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Abstract
Learning a universal policy across different robot
morphologies can significantly improve learning
efficiency and enable zero-shot generalization
to unseen morphologies. However, learning a
highly performant universal policy requires so-
phisticated architectures like transformers (TF)
that have larger memory and computational cost
than simpler multi-layer perceptrons (MLP). To
achieve both good performance like TF and high
efficiency like MLP at inference time, we pro-
pose HyperDistill, which consists of: (1) A
morphology-conditioned hypernetwork (HN) that
generates robot-wise MLP policies, and (2) A
policy distillation approach that is essential for
successful training of the HN. We show that on
UNIMAL, a benchmark with hundreds of diverse
morphologies, HyperDistill performs as well as
a universal TF teacher policy on both training
and unseen test robots, but reduces model size
by 6-14 times, and computational cost by 67-160
times in different environments. Our analysis
attributes the efficiency advantage of HyperDis-
till at inference time to knowledge decoupling,
i.e., the ability to decouple inter-task and intra-
task knowledge, a general principle that could
also be applied to improve inference efficiency
in other domains. The code is publicly available
at https://github.com/MasterXiong/
Universal-Morphology-Control.

1. Introduction
Reinforcement learning (RL) for robotic control has made
great progress in recent years (Levine et al., 2016; Kalash-
nikov et al., 2018; Andrychowicz et al., 2020; Brohan et al.,
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2022). However, generalization across robots remains a
key challenge, as the policy trained for one robot transfers
poorly to another robot with a different morphology, i.e.,
the topology graph of a robot and the hardware parameters
of each body part. Furthermore, it is too sample inefficient
to train a separate policy for each new robot from scratch.

To tackle this challenge, universal morphology control aims
to learn a universal policy to control different robots. By
training on a set of diverse morphologies, this constitutes a
form of multi-task RL (Vithayathil Varghese & Mahmoud,
2020) where controlling each robot is a separate task. The
learned policy is expected to not only improve learning
efficiency on the training robots, but also enable zero-shot
generalization to test robots with unseen morphologies.

Training a multi-layer perceptron (MLP) policy is usually
sufficient to achieve good performance on a single robot,
but often generalizes poorly to other robots (Wang et al.,
2018). While it is feasible to train a multi-robot MLP policy
for universal morphology control, it is significantly out-
performed by graph neural networks (GNN) (Wang et al.,
2018; Pathak et al., 2019; Huang et al., 2020) and trans-
formers (TF) (Kurin et al., 2020; Gupta et al., 2022) w.r.t.
both training and generalization performance. Moreover, TF
outperforms GNN by better modeling interactions between
distant nodes in the morphology graph (Kurin et al., 2020),
and has thus been adopted by most recent approaches (Dong
et al., 2022; Furuta et al., 2022; Gupta et al., 2022; Hong
et al., 2022; Trabucco et al., 2022; Chen et al., 2023; Xiong
et al., 2023).

However, TF has significantly higher memory, computation,
and energy costs than MLP, all of which are key consid-
erations when deploying the policy on real-world robots
with constrained hardware (Hutter et al., 2016; Zhao et al.,
2021; Brohan et al., 2022; Leal et al., 2023). For example,
a state-of-the-art TF-based method for universal morphol-
ogy control (Xiong et al., 2023) requires about 40M FLOPs
for a single step of inference on a robot with just 10 limbs,
more than 100 times that of a single-robot MLP policy with
similar performance, and this efficiency gap increases pro-
portionally with the number of limbs. So a natural question
arises: Can we learn a universal policy with the perfor-
mance of TF but the inference efficiency of MLP?
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In this paper, we answer this question affirmatively. To
get the best of both worlds, we introduce a hypernetwork
(HN) (Ha et al., 2016), i.e., a network that takes context
features as input to generate the parameters of a base net-
work. Our key intuition is that, compared to TF, HN can
better decouple inter-task knowledge and intra-task knowl-
edge via its hybrid architecture for more efficient inference,
which we call the knowledge decoupling hypothesis. Under
our problem setting, the context-conditioned HN can pro-
vide sufficient model capacity to accommodate inter-robot
knowledge, while the generated base network only needs to
encode task-specific knowledge about the robot it controls.
By contrast, TF encodes both kinds of knowledge with a sin-
gle large model, which introduces high model redundancy
when deployed on a specific robot.

Specifically, suppose we train a set of single-robot MLP
policies {πk}, each with good performance on a different
robot k. Motivated by the intuition that the optimal con-
trol policy of a robot critically depends on its morphology
(Gupta et al., 2022; Xiong et al., 2023), we train an HN
that takes the morphology context ck of robot k as input to
predict the corresponding MLP policy parameters πk. For
each robot, as the morphology context ck is constant, the
HN-generated parameters are also fixed. Consequently, we
only need to call it once before deployment to generate the
base MLP, while the HN itself is not needed for policy ex-
ecution. This yields a universal policy that works like an
MLP at inference time but still has the potential to achieve
good performance on both training and unseen test robots.

While training such an HN policy via RL is a straightfor-
ward option, empirically we find that it is unstable and
significantly underperforms a universal TF policy. Instead,
we adopt a policy distillation (PD) approach by distilling a
universal TF teacher policy into an HN student policy via be-
havior cloning (BC). While it is not hard to distill a student
policy to match the teacher’s performance on the training
task(s) (Parisotto et al., 2015; Rusu et al., 2015; Czarnecki
et al., 2019), a key challenge in our problem setting is to
maintain the teacher policy’s zero-shot generalization per-
formance after distillation. In this paper, we identify several
critical algorithmic choices in PD that influence the general-
ization performance of the student policy to unseen tasks:
(1) The choice of the teacher(s), (2) Architecture alignment
between the teacher and the student, (3) The number of
tasks on which to collect training data for PD, and (4) Regu-
larization in task space. We believe that these algorithmic
choices could serve as general guidelines for improving task
generalization of PD in other domains as well.

We name our approach as HyperDistill to highlight its two
key components: (1) The HN architecture to achieve both
good performance and high inference efficiency via knowl-
edge decoupling, and (2) Training via policy distillation

to successfully learn such an HN policy. We experiment
on a challenging universal morphology control benchmark
called UNIMAL (Gupta et al., 2021), which includes hun-
dreds of diverse morphologies to evaluate both multi-robot
training and zero-shot generalization. HyperDistill achieves
performance similar to the universal TF teacher on both
training and unseen test robots, while significantly reducing
the model size by 6-14 times, and computational cost by 67-
160 times in different environments at inference time. The
experimental results further support our knowledge decou-
pling hypothesis, which could serve as a general principle
to improve inference efficiency in other domains.

2. Background
2.1. Problem Formulation

Learning a universal policy to control different morpholo-
gies can be seen as solving a contextual Markov Decision
Process (CMDP) (Hallak et al., 2015), where the task con-
text space C is defined over all possible morphology con-
figurations. For robot (task) k, we use Sk, Ak, Tk and Rk

to represent its state space, action space, transition function
and reward function respectively.

We assume that all the robots are drawn from a modular
design space, i.e., each robot can be seen as a morphology
tree over a set of basic nodes (limbs), and the node-level
state and action space are homogeneous across different
robots’ limbs. Based on this assumption, we have Sk =
S1
k × · · · × SNk

k and Ak = A1
k × · · · × ANk

k , where Nk is
the number of limbs in robot k. The task context ck includes
morphology information about the robot, consisting of node-
wise context features {cik|i = 1, . . . , Nk} (see Appendix A
for more details), and a topology tree of the robot.

We use sk,t, ak,t, rk,t to represent the state, action and re-
ward at time step t for robot k. The training objective is
to learn a universal policy πθ(ak,t|sk,t, ck) to maximize
the average return over a set of K training robots, i.e.,
maxθ

[
1
K

∑K
k=1

∑H
t=0 rk,t

]
, where H is the task horizon

for all different robots. In addition to good training perfor-
mance, we also expect the learned policy to generalize well
on unseen test morphologies in a zero-shot manner.

2.2. Architectures for Universal Morphology Control

To learn an MLP policy for the state and action space defined
over a morphology tree, we first need some way to order the
limbs, so that we can concatenate their node-wise states and
actions into single vectors as the MLP’s input and output.
As the morphology of a robot has a tree structure, the limbs
in each robot are usually ordered by some tree traversal
methods like depth-first search (Gupta et al., 2022).

When learning a multi-robot MLP policy, to handle the vari-
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able number of limbs across different robots, it is common to
assume a maximal limb number Nmax, and zero-pad the state
and action vectors to this maximal length so that the state
and action dimensions are aligned across different robots.
As the universal policy also conditions on the morphology
context, the context features cik are usually concatenated
with the state features sik,t as node-wise input (Gupta et al.,
2022). So the final input to the multi-robot MLP policy is
x =

[
x1, x2, . . . , xNk

, 0⃗, . . . , 0⃗
]
, where xi = [si, ci], and

we omit the robot index k and time index t thereafter for sim-
plicity of notation. For the input layer of the MLP, we have
h(0) = σ

(
W inx+ bin

)
= σ

(∑Nk

i=1 W
in
i xi + bin

)
, where

σ is the activation function, W in
i is the subset of the weight

matrix that encodes the input features of node i. For the l-th
hidden layer, we have h(l+1) = σ

(
W (l)h(l) + b(l)

)
. For

the output layer, we have a = W outh(L) + bout, which can
be decomposed into node-wise action ai = W out

i h(L)+ bout
i .

Unlike MLP, GNN (Wu et al., 2020) and TF (Vaswani et al.,
2017) can naturally handle variable numbers of homoge-
neous elements. GNN can be directly applied to different
morphology graphs, while TF treats each limb as a token.
Unlike in many domains where tokens are processed se-
quentially, in universal morphology control, TF processes
different nodes in parallel to model their spatial interactions.
A typical TF architecture for universal morphology control
consists of a linear embedding layer that embeds node-wise
input features, multiple attention blocks that model limb
interactions, and an MLP decoder that maps the node-wise
embedding outputed by the attention blocks to node-wise
actions (Gupta et al., 2022; Xiong et al., 2023).

2.3. Hypernetworks

A hypernetwork (Ha et al., 2016) is a network that gener-
ates the parameters of a base network conditioned on some
context c. We can decompose an HN into a context encoder
f and several output heads (parameterized as linear layers)
that take the context embedding e = f(c) as input, and
output parameters in the base network. For example, to gen-
erate the parameters of a linear layer y = Wx+ b, the HN
needs two output heads to generate W and b respectively,
i.e., W = HNW (e), b = HNb(e). If W is a M ×N matrix,
and the context embedding dimension is E, then HNW is a
linear layer with input dimension E and output dimension
M ×N , while HNb is a linear layer with input dimension
E and output dimension N .

3. HyperDistill
This section introduces HyperDistill, which achieves both
good performance and high efficiency at inference time. In
Section 3.1, we analyze the limitations of existing methods
for universal morphology control, which motivates us to

introduce HN as a solution in Section 3.2. In Section 3.3, we
discuss why and how we train the HN via policy distillation,
and analyze some of its critical algorithmic designs.

3.1. Limitations of Existing Architectures

We analyze the limitations of two representative architec-
tures for universal morphology control: TF, which achieves
SOTA performance but is expensive to run at inference time,
and MLP, which runs efficiently and achieves good per-
formance on each single robot but performs poorly in the
multi-robot setting. We first highlight a knowledge decou-
pling issue that exists in both TF and MLP, then discuss the
lack of order-invariance in MLP.

Knowledge Decoupling Intuitively, knowledge learned
by a universal policy can be decomposed into two parts:
inter-task knowledge for generalization across robots, and
intra-task knowledge about how to control a specific robot.
Since both TF and MLP use a single set of parameters
to encode both kinds of knowledge, they cannot decouple
them from each other. Consequently, at inference time, there
may be a lot of redundant knowledge in the policy that is
irrelevant to solving the current task, which harms efficiency.
It also explains why MLP can perform well on a single
robot but not under the multi-robot setting, as the model
capacity of a compact MLP is sufficient to accommodate
task-specific knowledge of a single robot, but not enough
to encode both inter-task and intra-task knowledge under
a multi-robot setting. The same conclusion also holds for
TF when compressing a large TF into a smaller one, as we
confirm experimentally in Section 4. In summary, due to
lack of knowledge decoupling, TF and MLP have to trade
off between performance and efficiency at inference time.

Order-Invariance Issue with MLP A further issue with
MLP is that it is not invariant to the order of limbs across
robots. TF is order-invariant, as all the limbs across different
robots share the same set of parameters. By contrast, in
a multi-robot MLP, only the limbs with the same index
across different robots share the same subset of parameters
in the input and output layers, so how we order the limbs
influences the policy output. As we do not have a consistent
way to order the limbs across different morphologies, multi-
robot MLP can overfit to spurious patterns in the manually
chosen limb indexing method, harming generalization.

3.2. HyperDistill Architecture

To tackle the limitations of TF and MLP, we introduce an
HN that takes morphology context as input to generate an
MLP base policy for each robot. First, it supports knowledge
decoupling, as the morphology-conditioned HN encodes
inter-task knowledge, while the base MLP encodes intra-
task knowledge. The expensive HN is called only once to
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Figure 1. The architecture of HyperDistill. Different colors high-
light the correspondence between the parameters in the base net-
work and the context embedding they condition on via HN. We
only show one hidden layer in the base MLP for ease of illustration.
More hidden layers can be easily added in a similar way.

generate a task-specific base policy for each new task, while
the much smaller base network is sufficient to efficiently
solve the task. Second, the base MLP generated by the HN
is order-invariant, as the parameters associated with each
limb no longer depend on the limb index, but only condition
on the limb’s context representation.

The overall architecture is shown in Figure 1. Unlike prior
work in HN, a unique challenge in applying HN to uni-
versal morphology control is that the input and output di-
mensions of the MLP base network vary across robots due
to the variable number of limbs. We tackle this challenge
by generating limb-wise parameters for the input and out-
put layers, as the subset of parameters corresponding to
each limb still has fixed dimension based on the modu-
lar space assumption in Section 2.1. Specifically, for the
input layer, we have h(0) = σ

(∑
i W

in
i xi + bin

i

)
, where

W in
i = HNin

W (ei), bin
i = HNin

b (ei), and ei = f(ci) is the
context embedding of limb i generated by the context en-
coder f . As the whole policy conditions on the morphology
context through HN, we no longer need to concatenate con-
text features ci to the network input, so we have xi = si.
Similarly, for the output layer, we have ai = W out

i h(L)+bout
i ,

where W out
i = HNout

W (ei), and bout
i = HNout

b (ei). For the
hidden layers, we first aggregate the context embedding
of different limbs using the mean to get a context embed-
ding for the whole morphology as em = 1

N

∑
i ei, then

pass em through HN output heads to generate the hidden
layer parameters, i.e., h(l+1) = σ

(
W (l)h(l) + b(l)

)
, where

W (l) = HN(l)
W (em), and b(l) = HN(l)

b (em).

Context Representation Learning The quality of the
HN-generated policy critically depends on the quality of the
learned context embedding, e.g., if ei of different limbs are
too similar, the policy will generate similar actions across

different limbs, which is unlikely to be a good policy.

The context representation should be both discriminative to
encode the diverse behaviors of different limbs, and general-
izable to unseen robots. We adopt two approaches to achieve
this goal. First, we apply some simple transformations to
the context features ci to make them more discriminative
across limbs (see Appendix A). Second, we use a TF as the
context encoder to enrich each limb’s context representa-
tion by interacting with other limbs in the robot, e.g., if two
limbs in two different morphologies have the same hardware
configurations, then we cannot tell them apart based on their
own context features alone, but the TF context encoder can
learn a distinguishable representation by further encoding
morphology information. Since the TF context encoder is
also a part of the HN, it is not needed at inference time,
unlike a TF policy that uses TF as the controller.

3.3. HyperDistill Training via Policy Distillation

In principle, we can train a universal HN policy from scratch
via RL. However, empirically we find that the training pro-
cess is unstable and the learned policy significantly under-
performs a TF policy, possibly because both HN and RL are
known to be unstable during learning, and combining them
together further exacerbates the optimization challenges.

Instead, we adopt policy distillation (Parisotto et al., 2015;
Rusu et al., 2015) by first training a universal TF policy, then
distilling it into an HN policy via behavior cloning, which
replaces RL training with more stable supervised learning
to alleviate the optimization challenge. Moreover, as BC
empirically requires much less time to train than RL, we can
reuse the same pre-trained teacher policy for more efficient
evaluation of different algorithmic choices.

Given a set of training robots and a universal TF policy
trained on them as the teacher πT , we first collect expert
trajectories on each training robot with πT to generate a
training dataset BT for PD. Then we train an HN student
policy π by minimizing the KL-divergence between the
action distributions generated by the teacher and student on
transitions randomly sampled from the buffer:

Lπ = Es,c∼BT

[
KL(πT (a|s, c)||π(a|s, c)

]
.

While more sophisticated loss functions (Czarnecki et al.,
2019) have been proposed to facilitate PD by collecting
online data with the student, empirically we find that this
simple BC loss is sufficient to learn a student policy that
matches the teacher’s performance on the training robots,
without having to collect further samples with the student.

However, we also want the student to zero-shot generalize as
well as the teacher on unseen test robots. While several prior
works evaluate zero-shot generalization of a student policy
to unseen tasks in different problem settings (Chen et al.,
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2022; Furuta et al., 2022; Wan et al., 2023), none of them
systematically investigate how different algorithmic choices
in PD influence the student’s generalization performance. In
this paper, we highlight four key factors that may influence
the generalization gap between teach and student in PD.

The Choice of PD Teacher(s) Theoretically, we can ei-
ther train a universal TF teacher on multiple robots, or train
multiple single-robot MLP policies on different morpholo-
gies as the teachers (Furuta et al., 2022). While the average
performance of the single-robot MLPs is similar to or even
better than that of a universal TF on the training robots
(Xiong et al., 2023), we hypothesize that the student policy
distilled from a universal teacher policy generalizes better
to unseen robots. Intuitively, as the single-robot teacher
policies are trained via RL separately, they can be dramati-
cally different from each other, which may exacerbate the
discontinuity of the distilled policy in the parameter space
and harm generalization.

Student-Teacher Architecture Alignment We hypothe-
size that the generalization gap between teacher and student
is smaller when their neural architectures are more aligned
(Hao et al., 2023). Intuitively, the inductive bias introduced
by a more aligned architecture helps the student extrapolate
to unseen task context and state in a more consistent way
with the teacher, which helps reduce the generalization gap.

However, as we are trying to distill from a TF to an HN,
there is an unavoidable mismatch between the teacher and
student architectures. The two algorithmic choices dis-
cussed next may help compensate for the generalization
gap caused by this architecture misalignment.

Number of Tasks for Distillation Training To better
align the teacher and student policies’ behaviors on unseen
tasks, a natural idea is to train the student policy on the
teacher’s demonstrations collected from more tasks, so that
the PD training data better covers the task space. This is
different from training the teacher policy on more tasks,
which is an effective but orthogonal way to improve task
generalization. Our approach does not require modifying
the teacher’s training process. Instead, it simply requires
collecting data from more tasks with the pre-trained univer-
sal teacher, which introduces little computational overhead.
For clarity, we use “training robots” to denote the robots
on which we train the teacher policy, and “PD robots” to
denote the robots on which we collect expert trajectories for
PD. Advanced methods like curriculum learning (Dennis
et al., 2020; Narvekar et al., 2020; Wan et al., 2023) could
be utilized to get a more robust task distribution to further
mitigate generalization gap, which we leave for future work.

Regularization in Task Space Regularization is a com-
mon approach to reduce overfitting and improve generaliza-
tion (Cobbe et al., 2019). We consider it to be especially
important for HyperDistill, as HN may be more prone to
overfitting than other architectures. In prior work, mor-
phology context is usually just used as an additional policy
input (Gupta et al., 2022), while in HyperDistill, it is used
as HN input to generate the whole control policy. As we
only have a few hundred different robots for PD, which is
much less than the number of parameters in the HN, there
is a high chance of overfitting. To reduce overfitting, we
apply dropout to the context embedding ei and em. This can
be seen as regularization in task space, which encourages
the HN to learn an ensemble of different MLP policies that
can all work well on the same robot. It can also be seen
as domain randomization (Tobin et al., 2017) by making
the generated policy more robust to changes in morphology
context. We leave it for future work to investigate other
regularization methods like weight decay.

4. Experiments
Our experiments aim to answer the following questions:

(1) Can HyperDistill achieve good performance on both
training and unseen test robots? How does it compare to
other methods w.r.t. performance and efficiency at inference
time? (Section 4.2)

(2) How do different algorithmic and architecture choices
in HyperDistill influence its training and generalization per-
formance? (Section 4.3)

4.1. Experimental Setup

We experiment on the UNIMAL benchmark (Gupta et al.,
2021) built upon the Mujoco simulator (Todorov et al.,
2012), which includes 100 training robots and 100 test
robots with diverse morphologies, while new morpholo-
gies can be easily generated via mutation operations sup-
ported by the UNIMAL design space. Following the setup
of Gupta et al. (2022), we consider three different envi-
ronments with increasing difficulties: (1) Flat terrain (FT):
maximize locomotion distance on a flat floor; (2) Variable
terrain (VT): maximize locomotion distance on a variable
terrain randomly reset for each episode. (3) Obstacle: max-
imize locomotion distance on a flat terrain while avoiding
randomly positioned obstacles.

Teacher Policy For each environment, we train a univer-
sal TF policy on the 100 training robots as the teacher policy.
We adopt ModuMorph (Xiong et al., 2023) as the TF teacher,
as it achieves SOTA performance on the UNIMAL bench-
mark. ModuMorph differs from a standard TF architecture
in two ways: (1) In the attention blocks, it computes a
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Figure 2. The performance of different methods on the training robots in each environment.

fixed attention matrix solely conditioned on the morphology
context, which performs better than computing dynamic
attention weights based on limb observations. (2) The em-
bedding layer and the MLP decoder are generated by HNs
in ModuMorph. Although ModuMorph and HyperDistill
both use HNs, their motivations are significantly different.
ModuMorph adopts HNs to better model the diverse behav-
iors across limbs, but is still a large TF-based model with
high inference costs. By contrast, HyperDistill utilizes HNs
to enable knowledge decoupling for efficient inference. This
novel perspective on the role of HNs is a key contribution
of our method. Furthermore, as we show in Section 4.2, a
TF-based model can be compressed to a much smaller size
without much performance loss, but only when equipped
with these HN-generated layers, while a standard TF cannot.

Data Collection for Distillation To collect data for policy
distillation, we first generate an augmented robot set of
1,000 PD robots by mutating the 100 training robots. See
Appendix B.1 for how we do the mutation. Then we collect
8,000 transitions from each PD robot, forming a multi-robot
dataset with 8M transitions for policy distillation.

Baselines We compare HyperDistill with the following
architectures as the student policy: (1) ModuMorph (ora-
cle): A ModuMorph student with the same architecture as
the teacher. It serves as a performance upper bound on how
well the student can perform without architecture misalign-
ment. (2) TF (compressed): A standard TF with a similar
number of parameters as the base MLP in HyperDistill. It is
used to validate that standard TF cannot achieve both good
performance and high efficiency at the same time like Hyper-
Distill. (3) ModuMorph (compressed): A ModuMorph
student with a similar number of parameters as the base
MLP in HyperDistill. As it adopts HNs to generate some
layers, we expect it to have better knowledge decoupling
ability than standard TF, but may still be less efficient than

HyperDistill due to the attention blocks. (4) Multi-robot
MLP: A multi-robot MLP with the same architecture as the
base MLP in HyperDistill, which is used to validate the ad-
vantages of HyperDistill over MLP as discussed in Section
3.2. Finally, we also compare with training an HN policy
via RL (HN-RL) to show the importance of distillation.

Distillation Setup The distillation process runs for 150
epochs, with a mini batch size of 5120. We use Adam with
a learning rate of 0.0003, and clip the gradient norm to 0.5.
We run three random seeds for each method in each envi-
ronment, and report the average performance with standard
error. For HyperDistill, we apply dropout to context embed-
ding with p = 0.1. See Appendix B.3 for the size of each
student model in each environment.

4.2. Main Results

Figures 2 and 3 illustrate how different methods perform on
the training and test robots during the distillation process.
Table 1 compares the model size and FLOPs of different
methods at inference time.

HyperDistill achieves performance similar to ModuMorph
(oracle), matching the teacher’s performance on both the
training and test robots in all the three environments, while
reducing model size by 6-14 times, FLOPs by 67-160 times
in different environments.

TF (compressed) cannot match the performance of Hyper-
Distill in all the three environments, as standard TF needs to
trade off between performance and efficiency due to a lack
of knowledge decoupling.

As expected, ModuMorph (compressed) consistently outper-
forms TF (compressed), as it generates some layers of the
TF via HNs, which enables better knowledge decoupling.
However, it still lags behind HyperDistill w.r.t. both gen-
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Figure 3. The performance of different methods on the test robots in each environment.

Task Method Model size FLOPs
Abs. Rel. Abs. Rel.

FT

ModuMorph (oracle) 1.73 M 14.0 39.86 M 160.8
TF (compressed) 0.14 M 1.1 3.39 M 13.7
ModuMorph (compressed) 0.15 M 1.2 1.78 M 7.2
Multi-robot MLP 0.23 M 1.9 0.46 M 1.9
HyperDistill 0.12 M 1 0.25 M 1

VT

ModuMorph (oracle) 1.97 M 6.6 40.33 M 67.2
TF (compressed) 0.31 M 1.0 5.51 M 9.2
ModuMorph (compressed) 0.39 M 1.3 2.26 M 3.8
Multi-robot MLP 0.41 M 1.4 0.82 M 1.4
HyperDistill 0.30 M 1 0.60 M 1

Obstacle

ModuMorph (oracle) 2.02 M 6.7 40.43 M 67.4
TF (compressed) 0.32 M 1.0 5.61 M 9.3
ModuMorph (compressed) 0.44 M 1.5 2.35 M 3.9
Multi-robot MLP 0.41 M 1.4 0.82 M 1.4
HyperDistill 0.30 M 1 0.60 M 1

Table 1. Model size and FLOPs of different methods at inference
time. Abs. denotes the absolute value, and Rel. denotes the relative
value w.r.t. HyperDistill. See Appendix B.2 for how we compute
the FLOPs, and C.1 for more analysis on the results in this table.

eralization performance and efficiency, as the knowledge
encoded in the attention blocks still cannot be decoupled.
This result further indicates that, in contrast to previous
work (Kurin et al., 2020; Gupta et al., 2022; Xiong et al.,
2023), we may not need complicated attention modules to
achieve good performance for universal morphology con-
trol. In addition, the performance gap between ModuMorph
(compressed) and HyperDistill is larger in FT than in VT
and Obstacle, possibly because for the latter two environ-
ments, ModuMorph has more layers in the HN-generated
decoder, which makes it more similar to HyperDistill.

HyperDistill also significantly outperforms multi-robot
MLP, which validates the importance of the HN. Moreover,
the performance gap between multi-robot MLP and other
methods is much larger on the test robots than on the training
ones, which may be overfitting due to the order-invariance
issue of MLP discussed in Section 3.1.
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Figure 4. The student’s learning curves under different teacher
choices. In the figure legend, “X → Y” means that we distill from
teacher X into student Y.

HN-RL performs poorly on both training and test robots,
which reflects the optimization difficulty of combining HN
and RL, and validates the importance of training via PD.

4.3. Ablation Studies

In this section, we investigate how the algorithmic choices
in PD influence generalization performance of the student.
Due to space limitations, see Appendix C.2 for ablations on
architecture choices in HyperDistill. To save computation,
we run PD for only 50 epochs as most methods can already
converge within this budget, and experiment only in the FT
experiment unless otherwise stated.

The Choice of PD Teacher(s) We train (1) A universal
TF teacher on all the training robots; (2) A set of single-
robot MLP teachers on each training robot. Then we col-
lect 80,000 transitions from each training robot with the
teacher(s) to get BT . We experiment with both HyperDis-
till and TF (oracle) to ensure that the PD choice applies
to different student architectures. Figure 4 shows how the
student policies perform on the training and test robots with
different teacher choices. As expected, when using single-

7



Distilling Morphology-Conditioned Hypernetworks for Efficient Universal Morphology Control

100 500 1000
The number of PD robots

1225

1250

1275

1300

1325

1350

1375

Re
tu

rn

Flat Terrain

TF (teacher)
HyperDistill
TF (oracle)

100 500 1000
The number of PD robots

700

750

800

850

900

950

Variable Terrain

TF (teacher)
HyperDistill
TF (oracle)

100 500 1000
The number of PD robots

950

1000

1050

1100

1150

Obstacle

TF (teacher)
HyperDistill
TF (oracle)

Figure 5. Final generalization performance of HyperDistill and TF
(oracle) w.r.t. the number of PD robots in different environments.

robot MLP teachers, although the student policies perform
well on the training robots, they generalize much worse than
the students distilled from a universal TF teacher, which
validates our hypothesis in Section 3.3.

Student-Teacher Architecture Alignment We reexam-
ine the results in Figure 4 from a different perspective. When
using a universal TF teacher, the TF student has a more
aligned architecture and achieves better generalization per-
formance than HyperDistill. When using single-robot MLP
teachers, while both students generalize much worse, Hy-
perDistill has a more aligned architecture (as its base MLP
has the same architecture as the teachers), and generalizes
better than the TF student. Moreover, for the same teacher,
both students achieve similar performance on the training
robots regardless of their architectures, indicating that the
generalization gap is not caused by the difference in model
capacity of different student models, but is more likely the
consequence of architecture misalignment.

Number of Distillation Training Tasks To validate our
hypothesis that collecting distillation data from more robots
can improve the student’s task generalization, we experi-
ment with 100, 500, and 1,000 PD robots. For a fair com-
parison, the number of transitions collected from each robot
decreases proportionally so that the total data size remains
unchanged. As shown in Figure 5, HyperDistill’s general-
ization performance increases by 6%, 15% and 13% in the
three environments as the number of PD robots increases
from 100 to 1,000. There is no significant improvement in
the TF student’s generalization performance due to a ceiling
effect and its better aligned architecture with the TF teacher.

Regularization in Task Space As shown in Figure 6,
applying dropout to the context embedding improves gen-
eralization performance by 8.5%, while applying dropout
to the base MLP does not provide significant improvement,
which agrees with our intuition that regularization may be
more important in task space than in state space.
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Figure 6. Learning curves of HyperDistill in FT with different
ways of incorporating dropout regularization.

5. Discussion
We reexamine our knowledge decoupling hypothesis to see
if it is supported by experimental results. First, HyperDistill
achieves similar performance as TF but runs much more
efficiently at inference time, which validates the efficiency
benefits provided by knowledge decoupling. Second, as
expected, due to the lack of knowledge decoupling, when
we compress a universal TF policy, the compressed TF does
not have enough model capacity to accommodate both inter-
task and intra-task knowledge, as evidenced by its worse
performance in our experiments. The knowledge decoupling
hypothesis further suggests that if we compress a universal
TF into a single-robot TF, it should outperform a compressed
universal TF on that specific robot, as we relieve it of the bur-
den of distilling inter-task knowledge. To validate this idea,
we conduct a proof-of-concept experiment in the Obstacle
environment. We randomly sample 10 training robots and
distill the universal TF teacher into a single-robot TF with
the same architecture as TF (compressed) for each robot.
As expected, the compressed single-robot TFs achieve an
average return of 2345, outperforming the compressed uni-
versal TF with an average return of 2115, but at the cost of
losing the generalization ability to other robots.

In summary, TF needs to trade off between performance
and efficiency at inference time, while HyperDistill can
enjoy both thanks to knowledge decoupling. It resembles
related ideas explored in other fields, such as mixtures-of-
experts (Riquelme et al., 2021; Shen et al., 2023) that learn
a large model with high capacity while sparsely activat-
ing sub-modules for different tasks to improve inference
efficiency. There is also evidence from neuroscience that
although the human brain contains billions of neurons, it is
still power-efficient because it activates only a small fraction
of neurons at a time to solve a given task (Barth & Poulet,
2012). Consequently, we believe that our knowledge de-
coupling hypothesis could serve as a general principle to
improve inference efficiency in other domains as well.
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6. Related Work
Universal Morphology Control While generalization
across robots with variations only in kinematics or dynam-
ics parameters has been extensively studied in prior work
(Tobin et al., 2017; Peng et al., 2018; Clavera et al., 2019;
Ghadirzadeh et al., 2021; Feng et al., 2022), universal mor-
phology control poses a more challenging task of general-
ization across morphologies. While learning an MLP policy
with zero-padding is feasible to work across morphologies,
it is significantly outperformed by GNN (Wang et al., 2018;
Pathak et al., 2019; Huang et al., 2020) and TF (Kurin et al.,
2020; Dong et al., 2022; Furuta et al., 2022; Gupta et al.,
2022; Hong et al., 2022; Trabucco et al., 2022; Chen et al.,
2023; Xiong et al., 2023). Furthermore, TF outperforms
GNN by better modeling the interactions between distant
limbs in a robot (Kurin et al., 2020), thus has been adopted
by most recent works. However, these more sophisticated
models introduce higher computational cost during deploy-
ment, which we aim to tackle by generating a compact MLP
controller at inference time with morphology-conditioned
HN. Similar to our work, ModuMorph (Xiong et al., 2023)
also utilizes HN. However, ModuMorph introduces HNs to
better model the diverse behaviors across different limbs and
only uses HNs to generate embedding and decoder layers
inside a TF, while our method introduces HNs to improve
inference efficiency via knowledge decoupling and generate
a whole MLP controller with HNs.

Hypernetworks A hypernetwork (Ha et al., 2016) takes
context features as input to generate the parameters of a
base network. In the context of RL, HNs provide a powerful
way to model the complex dependency between task context
and the optimal control policy for the task (Galanti & Wolf,
2020; Sarafian et al., 2021), and has been widely adopted
in multi-task RL and meta-RL (Yu et al., 2019; Peng et al.,
2021; Beck et al., 2022; Rezaei-Shoshtari et al., 2022; Beck
et al., 2023). While these works mainly utilize the expres-
sive power of HNs to improve task performance, we focus
more on utilizing HN’s knowledge decoupling ability to
improve inference efficiency.

Policy Distillation Distillation (Buciluǎ et al., 2006; Hin-
ton et al., 2015) transfers knowledge from a teacher model or
multiple teacher models to a student model. In the context of
RL, it has been used to compress the policy network (Rusu
et al., 2015), accelerate learning on a new task (Parisotto
et al., 2015), and facilitate policy learning (Lee et al., 2020;
Chen et al., 2022; Wan et al., 2023). However, less atten-
tion is paid to measuring and minimizing the generalization
gap between the teacher and the student. Igl et al. (2020)
distill a teacher policy into a student with identical archi-
tecture, which is used as an intermediate step to improve
task generalization of a policy trained via RL. Chen et al.

(2022) and Wan et al. (2023) investigate generalization of a
distilled policy to unseen objects (tasks) in robotic manip-
ulation. However, as the teacher has access to privileged
information while the student does not under their setting,
there is always a performance gap between the teacher and
the student, and this gap is larger on the test tasks than that
on the training tasks, which indicates a generalization gap.
Most similar to our work is Furuta et al. (2022), which dis-
till multiple single-robot MLP teachers into a TF student
for universal morphology control. But they only show the
advantage of using TF as the student architecture, but do
not compare with a universal TF teacher to measure gener-
alization gap. Furthermore, the TF student policy they learn
still has efficiency issue during deployment. To the best of
our knowledge, we are the first to systematically investigate
how to mitigate generalization gap in policy distillation via
proper algorithmic choices.

7. Conclusion
In this paper, we propose HyperDistill to achieve both good
performance and high efficiency at inference time for uni-
versal morphology control. While training HyperDistill via
RL is hard, we take a policy distillation approach, and sys-
tematically investigate how some key algorithmic choices
influence task generalization of the student policy. Hyper-
Distill matches the performance of the universal TF teacher
on both training and test robots, while significantly reducing
memory and computational cost, which supports our hy-
pothesis that decoupling inter-task and intra-task knowledge
can improve inference efficiency.

Given the wide application of TF in foundation models and
their extremely high inference cost (Achiam et al., 2023;
Brohan et al., 2022; 2023; Padalkar et al., 2023), the findings
in our paper could serve as a general principle to reduce the
inference cost of TF in other domains as well. However,
a potential limitation when extending our method to other
domains is the additional cost introduced by the HN. This
is not an issue for universal morphology control, as the
morphology context remains unchanged on each robot. So
we only need to call the HN once before deployment while
the whole HN can be discarded afterwards. However, if task
context changes over time, such as controlling a robot to
solve different tasks by following language instructions, the
HN can not be discarded and needs to be called whenever a
new instruction is given. This requires additional space to
save the HN parameters, and the inference efficiency gain
may decrease as the HN will be called more frequently. How
to tackle this challenge is an interesting direction for future
work.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Specifically, as the control policy learned by our method can
be deployed on real-world robots for tasks like locomotion
and manipulation, issues like safety in operation need to be
carefully considered, whose impacts have been extensively
discussed in prior work.
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A. Morphology Context Features and Transformations
For each robot, its morphology context includes the topology graph of the robot and limb-wise context features. Limb-wise
context features include: (1) The initially relative position of the limb w.r.t. its parent node; (2) The initially geometric
orientation of the limb w.r.t. its parent node; (3) The mass and shape parameters of the limb; (4) Parameters about the joints
that connect the limb to its parent node, including joint type, joint range and axis, and motor gear (Gupta et al., 2022).

As discussed in Section 3.2, the context features need to be distinguishable enough to learn a good morphology-conditioned
HN. Among the original context features, we find that the relative position feature does not provide sufficient discrimination,
as different limbs, especially symmetric ones within a robot, can have the same relative position to their parents, but actually
locate in different parts of the robot and play different roles. To solve this issue, we transform relative position features into
absolute position features to better distinguish different limbs’ positions in the morphology, which can be easily computed
by following the path from the torso (the root of the morphology tree) to each limb node. Experimental results in Figure 7
validate the importance of this feature transformation.

B. Further Experimental Setup
B.1. Generation of PD Robots

We mutate the 100 training robots in the UNIMAL benchmark to get an augmented set of 1000 PD robots, on which we
collect expert data for policy distillation. Specifically, for each training robot, we first uniformly sample a number m from
[1, 2, 3], then sequentially apply m mutation steps to the robot to get a new morphology. See Gupta et al. (2021) for the
set of feasible mutations allowed in the UNIMAL benchmark. We generate 9 variants for each training robot, yielding an
augmented set of 1000 PD robots in total.

B.2. FLOPs Computation

We compute the FLOPs of a linear layer with input dimension M and output dimension N as 2×M ×N (Hobbhahn &
Sevilla, 2021). Then the FLOPs of an MLP or a TF can be analytically computed by recursively decomposing its FLOPs
into the summation of basic linear layers’ FLOPs. We omit the FLOPs of other operations like activation functions, layer
normalization and etc., as these operations only have linear complexity, which is negligible compared to the quadratic
complexity of linear layers.

B.3. Architecture Details of Different Methods

Table 2 shows the size of different architectures in each environment. For the ModuMorph (teacher) and ModuMorph
(oracle), we use the same architecture hyperparameters as in Xiong et al. (2023). For the base MLP in HyperDistill, we fix
the hidden layer size to 256, and do a grid search over hidden layer number to find the smallest base MLP that can achieve
on-par performance with the teacher policy in each environment. Then we set multi-robot MLP’s architecture identical to
the base MLP in HyperDistill. For ModuMorph (compressed) and TF (compressed), we tune the number of attention layers,
the number of attention heads, and the dimension of the linear layer’s hidden dimension inside the attention module, so that
the compressed model has a similar number of parameters as HyperDistill’s base MLP. The token embedding dimension is
128 for all different TF architectures.

Environment Base MLP in HyperDistill ModuMorph (teacher) ModuMorph (compressed) TF (compressed)
& Multi-robot MLP & ModuMorph (oracle)

Layer num. Hidden size Layer num. Head Hidden dim Layer num. Head Hidden dim Layer num. Head Hidden dim

FT 2 256 5 2 1024 1 1 128 1 1 256
VT 3 256 5 2 1024 1 1 128 2 1 128

Obstacle 3 256 5 2 1024 1 1 128 2 1 128

Table 2. The size of different models in each environment.
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Figure 7. How context representation learning in HyperDistill influences generalization performance in FT. Left: context feature
transformation. Right: architecture of the context encoder.

C. Further Experimental Results and Analysis
C.1. Further Analysis on Inference Efficiency

As shown in Table 1, HyperDistill’s efficiency advantage is more significant in the FT environment, as in the other two
environments, there is an additional high-dimensional terrain information input to the policy, which needs to be processed by
a large MLP encoder. This adds a large constant to the model size and FLOPs of all methods, and thus reduces the efficiency
ratio of HyperDistill to the other methods.

Although multi-robot MLP and the base network of HyperDistill have the same number of hidden layers and hidden units,
the model size and FLOPs of multi-robot MLP are still a bit larger than those of HyperDistill, as it needs to condition on the
morphology context by concatenating limb-wise context features to the policy input, which introduces some additional cost.

In HyperDistill, generating the base MLP with HN takes 43M FLOPs in the FT environment, and 65M FLOPs in the VT
and Obstacle environment. The FLOPs of generating the base MLP with HN is just slightly larger than the FLOPs of a
single inference step with a universal TF controller.

C.2. Ablation Study on Context Representation Learning

Context Feature Transformation As shown in Figure 7 (left), conducting feature transformations to improve feature
discrimination plays an important role in improving performance.

Architecture of Context Encoder As shown in Figure 7 (right), for different choices of the context encoder, GNN
performs the worst, possibly due to the over-smoothing issue of GNN (Chen et al., 2020) which harms discrimination of
the context embedding. While the MLP context encoder does not consider node interaction, it still achieves quite good
performance in FT. We thus further compare MLP and TF context encoder in the other two more challenging environments
(Figure 8), and find that the TF context encoder performs better, which validates the benefits of modeling node interaction
for context representation learning.
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Figure 8. How TF and MLP context encoder influence HyperDistill’s generalization performance. Left: VT; Right: Obstacle.
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