamics. Fourth, use diffusion both for multi-modal action
proposals and for controllable future-frame generation, conditioning on the latent state and textual
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Lane Inputs State update Decoders/Artifacts Decision signal

Perception multi-cam video, proprio zt ← Eθ(xt) depth/flow/occupancy Lrec + λaff Laff
World model zt,at zt+1 ∼ fθ(zt,at) video x̂, affordances Ldyn + Lroll

Reasoning goal text g, summary st (g̃, ϕ)← MLLM(st, g) constraints/subgoals feasibility,
consistency

Decision zt, ϕ at:t+H−1 ← π(· | zt, ϕ) — value Vψ , risk c

Table 1: End-to-end lanes and their interfaces. ϕ denotes differentiable constraints grounded from
language; L· are training losses.

Head Symbol Training signal Used for Notes

Reward/Value Vψ, Qψ TD/λ-returns plan/policy end-to-end credit [6]
Safety cost cs counterfact. risk veto/penalty closed-loop eval

Comfort cc kinematic priors penalty jerk/lat-acc bounds
Feasibility ϕ LLM-grounded labels constraint mask latent/action [3, 4]
Uncertainty σ ensembles/variances risk-aware exploration/safety

Table 2: Scoring/constraint heads supervising imagination and decision.

goals to capture real-world multi-modality. Fifth, estimate epistemic uncertainty with ensembles
or variational methods, veto actions whose imagined rollouts exceed risk thresholds, and close the
sim-to-real gap via small-scale real-data finetuning and domain-randomized generative augmentation.
For transparency and reproducibility, report ablations over: (a) reconstruction vs. control auxiliaries,
(b) imagination horizon H and presence of video decoding, (c) LLM-guided constraints on/off, (d)
diffusion vs. non-diffusive policies/decoders, and (e) uncertainty heads and safety veto mechanisms.

6 Failure modes and evaluation methodology

Robustness hinges on three recurrent failure modes—hallucinated futures, language–vision misalign-
ment, and cross-loop credit assignment—and we evaluate progress with targeted, comparable metrics.
To detect hallucinated futures, compare imagined rollouts to realized trajectories using per-step
reconstruction and dynamics consistency (PSNR/SSIM/FVD for decoded video; occupancy/flow
errors; constraint-violation rates) and report control impact via planning regret and the open-loop vs.
closed-loop gap. To quantify language–vision alignment, measure referential grounding accuracy
between latent slots and text, instruction-conditioned success and latency, and calibration (e.g., ECE)
of feasibility predictions; stress-test with disambiguation and counterfactual phrasing. To probe
credit assignment across perception–dynamics–policy, track value/policy consistency (TD error,
value calibration), gradient-through-imagination effectiveness (improvement of actor–critic MPC
over behavior cloning), and data efficiency as the planning horizon scales. We standardize reporting
across domains: robots (mobile manipulation with language goals and safety constraints; success rate,
constraint satisfaction, episode length), driving (Bench2Drive and nuPlan; infraction rate, comfort,
counterfactual risk), and Minecraft-like open-ended tasks (skill acquisition rate, safety-gate pass rate,
ablations over imagination horizon). All metrics are logged on both real data and model-generated
rollouts to attribute gains to representation, imagination, or decision components.

7 Tabular summaries and formalization

System components and interfaces. We summarize the proposed end-to-end loop using a structured
table instead of figures. It captures the inputs/outputs, latent interactions, and decision signals of each
lane.

Rollout scoring heads and constraints. We list the heads used to score imagined futures and how
they contribute to optimization.
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Model V L A Internal sim. E2E dec. Notes

PaLM-E [2] ✓ ✓ ✓ ◦ ◦ Visual tokens into LLM;
positive transfer

RT-2 [3] ✓ ✓ ✓ ◦ ✓
Actions as tokens; emergent

semantic control

OpenVLA [5] ✓ ✓ ✓ ◦ ✓
Open-source; Open-X

pretraining

Gato [13] ✓ ✓ ✓ ◦ ◦ Generalist sequence policy,
limited planning

Dreamer-v3 [1] ✓ ◦ ✓ ✓ ✓
Latent imagination; diverse

domains incl. Minecraft

DriveTransformer/UniAD
[8, 9] ✓ ◦ ✓ ◦ → ✓ ✓

Unified stack; trending to
generative planning

Table 3: Support for end-to-end decision optimization. V/L/A mark vision/language/action modalities.
✓=fully supported; ◦=limited/implicit; ◦ → ✓=evolving capability.

Formal objective and planning. We formalize training and control with reconstructive and decision-
aware terms:

min
θ,ϕ,ψ,η

∑
t

[
Lrec(xt, Dϕ(zt))︸ ︷︷ ︸

reconstruction

+λaff Laff(zt)

+ λdyn Ldyn
(
zt+1, fθ(zt,at)

)]
+ λval Lval(ψ) + λalign Lalign(zt; g, η).

(1)

Rollout-based control optimizes actions against value and costs under constraints:

a∗t:t+H−1 = arg max
at:t+H−1

E
[H−1∑
k=0

γk
(
r(zt+k,at+k)− βs cs − βc cc

)]
s.t. ϕ(zt+k,at+k) ≤ 0, ∀k.

(2)

Language-grounded constraints are compiled into differentiable masks or penalties:

ϕ(z,a) := gη(z; gtext). (3)

Diffusion policies [7] can parameterize π or serve as controllable decoders for x̂t:t+H .

8 Position and outlook

Position. The most promising path to robust, general embodied agents is a unified world model—the
cornerstone that integrates perception, reasoning, and decision-making—trained end to end with
reconstructive self-supervision, LLM-guided reasoning, and decision-aware objectives. This closes
the loop between seeing, imagining, and acting.

Immediate opportunities. (1) Video-grounded planning: train value heads on decoded futures
instead of raw features; (2) Language-to-latent constraints: compile textual rules/subgoals into
differentiable costs or masks; (3) Diffusion everywhere: unify scene and action generation under
shared conditioning; (4) Risk-sensitive imagination: uncertainty-aware veto and scenario stress-testing
before execution.

Limitations. Training stability, compute, and safety validation remain challenging; however, hybrid
actor–critic MPC, curriculum from LLM planners, and uncertainty-aware decoders provide practical
levers.

Reproducibility notes for tables. Tab. 1 can be instantiated from a trained model by enumerating
module IOs and recording which losses supervise each artifact. Tab. 2 is derived by exporting head
definitions and their training targets; the objective and constraints are directly computed from logged
rollouts and labels.
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