Uncovering Hidden Correctness in LLM Causal Reasoning via Symbolic
Verification

Anonymous ACL submission

Abstract

Large language models (LLMs) are increas-
ingly applied to tasks involving causal rea-
soning. However, current benchmarks often
rely on string matching or surface-level met-
rics that fail to assess whether a model’s out-
put is formally valid under causal semantics.
We propose DoVerifier, a symbolic verifica-
tion framework that checks whether LLM-
generated causal expressions are derivable from
a given causal graph using rules from do-
calculus and probability theory. This allows
us to recover correct answers that would oth-
erwise be marked incorrect due to superficial
differences. Evaluations on synthetic data and
causal QA benchmarks show that DoVerifier
more accurately captures semantic correctness
than standard metrics, offering a more rigor-
ous and informative way to evaluate LLMs on
causal tasks.

1 Introduction

Causal reasoning lies at the core of human intelli-
gence. Unlike mere pattern recognition, it enables
us to reason about interventions, explain effects,
and predict outcomes under hypothetical scenarios.
As large language models (LLMs) (OpenAl, 2024;
Team, 2025; DeepSeek-Al, 2025) are increasingly
deployed in scientific, medical, and policy-related
domains, the ability to generate and interpret causal
claims is no longer optional—it is critical (Doshi-
Velez and Kim, 2017). An LLM that can distin-
guish between correlation and causation could sup-
port tasks ranging from experimental design to sci-
entific hypothesis generation.

Recent causal reasoning benchmarks such as
CLadder (Jin et al., 2023) and CausalBench (Wang,
2024) have begun to evaluate LLMs on causal ques-
tion answering. However, these efforts primarily
focus on surface-level correctness: whether the
model’s answer matches a gold string or produces
the right outcome in simple scenarios. While use-

Prompt: Imagine a diagnostic system where ambient temperature affects
both affects both calibration and output. Component stress influences
system failure and output. Humidity and sensor calibration affects
measurement of error. System failure affects output. What is the effect of
intervening on component stress on system failure?
Generate a causal graph and expression that models the problem

@ Graph: A->D, A->G, B->F,B->G, C->E, D->E, F->G
Causal Expression: P(F | do(C), do(A), do(B), D)

Does the LLM generated expression entail () the target expression
under the graph?

String Match
LLM Expression
P (F|do(C) ,do (A) ,do(B),D)

Label
P(F|do(B))

DoVerifier
P(F|do(C) ,do(A),do(B),D)

v v

P(F|C,do(A) ,do(B),D) P(F|do(C) ,do(B) ,D)

BFS over all valid rule

applications, B(F|do(B),D)
each path is a proof tree ¢
under the given DAG.
P(F|do(B))
- /)

Figure 1: Our symbolic verifier checks whether a model-
generated causal expression is semantically equivalent
to the ground truth under a given DAG. Unlike string
match, it explores all valid derivations using do-calculus
and probability rules to identify formal equivalence.

ful, these metrics fail to capture a more fundamen-
tal question: does the model’s output represent a
valid causal expression under formal semantics?
Furthermore, LLLMs often produce expressions that
are logically correct but syntactically different from
the reference. These answers are penalized despite
being correct, leading to an incomplete picture of
model capability.

This gap arises because causal inference relies
on symbolic semantics: the validity of an expres-
sion like P(Y | do(X)) dependents not on its
string form, but on whether it is derivable from
a given causal graph using rules of do-calculus and
probability theory. In mathematical formalization

tasks, models can often be evaluated by plugging
in values or checking numerical correctness (Gao
et al., 2025; Fan et al., 2024; Cobbe et al., 2021;
Hendrycks et al., 2021). However, as shown in
Figure 1, we rarely know the full joint distribution
P(-), preventing us to substitute numerical values;
the ground truth is defined not by observed values,
but by derivability under a causal graph using the
rules of do-calculus (PEARL, 1995). This makes
causal verification fundamentally symbolic: an ex-
pression like P(Y | do(X)) must be judged valid
based on its formal relation to a DAG and other
expressions—not via simulation or numeric output.

In this work, we propose DoVerifier, a sym-
bolic verification framework for evaluating LLM-
generated causal expressions. Given a causal graph
and a model prediction, our system determines
whether the expression is formally derivable us-
ing known rules. This allows us to recover many
semantically correct outputs that existing bench-
marks miss. As shown Figure 1, our method per-
forms rule-based transformations to verify seman-
tic equivalence, offering a more rigorous and infor-
mative evaluation of causal reasoning in LLMs.

We further show that symbolic verification en-
ables strutured guidance: by identifying specific
derivation failures, DoVerifier can help models re-
vise incorrect outputs, improving causal validity
without requiring gold answers.

Our contributions are as follows:

* We propose a formal verication framework for
LLM-generated causal expressions, based on
proof search over do-calculus and probability
transformations.

» We show that DoVerifier recovers a large por-
tion of causally correct but syntactically mis-
matched outputs on both synthetic data and
real benchmarks, outperforming standard met-
rics.

* We demonstrate that symbolic verification en-
ables feedback for model self-correction, im-
proving causal accuracy without supervision.

2 Related Work

Causal QA and LLM Evaluation Recent bench-
marks evaluate large language models (LLMs) on
their ability to answer causal questions expressed
in natural language. CLadder (Jin et al., 2023)
and CausalBench (Wang, 2024) present standard-
ized datasets of associational, interventional, and

counterfactual queries grounded in causal graphs.
However, evaluation typically hinges on string
similarity to a gold-standard answer, without any
guarantee of causal validity (Jin et al., 2023; Bon-
darenko et al., 2022; Joshi et al., 2024). A semanti-
cally incorrect expressions might score well due to
shared tokens. Standard metrics like exact match,
BLEU (Papineni et al., 2002), token-level F1, and
BERTScore (Zhang et al., 2020) are commonly
used to evaluate LLMs on causal QA tasks (Hu
and Zhou, 2024). Howeyver, these metrics assess
surface similarity, not semantic equivalence. As
shown in Figure 2, they may penalize logically
correct outputs due to formatting differences, or
falsely reward incorrect answers that share com-
mon tokens. To our knowledge, no prior work
evaluates causal QA using symbolic derivability as
a criterion for semantic correctness.

Formal Verification in Causal Inference The
causal inference community has long relied on do-
calculus (PEARL, 1995) and probability theory to
determine whether a causal query is identifiable
from observational data. Classical identifiability
algorithms (Shpitser and Pearl, 2008) and modern
tools like dosearch (Tikka et al., 2021) formalize
this process as a search over valid derivations. How-
ever, these tools are designed to compute causal ef-
fects from structured inputs—not to verify whether
a model-generated expression is valid or equivalent
under the causal graph. This verification step is
critical when evaluating the intermediate reason-
ing of LLMs. Another line of work, like Sheth
et al. (2025), checks if answers align with prede-
fined causal graphs but relies on template matching
rather than formal derivations and cannot handle
expressions involving do-calculus transformations.
In contrast, our approach treats verification as a
symbolic proof search problem: given a model-
generated expression, we check whether it can be
derived from known assumptions using formally
defined rules. This enables both robust evaluation
and fine-grained error analysis.

Formalization in Mathematical and Logical Rea-
soning Efforts in mathematical reasoning have
primarily focused on verifying answers to quan-
titative problems. For instance, Hendrycks et al.
(2021) evaluates LLMs on math competition prob-
lems, while Glazer et al. (2024) investigates sym-
bolic solvers for arithmetic tasks. To further vali-
date intermediate reasoning steps, another line of
work (Ren et al., 2025; Wang et al., 2024) resorts

BLEU Score P(Y | do(X), Z) = P(Y | Z, do(X))
x Equivalent expressions but low BLEU score due to
reordering and short expression bias

x Inequivalent expressions but high Token-level F1 score

Token-level F1 P(Y | do(X), Z) # P(Y | X)
since variables (tokens) are shared

BERTScore P(Y) #P(Y | X)
x Inequivalent expressions but high BERTScore because
tokens are close in embedding space

x Equivalent expressions under some DAG fails to get
recognized by string matching

String match P(Y | do(X), Z)=P(Y | Z) ’

Figure 2: Examples of evaluation failures in causal expression matching. Even logically equivalent expressions can
receive low scores due to surface-level differences (e.g., reordering), while inequivalent ones may score high due to
shared tokens or embeddings. Highlights the limitations of BLEU, token-level F1, BERTScore, and string match in

causal reasoning tasks.

to formal math descriptions (de Moura and Ullrich,
2021; Nipkow et al., 2002) that facilitate the step-
wise consistency inspection. Although it is promis-
ing to formalize a math problem (AlphaProof and
teams, 2024; Lin et al., 2025), checking its seman-
tic correctness is found crucial yet under evolv-
ing (Lu et al., 2024; Xin et al., 2025). Recent work
in geometry (Murphy et al., 2024) and logic (Li
et al., 2024) uses SMT solvers to assess logical
equivalence between informal text and formal theo-
rems. We draw inspiration from this paradigm but
extend it to causal inference—where correctness is
defined not by logical validity alone, but by deriv-
ability under the rules of do-calculus and a causal
DAG.

3 DoVerifier: Causal Symbolic
Verification Framework

3.1 Motivation and Preliminaries

Large language models (LLMs) are increasingly
used for answering causal questions, such as:

"What would happen if we took away
variable X?" or "Is Y more likely when
we intervene on Z?"

To answer such questions correctly, LLMs must go
beyond observing correlations, instead, they must
reason about causality. This involves understanding
not just data patterns, but also how interventions
change outcomes.

To evaluate these capabilities, we adopt the for-
mal framework of causal inference, which defines
how to represent and manipulate interventional and
counterfactual queries. In particular, we use:

¢ Structural Causal Models (SCMs) to define
relationships among variables as a directed
acyclic graph (DAG)

¢ Do-calculus (PEARL, 1995), a set of for-
mal rules for transforming causal expressions
based on graphical criteria

Unlike factual QA, causal evaluation is not al-
ways numeric: we cannot simply plug in values
to verify an answer. Instead, we must determine
whether an expression like P(Y | (X)) follows
logically from a known graph structure.

We adopt the language of structural causal mod-
els (SCMs) and do-calculus (PEARL, 1995) to for-
malize expressions like P(Y | do(X)). These
tools allow us to test whether a causal expression
follows logically from a known graph structure.
This is essential because, unlike in standard math-
ematical reasoning, we often cannot verify causal
statements by computing with numeric values. In-
stead, validity must be established symbolically.

To organize the kinds of reasoning we evaluate,
we refer to Pearl’s Ladder of Causation:

1. Association: identifying statistical patterns,
suchas P(Y | X)

2. Intervention: predicting the effect of actions,
such as P(Y | do(X))

3. Counterfactuals: comparing alternate out-
comes, such as Yx—1 vs. Yx—g

Most language models are trained on observa-
tional data and operate at the associational level.
However, many reasoning tasks involve interven-
tions or counterfactuals. Our framework focuses on
evaluating whether model-generated expressions
are valid under formal causal semantics.

We now introduce the formal rules that underpin
our verification method. These rules form the core
component of DoVerifier. Do-calculus consists of
three rules that specify when we can remove or
add terms to a conditional distribution involving
interventions (PEARL, 1995).

The Rules of do-calculus Let X, Y, Z, and W be
arbitrary disjoint sets of nodes in a causal directed
acyclic graph (DAG) G . Following the notation
of Pearl (2012), we denote:

* G~ the graph obtained from G by removing
all the edges pointing to the nodes in X.

* Gx the graph obtained by deleting all the
edges emerging from the nodes in X.

* G, the graph obtained by deleting edges
into X and out of Z.

Each rule applies only if a certain d-seperation
condition holds in the modified graph.

Rule 1 (Insertion/deletion of observations):
P(y [do(z),z,w) = P(y | do(z), w)
it (Y 1L 7 | X, W)GY (D)

This allows us to add or remove observed vari-
ables Z from the conditioning set if they are
irrelevant to Y once X and W are known (af-
ter intervention X).

Rule 2 (Action/observation exchange):
P(y | do(z),do(z), w) = P(y | do(z), z, w)
ift(Y 1L Z | X, W)

GYZ

2
This allows us to replace an intervention
do(Z) with a simple observation, if Z be-
haves like a non-manipulated variable under
this graphical condition.

Rule 3 (Insertion/deletion of actions):
P(y | do(z),do(2), w) = P(y | do(z), w)
if(YLZ| X, W)

XZ(W)
3)
This allows us to ignore an intervention on 2
when it has no causal effect on Y, given the
rest of the variables.

Notation: Z(W) is the set of Z-nodes that are not
ancestors of any W-node in G~ This restrictions
ensures we only remove do-interventions that don’t
"leak" back into relevant parts of the graph. The no-
tation (Y L Z | X, W)¢ represents d-separation
in graph G, meaning all paths between Y and Z
are blocked by conditioning on X and W

'In do-calculus, X, Y, Z, and W are disjoint sets of vari-
ables representing interventions (X)), outcomes (Y'), observed
variables (Z), and other variables (1V). These sets can be

empty which allows the rules to generalize to many causal
inference scenarios.

3.2 Definitions

To formally specify our verification framework, we
define the symbolic language of causal expressions
and the notion of derivability under a causal graph.

Definition (Causal Expression Language) Let
L causal be the set of expressions of the form P(Y |
Z), where Y and the elements of Z are either ob-
served variables or do-interventions (i.e., expres-
sions of the form do(X)). Expressions in Lcaysal
are defined with respect to a causal DAG G with
finite node set V.

Definition (Derivability) Given a DAG G, we
write Eiyi F@ Elager to denote that the causal ex-
pression Eyuee; can be derived from the initial ex-
pression Ejy; via a finite sequence of applications
of the rules of do-calculus and standard probability
theory, while respecting the conditional indepen-
dencies implied by G. We read I- as entails.

3.3 Method

We define a symbolic verification framework,
DoVerifier, for assessing equivalence between
causal expressions derived from natural language.
We first provide a list of desired properties a good
evaluator should have, listed in Appendix A. Later
in the paper we discuss why existing metrics fail
to meet such desired properties. Given a causal
DAG G (which may be generated by the model),
and two expressions Einit, Earget € Lcausal, DOVer-
ifier determines whether Fi g is derivable from
FEinit under the axioms of do-calculus and standard
probability theory. The system operates by enumer-
ating proof sequences through a structured search
procedure. Implementation details are provided
in Appendix B. In simple terms, our framework is
simply breadth-first-search after converting every-
thing into a custom object. The framework consists
of two main components:

1. Expression Parser. This module parses ex-
pressions from natural language or symbolic
form into normalized structured representa-
tions in Lcuusa1. This includes:

* Recognizing both observational terms
like P(Y | X) and interventional ones
like P(Y | do(X), Z).

* Converting string-based expressions into
a canonical symbolic form using a cus-
tom SymPy-based object’ that allows

2https://www.sympy.org

https://www.sympy.org

equivalence checks that are invariant to
variable reodering or formatting.

* If a causal graph is provided, it is parsed
into a standard NetworkX * DAG object.

This step is necessary to interface LLM out-
puts with our proof search module.

2. Proof Search Module. This module deter-
mines whether a valid derivation exists from
Einit t0 Etarger under the rules of do-calculus
and probability theory.

* We implement a breadth-first search over
the space of derivable expressions. The
algorithm is provided in Appendix B.

* At each step, we apply all possible trans-
formations to current expressions and en-
queue any new expressions not seen be-
fore.

* The search continues until the target ex-
pression is found or a predefined depth
limit is reached (e.g., 20 steps).

This guarantees completeness within a
bounded search space: if a derivation exists
within that limit, it will be found.

3.4 Soundness and Completeness of
DoVerifier

In this section, we establish a theoretical guarantee
for DoVerifier by proving its soundness and com-
pleteness. We begin by introducing formal nota-
tions that support these proofs. Soundness ensures
that every equivalence established by DoVerifier is
valid; completeness ensures that if an equivalence
exists between two expressions, DoVerifier will
find it (within a bounded search depth). First, we
model causal equivalence as a reachability problem
in a derivation graph:

Proposition 3.1 (Derivation Graph). Let Ej,; €
Lcausal- Define a directed graph S(Eiy;) where:

* Each node is a unique causal expression deriv-
able from Ej;;

e Anedge E — E' exists if E' can be obtained
from E by applying a single valid transforma-
tion.

Then S(Eini;) is a well-defined, finite-branching
graph.

Shttps://networkx.org/

The branching factor is finite since the number
of variables in G is finite and each transformation
rule applies to bounded subsets.

Proof. Proved in Appendix C |

Verification Algorithm Given a causal graph G,
source expression Ejj;, target expression Fiapget,
and maximum depth d, we present Algorithm 1
as an algorithm to verify if Ejyj and Eiyreer are
equivalent bounded by depth d.

This approach guarantees finding the shortest
sequence of transformations if one exists within
the depth limit, as stated in our main theorem that
concerns the soundness and completeness of the
verification algorithm:

Proposition 3.2 (Soundness & Completeness of
Proof Search). Let G be a causal DAG, and let
Eiir, Etarget € Leausal- If Eiit - Etarget’ then Al-
gorithm 1 returns a valid proof sequence within
depth d, for some finite d. Conversely, if no such
derivation exists within depth d, Algorithm I re-
turns None.

Proof. Proved in Appendix D. |

In addition, if no derivation exists between Fip;¢
and FEager with k < d steps, breadth-first search
(BFS) will terminate after exploring all expressions
within depth d. Further practical considerations are
explained in Appendix E

Separately, we can view DoVerifier as a logi-
cal system defined over a formal language L aysal
equipped with a set of derivation rules R and a
background model that is either provided or gen-
erated by an LLM G (the DAG). In this view, we
distinguish between:

Syntactic entailment (H - A): A is derivable
from hypothesis H using the symbolic trans-
formation rules admissible under G bounded
by depth d.

Semantic entailment (H =g A): Ais true in all
causal models consistent with G in which all
H; € H are true.

Intuitively, syntactic entailment means that there
exists a proof of A from H using valid rules (i.e., it
can be derived step by step). In contrast, semantic
entailment means that A holds in every causal
model where H is true, regardless of how we prove
it.

https://networkx.org/

An analogy: syntactic entailment is like show-
ing your work on a math problem using allowed
steps; semantic entailment is like checking that the
answer is always correct in every valid scenario. In
our setting, the two notions coincide because do-
calculus is sound and complete—everything prov-
able is true, and everything true is provable. We
require our inference system to satisfy:

Soundness: If H ¢ A, then H ¢ A
Completeness: If H =; A, then H ¢ A

These are properties of the underlying logical sys-
tem, which are satisfied due to the completeness
of do-calculus for causal identifiability (PEARL,
1995) and the standard probability axioms. Thus,
the semantic correctness of model outputs can be
equivalently verified through syntactic derivation,
which forms the basis of our verifier.

4 Experiments and Results

4.1 Synthetic Data Test

To verify the internal consistency of the verifier,
and to show that existing metrics fail in cases where
syntactically different expressions are the same
semantically, we construct a synthetic dataset of
over 10,000 expression pairs (Eip, Emrget) such
that Ei,ge is provably derivable from FEj,; under
a known DAG G. Each pair involves between 1-4
rule applications and includes randomized use of
do-calculus and probability rules P. A description
of data samples is shown in Appendix F.

Sampling Procedure LetV = {v,...,v,} be
a finite set of variables, and let G = (V, E) be a
randomly sampled acyclic graph. We sample the
directed edges independently as P(v; — v;) = p
for i < j where p € (0, 1) is the edge probability,
and the ordering ensures the graph is acyclic. In our
experiments, we fix n < 10 and p = 0.5 to balance
expressivity and tractability. We first construct
€1 — P(Y ’ dO(X1>, ey dO(Xk), Zl, ey Zm)
“4)

where Y € V is chosen uniformly at random, a sub-
set of V\{Y} is chosen as intervention variables
{X;} and additional variables {Z;} are included
as conditioning set as observation. To ensure struc-
tural diversity, the number of intervention variables
X; and observational variables Y; is randomly cho-
sen per sample, subject to DAG constraints. Then,

we define a symbolic derivation process 7 consist-
ing of a sequence of rule applications:

613623...@6714_1 (5)

where each 7; € {Rule I, Rule 2, Rule 3} U P.
Rule applications are randomized but constrained
to only apply when valid under the conditional inde-
pendencies induced by GG. Then, we set Ei,iy = €1
and Etarget = €n+1-

The mean number of edges is 7 (min. 3, max.
10). Rule 1 was used 21172 times, rule 2 was used
29563 times, and rule 3 was used 22508 times.

Synthetic Data Performance Our symbolic veri-
fier achieves 100% precision and recall under depth
limit d = 5, demonstrating correctness of the
derivation engine, while other methods such as
string match, or token-level F1 performed poorly
due to Ejyi and Earger being too distinct syntacti-
cally.

The experiment results show a key strength of
our framework that it can correctly recognize when
two expressions are equivalent under the rules of
do-calculus and probability, even if they differ in
formatting, variable order, or surface form.

4.2 LLM Causal Reasoning Test

Uncovering Missed Correct Answers We eval-
uate the ability of our symbolic verifier to improve
the accuracy of large language model (LLM) eval-
uation in causal reasoning. Specifically, we ask:
Can our method recover correct answers that are
missed by naive evaluation metrics?

Evaluated Dataset and Models To investigate
this, we use the CLadder benchmark (Jin et al.,
2023), a suite of causal questions grounded in
known DAGs. Each question is paired with a
ground-truth answer expressed as a formal causal
expression. We prompt L1lama-3-8B (Grattafiori
et al., 2024), Llama-3-8BInstruct (Grattafiori
et al., 2024), Mistral-7B (Jiang et al., 2023), and
Gemma-7B-IT (Team et al., 2024) to answer these
questions and parse their responses, including a
DAG that models the problem into symbolic ex-
pressions. Detailed prompts and parsing are demon-
strated in Appendix G. Each prediction is then com-
pared to the ground-truth using three metrics:

* String Match: A response is marked correct
only if it matches the ground-truth expression
exactly (after normalizing).

Model String Match LLM-as-a-judge DoVerifier (Ours)
Llama3.1-8B 0.57 0.60 0.73
Mistral-7B 0.58 0.80 0.94
Llama3.1-8B-Instruct 0.88 0.66 0.90
Gemma-7B-it 0.80 0.58 0.84

Table 1: DoVerifier recovers more correct causal expressions than string match or using an LLM-as-a-judge across
four LLMs on CLadder in terms of answer accuracy; our method identifies semantically valid expressions missed

by surface-level metrics.

e LLLM-as-a-judge: We provide the generated
causal expression, generated causal graph,
and the ground truth expression for OpenAlI’s
GPT-40 (OpenAl, 2024) to determine if the
two expressions are equivalent.

* Symbolic (Ours): A response is considered
correct if it is derivable from the ground-truth
using valid applications of do-calculus and
probability rules (under 20 steps).

Alternative metrics are discussed in Appendix I.

Results As shown in Table 1, our symbolic
method identifies more correct answers than string
match and LL.M-as-a-judge, raising the accuracy
across all models. Our method is more useful when
models such as L1ama3.1-8b and Mistral-7B out-
put an alternative form of the correct use. This
improvement highlights an important phenomenon:
many model responses are causally correct but fail
naive evaluation due to superficial differences in
formatting, variable order, or phrasing. The run-
ning time of verifying through BFS is minimal
(milliseconds).

Our symbolic verifier recovers this missing ac-
curacy by judging expressions based on their se-
mantic content, not their surface form. It enables
a more faithful and rigorous assessment of causal
reasoning in LLMs, ensuring that models receive
credit for valid reasoning even when their output
does not match the reference verbatim.

When high-performing models like
Llama3.1-Instruct already align well with
ground-truth formats, so the relative gain over
string match is smaller. This suggests that the
benefit of symbolic evaluation is most pronounced
when models exhibit partial causal understanding
but struggle with precise formalization. Further-
more, when using LL.M-as-a-judge, we lose the
soundness guarantee that both string match and

DoVerifier provide*. We also hypothesize that
including the DAG in LLM-as-a-judge prompts
may act as a source of noise, leading the model
to overinterpret structural cues and misjudge
otherwise valid expressions.

We identified several common patterns where
symbolic verification offers substantial advantages:

Intervention with conditioning: Our system val-
idates equivalence between expressions like
P(Y |do(X),Z = z)and P(Y | do(X), Z)
by correctly handling instantiated versus sym-
bolic values.

Rule-based transformations: Our system cor-
rectly identifies that P(Y | do(X), Z) can
be transformed into P(Y | X, Z) in DAGs
where Z d-separates Y from incoming edges
of X. This conversion from interventional to
observational queries represented the majority
of all verified equivalences. Note that this is
important since the ground-truth of CLadder
is in observational queries.

Multi-step proofs: For more complex cases, our
verifier successfully applied sequential rules.

4.3 TImproving LLMs with Symbolic Feedback

Beyond evaluation, the proposed DoVerifier en-
ables structured feedback to guide LLMs toward
correct causal reasoning without relying on ground
truth expressions. It has been shown that symbolic
feedback loops (e.g., using SMT solvers in math or
logic) have been shown to improve LLM output ac-
curacy by providing formal, structured corrections
(Hong et al., 2025; Murphy et al., 2024). Instead of
using a reference answer as an oracle, our system
leverages the causal graph structure and indepen-
dence relationships to provide principled guidance.
We provide a formal description in Appendix H.

*While string match is sound, it is not complete.

Model Before Feedback After Feedback
LLaMA3.1-8B 0.73 0.93
Mistral-7B 0.94 0.99
LLaMA3.1-8B-Instruct 0.90 0.98
Gemma-7B-it 0.84 0.87

Table 2: Accuracy before and after applying verifier-
guided feedback. Feedback improves semantic correct-
ness across all models.

Results Table 2 shows the improvement of LLM
performance using our feedback loop. We find that
the effectiveness of symbolic feedback depends
heavily on the type of error in the original expres-
sion. For example, when the model incorrectly uses
P(Y | X) instead of P(Y | do(X)), feedback
guided by d-separation and rule-based reasoning
often corrects the mistake. In contrast, if the model
hallucinates an irrelevant variable or misrepresents
the structure of the DAG itself, our framework is
less effective since the symbolic transformations
cannot fix structurally flawed inputs.

5 Discussions

This work formalizes the task of verifying causal
correctness in language model outputs as a sym-
bolic inference problem. The primary objective of
the study is the derivation graph S(Ej;) induced
by the application of a finite rule set R (comprising
do-calculus and probability transformations) to an
initial causal expressions.

Semantic Equivalence as Proof-Theoretic
Reachability We define semantic equivalence
with respect to a causal graph G as the symmetric
closure of the derivability relation:

Ei=q By <— (E1 Fo Es AN Ey b El) (6)

This defines a family of equivalence classes
[El=, C Lecausal, Where each class represents all
expressions that are equivalent iff they encode the
same interventional distribution in all causal mod-
els consistent with G. Empirically, we observe that
LLM-generated outputs frequently fall into these
equivalence classes without being string-identical
to reference answers. For instance, expressions like
PY | X,Z)and P(Y | do(X), Z) are lexically
distinct but often semantically equivalent, condi-
tional on specific d-separation statements. Our sym-
bolic verifier resolves this not via heuristics, but
by computing membership in the equivalence class
through derivation.

Symbolic Feedback Works Because of Local
Equivalence Neighborhoods In the presence of
an incorrect LLM output Ej 1M, our framework en-
ables symbolic feedback by computing a correction
E’ such that

E' € Closurer (Erim) N [E¥]=4 (7

where E* is the latent correct expression (not
known to the verifier). Operationally, this amounts
to inverse proof search: finding a path from EFyym
to a semantically correct neighbor. This supports
the hypothesis that modern LL.Ms operate near lo-
cally correct regions of L ausal, but lack explicit
guarantees of logical closure (Wei et al., 2023;
Zhou et al., 2023).

Failure Types Align with Non-derivability The
most common model failures (e.g., using P(Y | X)
when X is a collider, or omitting keyfounders) cor-
respond to derivations that fail d-separation condi-
tions. For instance, symbolic proof fails when:

YV 2] X)er =

These cases, which account for a significant portion
of the errors in the models, are not just empirically
incorrect but provably invalid under our formal sys-
tem. This illustrates how symbolic reasoning cap-
tures not only surface alignment but deep structural
correctness.

6 Conclusion

We introduced DoVerifier, a formal verification
framework that evaluates the causal validity of
LLM-generated expressions by modeling causal
reasoning as a symbolic derivation task using do-
calculus and probability rules. Our approach recov-
ers semantically correct answers that are missed by
standard metrics, improves recall on causal bench-
marks, and enables structured feedback to refine
model outputs.

These findings reveal a significant gap in current
evaluation methods and highlight the importance
of symbolic verification for building reliable causal
reasoning systems. By connecting natural language
generation with formal inference, DoVerifier offers
a principled step toward evaluating models based
on what they truly understand rather than how they
phrase it.

Limitations

While promising, our approach has several lim-
itations and opens up for future work. On the
one hand, the space of valid derivations can grow
rapidly with the number of variables and the depth
of allowed transformations. Although we employ
optimizations like expression normalization and
memoization, our breadth-first search remains com-
putationally expensive in dense or deep DAGs. Fu-
ture work could explore neural-guided proof search
or approximate symbolic methods. On the other
hand, regarding the feedback mechanism, the cur-
rent feedback module improves the causal validity
of model outputs using only the predicted DAG
and the initial expression. It does not incorporate
the original natural language question. As a result,
the revised expression may be causally correct un-
der the graph, but not necessarily faithful to the
question intent. In practice, we observe that most
LLM errors stem from misapplying causal seman-
tics rather than misreading the question, but inte-
grating question-aware feedback remains a valu-
able direction for future work.

Ethical Considerations

This work focuses on the formal verification of
causal expressions generated by large language
models (LLMs), with the goal of improving their
semantic correctness and reliability in reasoning
tasks. Our proposed framework does not involve
human subject data, personally identifiable infor-
mation, or real-world deployment in high-stakes
settings such as healthcare or public policy. How-
ever, we acknowledge that causal claims can in-
fluence decision-making in sensitive domains. As
such, we emphasize that symbolic correctness un-
der do-calculus does not guarantee practical va-
lidity unless the underlying causal graph is itself
accurate and contextually appropriate.

Our framework is designed for evaluation and
diagnostic purposes, not for automating causal de-
cisions. We caution against interpreting verified
expressions as endorsements of correctness in real-
world applications without domain expertise. To
avoid misuse, we release our tools with clear dis-
claimers that they are intended for research and
educational purposes.

References

AlphaProof and AlphaGeometry teams. 2024.
Ai achieves silver-medal standard solving in-
ternational mathematical olympiad problems.
https://deepmind.google/discover/blog/ ai-solves-
imo-problems-at-silver-medal-level/.

Alexander Bondarenko, Magdalena Wolska, Ste-
fan Heindorf, Lukas Blilbaum, Axel-Cyrille
Ngonga Ngomo, Benno Stein, Pavel Braslavski,
Matthias Hagen, and Martin Potthast. 2022.
CausalQA: A benchmark for causal question
answering. In Proceedings of the 29th Interna-
tional Conference on Computational Linguistics,
pages 3296-3308, Gyeongju, Republic of Ko-
rea. International Committee on Computational
Linguistics.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Leonardo de Moura and Sebastian Ullrich. 2021. The
lean 4 theorem prover and programming language.
In Automated Deduction - CADE 28 - 28th Interna-
tional Conference on Automated Deduction, Virtual
Event, July 12-15, 2021, Proceedings, volume 12699
of Lecture Notes in Computer Science, pages 625—
635. Springer.

DeepSeek-Al. 2025. Deepseek-rl: Incentivizing rea-
soning capability in llms via reinforcement learning.
Preprint, arXiv:2501.12948.

Finale Doshi-Velez and Been Kim. 2017. Towards a
rigorous science of interpretable machine learning.
Preprint, arXiv:1702.08608.

Jingxuan Fan, Sarah Martinson, Erik Y. Wang, Kaylie
Hausknecht, Jonah Brenner, Danxian Liu, Nianli
Peng, Corey Wang, and Michael Brenner. 2024.
HARDMATH: A benchmark dataset for challeng-
ing problems in applied mathematics. In The 4th
Workshop on Mathematical Reasoning and Al at
NeurIPS’24.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo
Miao, Qingxiu Dong, Lei Li, Chenghao Ma, Liang
Chen, Runxin Xu, Zhengyang Tang, Benyou Wang,
Daoguang Zan, Shanghaoran Quan, Ge Zhang, Lei
Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu,
and Baobao Chang. 2025. Omni-MATH: A univer-
sal olympiad level mathematic benchmark for large
language models. In The Thirteenth International
Conference on Learning Representations.

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego
Chicharro, Evan Chen, Alex Gunning, Caroline Falk-
man Olsson, Jean-Stanislas Denain, Anson Ho,
Emily de Oliveira Santos, Olli Jarviniemi, Matthew
Barnett, Robert Sandler, Matej Vrzala, Jaime Sevilla,
Qiuyu Ren, Elizabeth Pratt, Lionel Levine, Grant

https://aclanthology.org/2022.coling-1.291/
https://aclanthology.org/2022.coling-1.291/
https://aclanthology.org/2022.coling-1.291/
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/1702.08608
https://arxiv.org/abs/1702.08608
https://arxiv.org/abs/1702.08608
https://openreview.net/forum?id=gt6prlTEGL
https://openreview.net/forum?id=gt6prlTEGL
https://openreview.net/forum?id=gt6prlTEGL
https://openreview.net/forum?id=yaqPf0KAlN
https://openreview.net/forum?id=yaqPf0KAlN
https://openreview.net/forum?id=yaqPf0KAlN
https://openreview.net/forum?id=yaqPf0KAlN
https://openreview.net/forum?id=yaqPf0KAlN

Barkley, Natalie Stewart, Bogdan Grechuk, Tetiana
Grechuk, Shreepranav Varma Enugandla, and Mark
Wildon. 2024. Frontiermath: A benchmark for
evaluating advanced mathematical reasoning in ai.
Preprint, arXiv:2411.04872.

Aaron Grattafiori et al. 2024. The llama 3 herd of mod-
els. Preprint, arXiv:2407.21783.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. Preprint,
arXiv:2103.03874.

Sungee Hong, Zhengling Qi, and Raymond K. W.
Wong. 2025. Distributional off-policy evaluation
with bellman residual minimization. Preprint,
arXiv:2402.01900.

Taojun Hu and Xiao-Hua Zhou. 2024. Unveiling llm
evaluation focused on metrics: Challenges and solu-
tions. Preprint, arXiv:2404.09135.

Albert Q. Jiang et al. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele,
Ojasv Kamal, Zhiheng LY U, Kevin Blin, Fernando
Gonzalez Adauto, Max Kleiman-Weiner, Mrinmaya
Sachan, and Bernhard Scholkopf. 2023. Cladder:
Assessing causal reasoning in language models. In
Advances in Neural Information Processing Systems,
volume 36, pages 31038-31065. Curran Associates,
Inc.

Nitish Joshi, Abulhair Saparov, Yixin Wang, and He He.
2024. LLMs are prone to fallacies in causal inference.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
10553-10569, Miami, Florida, USA. Association for
Computational Linguistics.

Zenan Li, Yifan Wu, Zhaoyu Li, Xinming Wei, Xian
Zhang, Fan Yang, and Xiaoxing Ma. 2024. Aut-
oformalize mathematical statements by symbolic
equivalence and semantic consistency. Preprint,
arXiv:2410.20936.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu,
Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia,
Dangi Chen, Sanjeev Arora, and Chi Jin. 2025.
Goedel-prover: A frontier model for open-source
automated theorem proving. CoRR, abs/2502.07640.

Jiangiao Lu, Yingjia Wan, Yinya Huang, Jing Xiong,
Zhengying Liu, and Zhijiang Guo. 2024. For-
malalign: Automated alignment evaluation for auto-
formalization. CoRR, abs/2410.10135.

Logan Murphy, Kaiyu Yang, Jialiang Sun, Zhaoyu
Li, Anima Anandkumar, and Xujie Si. 2024.
Autoformalizing euclidean geometry. Preprint,
arXiv:2405.17216.

10

Tobias Nipkow, Lawrence C. Paulson, and Markus Wen-
zel. 2002. Isabelle/HOL - A Proof Assistant for
Higher-Order Logic, volume 2283 of Lecture Notes
in Computer Science. Springer.

OpenAl. 2024. Hello gpt-4o0. Accessed: 2025-04-30.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

JUDEA PEARL. 1995. Causal diagrams for empirical
research. Biometrika, 82(4):669-688.

Judea Pearl. 2012. The do-calculus revisited. Preprint,
arXiv:1210.4852.

ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin,
Haocheng Wang, Wanjia Zhao, Liyue Zhang, Zhe
Fu, Qihao Zhu, Dejian Yang, et al. 2025. Deepseek-
prover-v2: Advancing formal mathematical reason-
ing via reinforcement learning for subgoal decompo-
sition. arXiv preprint arXiv:2504.21801.

Ivaxi Sheth, Bahare Fatemi, and Mario Fritz. 2025.
CausalGraph2LLM: Evaluating LLMs for causal
queries. In Findings of the Association for Computa-
tional Linguistics: NAACL 2025, pages 2076-2098,
Albuquerque, New Mexico. Association for Compu-
tational Linguistics.

Ilya Shpitser and Judea Pearl. 2008. Complete identifi-
cation methods for the causal hierarchy. Journal of
Machine Learning Research, 9(64):1941-1979.

Gemma Team. 2025. Gemma 3 technical report.
Preprint, arXiv:2503.19786.

Gemma Team et al. 2024. Gemma: Open models
based on gemini research and technology. Preprint,
arXiv:2403.08295.

Santtu Tikka, Antti Hyttinen, and Juha Karvanen. 2021.
Causal effect identification from multiple incomplete

data sources: A general search-based approach. Jour-
nal of Statistical Software, 99(5):1-40.

Haiming Wang, Huajian Xin, Chuanyang Zheng,
Zhengying Liu, Qingxing Cao, Yinya Huang, Jing
Xiong, Han Shi, Enze Xie, Jian Yin, Zhenguo Li, and
Xiaodan Liang. 2024. LEGO-prover: Neural theo-
rem proving with growing libraries. In The Tivelfth
International Conference on Learning Representa-
tions.

Zeyu Wang. 2024. Causalbench: A comprehensive
benchmark for evaluating causal reasoning capabil-
ities of large language models. In Causality and
Large Models @NeurIPS 2024.

https://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2402.01900
https://arxiv.org/abs/2402.01900
https://arxiv.org/abs/2402.01900
https://arxiv.org/abs/2404.09135
https://arxiv.org/abs/2404.09135
https://arxiv.org/abs/2404.09135
https://arxiv.org/abs/2404.09135
https://arxiv.org/abs/2404.09135
https://arxiv.org/abs/2310.06825
https://proceedings.neurips.cc/paper_files/paper/2023/file/631bb9434d718ea309af82566347d607-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/631bb9434d718ea309af82566347d607-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/631bb9434d718ea309af82566347d607-Paper-Conference.pdf
https://doi.org/10.18653/v1/2024.emnlp-main.590
https://arxiv.org/abs/2410.20936
https://arxiv.org/abs/2410.20936
https://arxiv.org/abs/2410.20936
https://arxiv.org/abs/2410.20936
https://arxiv.org/abs/2410.20936
https://doi.org/10.48550/ARXIV.2502.07640
https://doi.org/10.48550/ARXIV.2502.07640
https://doi.org/10.48550/ARXIV.2502.07640
https://doi.org/10.48550/ARXIV.2410.10135
https://doi.org/10.48550/ARXIV.2410.10135
https://doi.org/10.48550/ARXIV.2410.10135
https://doi.org/10.48550/ARXIV.2410.10135
https://doi.org/10.48550/ARXIV.2410.10135
https://arxiv.org/abs/2405.17216
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://openai.com/index/hello-gpt-4o/
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1093/biomet/82.4.669
https://doi.org/10.1093/biomet/82.4.669
https://doi.org/10.1093/biomet/82.4.669
https://arxiv.org/abs/1210.4852
https://aclanthology.org/2025.findings-naacl.110/
https://aclanthology.org/2025.findings-naacl.110/
https://aclanthology.org/2025.findings-naacl.110/
http://jmlr.org/papers/v9/shpitser08a.html
http://jmlr.org/papers/v9/shpitser08a.html
http://jmlr.org/papers/v9/shpitser08a.html
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://doi.org/10.18637/jss.v099.i05
https://doi.org/10.18637/jss.v099.i05
https://doi.org/10.18637/jss.v099.i05
https://openreview.net/forum?id=3f5PALef5B
https://openreview.net/forum?id=3f5PALef5B
https://openreview.net/forum?id=3f5PALef5B
https://openreview.net/forum?id=kbmGbm2L1P
https://openreview.net/forum?id=kbmGbm2L1P
https://openreview.net/forum?id=kbmGbm2L1P
https://openreview.net/forum?id=kbmGbm2L1P
https://openreview.net/forum?id=kbmGbm2L1P

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Huajian Xin, Luming Li, Xiaoran Jin, Jacques Fleuriot,
and Wenda Li. 2025. Ape-bench i: Towards file-level
automated proof engineering of formal math libraries.
arXiv preprint arXiv:2504.19110.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore:
Evaluating text generation with bert. Preprint,
arXiv:1904.09675.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi.
2023. Least-to-most prompting enables complex
reasoning in large language models. Preprint,
arXiv:2205.10625.

11

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625

A Desired Properties of a Good Verifier

A central question in the design of verifiers for sym-
bolic causal reasoning is: what kinds of differences
between derivations should not affect the evalua-
tion? In other words, what transformations should
a good evaluator be invariant to. In this section,
we formalize the invariance and sensitivity prop-
erties that an ideal evaluator should satisfy. These
properties are motivated both by formal semantics
and by practical considerations in modeling causal
reasoning.

Given an initial expression ¢g, a target ex-
pression ¢*, and a derivation sequence D =
(¢0, ®1,..., 0 = ¢*), the evaluator should as-
sign a score s(D) € R that reflects the logical
correctness, minimality, and interpretability of the
derivation.

Definition (Syntactic Equivalence). Let ¢ and
¢' be probability expressions. We write ¢ =gy,
¢’ if they differ only by a syntactic permutation
that preserves semantic content, such as reordering
terms in a conditioning set:

PY |X,2)=gqu P(Y | Z,X) O]
Desideratum 1 (Syntactic Invariance). Let D
be a derivation and D’ a derivation obtained by a

sequence of syntactic equivalences to the interme-
diate steps. Then:

s(D) = s(D') (10)

Definition (o-Renaming). Let ¢ contain a vari-
able V' that does not appear free in other parts of
the expression. Let ¢’ be the result of replacing V'
by V', where V’ is a fresh variable name. Then

¢ =a ¢
Desideratum 2 («-Renaming Invariance).
evaluator must satisfy

s(D) = s(D') ifeach ¢; =, ¢; foralli (11)

Definition (Well-Typed Step). A step
i — ¢i+1 using do-calculus Rule
r € {Rulel,Rule2,Rule3} is valid if an only if
the required graphical conditional independence is
entailed by DAG G associated with the problem.

Desideratum 3 (Rule Sensitivity). If D and D’

differ only in that D’ includes a rule application r

that violates the required independence, then:
s(D") < s(D) (12)

This ensures the evaluator penalizes logically in-
valid or unsound reasoning.

The

Definition (Commutativity of Independent
Steps). Let¢p; — ¢ir1 — @42 be two derivation
steps, each applying a rule to a disjoint subformula
of the expression. If D; and D are derivations that
only differ in the order of these two steps, then they
are commutative.

Desideratum 4 (Step Order Invariance). We
want s(D1) = s(Da) if Dy, Dy are commutative
of independent steps to ensure the evaluator does
not privilege arbitrary ordering of logically inde-
pendent rule applications.

Definition (Derivational Equivalence). Let D,
and Ds, be distinct derivations from ¢ to ¢*, where
each step in both sequences is valid, though pos-
sibly differing in the choice or order of applied
rules.

Desideratum 5 (Robustness to Valid Alterna-
tives). The evaluator should satisfy Ve > 0:
|s(D1) — s(D9)| < e 13)

This encourages diversity in valid derivations with-
out heavily penalizing alternative but correct rea-
soning paths.

B Implementation Details of DoVerifier

Algorithm 1 Causal Expression Equivalence Veri-
fication
1: Initialize queue Q < [(Einit, [])] >
(expression, proof path)
2: Initialize visited set V' <— { Eipit}
3: while) not empty do
4: (E,7) < Q.dequeue()

5 if F = Eyge; then

6 return 7 > Found equivalence
7: end if

8 if | 7 |< d then

9: for each applicable rule do

10: E' « apply(r,)
11: if £/ ¢V then
12: V.add(E'")
13: Q.enqueue((E', 7+ [r]))
14: end if

15: end for
16: end if

17: end while
18: return None ©> No equivalence found within
depth d

Our implementation converts abstract causal ex-
pressions into concrete computational objects that
can be manipulated through rule applications. The
core components are implemented as follows:

Expression Representation We represent causal
expressions using a symbolic framework built
on SymPy. Each causal probability expres-
sion P(Y | do(X),Z) is represented as a
CausalProbability object with an outcome vari-
able and a list of conditioning factors, which may
include both observational variables and interven-
tional variables (wrapped in Do objects). This rep-
resentation allows for:

» Unique identification of expressions through
consistent string conversion

¢ Distinction between interventional and obser-
vational variables

* Manipulation of expressions through rule ap-
plications

Causal Graph Representation Causal graphs
are represented using NetworkX directed graphs,
where nodes correspond to variables and edges rep-
resent causal relationships. For each rule applica-
tion, we create modified graph structures according
to the do-calculus definitions:

* For Rule 1, we remove incoming edges to
intervention variables using G~

* For Rule 2, we remove both incoming edges
to primary interventions and outgoing edges
from secondary interventions using G,

* For Rule 3, we perform the appropriate graph
modifications for GW as specified by
Pearl

D-separation Testing To determine rule applica-
bility, we implement d-separation tests using Net-
workX’s built-in is_d_separator function. For
each potential rule application, we:

1. Create the appropriate modified graph based
on the rule

2. Identify the variables that need to be tested for
conditional independence

3. Perform the d-separation test with the appro-
priate conditioning set

13

4. Apply the rule only if the independence con-
dition is satisfied

For example, when applying Rule 1 to remove
an observation Z from P(Y | do(X), Z), we test
whether Y and Z are d-separated given X in the
graph G+.

Search Algorithm Optimization To make the
breadth-first search efficient, we implement several
optimizations:

* Expression normalization: We convert ex-
pressions to canonical string representations
with consistent ordering and whitespace re-
moval.

* Memoization: We cache the results of d-
separation tests to avoid redundant graph op-
erations.

* Early termination: We immediately return
a proof path when the target expression is
found.

* Visited set tracking: We maintain a set of
already-visited expressions to avoid cycles
and redundant exploration.

Handling Incomplete Knowledge A key inno-
vation in our implementation is the ability to work
with incomplete causal knowledge. When the full
DAG structure is unknown, our system can:

* Work with explicitly provided independence
pairs between variables

* Infer independence relationships from partial
graph information

» Explore potential equivalences under different
assumptions

Scope of Verification While our implementation
includes representations for both probability dis-
tributions (P) and expectations (F), our current
verification framework focuses on causal expres-
sions involving probabilities. This focus aligns
with Pearl’s do-calculus, which was formulated
for probability distributions. The identification of
causal effects fundamentally involves transforming
interventional probabilities into expressions based
on observed data.

The framework can be extended to handle ex-
pectations directly, as we have implemented the

necessary data structures and fundamental opera-
tions for expectation expressions. However, since
expectations are functionals of probability distri-
butions, verifying equivalence at the probability
level is sufficient for most practical causal infer-
ence tasks. Once the correct probability expression
is identified, expectations and other functionals can
be derived through standard statistical methods.

C Proof of Theorem 3.1

We restate the proposition for easier reference:

Proposition C.1 (Derivation Graph). Let E,; €
L causal- Define a directed graph S(E;y;) where:

* Each node is a unique causal expression deriv-
able from Ej,;;

e Anedge E — E' exists if E' can be obtained
from E by applying a single valid transforma-
tion.

Then S(Ein;;) is a well-defined, finite-branching
graph.

Proof. Let GG be a causal DAG with finite node
set V. Let Lcausal denote the set of well-formed
causal expressions over V', where each expression
is of the form P(Y | Z) with Y C V and Z con-
taining observed or interventional variables (i.e.,
elements of V or do(V')). Because V is finite, so
is the set of possible subsets and intervention/ob-
servation combinations, hence L¢,usq1 iS countable.

Let ‘R be the set of valid transformation rules
(e.g., the three rules of do-calculus and standard
rules of probability). Each rule » € R is modeled
as a partial function:

71 Leausal = Leausal, (14)

where 7(E) is defined if the syntactic and graph-

ical preconditions (e.g., d-separation in () for ap-
plying r to E are satisfied.

Define the derivation relation = on L,y by:

E=FE <= 3r € Rsuchthatr(E)=FE'

We now define the derivation graph S(Fipi) as
a directed graph (V, £), where:

* Vs the set of expressions reachable from Ejyjt
via a finite sequence of = steps (i.e., derivable
expressions);

* & contains an edge (E,E')if E = FE'.

14

To prove the theorem, we must show two things:
(1) Well-definedness. The graph S(Eiy) is
well-defined because:

» Each expression in L¢ausa1 has a canonical syn-
tactic representation.

* Eachrule r € R is a well-defined partial func-
tion whose domain is determined by decidable
conditions (syntactic and graphical).

e The derivation relation = is therefore well-
defined and finitely composable.

(2) Finite branching. For any node F € V:

* The number of rule applications is finite, be-
cause:

— The number of rules in R is finite.

— Each rule r examines a finite number of
subsets of V' (e.g., X, Y, Z, W), which
are at most 2!V! in number.

— Rules act on bounded-size fragments
of expressions and generate outputs in
L causal, Which is countable.

e Thus, from any F, only finitely many E’ sat-
isfy E = F’, i.e., OutDegree(FE) is finite.

Hence,
branching directed graph.

S(FEiit) is a well-defined, finite-
[|

D Proof of Theorem 3.2

We formally prove the soundness and completeness
of our verification framework by modeling it as a
symbolic derivation system over a finite-branching
graph induced by transformation rules.

We restate the proposition for easier reference:

Proposition D.1 (Soundness & Completeness of
Proof Search). Let G be a causal DAG, and let
Einih Etarget € Ecausal- IfEinit l_G Etarget» then Al-
gorithm 1 returns a valid proof sequence within
depth d, for some finite d. Conversely, if no such
derivation exists within depth d, Algorithm 1 re-
turns None.

First we show that DoVerifier is sound. Suppose
we are trying to find a proof sequence starting from
Einit to Etarget~

Proof. Assume for contradiction that DoVer-
ifier is not sound. Then there exists some proof
path m = (Fy, Eo, ..., Ej) returned by the algo-
rithm such that 7 is not a valid derivation from

Eiyit t0 Eiareer. This implies that at least one of the
following holds:

1. By # Eiy, i.e., the path does not start at the
initial expression.

2. B, # Elagger, i.€., the path does not end at the
target expression.

3. There exists some ¢ € {1,...,k — 1} such
that E; 1 is not derivable from F; via any
valid transformation rule admissible under G.

We now show that none of these cases can occur
under the design of DoVerifier:

* By construction, the algorithm initializes the
search frontier with { Eipi}, so the first ele-
ment of any returned path is necessarily Fip;.

The algorithm terminates only upon finding an
expression that is syntactically equal to Firget,
SO Ek = Etarget-

The algorithm only expands nodes via valid
applications of transformation rules from the
set R, which includes do-calculus and stan-
dard probability rules. Each edge in the path
corresponds to a rule in R, and such rules
are only applied if their preconditions (e.g.,
d-separation) hold in G.

Thus, any returned path must be a valid sequence
of derivations from FEj,j; t0 Eirger, contradicting
our assumption. Therefore, DoVerifier is sound. W
Now we show DoVerifier is complete:

Proof. Suppose Einit = Etarger. Then by defi-
nition of I, there exists a finite sequence of rule
applications (i.e., a path in S(FEiyi)) from Ejpj; to
Etarger- Let the length of this shortest such sequence
be d*. Since S(FEinit) is a well-defined, finite-
branching graph (Theorem 3.1), BFS explores all
nodes reachable from FEi,;; up to depth d in increas-
ing order of path length.

Therefore:

e If d > d*, then Eye Will be reached and
returned as part of a valid proof sequence.

e If d < d*, then Eyage is not reachable within
the bounded depth, and the algorithm cor-
rectly returns None.

Thus, the algorithm is complete up to the given
depth d. |

15

E Practical Considerations

Fact E.1 (Complexity). The time complexity of
BFS is O(b%) where b is the maximum branching
factor and d is the depth limit.

While theoretically sound, practical implementa-
tions must consider several optimizations:

1. Expression normalization to avoid revisiting
equivalent states (e.g., removing redundant
conditions, standardizing variable order)

. Efficient d-separation testing for determin-
ing rule applicability

. Memoization of independence tests to avoid
redundant graph operations

Strategic ordering of rule applications to
potentially find solutions faster

. Bidirectional search from both FEj,; and
FElarger to reduce the effective search depth

These optimizations preserve the theoretical
guarantees while making the approach computa-
tionally feasible for practical use in evaluating
causal reasoning in language models.

F Data Samples of Synthetic Data

To support the evaluation of causal inference meth-
ods, we construct synthetic datasets using directed
acyclic graphs (DAGs) that encode assumed causal
relationships among variables. Each DAG consists
of nodes representing variables and directed edges
representing direct causal influences. These graphs
serve as the basis for simulating both observational
and interventional data.

The data samples are designed to validate deriva-
tions using do-calculus. Each example contains:

* A DAG representing the underlying relation-
ships.

A pair of probability expressions (E,, Ep)
where F, is an interventional expression in-
volving do-operators and F, is an equivalent
or simplified observational expression.

A proof showing the sequence of do-calculus
rules (Rule 1, Rule 2, Rule 3) applied to re-
duce E, to E}. These synthetic samples are
not drawn from real-world distributions, but
they adhere strictly to the independence con-
straints implied by the DAGs, ensuring the
theoretical correctness of all derivations.

G Prompt Examples

To evaluate and guide language model performance
on causal reasoning tasks, we designed a two-shot
prompt that consists of: A set of instructions, two
fully worked examples, a new query prompt for the
model to solve in the same format.

Instructions:

1. For each problem, identify the correct
<> expression that represents the query

2. Draw the graphical representation as a
— text description of edges

3. Show your mathematical reasoning step by

— step

Provide a final yes/no answer

5. Keep your response concise and focused on
— the solution

Examples:

Example 1:
Prompt: Imagine a self-contained,
hypothetical world with only the
following conditions, and without any
unmentioned factors or causal
relationships: Poverty has a direct
effect on liking spicy food and
cholera. Water company has a direct
effect on liking spicy food. Liking
spicy food has a direct effect on
cholera. Poverty is unobserved. The
overall probability of liking spicy
food is 81%. The probability of not
liking spicy food and cholera
contraction is 13%. The probability
of liking spicy food and cholera
contraction is 17%. Is the chance of
cholera contraction larger when
observing liking spicy food?
Let V2 = water company; V1 = poverty; X =
— liking spicy food; Y = cholera

TELLLLL]

TELLLLLL L

Expression: P(Y | X)

Graphical Representation: V1->X,V2->X,V1->Y,
— X=>Y

Reasoning: P(X =1, Y = 1)/P(X = 1) - P(X =
— 0, Y =1)/P(X = 0)

P(X=1) = 0.81

P(Y=1, X=0) = 0.13

P(Y=1, X=1) = 0.17

0.17/0.81 - 0.13/0.19 = -0.44
-0.44 < 0

Final Answer: No

Example 2:

Prompt: Imagine a self-contained,
hypothetical world with only the
following conditions, and without any
unmentioned factors or causal
relationships: Poverty has a direct
effect on liking spicy food and
cholera. Water company has a direct
effect on liking spicy food. Liking
spicy food has a direct effect on
cholera. Poverty is unobserved. For
people served by a local water
company, the probability of cholera
contraction is 64%. For people served

A A A

16

by a global water company, the
probability of cholera contraction is
66%. For people served by a local
water company, the probability of
liking spicy food is 50%. For people
served by a global water company, the
probability of liking spicy food is
45%. Will liking spicy food decrease
— the chance of cholera contraction?
Let V2 = water company; V1 = poverty; X =
— liking spicy food; Y = cholera.

U

Expression: ELY | do(X = 1)] - ELY | do(X =

—)]

Graphical Representation: V1->X,V2->X,V1->Y,
— X=>Y

Reasoning: E[Y | do(X = 1)] - ELY | do(X =
— 0)]

[P(Y=1|V2=1)-P(Y=1|V2=0)1/[P(X=1|V2=1)-P(X
< =1|V2=0)1]

P(Y=1 | V2=0) = 0.64

P(Y=1 | V2=1) = 0.66

P(X=1 | V2=0) = 0.50

P(X=1 | V2=1) = 0.45

(0.66 - 0.64) / (0.45 - 9.50) = -0.39

-0.39 <0

Final Answer: Yes

Your Task:

Solve the following problem using the format
< above. Begin your response with "
< Solution:" and provide only the
< expression, graphical representation,
<> reasoning, and final answer.

Prompt: {description}

H Formal Description of Feedback Loop

Given a causal graph G (V,E) (which

may be LLM generated), an LLM gen-
erated expression Eppm = PY |
do(Xy),...,do(Xy), Z1,...,Zm), and no

access to the ground truth Ei,qee. Our goal is to
compute a revised expression EJ |\, that is causally
more valid (i.e., more likely to match Eiger) using
structural reasoning over G.

We do so by partitioning the conditioning set of
Fi1 1M into intervention variables Xy, and Zgps:

XdO:{le"-7Xk} Zobs:{Zl,...,Zm}

Then, for each variable Z € Zgs, we test:

o Mediator Detection: If Z lies on a directed path
from some ancestor A € Zgps U Xg4o to out-
come Y:

A= 72— =Y

Then, Z is a mediator, so we write a prompt
to avoid conditioning on Z, as doing so may
block part of the causal pathway and lead to
underestimation of the effect.

e Treatment Confounding: If Z7 € Zg, is a
common cause of both a treatment variable
X € X4 and the outcome Y, ie., Z — X
and Z — Y, then Z is a confounder. In
such cases, we suggest replacing Z with
do(Z) when feasible, as intervening on Z may
help eliminate confounding bias—particularly
when front-door adjustment is applicable.

o d-Separation Violation: Let W = Z,\{Z} U
Xdo; if X LY | W, then we suggest con-
ditioning on Z may bias the expression as it

is not independent of Y given other variables
W.

I Alternative Metrics

Evaluation of causal expression generation has of-
ten relied on surface-level metrics such as exact
string match, BLEU score, BERTscore, and token-
level F1.

BLEU and Token-level F1 Fails for Causal Eval-
uation BLEU computes precision over n-grams
between a candidate and reference string. In causal
reasoning, it suffers from

Small expression length bias: Causal expres-
sions are often short; hence, BLEU becomes
unstable when evaluating < 10 token strings
since higher-order n-grams vanish.

Syntactic Fragility: Expressions that are seman-
tically equivalent but have different variable
order get penalized.

Non-semantic penalties: BLEU may still reward
inclusion of irrelevant variables if they over-
lap with the gold string, even if the overall
expression is wrong.

Token-level F1 computes overlap between tokens,
treating the expression as a bag of symbols. It
however, still leads to multiple failure cases:

Ignores structure role of variables: F1 cannot
distinguish P(Y) from P(Y | X) or
P(Y | do(X)). They call share some subset
of overlapping tokens and will inflate the
accuracy.

No notion of well-formedness: Syntactically ex-
pressions such as P(X Y) or Y | P(X)
might have high F1 if they reuse common
symbols despite being invalid.

17

No semantics: Conditioning vs intervention is
completely ignored, a model can be rewarded
for guessing the right letters, not the right
logic.

Table 3 shows the average BLEU and token-level
F1 score for each model evaluated on causal lan-
guage tasks. We see that both BLEU and F1 lack
a formal grounding in the semantics of causal in-
ference. There is no transformation set 7 under
which they define an equivalence class. In contrast,
our symbolic verifier defines:

$1=q 92 == d1Fg P2 NPpatg o1 (15)

Thus, BLEU and F1 may disagree with formal cor-
rectness, and worse, may systematically overesti-
mate the validity of incorrect outputs.

BERTScore Failure Cases BERTScore (Zhang
et al., 2020) is a widely used metric that computes
semantic similarity by aligning contextualized to-
ken embeddings from a pretrained BERT model. It
is often promoted as a semantically aware alterna-
tive to BLEU. However, in the context of causal
reasoning, BERTScore exhibits a distinct failure
mode: it confuses lexical proximity for logical va-
lidity. Table 4 shows common failure cases where
BERTSscore assigns a high similarity score, even
when they are not supposed to be equivalent expres-
sions. Let @pred; Ggold € Lecausal be causal expres-
sions encoded as strings. BERTScore computes:

BERTSCOfe(¢pred7 ¢gold) = FIBERT(h¢per7 h¢>gold)
(16)

where h are contextual embeddings from a pre-
trained BERT model. However, the model has
no knowledge of causal semantics, independence
structures, or the syntax of do-calculus. Tokens
like P, (,) are close in embedding space regard-
less of their role in the logical formula. This re-
sults in BERTScore assigning high similarity to
expressions that are semantically disjoint under the
causal graph. Unlike DoVerifier, BERTScore lacks
a soundness guarantee

BERTSC0r6(¢predv ngold) > 0.9 7£> prred =G ngold
a7

This could become dangerous in high-stakes con-
texts, where plausible-looking causal statements
may lead to incorrect conclusions when evaluated
with BERTScore.

Model BLEU Token-level F1

Llama-3.1-8B-Instruct (Grattafiori et al., 2024) 0.46 0.70
Mistral-7B-v0.1 (Jiang et al., 2023) 0.33 0.58
Llama-3.1-8B (Grattafiori et al., 2024) 0.36 0.57
Gemma-7b-it (Team et al., 2024) 0.19 0.55

Table 3: Average BLEU and token-level F1 scores for each model evaluated on CLadder.

LLM Output Formal Label Correct? BERTScore F1

PCY | V1) PCY | X) No 0.91
P(Y) PCY | X) No 0.91

Table 4: Incorrect model outputs with high BERTScore. While these expressions differ from the gold standard,
BERTScore assigns high similarity, demonstrating its over-generosity in causal evaluation.

18

	Introduction
	Related Work
	DoVerifier: Causal Symbolic Verification Framework
	Motivation and Preliminaries
	Definitions
	Method
	Soundness and Completeness of DoVerifier

	Experiments and Results
	Synthetic Data Test
	LLM Causal Reasoning Test
	Improving LLMs with Symbolic Feedback

	Discussions
	Conclusion
	Desired Properties of a Good Verifier
	Implementation Details of DoVerifier
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Practical Considerations
	Data Samples of Synthetic Data
	Prompt Examples
	Formal Description of Feedback Loop
	Alternative Metrics

