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Abstract001

Large language models (LLMs) are increas-002
ingly applied to tasks involving causal rea-003
soning. However, current benchmarks often004
rely on string matching or surface-level met-005
rics that fail to assess whether a model’s out-006
put is formally valid under causal semantics.007
We propose DoVerifier, a symbolic verifica-008
tion framework that checks whether LLM-009
generated causal expressions are derivable from010
a given causal graph using rules from do-011
calculus and probability theory. This allows012
us to recover correct answers that would oth-013
erwise be marked incorrect due to superficial014
differences. Evaluations on synthetic data and015
causal QA benchmarks show that DoVerifier016
more accurately captures semantic correctness017
than standard metrics, offering a more rigor-018
ous and informative way to evaluate LLMs on019
causal tasks.020

1 Introduction021

Causal reasoning lies at the core of human intelli-022

gence. Unlike mere pattern recognition, it enables023

us to reason about interventions, explain effects,024

and predict outcomes under hypothetical scenarios.025

As large language models (LLMs) (OpenAI, 2024;026

Team, 2025; DeepSeek-AI, 2025) are increasingly027

deployed in scientific, medical, and policy-related028

domains, the ability to generate and interpret causal029

claims is no longer optional—it is critical (Doshi-030

Velez and Kim, 2017). An LLM that can distin-031

guish between correlation and causation could sup-032

port tasks ranging from experimental design to sci-033

entific hypothesis generation.034

Recent causal reasoning benchmarks such as035

CLadder (Jin et al., 2023) and CausalBench (Wang,036

2024) have begun to evaluate LLMs on causal ques-037

tion answering. However, these efforts primarily038

focus on surface-level correctness: whether the039

model’s answer matches a gold string or produces040

the right outcome in simple scenarios. While use-041

Does the LLM generated expression entail (⊢) the target expression
under the graph?

String Match
Label

P(F|do(B)) 
LLM Expression

P(F|do(C),do(A),do(B),D) ❌
DoVerifier

BFS over all valid rule
applications,

each path is a proof tree
under the given DAG.

Prompt: Imagine a diagnostic system where ambient temperature affects
both affects both calibration and output. Component stress influences

system failure and output. Humidity and sensor calibration affects
measurement of error. System failure affects output. What is the effect of

intervening on component stress on system failure? 
**Generate a causal graph and expression that models the problem**

✏️

Graph: A->D, A->G, B->F,B->G, C->E, D->E, F->G
Causal Expression: P(F | do(C), do(A), do(B), D) 

🤖

P(F|do(C),do(A),do(B),D)

P(F|C,do(A),do(B),D) P(F|do(C),do(B),D)

P(F|do(B),D)

P(F|do(B))

✅

Figure 1: Our symbolic verifier checks whether a model-
generated causal expression is semantically equivalent
to the ground truth under a given DAG. Unlike string
match, it explores all valid derivations using do-calculus
and probability rules to identify formal equivalence.

ful, these metrics fail to capture a more fundamen- 042

tal question: does the model’s output represent a 043

valid causal expression under formal semantics? 044

Furthermore, LLMs often produce expressions that 045

are logically correct but syntactically different from 046

the reference. These answers are penalized despite 047

being correct, leading to an incomplete picture of 048

model capability. 049

This gap arises because causal inference relies 050

on symbolic semantics: the validity of an expres- 051

sion like P (Y | do(X)) dependents not on its 052

string form, but on whether it is derivable from 053

a given causal graph using rules of do-calculus and 054

probability theory. In mathematical formalization 055
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tasks, models can often be evaluated by plugging056

in values or checking numerical correctness (Gao057

et al., 2025; Fan et al., 2024; Cobbe et al., 2021;058

Hendrycks et al., 2021). However, as shown in059

Figure 1, we rarely know the full joint distribution060

P (·), preventing us to substitute numerical values;061

the ground truth is defined not by observed values,062

but by derivability under a causal graph using the063

rules of do-calculus (PEARL, 1995). This makes064

causal verification fundamentally symbolic: an ex-065

pression like P (Y | do(X)) must be judged valid066

based on its formal relation to a DAG and other067

expressions—not via simulation or numeric output.068

In this work, we propose DoVerifier, a sym-069

bolic verification framework for evaluating LLM-070

generated causal expressions. Given a causal graph071

and a model prediction, our system determines072

whether the expression is formally derivable us-073

ing known rules. This allows us to recover many074

semantically correct outputs that existing bench-075

marks miss. As shown Figure 1, our method per-076

forms rule-based transformations to verify seman-077

tic equivalence, offering a more rigorous and infor-078

mative evaluation of causal reasoning in LLMs.079

We further show that symbolic verification en-080

ables strutured guidance: by identifying specific081

derivation failures, DoVerifier can help models re-082

vise incorrect outputs, improving causal validity083

without requiring gold answers.084

Our contributions are as follows:085

• We propose a formal verication framework for086

LLM-generated causal expressions, based on087

proof search over do-calculus and probability088

transformations.089

• We show that DoVerifier recovers a large por-090

tion of causally correct but syntactically mis-091

matched outputs on both synthetic data and092

real benchmarks, outperforming standard met-093

rics.094

• We demonstrate that symbolic verification en-095

ables feedback for model self-correction, im-096

proving causal accuracy without supervision.097

2 Related Work098

Causal QA and LLM Evaluation Recent bench-099

marks evaluate large language models (LLMs) on100

their ability to answer causal questions expressed101

in natural language. CLadder (Jin et al., 2023)102

and CausalBench (Wang, 2024) present standard-103

ized datasets of associational, interventional, and104

counterfactual queries grounded in causal graphs. 105

However, evaluation typically hinges on string 106

similarity to a gold-standard answer, without any 107

guarantee of causal validity (Jin et al., 2023; Bon- 108

darenko et al., 2022; Joshi et al., 2024). A semanti- 109

cally incorrect expressions might score well due to 110

shared tokens. Standard metrics like exact match, 111

BLEU (Papineni et al., 2002), token-level F1, and 112

BERTScore (Zhang et al., 2020) are commonly 113

used to evaluate LLMs on causal QA tasks (Hu 114

and Zhou, 2024). However, these metrics assess 115

surface similarity, not semantic equivalence. As 116

shown in Figure 2, they may penalize logically 117

correct outputs due to formatting differences, or 118

falsely reward incorrect answers that share com- 119

mon tokens. To our knowledge, no prior work 120

evaluates causal QA using symbolic derivability as 121

a criterion for semantic correctness. 122

Formal Verification in Causal Inference The 123

causal inference community has long relied on do- 124

calculus (PEARL, 1995) and probability theory to 125

determine whether a causal query is identifiable 126

from observational data. Classical identifiability 127

algorithms (Shpitser and Pearl, 2008) and modern 128

tools like dosearch (Tikka et al., 2021) formalize 129

this process as a search over valid derivations. How- 130

ever, these tools are designed to compute causal ef- 131

fects from structured inputs—not to verify whether 132

a model-generated expression is valid or equivalent 133

under the causal graph. This verification step is 134

critical when evaluating the intermediate reason- 135

ing of LLMs. Another line of work, like Sheth 136

et al. (2025), checks if answers align with prede- 137

fined causal graphs but relies on template matching 138

rather than formal derivations and cannot handle 139

expressions involving do-calculus transformations. 140

In contrast, our approach treats verification as a 141

symbolic proof search problem: given a model- 142

generated expression, we check whether it can be 143

derived from known assumptions using formally 144

defined rules. This enables both robust evaluation 145

and fine-grained error analysis. 146

Formalization in Mathematical and Logical Rea- 147

soning Efforts in mathematical reasoning have 148

primarily focused on verifying answers to quan- 149

titative problems. For instance, Hendrycks et al. 150

(2021) evaluates LLMs on math competition prob- 151

lems, while Glazer et al. (2024) investigates sym- 152

bolic solvers for arithmetic tasks. To further vali- 153

date intermediate reasoning steps, another line of 154

work (Ren et al., 2025; Wang et al., 2024) resorts 155
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BLEU Score P(Y | do(X), Z) = P(Y | Z, do(X))

❌
Equivalent expressions but low BLEU score due to

reordering and short expression bias

Token-level F1 P(Y | do(X), Z) ≠ P(Y | X)

❌
Inequivalent expressions but high Token-level F1 score

since variables (tokens) are shared

BERTScore P(Y) ≠ P(Y | X)

❌
 Inequivalent expressions but high BERTScore because

tokens are close in embedding space

String match P(Y | do(X), Z) = P(Y | Z)

❌
Equivalent expressions under some DAG fails to get

recognized by string matching

Figure 2: Examples of evaluation failures in causal expression matching. Even logically equivalent expressions can
receive low scores due to surface-level differences (e.g., reordering), while inequivalent ones may score high due to
shared tokens or embeddings. Highlights the limitations of BLEU, token-level F1, BERTScore, and string match in
causal reasoning tasks.

to formal math descriptions (de Moura and Ullrich,156

2021; Nipkow et al., 2002) that facilitate the step-157

wise consistency inspection. Although it is promis-158

ing to formalize a math problem (AlphaProof and159

teams, 2024; Lin et al., 2025), checking its seman-160

tic correctness is found crucial yet under evolv-161

ing (Lu et al., 2024; Xin et al., 2025). Recent work162

in geometry (Murphy et al., 2024) and logic (Li163

et al., 2024) uses SMT solvers to assess logical164

equivalence between informal text and formal theo-165

rems. We draw inspiration from this paradigm but166

extend it to causal inference—where correctness is167

defined not by logical validity alone, but by deriv-168

ability under the rules of do-calculus and a causal169

DAG.170

3 DoVerifier: Causal Symbolic171

Verification Framework172

3.1 Motivation and Preliminaries173

Large language models (LLMs) are increasingly174

used for answering causal questions, such as:175

"What would happen if we took away176

variable X?" or "Is Y more likely when177

we intervene on Z?"178

To answer such questions correctly, LLMs must go179

beyond observing correlations, instead, they must180

reason about causality. This involves understanding181

not just data patterns, but also how interventions182

change outcomes.183

To evaluate these capabilities, we adopt the for-184

mal framework of causal inference, which defines185

how to represent and manipulate interventional and186

counterfactual queries. In particular, we use:187

• Structural Causal Models (SCMs) to define188

relationships among variables as a directed189

acyclic graph (DAG)190

• Do-calculus (PEARL, 1995), a set of for- 191

mal rules for transforming causal expressions 192

based on graphical criteria 193

Unlike factual QA, causal evaluation is not al- 194

ways numeric: we cannot simply plug in values 195

to verify an answer. Instead, we must determine 196

whether an expression like P (Y | (X)) follows 197

logically from a known graph structure. 198

We adopt the language of structural causal mod- 199

els (SCMs) and do-calculus (PEARL, 1995) to for- 200

malize expressions like P (Y | do(X)). These 201

tools allow us to test whether a causal expression 202

follows logically from a known graph structure. 203

This is essential because, unlike in standard math- 204

ematical reasoning, we often cannot verify causal 205

statements by computing with numeric values. In- 206

stead, validity must be established symbolically. 207

To organize the kinds of reasoning we evaluate, 208

we refer to Pearl’s Ladder of Causation: 209

1. Association: identifying statistical patterns, 210

such as P (Y | X) 211

2. Intervention: predicting the effect of actions, 212

such as P (Y | do(X)) 213

3. Counterfactuals: comparing alternate out- 214

comes, such as YX=1 vs. YX=0 215

Most language models are trained on observa- 216

tional data and operate at the associational level. 217

However, many reasoning tasks involve interven- 218

tions or counterfactuals. Our framework focuses on 219

evaluating whether model-generated expressions 220

are valid under formal causal semantics. 221

We now introduce the formal rules that underpin 222

our verification method. These rules form the core 223

component of DoVerifier. Do-calculus consists of 224

three rules that specify when we can remove or 225

add terms to a conditional distribution involving 226

interventions (PEARL, 1995). 227
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The Rules of do-calculus Let X,Y, Z, and W be228

arbitrary disjoint sets of nodes in a causal directed229

acyclic graph (DAG) G 1. Following the notation230

of Pearl (2012), we denote:231

• GX the graph obtained from G by removing232

all the edges pointing to the nodes in X .233

• GX the graph obtained by deleting all the234

edges emerging from the nodes in X .235

• GXZ the graph obtained by deleting edges236

into X and out of Z.237

Each rule applies only if a certain d-seperation238

condition holds in the modified graph.239

Rule 1 (Insertion/deletion of observations):240

P (y | do(x), z, w) = P (y | do(x), w)241

if (Y ⊥⊥ Z | X,W )GX
(1)242

This allows us to add or remove observed vari-243

ables Z from the conditioning set if they are244

irrelevant to Y once X and W are known (af-245

ter intervention X).246

Rule 2 (Action/observation exchange):247

P (y | do(x), do(z), w) = P (y | do(x), z, w)248

if (Y ⊥⊥ Z | X,W )GXZ

(2)
249

This allows us to replace an intervention250

do(Z) with a simple observation, if Z be-251

haves like a non-manipulated variable under252

this graphical condition.253

Rule 3 (Insertion/deletion of actions):254

P (y | do(x), do(z), w) = P (y | do(x), w)255

if (Y ⊥⊥ Z | X,W )G
XZ(W )

(3)

256

This allows us to ignore an intervention on Z257

when it has no causal effect on Y , given the258

rest of the variables.259

Notation: Z(W ) is the set of Z-nodes that are not260

ancestors of any W -node in GX . This restrictions261

ensures we only remove do-interventions that don’t262

"leak" back into relevant parts of the graph. The no-263

tation (Y ⊥⊥ Z | X,W )G represents d-separation264

in graph G, meaning all paths between Y and Z265

are blocked by conditioning on X and W .266

1In do-calculus, X , Y , Z, and W are disjoint sets of vari-
ables representing interventions (X), outcomes (Y ), observed
variables (Z), and other variables (W ). These sets can be
empty which allows the rules to generalize to many causal
inference scenarios.

3.2 Definitions 267

To formally specify our verification framework, we 268

define the symbolic language of causal expressions 269

and the notion of derivability under a causal graph. 270

Definition (Causal Expression Language) Let 271

Lcausal be the set of expressions of the form P (Y | 272

Z), where Y and the elements of Z are either ob- 273

served variables or do-interventions (i.e., expres- 274

sions of the form do(X)). Expressions in Lcausal 275

are defined with respect to a causal DAG G with 276

finite node set V . 277

Definition (Derivability) Given a DAG G, we 278

write Einit ⊢G Etarget to denote that the causal ex- 279

pression Etarget can be derived from the initial ex- 280

pression Einit via a finite sequence of applications 281

of the rules of do-calculus and standard probability 282

theory, while respecting the conditional indepen- 283

dencies implied by G. We read ⊢ as entails. 284

3.3 Method 285

We define a symbolic verification framework, 286

DoVerifier, for assessing equivalence between 287

causal expressions derived from natural language. 288

We first provide a list of desired properties a good 289

evaluator should have, listed in Appendix A. Later 290

in the paper we discuss why existing metrics fail 291

to meet such desired properties. Given a causal 292

DAG G (which may be generated by the model), 293

and two expressions Einit, Etarget ∈ Lcausal, DoVer- 294

ifier determines whether Etarget is derivable from 295

Einit under the axioms of do-calculus and standard 296

probability theory. The system operates by enumer- 297

ating proof sequences through a structured search 298

procedure. Implementation details are provided 299

in Appendix B. In simple terms, our framework is 300

simply breadth-first-search after converting every- 301

thing into a custom object. The framework consists 302

of two main components: 303

1. Expression Parser. This module parses ex- 304

pressions from natural language or symbolic 305

form into normalized structured representa- 306

tions in Lcausal. This includes: 307

• Recognizing both observational terms 308

like P (Y | X) and interventional ones 309

like P (Y | do(X), Z). 310

• Converting string-based expressions into 311

a canonical symbolic form using a cus- 312

tom SymPy-based object2 that allows 313

2https://www.sympy.org
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equivalence checks that are invariant to314

variable reodering or formatting.315

• If a causal graph is provided, it is parsed316

into a standard NetworkX 3 DAG object.317

This step is necessary to interface LLM out-318

puts with our proof search module.319

2. Proof Search Module. This module deter-320

mines whether a valid derivation exists from321

Einit to Etarget under the rules of do-calculus322

and probability theory.323

• We implement a breadth-first search over324

the space of derivable expressions. The325

algorithm is provided in Appendix B.326

• At each step, we apply all possible trans-327

formations to current expressions and en-328

queue any new expressions not seen be-329

fore.330

• The search continues until the target ex-331

pression is found or a predefined depth332

limit is reached (e.g., 20 steps).333

This guarantees completeness within a334

bounded search space: if a derivation exists335

within that limit, it will be found.336

3.4 Soundness and Completeness of337

DoVerifier338

In this section, we establish a theoretical guarantee339

for DoVerifier by proving its soundness and com-340

pleteness. We begin by introducing formal nota-341

tions that support these proofs. Soundness ensures342

that every equivalence established by DoVerifier is343

valid; completeness ensures that if an equivalence344

exists between two expressions, DoVerifier will345

find it (within a bounded search depth). First, we346

model causal equivalence as a reachability problem347

in a derivation graph:348

Proposition 3.1 (Derivation Graph). Let Einit ∈349

Lcausal. Define a directed graph S(Einit) where:350

• Each node is a unique causal expression deriv-351

able from Einit;352

• An edge E → E′ exists if E′ can be obtained353

from E by applying a single valid transforma-354

tion.355

Then S(Einit) is a well-defined, finite-branching356

graph.357

3https://networkx.org/

The branching factor is finite since the number 358

of variables in G is finite and each transformation 359

rule applies to bounded subsets. 360

Proof. Proved in Appendix C ■ 361

362

Verification Algorithm Given a causal graph G, 363

source expression Einit, target expression Etarget, 364

and maximum depth d, we present Algorithm 1 365

as an algorithm to verify if Einit and Etarget are 366

equivalent bounded by depth d. 367

This approach guarantees finding the shortest 368

sequence of transformations if one exists within 369

the depth limit, as stated in our main theorem that 370

concerns the soundness and completeness of the 371

verification algorithm: 372

Proposition 3.2 (Soundness & Completeness of 373

Proof Search). Let G be a causal DAG, and let 374

Einit, Etarget ∈ Lcausal. If Einit ⊢G Etarget, then Al- 375

gorithm 1 returns a valid proof sequence within 376

depth d, for some finite d. Conversely, if no such 377

derivation exists within depth d, Algorithm 1 re- 378

turns None. 379

Proof. Proved in Appendix D. ■ 380

381

In addition, if no derivation exists between Einit 382

and Etarget with k ≤ d steps, breadth-first search 383

(BFS) will terminate after exploring all expressions 384

within depth d. Further practical considerations are 385

explained in Appendix E 386

Separately, we can view DoVerifier as a logi- 387

cal system defined over a formal language Lcausal 388

equipped with a set of derivation rules R and a 389

background model that is either provided or gen- 390

erated by an LLM G (the DAG). In this view, we 391

distinguish between: 392

Syntactic entailment (H ⊢G A): A is derivable 393

from hypothesis H using the symbolic trans- 394

formation rules admissible under G bounded 395

by depth d. 396

Semantic entailment (H |=G A): A is true in all 397

causal models consistent with G in which all 398

Hi ∈ H are true. 399

Intuitively, syntactic entailment means that there 400

exists a proof of A from H using valid rules (i.e., it 401

can be derived step by step). In contrast, semantic 402

entailment means that A holds in every causal 403

model where H is true, regardless of how we prove 404

it. 405
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An analogy: syntactic entailment is like show-406

ing your work on a math problem using allowed407

steps; semantic entailment is like checking that the408

answer is always correct in every valid scenario. In409

our setting, the two notions coincide because do-410

calculus is sound and complete—everything prov-411

able is true, and everything true is provable. We412

require our inference system to satisfy:413

Soundness: If H ⊢G A, then H |=G A414

Completeness: If H |=G A, then H ⊢G A415

These are properties of the underlying logical sys-416

tem, which are satisfied due to the completeness417

of do-calculus for causal identifiability (PEARL,418

1995) and the standard probability axioms. Thus,419

the semantic correctness of model outputs can be420

equivalently verified through syntactic derivation,421

which forms the basis of our verifier.422

4 Experiments and Results423

4.1 Synthetic Data Test424

To verify the internal consistency of the verifier,425

and to show that existing metrics fail in cases where426

syntactically different expressions are the same427

semantically, we construct a synthetic dataset of428

over 10,000 expression pairs (Einit, Etarget) such429

that Etarget is provably derivable from Einit under430

a known DAG G. Each pair involves between 1–4431

rule applications and includes randomized use of432

do-calculus and probability rules P . A description433

of data samples is shown in Appendix F.434

Sampling Procedure Let V = {v1, . . . , vn} be435

a finite set of variables, and let G = (V,E) be a436

randomly sampled acyclic graph. We sample the437

directed edges independently as P(vi → vj) = p438

for i < j where p ∈ (0, 1) is the edge probability,439

and the ordering ensures the graph is acyclic. In our440

experiments, we fix n ≤ 10 and p = 0.5 to balance441

expressivity and tractability. We first construct442

e1 = P (Y | do(X1), . . . ,do(Xk), Z1, . . . , Zm)
(4)

443

where Y ∈ V is chosen uniformly at random, a sub-444

set of V \{Y } is chosen as intervention variables445

{Xi} and additional variables {Zj} are included446

as conditioning set as observation. To ensure struc-447

tural diversity, the number of intervention variables448

Xi and observational variables Yi is randomly cho-449

sen per sample, subject to DAG constraints. Then,450

we define a symbolic derivation process π consist- 451

ing of a sequence of rule applications: 452

e1
r1→ e2

r2→ . . .
rn→ en+1 (5) 453

where each ri ∈ {Rule 1, Rule 2, Rule 3} ∪ P . 454

Rule applications are randomized but constrained 455

to only apply when valid under the conditional inde- 456

pendencies induced by G. Then, we set Einit = e1 457

and Etarget = en+1. 458

The mean number of edges is 7 (min. 3, max. 459

10). Rule 1 was used 21172 times, rule 2 was used 460

29563 times, and rule 3 was used 22508 times. 461

Synthetic Data Performance Our symbolic veri- 462

fier achieves 100% precision and recall under depth 463

limit d = 5, demonstrating correctness of the 464

derivation engine, while other methods such as 465

string match, or token-level F1 performed poorly 466

due to Einit and Etarget being too distinct syntacti- 467

cally. 468

The experiment results show a key strength of 469

our framework that it can correctly recognize when 470

two expressions are equivalent under the rules of 471

do-calculus and probability, even if they differ in 472

formatting, variable order, or surface form. 473

4.2 LLM Causal Reasoning Test 474

Uncovering Missed Correct Answers We eval- 475

uate the ability of our symbolic verifier to improve 476

the accuracy of large language model (LLM) eval- 477

uation in causal reasoning. Specifically, we ask: 478

Can our method recover correct answers that are 479

missed by naive evaluation metrics? 480

Evaluated Dataset and Models To investigate 481

this, we use the CLadder benchmark (Jin et al., 482

2023), a suite of causal questions grounded in 483

known DAGs. Each question is paired with a 484

ground-truth answer expressed as a formal causal 485

expression. We prompt Llama-3-8B (Grattafiori 486

et al., 2024), Llama-3-8BInstruct (Grattafiori 487

et al., 2024), Mistral-7B (Jiang et al., 2023), and 488

Gemma-7B-IT (Team et al., 2024) to answer these 489

questions and parse their responses, including a 490

DAG that models the problem into symbolic ex- 491

pressions. Detailed prompts and parsing are demon- 492

strated in Appendix G. Each prediction is then com- 493

pared to the ground-truth using three metrics: 494

• String Match: A response is marked correct 495

only if it matches the ground-truth expression 496

exactly (after normalizing). 497

6



Model String Match LLM-as-a-judge DoVerifier (Ours)

Llama3.1-8B 0.57 0.60 0.73
Mistral-7B 0.58 0.80 0.94
Llama3.1-8B-Instruct 0.88 0.66 0.90
Gemma-7B-it 0.80 0.58 0.84

Table 1: DoVerifier recovers more correct causal expressions than string match or using an LLM-as-a-judge across
four LLMs on CLadder in terms of answer accuracy; our method identifies semantically valid expressions missed
by surface-level metrics.

• LLM-as-a-judge: We provide the generated498

causal expression, generated causal graph,499

and the ground truth expression for OpenAI’s500

GPT-4o (OpenAI, 2024) to determine if the501

two expressions are equivalent.502

• Symbolic (Ours): A response is considered503

correct if it is derivable from the ground-truth504

using valid applications of do-calculus and505

probability rules (under 20 steps).506

Alternative metrics are discussed in Appendix I.507

Results As shown in Table 1, our symbolic508

method identifies more correct answers than string509

match and LLM-as-a-judge, raising the accuracy510

across all models. Our method is more useful when511

models such as Llama3.1-8b and Mistral-7B out-512

put an alternative form of the correct use. This513

improvement highlights an important phenomenon:514

many model responses are causally correct but fail515

naive evaluation due to superficial differences in516

formatting, variable order, or phrasing. The run-517

ning time of verifying through BFS is minimal518

(milliseconds).519

Our symbolic verifier recovers this missing ac-520

curacy by judging expressions based on their se-521

mantic content, not their surface form. It enables522

a more faithful and rigorous assessment of causal523

reasoning in LLMs, ensuring that models receive524

credit for valid reasoning even when their output525

does not match the reference verbatim.526

When high-performing models like527

Llama3.1-Instruct already align well with528

ground-truth formats, so the relative gain over529

string match is smaller. This suggests that the530

benefit of symbolic evaluation is most pronounced531

when models exhibit partial causal understanding532

but struggle with precise formalization. Further-533

more, when using LLM-as-a-judge, we lose the534

soundness guarantee that both string match and535

DoVerifier provide4. We also hypothesize that 536

including the DAG in LLM-as-a-judge prompts 537

may act as a source of noise, leading the model 538

to overinterpret structural cues and misjudge 539

otherwise valid expressions. 540

We identified several common patterns where 541

symbolic verification offers substantial advantages: 542

Intervention with conditioning: Our system val- 543

idates equivalence between expressions like 544

P (Y | do(X), Z = z) and P (Y | do(X), Z) 545

by correctly handling instantiated versus sym- 546

bolic values. 547

Rule-based transformations: Our system cor- 548

rectly identifies that P (Y | do(X), Z) can 549

be transformed into P (Y | X,Z) in DAGs 550

where Z d-separates Y from incoming edges 551

of X . This conversion from interventional to 552

observational queries represented the majority 553

of all verified equivalences. Note that this is 554

important since the ground-truth of CLadder 555

is in observational queries. 556

Multi-step proofs: For more complex cases, our 557

verifier successfully applied sequential rules. 558

4.3 Improving LLMs with Symbolic Feedback 559

Beyond evaluation, the proposed DoVerifier en- 560

ables structured feedback to guide LLMs toward 561

correct causal reasoning without relying on ground 562

truth expressions. It has been shown that symbolic 563

feedback loops (e.g., using SMT solvers in math or 564

logic) have been shown to improve LLM output ac- 565

curacy by providing formal, structured corrections 566

(Hong et al., 2025; Murphy et al., 2024). Instead of 567

using a reference answer as an oracle, our system 568

leverages the causal graph structure and indepen- 569

dence relationships to provide principled guidance. 570

We provide a formal description in Appendix H. 571

4While string match is sound, it is not complete.
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Model Before Feedback After Feedback

LLaMA3.1-8B 0.73 0.93
Mistral-7B 0.94 0.99
LLaMA3.1-8B-Instruct 0.90 0.98
Gemma-7B-it 0.84 0.87

Table 2: Accuracy before and after applying verifier-
guided feedback. Feedback improves semantic correct-
ness across all models.

Results Table 2 shows the improvement of LLM572

performance using our feedback loop. We find that573

the effectiveness of symbolic feedback depends574

heavily on the type of error in the original expres-575

sion. For example, when the model incorrectly uses576

P (Y | X) instead of P (Y | do(X)), feedback577

guided by d-separation and rule-based reasoning578

often corrects the mistake. In contrast, if the model579

hallucinates an irrelevant variable or misrepresents580

the structure of the DAG itself, our framework is581

less effective since the symbolic transformations582

cannot fix structurally flawed inputs.583

5 Discussions584

This work formalizes the task of verifying causal585

correctness in language model outputs as a sym-586

bolic inference problem. The primary objective of587

the study is the derivation graph S(Einit) induced588

by the application of a finite rule setR (comprising589

do-calculus and probability transformations) to an590

initial causal expressions.591

Semantic Equivalence as Proof-Theoretic592

Reachability We define semantic equivalence593

with respect to a causal graph G as the symmetric594

closure of the derivability relation:595

E1 ≡G E2 ⇐⇒ (E1 ⊢G E2 ∧ E2 ⊢G E1) (6)596

This defines a family of equivalence classes597

[E]≡G ⊂ Lcausal, where each class represents all598

expressions that are equivalent iff they encode the599

same interventional distribution in all causal mod-600

els consistent with G. Empirically, we observe that601

LLM-generated outputs frequently fall into these602

equivalence classes without being string-identical603

to reference answers. For instance, expressions like604

P (Y | X,Z) and P (Y | do(X), Z) are lexically605

distinct but often semantically equivalent, condi-606

tional on specific d-separation statements. Our sym-607

bolic verifier resolves this not via heuristics, but608

by computing membership in the equivalence class609

through derivation.610

Symbolic Feedback Works Because of Local 611

Equivalence Neighborhoods In the presence of 612

an incorrect LLM output ELLM, our framework en- 613

ables symbolic feedback by computing a correction 614

E′ such that 615

E′ ∈ ClosureR(ELLM) ∩ [E∗]≡G (7) 616

where E∗ is the latent correct expression (not 617

known to the verifier). Operationally, this amounts 618

to inverse proof search: finding a path from ELLM 619

to a semantically correct neighbor. This supports 620

the hypothesis that modern LLMs operate near lo- 621

cally correct regions of Lcausal, but lack explicit 622

guarantees of logical closure (Wei et al., 2023; 623

Zhou et al., 2023). 624

Failure Types Align with Non-derivability The 625

most common model failures (e.g., using P (Y | X) 626

when X is a collider, or omitting keyfounders) cor- 627

respond to derivations that fail d-separation condi- 628

tions. For instance, symbolic proof fails when: 629

(Y ̸⊢ Z | X)GX
=⇒ 630

P (Y | X,Z) ̸≡G P (Y | do(X), Z) (8) 631

These cases, which account for a significant portion 632

of the errors in the models, are not just empirically 633

incorrect but provably invalid under our formal sys- 634

tem. This illustrates how symbolic reasoning cap- 635

tures not only surface alignment but deep structural 636

correctness. 637

6 Conclusion 638

We introduced DoVerifier, a formal verification 639

framework that evaluates the causal validity of 640

LLM-generated expressions by modeling causal 641

reasoning as a symbolic derivation task using do- 642

calculus and probability rules. Our approach recov- 643

ers semantically correct answers that are missed by 644

standard metrics, improves recall on causal bench- 645

marks, and enables structured feedback to refine 646

model outputs. 647

These findings reveal a significant gap in current 648

evaluation methods and highlight the importance 649

of symbolic verification for building reliable causal 650

reasoning systems. By connecting natural language 651

generation with formal inference, DoVerifier offers 652

a principled step toward evaluating models based 653

on what they truly understand rather than how they 654

phrase it. 655
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Limitations656

While promising, our approach has several lim-657

itations and opens up for future work. On the658

one hand, the space of valid derivations can grow659

rapidly with the number of variables and the depth660

of allowed transformations. Although we employ661

optimizations like expression normalization and662

memoization, our breadth-first search remains com-663

putationally expensive in dense or deep DAGs. Fu-664

ture work could explore neural-guided proof search665

or approximate symbolic methods. On the other666

hand, regarding the feedback mechanism, the cur-667

rent feedback module improves the causal validity668

of model outputs using only the predicted DAG669

and the initial expression. It does not incorporate670

the original natural language question. As a result,671

the revised expression may be causally correct un-672

der the graph, but not necessarily faithful to the673

question intent. In practice, we observe that most674

LLM errors stem from misapplying causal seman-675

tics rather than misreading the question, but inte-676

grating question-aware feedback remains a valu-677

able direction for future work.678

Ethical Considerations679

This work focuses on the formal verification of680

causal expressions generated by large language681

models (LLMs), with the goal of improving their682

semantic correctness and reliability in reasoning683

tasks. Our proposed framework does not involve684

human subject data, personally identifiable infor-685

mation, or real-world deployment in high-stakes686

settings such as healthcare or public policy. How-687

ever, we acknowledge that causal claims can in-688

fluence decision-making in sensitive domains. As689

such, we emphasize that symbolic correctness un-690

der do-calculus does not guarantee practical va-691

lidity unless the underlying causal graph is itself692

accurate and contextually appropriate.693

Our framework is designed for evaluation and694

diagnostic purposes, not for automating causal de-695

cisions. We caution against interpreting verified696

expressions as endorsements of correctness in real-697

world applications without domain expertise. To698

avoid misuse, we release our tools with clear dis-699

claimers that they are intended for research and700

educational purposes.701
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A Desired Properties of a Good Verifier882

A central question in the design of verifiers for sym-883

bolic causal reasoning is: what kinds of differences884

between derivations should not affect the evalua-885

tion? In other words, what transformations should886

a good evaluator be invariant to. In this section,887

we formalize the invariance and sensitivity prop-888

erties that an ideal evaluator should satisfy. These889

properties are motivated both by formal semantics890

and by practical considerations in modeling causal891

reasoning.892

Given an initial expression ϕ0, a target ex-893

pression ϕ∗, and a derivation sequence D =894

(ϕ0, ϕ1, . . . , ϕk = ϕ∗), the evaluator should as-895

sign a score s(D) ∈ R that reflects the logical896

correctness, minimality, and interpretability of the897

derivation.898

Definition (Syntactic Equivalence). Let ϕ and899

ϕ′ be probability expressions. We write ϕ ≡syn900

ϕ′ if they differ only by a syntactic permutation901

that preserves semantic content, such as reordering902

terms in a conditioning set:903

P (Y | X,Z) ≡syn P (Y | Z,X) (9)904

Desideratum 1 (Syntactic Invariance). Let D905

be a derivation and D′ a derivation obtained by a906

sequence of syntactic equivalences to the interme-907

diate steps. Then:908

s(D) = s(D′) (10)909

Definition (α-Renaming). Let ϕ contain a vari-910

able V that does not appear free in other parts of911

the expression. Let ϕ′ be the result of replacing V912

by V ′, where V ′ is a fresh variable name. Then913

ϕ ≡α ϕ′.914

Desideratum 2 (α-Renaming Invariance). The915

evaluator must satisfy916

s(D) = s(D′) if each ϕ′
i ≡α ϕi for all i (11)917

Definition (Well-Typed Step). A step918

ϕi → ϕi+1 using do-calculus Rule919

r ∈ {Rule1,Rule2,Rule3} is valid if an only if920

the required graphical conditional independence is921

entailed by DAG G associated with the problem.922

Desideratum 3 (Rule Sensitivity). If D and D′923

differ only in that D′ includes a rule application r924

that violates the required independence, then:925

s(D′) < s(D) (12)926

This ensures the evaluator penalizes logically in-927

valid or unsound reasoning.928

Definition (Commutativity of Independent 929

Steps). Let ϕi → ϕi+1 → ϕi+2 be two derivation 930

steps, each applying a rule to a disjoint subformula 931

of the expression. IfD1 andD2 are derivations that 932

only differ in the order of these two steps, then they 933

are commutative. 934

Desideratum 4 (Step Order Invariance). We 935

want s(D1) = s(D2) if D1,D2 are commutative 936

of independent steps to ensure the evaluator does 937

not privilege arbitrary ordering of logically inde- 938

pendent rule applications. 939

Definition (Derivational Equivalence). Let D1 940

andD2 be distinct derivations from ϕ0 to ϕ∗, where 941

each step in both sequences is valid, though pos- 942

sibly differing in the choice or order of applied 943

rules. 944

Desideratum 5 (Robustness to Valid Alterna- 945

tives). The evaluator should satisfy ∀ε > 0: 946

|s(D1)− s(D2)| ≤ ε (13) 947

This encourages diversity in valid derivations with- 948

out heavily penalizing alternative but correct rea- 949

soning paths. 950

B Implementation Details of DoVerifier 951

Algorithm 1 Causal Expression Equivalence Veri-
fication

1: Initialize queue Q← [(Einit, [])] ▷
(expression, proof path π)

2: Initialize visited set V ← {Einit}
3: while Q not empty do
4: (E, π)← Q.dequeue()
5: if E = Etarget then
6: return π ▷ Found equivalence
7: end if
8: if | π |< d then
9: for each applicable rule r do

10: E′ ← apply(r, E)
11: if E′ ̸∈ V then
12: V.add(E′)
13: Q.enqueue((E′, π + [r]))
14: end if
15: end for
16: end if
17: end while
18: return None ▷ No equivalence found within

depth d

12



Our implementation converts abstract causal ex-952

pressions into concrete computational objects that953

can be manipulated through rule applications. The954

core components are implemented as follows:955

Expression Representation We represent causal956

expressions using a symbolic framework built957

on SymPy. Each causal probability expres-958

sion P (Y | do(X), Z) is represented as a959

CausalProbability object with an outcome vari-960

able and a list of conditioning factors, which may961

include both observational variables and interven-962

tional variables (wrapped in Do objects). This rep-963

resentation allows for:964

• Unique identification of expressions through965

consistent string conversion966

• Distinction between interventional and obser-967

vational variables968

• Manipulation of expressions through rule ap-969

plications970

Causal Graph Representation Causal graphs971

are represented using NetworkX directed graphs,972

where nodes correspond to variables and edges rep-973

resent causal relationships. For each rule applica-974

tion, we create modified graph structures according975

to the do-calculus definitions:976

• For Rule 1, we remove incoming edges to977

intervention variables using GX978

• For Rule 2, we remove both incoming edges979

to primary interventions and outgoing edges980

from secondary interventions using GXZ981

• For Rule 3, we perform the appropriate graph982

modifications for G
XZ(W )

as specified by983

Pearl984

D-separation Testing To determine rule applica-985

bility, we implement d-separation tests using Net-986

workX’s built-in is_d_separator function. For987

each potential rule application, we:988

1. Create the appropriate modified graph based989

on the rule990

2. Identify the variables that need to be tested for991

conditional independence992

3. Perform the d-separation test with the appro-993

priate conditioning set994

4. Apply the rule only if the independence con- 995

dition is satisfied 996

For example, when applying Rule 1 to remove 997

an observation Z from P (Y | do(X), Z), we test 998

whether Y and Z are d-separated given X in the 999

graph GX . 1000

Search Algorithm Optimization To make the 1001

breadth-first search efficient, we implement several 1002

optimizations: 1003

• Expression normalization: We convert ex- 1004

pressions to canonical string representations 1005

with consistent ordering and whitespace re- 1006

moval. 1007

• Memoization: We cache the results of d- 1008

separation tests to avoid redundant graph op- 1009

erations. 1010

• Early termination: We immediately return 1011

a proof path when the target expression is 1012

found. 1013

• Visited set tracking: We maintain a set of 1014

already-visited expressions to avoid cycles 1015

and redundant exploration. 1016

Handling Incomplete Knowledge A key inno- 1017

vation in our implementation is the ability to work 1018

with incomplete causal knowledge. When the full 1019

DAG structure is unknown, our system can: 1020

• Work with explicitly provided independence 1021

pairs between variables 1022

• Infer independence relationships from partial 1023

graph information 1024

• Explore potential equivalences under different 1025

assumptions 1026

Scope of Verification While our implementation 1027

includes representations for both probability dis- 1028

tributions (P ) and expectations (E), our current 1029

verification framework focuses on causal expres- 1030

sions involving probabilities. This focus aligns 1031

with Pearl’s do-calculus, which was formulated 1032

for probability distributions. The identification of 1033

causal effects fundamentally involves transforming 1034

interventional probabilities into expressions based 1035

on observed data. 1036

The framework can be extended to handle ex- 1037

pectations directly, as we have implemented the 1038

13



necessary data structures and fundamental opera-1039

tions for expectation expressions. However, since1040

expectations are functionals of probability distri-1041

butions, verifying equivalence at the probability1042

level is sufficient for most practical causal infer-1043

ence tasks. Once the correct probability expression1044

is identified, expectations and other functionals can1045

be derived through standard statistical methods.1046

C Proof of Theorem 3.11047

We restate the proposition for easier reference:1048

Proposition C.1 (Derivation Graph). Let Einit ∈1049

Lcausal. Define a directed graph S(Einit) where:1050

• Each node is a unique causal expression deriv-1051

able from Einit;1052

• An edge E → E′ exists if E′ can be obtained1053

from E by applying a single valid transforma-1054

tion.1055

Then S(Einit) is a well-defined, finite-branching1056

graph.1057

Proof. Let G be a causal DAG with finite node1058

set V . Let Lcausal denote the set of well-formed1059

causal expressions over V , where each expression1060

is of the form P (Y | Z) with Y ⊆ V and Z con-1061

taining observed or interventional variables (i.e.,1062

elements of V or do(V )). Because V is finite, so1063

is the set of possible subsets and intervention/ob-1064

servation combinations, hence Lcausal is countable.1065

Let R be the set of valid transformation rules1066

(e.g., the three rules of do-calculus and standard1067

rules of probability). Each rule r ∈ R is modeled1068

as a partial function:1069

r : Lcausal → Lcausal, (14)1070

where r(E) is defined if the syntactic and graph-1071

ical preconditions (e.g., d-separation in G) for ap-1072

plying r to E are satisfied.1073

Define the derivation relation⇒ on Lcausal by:1074

E ⇒ E′ ⇐⇒ ∃r ∈ R such that r(E) = E′.1075

We now define the derivation graph S(Einit) as1076

a directed graph (V, E), where:1077

• V is the set of expressions reachable from Einit1078

via a finite sequence of⇒ steps (i.e., derivable1079

expressions);1080

• E contains an edge (E,E′) if E ⇒ E′.1081

To prove the theorem, we must show two things: 1082

(1) Well-definedness. The graph S(Einit) is 1083

well-defined because: 1084

• Each expression in Lcausal has a canonical syn- 1085

tactic representation. 1086

• Each rule r ∈ R is a well-defined partial func- 1087

tion whose domain is determined by decidable 1088

conditions (syntactic and graphical). 1089

• The derivation relation ⇒ is therefore well- 1090

defined and finitely composable. 1091

(2) Finite branching. For any node E ∈ V: 1092

• The number of rule applications is finite, be- 1093

cause: 1094

– The number of rules inR is finite. 1095

– Each rule r examines a finite number of 1096

subsets of V (e.g., X , Y , Z, W ), which 1097

are at most 2|V | in number. 1098

– Rules act on bounded-size fragments 1099

of expressions and generate outputs in 1100

Lcausal, which is countable. 1101

• Thus, from any E, only finitely many E′ sat- 1102

isfy E ⇒ E′, i.e., OutDegree(E) is finite. 1103

Hence, S(Einit) is a well-defined, finite- 1104

branching directed graph. ■ 1105

1106

D Proof of Theorem 3.2 1107

We formally prove the soundness and completeness 1108

of our verification framework by modeling it as a 1109

symbolic derivation system over a finite-branching 1110

graph induced by transformation rules. 1111

We restate the proposition for easier reference: 1112

Proposition D.1 (Soundness & Completeness of 1113

Proof Search). Let G be a causal DAG, and let 1114

Einit, Etarget ∈ Lcausal. If Einit ⊢G Etarget, then Al- 1115

gorithm 1 returns a valid proof sequence within 1116

depth d, for some finite d. Conversely, if no such 1117

derivation exists within depth d, Algorithm 1 re- 1118

turns None. 1119

First we show that DoVerifier is sound. Suppose 1120

we are trying to find a proof sequence starting from 1121

Einit to Etarget. 1122

Proof. Assume for contradiction that DoVer- 1123

ifier is not sound. Then there exists some proof 1124

path π = ⟨E1, E2, . . . , Ek⟩ returned by the algo- 1125

rithm such that π is not a valid derivation from 1126

14



Einit to Etarget. This implies that at least one of the1127

following holds:1128

1. E1 ̸= Einit, i.e., the path does not start at the1129

initial expression.1130

2. Ek ̸= Etarget, i.e., the path does not end at the1131

target expression.1132

3. There exists some i ∈ {1, . . . , k − 1} such1133

that Ei+1 is not derivable from Ei via any1134

valid transformation rule admissible under G.1135

We now show that none of these cases can occur1136

under the design of DoVerifier:1137

• By construction, the algorithm initializes the1138

search frontier with {Einit}, so the first ele-1139

ment of any returned path is necessarily Einit.1140

• The algorithm terminates only upon finding an1141

expression that is syntactically equal to Etarget,1142

so Ek = Etarget.1143

• The algorithm only expands nodes via valid1144

applications of transformation rules from the1145

set R, which includes do-calculus and stan-1146

dard probability rules. Each edge in the path1147

corresponds to a rule in R, and such rules1148

are only applied if their preconditions (e.g.,1149

d-separation) hold in G.1150

Thus, any returned path must be a valid sequence1151

of derivations from Einit to Etarget, contradicting1152

our assumption. Therefore, DoVerifier is sound. ■1153

Now we show DoVerifier is complete:1154

Proof. Suppose Einit ⊢G Etarget. Then by defi-1155

nition of ⊢G, there exists a finite sequence of rule1156

applications (i.e., a path in S(Einit)) from Einit to1157

Etarget. Let the length of this shortest such sequence1158

be d∗. Since S(Einit) is a well-defined, finite-1159

branching graph (Theorem 3.1), BFS explores all1160

nodes reachable from Einit up to depth d in increas-1161

ing order of path length.1162

Therefore:1163

• If d ≥ d∗, then Etarget will be reached and1164

returned as part of a valid proof sequence.1165

• If d < d∗, then Etarget is not reachable within1166

the bounded depth, and the algorithm cor-1167

rectly returns None.1168

Thus, the algorithm is complete up to the given1169

depth d. ■1170

1171

E Practical Considerations 1172

Fact E.1 (Complexity). The time complexity of 1173

BFS is O(bd) where b is the maximum branching 1174

factor and d is the depth limit. 1175

While theoretically sound, practical implementa- 1176

tions must consider several optimizations: 1177

1. Expression normalization to avoid revisiting 1178

equivalent states (e.g., removing redundant 1179

conditions, standardizing variable order) 1180

2. Efficient d-separation testing for determin- 1181

ing rule applicability 1182

3. Memoization of independence tests to avoid 1183

redundant graph operations 1184

4. Strategic ordering of rule applications to 1185

potentially find solutions faster 1186

5. Bidirectional search from both Einit and 1187

Etarget to reduce the effective search depth 1188

These optimizations preserve the theoretical 1189

guarantees while making the approach computa- 1190

tionally feasible for practical use in evaluating 1191

causal reasoning in language models. 1192

F Data Samples of Synthetic Data 1193

To support the evaluation of causal inference meth- 1194

ods, we construct synthetic datasets using directed 1195

acyclic graphs (DAGs) that encode assumed causal 1196

relationships among variables. Each DAG consists 1197

of nodes representing variables and directed edges 1198

representing direct causal influences. These graphs 1199

serve as the basis for simulating both observational 1200

and interventional data. 1201

The data samples are designed to validate deriva- 1202

tions using do-calculus. Each example contains: 1203

• A DAG representing the underlying relation- 1204

ships. 1205

• A pair of probability expressions (Ea, Eb) 1206

where Ea is an interventional expression in- 1207

volving do-operators and Eb is an equivalent 1208

or simplified observational expression. 1209

• A proof showing the sequence of do-calculus 1210

rules (Rule 1, Rule 2, Rule 3) applied to re- 1211

duce Ea to Eb. These synthetic samples are 1212

not drawn from real-world distributions, but 1213

they adhere strictly to the independence con- 1214

straints implied by the DAGs, ensuring the 1215

theoretical correctness of all derivations. 1216
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G Prompt Examples1217

To evaluate and guide language model performance1218

on causal reasoning tasks, we designed a two-shot1219

prompt that consists of: A set of instructions, two1220

fully worked examples, a new query prompt for the1221

model to solve in the same format.1222
1223

## Instructions:1224
1. For each problem, identify the correct1225

↪→ expression that represents the query1226
2. Draw the graphical representation as a1227

↪→ text description of edges1228
3. Show your mathematical reasoning step by1229

↪→ step1230
4. Provide a final yes/no answer1231
5. Keep your response concise and focused on1232

↪→ the solution1233
1234

## Examples:1235
1236

Example 1:1237
Prompt: Imagine a self-contained,1238

↪→ hypothetical world with only the1239
↪→ following conditions, and without any1240
↪→ unmentioned factors or causal1241
↪→ relationships: Poverty has a direct1242
↪→ effect on liking spicy food and1243
↪→ cholera. Water company has a direct1244
↪→ effect on liking spicy food. Liking1245
↪→ spicy food has a direct effect on1246
↪→ cholera. Poverty is unobserved. The1247
↪→ overall probability of liking spicy1248
↪→ food is 81%. The probability of not1249
↪→ liking spicy food and cholera1250
↪→ contraction is 13%. The probability1251
↪→ of liking spicy food and cholera1252
↪→ contraction is 17%. Is the chance of1253
↪→ cholera contraction larger when1254
↪→ observing liking spicy food?1255

Let V2 = water company; V1 = poverty; X =1256
↪→ liking spicy food; Y = cholera1257

1258
Expression: P(Y | X)1259
Graphical Representation: V1->X,V2->X,V1->Y,1260

↪→ X->Y1261
Reasoning: P(X = 1, Y = 1)/P(X = 1) - P(X =1262

↪→ 0, Y = 1)/P(X = 0)1263
P(X=1) = 0.811264
P(Y=1, X=0) = 0.131265
P(Y=1, X=1) = 0.171266
0.17/0.81 - 0.13/0.19 = -0.441267
-0.44 < 01268
Final Answer: No1269

1270
Example 2:1271
Prompt: Imagine a self-contained,1272

↪→ hypothetical world with only the1273
↪→ following conditions, and without any1274
↪→ unmentioned factors or causal1275
↪→ relationships: Poverty has a direct1276
↪→ effect on liking spicy food and1277
↪→ cholera. Water company has a direct1278
↪→ effect on liking spicy food. Liking1279
↪→ spicy food has a direct effect on1280
↪→ cholera. Poverty is unobserved. For1281
↪→ people served by a local water1282
↪→ company, the probability of cholera1283
↪→ contraction is 64%. For people served1284

↪→ by a global water company, the 1285
↪→ probability of cholera contraction is 1286
↪→ 66%. For people served by a local 1287
↪→ water company, the probability of 1288
↪→ liking spicy food is 50%. For people 1289
↪→ served by a global water company, the 1290
↪→ probability of liking spicy food is 1291
↪→ 45%. Will liking spicy food decrease 1292
↪→ the chance of cholera contraction? 1293

Let V2 = water company; V1 = poverty; X = 1294
↪→ liking spicy food; Y = cholera. 1295

1296
Expression: E[Y | do(X = 1)] - E[Y | do(X = 1297

↪→ 0)] 1298
Graphical Representation: V1->X,V2->X,V1->Y, 1299

↪→ X->Y 1300
Reasoning: E[Y | do(X = 1)] - E[Y | do(X = 1301

↪→ 0)] 1302
[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X 1303

↪→ =1|V2=0)] 1304
P(Y=1 | V2=0) = 0.64 1305
P(Y=1 | V2=1) = 0.66 1306
P(X=1 | V2=0) = 0.50 1307
P(X=1 | V2=1) = 0.45 1308
(0.66 - 0.64) / (0.45 - 0.50) = -0.39 1309
-0.39 < 0 1310
Final Answer: Yes 1311

1312
## Your Task: 1313
Solve the following problem using the format 1314

↪→ above. Begin your response with " 1315
↪→ Solution:" and provide only the 1316
↪→ expression, graphical representation, 1317
↪→ reasoning, and final answer. 1318

Prompt: {description} 13191320

H Formal Description of Feedback Loop 1321

Given a causal graph G = (V,E) (which 1322

may be LLM generated), an LLM gen- 1323

erated expression ELLM = P (Y | 1324

do(X1), . . . ,do(Xk), Z1, . . . , Zm), and no 1325

access to the ground truth Etarget. Our goal is to 1326

compute a revised expression E′
LLM that is causally 1327

more valid (i.e., more likely to match Etarget) using 1328

structural reasoning over G. 1329

We do so by partitioning the conditioning set of 1330

ELLM into intervention variables Xdo and Zobs: 1331

Xdo = {X1, . . . , Xk} Zobs = {Z1, . . . , Zm} 1332

Then, for each variable Z ∈ Zobs, we test: 1333

• Mediator Detection: If Z lies on a directed path 1334

from some ancestor A ∈ Zobs ∪Xdo to out- 1335

come Y : 1336

A→ · · · → Z → · · · → Y 1337

Then, Z is a mediator, so we write a prompt 1338

to avoid conditioning on Z, as doing so may 1339

block part of the causal pathway and lead to 1340

underestimation of the effect. 1341
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• Treatment Confounding: If Z ∈ Zobs is a1342

common cause of both a treatment variable1343

X ∈ Xdo and the outcome Y , i.e., Z → X1344

and Z → Y , then Z is a confounder. In1345

such cases, we suggest replacing Z with1346

do(Z) when feasible, as intervening on Z may1347

help eliminate confounding bias—particularly1348

when front-door adjustment is applicable.1349

• d-Separation Violation: Let W = Zobs\{Z}∪1350

Xdo; if X ̸⊥ Y | W, then we suggest con-1351

ditioning on Z may bias the expression as it1352

is not independent of Y given other variables1353

W.1354

I Alternative Metrics1355

Evaluation of causal expression generation has of-1356

ten relied on surface-level metrics such as exact1357

string match, BLEU score, BERTscore, and token-1358

level F1.1359

BLEU and Token-level F1 Fails for Causal Eval-1360

uation BLEU computes precision over n-grams1361

between a candidate and reference string. In causal1362

reasoning, it suffers from1363

Small expression length bias: Causal expres-1364

sions are often short; hence, BLEU becomes1365

unstable when evaluating < 10 token strings1366

since higher-order n-grams vanish.1367

Syntactic Fragility: Expressions that are seman-1368

tically equivalent but have different variable1369

order get penalized.1370

Non-semantic penalties: BLEU may still reward1371

inclusion of irrelevant variables if they over-1372

lap with the gold string, even if the overall1373

expression is wrong.1374

Token-level F1 computes overlap between tokens,1375

treating the expression as a bag of symbols. It1376

however, still leads to multiple failure cases:1377

Ignores structure role of variables: F1 cannot1378

distinguish P (Y ) from P (Y | X) or1379

P (Y | do(X)). They call share some subset1380

of overlapping tokens and will inflate the1381

accuracy.1382

No notion of well-formedness: Syntactically ex-1383

pressions such as P (X Y ) or Y | P (X)1384

might have high F1 if they reuse common1385

symbols despite being invalid.1386

No semantics: Conditioning vs intervention is 1387

completely ignored, a model can be rewarded 1388

for guessing the right letters, not the right 1389

logic. 1390

Table 3 shows the average BLEU and token-level 1391

F1 score for each model evaluated on causal lan- 1392

guage tasks. We see that both BLEU and F1 lack 1393

a formal grounding in the semantics of causal in- 1394

ference. There is no transformation set T under 1395

which they define an equivalence class. In contrast, 1396

our symbolic verifier defines: 1397

ϕ1 ≡G ϕ2 ⇐⇒ ϕ1 ⊢G ϕ2 ∧ ϕ2 ⊢G ϕ1 (15) 1398

Thus, BLEU and F1 may disagree with formal cor- 1399

rectness, and worse, may systematically overesti- 1400

mate the validity of incorrect outputs. 1401

BERTScore Failure Cases BERTScore (Zhang 1402

et al., 2020) is a widely used metric that computes 1403

semantic similarity by aligning contextualized to- 1404

ken embeddings from a pretrained BERT model. It 1405

is often promoted as a semantically aware alterna- 1406

tive to BLEU. However, in the context of causal 1407

reasoning, BERTScore exhibits a distinct failure 1408

mode: it confuses lexical proximity for logical va- 1409

lidity. Table 4 shows common failure cases where 1410

BERTscore assigns a high similarity score, even 1411

when they are not supposed to be equivalent expres- 1412

sions. Let ϕpred, ϕgold ∈ Lcausal be causal expres- 1413

sions encoded as strings. BERTScore computes: 1414

BERTScore(ϕpred, ϕgold) = F1BERT(hϕpred , hϕgold)

(16)
1415

where hϕ are contextual embeddings from a pre- 1416

trained BERT model. However, the model has 1417

no knowledge of causal semantics, independence 1418

structures, or the syntax of do-calculus. Tokens 1419

like P, (, ) are close in embedding space regard- 1420

less of their role in the logical formula. This re- 1421

sults in BERTScore assigning high similarity to 1422

expressions that are semantically disjoint under the 1423

causal graph. Unlike DoVerifier, BERTScore lacks 1424

a soundness guarantee 1425

BERTScore(ϕpred, ϕgold) > 0.9 ̸⇒ ϕpred ≡G ϕgold
(17)

1426

This could become dangerous in high-stakes con- 1427

texts, where plausible-looking causal statements 1428

may lead to incorrect conclusions when evaluated 1429

with BERTScore. 1430
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Model BLEU Token-level F1

Llama-3.1-8B-Instruct (Grattafiori et al., 2024) 0.46 0.70
Mistral-7B-v0.1 (Jiang et al., 2023) 0.33 0.58
Llama-3.1-8B (Grattafiori et al., 2024) 0.36 0.57
Gemma-7b-it (Team et al., 2024) 0.19 0.55

Table 3: Average BLEU and token-level F1 scores for each model evaluated on CLadder.

LLM Output Formal Label Correct? BERTScore F1

P(Y | V1) P(Y | X) No 0.91
P(Y) P(Y | X) No 0.91

Table 4: Incorrect model outputs with high BERTScore. While these expressions differ from the gold standard,
BERTScore assigns high similarity, demonstrating its over-generosity in causal evaluation.
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