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Abstract

Deep neural networks have enabled improved image quality and fast inference times for various
inverse problems, including accelerated magnetic resonance imaging (MRI) reconstruction. However,
such models require a large number of fully-sampled ground truth datasets, which are difficult to
curate, and are sensitive to distribution drifts. In this work, we propose applying physics-driven data
augmentations for consistency training that leverage our domain knowledge of the forward MRI data
acquisition process and MRI physics to achieve improved label efficiency and robustness to clinically-
relevant distribution drifts. Our approach, termed VORTEX, (1) demonstrates strong improvements
over supervised baselines with and without data augmentation in robustness to signal-to-noise ratio
change and motion corruption in data-limited regimes; (2) considerably outperforms state-of-the-
art purely image-based data augmentation techniques and self-supervised reconstruction methods
on both in-distribution and out-of-distribution data; and (3) enables composing heterogeneous
image-based and physics-driven data augmentations.
Keywords: MRI reconstruction, inverse problems, distribution shift, robustness, label-efficiency

1. Introduction

Magnetic resonance imaging (MRI) is a powerful diagnostic imaging technique; however, acquiring
clinical MRI data typically requires long scan durations (30+ minutes). To reduce these durations,
MRI data acquisition can be accelerated by undersampling the requisite spatial frequency mea-
surements, referred to as k-space data. Reconstructing images without aliasing artifacts from such
undersampled k-space measurements is ill-posed in the Hadamard sense (Hadamard, 1902). To
address this challenge, previous methods utilized underlying image priors to constrain the optimiza-
tion, most notably by enforcing sparsity in a transformation domain, in a process called compressed
sensing (CS) (Lustig et al., 2008). However, CS methods provide limited acceleration and require
long reconstruction times and parameter-specific tuning (Lustig et al., 2007; Akasaka et al., 2016).

Deep learning (DL) based accelerated MRI reconstruction methods have recently enabled higher
acceleration factors than traditional methods, with fast reconstruction times and improved image
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Figure 1: VORTEX, a semi-supervised consistency training framework for robust accelerated MRI
reconstruction, enforces invariance to physics-driven and equivariance to image-based
data augmentations, and supports curriculum learning and composing augmentations.

quality (Hammernik et al., 2018). However, these approaches rely on large amounts of paired under-
sampled and fully-sampled reference data for training, which is often costly or simply impossible to
acquire. State-of-the-art reconstruction methods use large fully-sampled (supervised) datasets, with
only a handful of methods leveraging prospectively undersampled (unsupervised) data (Chaudhari
et al., 2020) or using image-based data augmentation schemes (Fabian et al., 2021) to mitigate
data paucity. These DL-based MR reconstruction methods are also highly sensitive to clinically-
relevant distribution drifts, such as scanner-induced drifts, patient-induced artifacts, and forward
model changes (Darestani et al., 2021). Despite being a critical need, sensitivity to distribution
drifts remains largely unexplored, with only a few studies that have studied simple forward model
alterations such as undersampling mask changes at inference time (Gilton et al., 2021).

In this work, we leverage domain knowledge of the forward MRI data acquisition model and MRI
physics through physics-driven, acquisition-based data augmentations for consistency training to
build label-efficient networks that are robust to clinically-relevant distribution drifts such as signal-to-
noise ratio (SNR) changes and motion artifacts. Our proposal builds on the Noise2Recon framework
that conducts joint reconstruction for supervised scans and denoising for unsupervised scans (De-
sai et al., 2021a) by extending the original consistency denoising objective to a generalized data
augmentation pipeline. Specifically, we propose a semi-supervised consistency training framework,
termed VORTEX, that uses a data augmentation pipeline to enforce invariance to physics-driven
data augmentations of noise and motion, and equivariance to image-based data augmentations of
flipping, scaling, rotation, translation, and shearing (Fig. 1). VORTEX supports curriculum learning
based on the difficulty of physics-driven augmentations and composing heterogeneous augmentations.
We demonstrate this generalized consistency paradigm increases robustness to varying test-time
perturbations without decreasing the reconstruction performance on non-perturbed, in-distribution
data. We also show that VORTEX outperforms both state-of-the-art self-supervised training strategy
SSDU (Yaman et al., 2020) and data augmentation scheme MRAugment (Fabian et al., 2021), which
solely relies on image-based data augmentations. Unlike MRAugment, which requires preservation
of training data noise statistics, VORTEX can operate on a broader family of MRI physics-based
augmentations without noise statistics constraints.

2



PHYSICS-DRIVEN DATA AUGMENTATIONS FOR ROBUST ACCELERATED MRI RECONSTRUCTION

Our contributions are the following: (1) We propose VORTEX, a semi-supervised consistency
training framework for accelerated MRI reconstruction that enables composing image-based data
augmentations with physics-driven data augmentations. VORTEX leverages domain knowledge of
MRI physics and the MRI data acquisition forward model to improve label-efficiency and robustness.
(2) We demonstrate strong improvements over supervised and self-supervised baselines in robustness
to clinically-relevant distribution drifts of scanner-induced SNR change and patient-induced motion
artifacts. Notably, we obtain +0.106 structural similarity (SSIM) and +5.3dB complex PSNR
(cPSNR) improvement over supervised baselines on heavily motion-corrupted scans in label-scarce
regimes. (3) We outperform MRAugment, a state-of-the-art purely image-based data augmentation
technique for MRI reconstruction. We achieve improvements of +0.061 SSIM and +0.2dB cPSNR
on in-distribution data, +0.089 SSIM and +2.5dB cPSNR on noise-corrupted data, and +0.125 SSIM
and +7.8dB cPSNR on motion-corrupted data. (4) We conduct ablations comparing image space
and latent space consistency and designing curricula for data augmentation difficulty. Our code and
experiments are publicly available1.

2. Related Work

Supervised accelerated MRI reconstruction methods (Adler and Öktem, 2018; Aggarwal et al., 2018;
Sandino et al., 2020) rely on a large corpus of fully-sampled scans. Although lagging in performance
to supervised techniques, several studies have leveraged unsupervised data including using generative
adversarial networks (Lei et al., 2020; Cole et al., 2020), self-supervised learning (Yaman et al.,
2020), and dictionary learning (Lahiri et al., 2021). Fabian et al. (2021) proposed image-based data
augmentations to reduce dependence on supervised training data. While Darestani et al. (2021)
demonstrated that both trained and untrained (Darestani and Heckel, 2021) reconstruction methods
exhibit sensitivity to adversarial perturbations and distribution drifts, no mitigation approaches
were discussed. Consistency training was initially proposed to build noise invariance in input data
(Miyato et al., 2018; Sajjadi et al., 2016; Clark et al., 2018) or hidden representations (Bachman
et al., 2014; Laine and Aila, 2016). Desai et al. (2021a) extended these methods to a consistency
training framework for joint MRI image reconstruction and denoising, where additive noise was
applied to undersampled k-space. Beyond noise-based consistency, Xie et al. (2020) showed that
semantics-preserving data augmentation consistency (RandAugment (Cubuk et al., 2020) for vision
tasks and back-translation for language tasks (Edunov et al., 2018)) led to significant performance
boosts. Pawar et al. (2019) proposed a supervised DL method to map simulated motion-corrupted
scans to clean scans as a post-processing method after reconstruction. Liu et al. (2020) extended
iterative application of image denoisers as imaging priors (Romano et al., 2017) for general artifact
removal such as that of motion. Gan et al. (2021) extended this method by training the model
in the measurement domain without supervised data. However, these methods require multiple
measurements of the same object undergoing nonrigid deformations, which is clinically infeasible.
An extended discussion on related work in comparison to our work is available in Appendix B.

3. Background on Accelerated Multi-coil MRI Reconstruction

We consider the clinically-relevant case of accelerated multi-coil MRI acquisition where multiple
receiver coils are used to acquire spatially-localized undersampled k-space measurements modulated
by corresponding sensitivity maps (Pruessmann et al., 1999). The undersampling operation can be

1. https://github.com/ad12/meddlr

3

https://github.com/ad12/meddlr


PHYSICS-DRIVEN DATA AUGMENTATIONS FOR ROBUST ACCELERATED MRI RECONSTRUCTION

Base Image Motion Noise
Image + Motion

+ Noise

Figure 2: Sample image-based, physics-driven (motion where α = 0.2, noise where σ = 0.2), and
composed (image + physics) augmentations applied to a fully-sampled image.

represented by a binary mask Ω that indexes acquired samples in k-space. The forward problem for
multi-coil accelerated MRI can be written as y = ΩFSx∗ + ε = Ax∗ + ε, where y is the measured
signal in k-space, F is the discrete Fourier transform matrix, S is the receiver coil sensitivity maps,
x∗ is the ground-truth signal in image-space, and ε is additive complex Gaussian noise. A = ΩFS
is the known forward operator during acquisition (see Appendix A for notation). Because this
problem is ill-posed (Hadamard, 1902), the underlying image x∗ cannot be recovered uniquely
without regularization (e.g. sparsity in compressed sensing (Lustig et al., 2008)).

4. Methods

We propose VORTEX, a semi-supervised consistency training framework that integrates a generalized
data augmentation pipeline for accelerated MRI reconstruction (Fig. 1). We consider the setup
with dataset D that consists of (1) fully-sampled examples in k-space y(s) with corresponding
supervised reference ground truth images x(s), and (2) undersampled-only k-space examples y(u).
fθ is the learned reconstruction model with the forward operator A. A pixel-wise `1 supervised loss
Lsup is computed for supervised examples y(s). Undersampled examples y(u) are passed through
the Augmentation Pipeline (see §4.1). We consider the case where there are more unsupervised
examples than supervised examples, a common observation in clinical practice. Let TI denote the
set of invariant transformations consisting of physics-driven data augmentations such as additive
complex Gaussian noise and motion corruption (see §4.1.1). Similarly, let TE denote the equivariant
transformations that include image-based data augmentations such as flipping, rotation, translation,
scaling, and shearing (see §4.1.2). We define our use of the terms invariance and equivariance
and how these definitions motivate the structure of augmentations in Appendix C. A pixel-wise `1
consistency loss Lcons is computed between the model reconstruction outputs of input undersampled
examples with and without augmentation. The overall training objective is the following:

LVORTEX =
∑
i

‖fθ(ysi , A)− xsi )‖1 + λLcons

where Lcons =

{
‖fθ(yui , A)− fθ(g(yui ), A)‖1, if g ∈ TI
‖g(fθ(y

u
i , A))− fθ(g(yui ), A)‖1, if g ∈ TE

4.1. Generalized Data Augmentation Pipeline for Consistency Training

Our augmentation pipeline enables composing state-of-the-art image-based data augmentations with
physics-driven data augmentations motivated by the MRI data acquisition forward model.

4.1.1. PHYSICS-DRIVEN DATA AUGMENTATIONS

Noise. As one of the most common MRI artifacts, practical MRI reconstruction methods should be
robust to SNR variations. We leverage noise for consistency training since it can be well modeled in
the MRI data acquisition forward model (Macovski, 1996). Specifically, we sample σ from a range
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R(σ) = [σLN , σHN ) where LN (light noise) and HN (heavy noise) are chosen based on visual
inspections of clinical scans by a board-certified clinical radiologist. We normalize each sampled σ
to the magnitude of the image to induce the same relative SNR changes across scans. We denote the
operation of adding noise to the k-space as gN , where the noise-augmented unsupervised example is
given by gN (y

(u)
i ) = y

(u)
i + εi. We provide an example of a noise-augmented scan in Fig. 2.

Motion. Rigid patient motion during MRI scans degrades image quality and causes ghosting artifacts,
which considerably affects the quality of images in pediatric or claustrophobic patients. While
navigator-based sequences that sample low-resolution motion can be used for motion correction, they
require custom sequences that often lead to increased acquisition time, reduced SNR, and complicated
reconstruction (Zaitsev et al., 2001). Many multi-shot MRI acquisitions sample data over multiple
shots where consecutive k-space lines are acquired in separate excitations (Anderson and Gore,
1994). Here, motion across every shot manifests as additional phase in k-space and as translation in
image space. Thus, one-dimensional translational motion artifacts across the phase dimension can be
modeled using random phase errors that alter odd and even lines of k-space separately. We leverage
motion for consistency training since we can precisely model rigid motion in k-space. We denote
the phase error due to motion for ith example by e−jφi that corresponds to a translational motion.
We sample two random numbers from the uniform distribution mo,me ∼ U(−1, 1) which is chosen
from a specified range R(α) = [αLM , αHM ) where α denotes the amplitude of the phase errors
and LM (light motion) and HM (heavy motion) are chosen based on visual inspections of clinical
scans by a board-certified clinical radiologist. For a given k-space readout kth, the phase error is:

φki =

{
παmo, if k is odd
παme, if k is even

We denote the operation of adding motion to the k-space as gM , in which case the motion-augmented
unsupervised example is given by gM (y

(u)
i ) = y

(u)
i e−jφi (example scan shown in Fig. 2).

4.1.2. IMAGE-BASED DATA AUGMENTATIONS

In contrast to classification problems where labels are invariant with respect to the augmentations,
data augmentations in the MR reconstruction task need to transform the target images and their
corresponding k-space and coil sensitivity measurements. Unlike physics-driven augmentations that
occur in k-space, image-based augmentations occur in the image domain. Since the training data
initially exists as k-space measurements, we transform it into the image domain using coil sensitivity
maps, and subsequently apply a cascade of the image-based data augmentations to both the image and
the sensitivity maps. Image-based data augmentations include pixel-preserving augmentations such
as flipping, translation, arbitrary and 90 degree multiple rotations, translation, as well as isotropic
and anisotropic scaling. Using the augmented image and transformed sensitivity maps, we run the
forward operator A to generate the corresponding undersampled k-space measurements.
Composing Augmentations. Our Augmentation Pipeline allows for composing different combina-
tions of physics-driven and image-based data augmentations, with example composed augmentations
shown in Fig. 2. It is important to note that composing multiple physics-driven augmentations
such as noise and motion corruption represents a real-world scenario as multiple artifacts can occur
simultaneously during MRI acquisition. Appendix C discusses augmentation composition in detail.
4.2. Augmentation Scheduling

We adopt curriculum learning (Hacohen and Weinshall, 2019) for physics-driven data augmentations,
where we seek to schedule the task difficulty. Difficulty is denoted by σ, the standard deviation of
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Table 1: Average test results for in-distribution data and out-of-distribution data with heavy motion
(α=0.4) and heavy noise (σ=0.4) perturbations. Physics augmentations are compositions of
noise and motion in their heavy training difficulty configurations.

Perturbation None Motion (heavy) Noise (heavy)

Model SSIM cPSNR (dB) SSIM cPSNR (dB) SSIM cPSNR (dB)

Compressed Sensing 0.847 (0.011) 35.4 (0.4) 0.724 (0.090) 24.5 (1.4) 0.708 (0.014) 30.5 (0.2)
Supervised 0.798 (0.038) 35.8 (0.4) 0.706 (0.048) 27.0 (0.8) 0.807 (0.015) 32.2 (0.3)
MRAugment 0.811 (0.043) 36.2 (0.5) 0.660 (0.040) 24.0 (1.0) 0.742 (0.005) 30.8 (0.3)
SSDU 0.787 (0.026) 34.9 (0.4) 0.734 (0.009) 31.9 (1.7) 0.716 (0.023) 32.5 (0.3)
Aug (Physics) 0.789 (0.045) 35.7 (0.4) 0.739 (0.010) 31.9 (2.4) 0.739 (0.051) 33.4 (0.3)
Aug (Image+Physics) 0.785 (0.050) 36.1 (0.5) 0.742 (0.022) 32.8 (2.4) 0.727 (0.051) 33.7 (0.4)
VORTEX (Image) 0.862 (0.030) 36.4 (0.3) 0.648 (0.080) 26.1 (0.7) 0.767 (0.016) 31.5 (0.2)
VORTEX (Physics) 0.872 (0.033) 36.4 (0.3) 0.785 (0.019) 31.8 (2.8) 0.817 (0.034) 33.9 (0.2)
VORTEX (Image+Physics) 0.861 (0.036) 36.4 (0.4) 0.777 (0.034) 31.1 (2.7) 0.831 (0.023) 33.3 (0.1)

the additive zero-mean complex-valued Gaussian noise, and α, the amplitude of the phase errors for
motion. Note that this is in contrast to the MRAugment scheduling strategy, which only schedules
the probability p of an augmentation. Concretely, for noise, we consider a time-varying range
R(σ(t)) = [σL, σH(t)), where t indexes the iteration number during training. The upper-bound
σH(t) increases monotonically to ensure task difficulty increases during training. We consider two
scheduling techniques β(t) such that σH(t) = σL + β(t)(σH − σL): (1) Linear: β(t) = t/M ,
and (2) Exponential: β(t) = 1−e−t/τ

1−e−M/τ , where M is the number of epochs until which task difficulty
increases and τ is the time-constant for exponential scheduling. After M epochs, training proceeds
with constant upper bound σH . Scheduling for motion is the same where σ is replaced with α, and
image-based data augmentations follow the scheduling strategy proposed in MRAugment as there is
no explicit sense of difficulty for that family of data augmentations. Fig. 5 in Appendix E.2 shows
simulated β(t) for different curricula configurations.

5. Experiments

We evaluate our method using the publicly available mridata 3D fast-spin-echo (FSE) multi-coil knee
dataset (Ong et al., 2018). 3D MRI scans were decoded into a hybrid k-space (x× ky × kz) using the
1D orthogonal inverse Fourier transform along the readout direction x. All methods reconstructed 2D
ky× kz slices. Sensitivity maps were estimated for each slice using JSENSE (Ying and Sheng, 2007).
2D Poission Disc undersampling masks were used for training and evaluation. Ns training scans
were randomly selected to be fully-sampled (supervised) examples while Nu scans were used to
simulate undersampled-only scans. All methods used 2D U-Net network with a complex-`1 training
objective for both supervised and consistency losses. Appendix D discusses the experimental setup in
further detail, and Appendix F includes additional experiments across all methods on the 2D fastMRI
multi-coil brain dataset (Zbontar et al., 2018). Appendix E details ablation experiments comparing
latent space vs pixel-level consistency and variations in augmentation scheduling.

5.1. Robustness to Clinically Relevant Distribution Drifts

Unlike many other ML domains, the source of possible distribution drifts in accelerated MRI can
be well characterized and simulated based on domain knowledge of MRI physics. In this work,
we simulate SNR and motion corruptions, two common MRI artifacts, at inference time using
models described in §4.1.1. Specifically, we use σ = 0.2 for light noise, σ = 0.4 for heavy noise,
α = 0.2 for light motion, and α = 0.4 for heavy motion. In Table 1, we compare VORTEX’s
performance for in-distribution and OOD data at 16x acceleration to supervised methods using
both physics-driven and the state-of-the-art image-based MRAugment augmentations, and to the
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Figure 3: Example reconstructions for simulated scans with heavy motion (top) and heavy noise
(bottom). Compressed sensing (CS), Supervised, MRAugment, SSDU, and Noise2Recon
amplify motion ghosting artifacts (blue arrow). While supervised training with motion aug-
mentations (Aug (Motion)) reduces these artifacts, it still suffers from artifacts (red arrow)
and extensive blurring. VORTEX (Motion) and VORTEX (Physics) (i.e. Motion+Noise)
suppress these artifacts. Methods without noise augmentations (CS, Supervised, MRAug-
ment, SSDU, Aug (Motion), VORTEX (Motion)) amplify image noise. VORTEX (Physics)
suppresses noise without over-blurring the image.

state-of-the-art self-supervised via data undersampling (SSDU) reconstruction method (Yaman et al.,
2020). We describe all baseline implementations in detail in Appendix D.2. We isolate the benefits
of consistency training with VORTEX from the utility of the augmentations (Aug) themselves by
separately comparing MRAugment (i.e. Aug (Image)), Aug (Physics), and Aug (Image + Physics)
(details in Appendix D.3.1). In Table 2, we compare supervised baselines without and with the
physics-based augmentations to VORTEX at different OOD motion and noise levels at inference time.
We note that Noise2Recon is a specialized case of the VORTEX framework (i.e VORTEX (Noise))
where the Augmentation Pipeline only consists of noise augmentations. For the supervised training
with augmentation methods, augmentation is applied with probability p = 0.2 during training for
noise, motion, and composition corresponding to gN (gM (·)). For enforcing consistency, we used
λ = 0.1 for Lcons weighting for noise, motion, and composition that we refer to as Physics. Both Aug
(Motion) and VORTEX (Motion) models were trained withR(α) = [0.2, 0.5), and both Aug (Noise)
and VORTEX (Noise) models were trained with R(σ) = [0.2, 0.5). Aug (Physics) and VORTEX
(Physics) setting also follow these ranges. We used a balanced data sampling approach where
unsupervised and supervised examples are sampled at a fixed ratio of 1:1 during training (Desai et al.,
2021a). All consistency training approaches used augmentation curricula with highest validation
cPSNR as described in §4.2. Results are shown with 5x more unsupervised slices than supervised
(1600 vs 320), which is a realistic clinical scenario. We show results for different accelerations,
training times and augmentation curricula in Appendices D and E.

5.2. VORTEX vs. Baseline Results

As shown in Table 1, VORTEX (Physics) demonstrated substantial improvements of +0.074 SSIM and
+0.6dB cPSNR over the Supervised baseline, +0.061 SSIM and +0.2dB cPSNR over MRAugment,
and +0.085 SSIM and +1.5dB cPSNR over SSDU for in-distribution data. As VORTEX (Image) also
considerably improves over Supervised and MRAugment, a dominant mechanism of the benefits may
be attributed to the consistency training even for the in-distribution setting. For both heavy motion
and noise settings, including physics augmentations is vital for robust performance, as MRAugment,
SSDU, and VORTEX (Image) perform worse, even compared to the Supervised baseline. For heavy
motion, we show an improvement of +0.079 SSIM and +4.8dB cPSNR over the Supervised and
+0.125 SSIM and +7.8dB cPSNR over MRAugment with VORTEX (Physics). Similarly, for heavy
noise, we show an improvement of +0.024 SSIM and +1.1dB cPSNR over the Supervised baseline
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Table 2: Results at 16x acceleration for in-distribution and OOD with SNR and motion perturbations.
VORTEX uses curriculum learning (see Appendix E.2).

Perturbation Metric Supervised Aug (Motion) Aug (Noise) Aug (Physics) VORTEX (Motion)
Noise2Recon

(i.e. VORTEX (Noise))
VORTEX (Physics)

None
SSIM 0.798 (0.038) 0.793 (0.041) 0.805 (0.045) 0.789 (0.045) 0.877 (0.029) 0.882 (0.031) 0.869 (0.030)
cPSNR (dB) 35.8 (0.4) 35.9 (0.5) 35.8 (0.4) 35.7 (0.4) 36.4 (0.3) 36.4 (0.3) 36.4 (0.3)

Motion (light)
SSIM 0.809 (0.028) 0.793 (0.028) 0.799 (0.039) 0.785 (0.036) 0.867 (0.021) 0.854 (0.015) 0.854 (0.029)
cPSNR (dB) 33.6 (0.2) 35.1 (0.5) 34.1 (0.4) 35.0 (0.4) 35.8 (0.5) 32.8 (1.3) 35.4 (0.1)

Motion (heavy)
SSIM 0.706 (0.048) 0.751 (0.025) 0.722 (0.042) 0.739 (0.010) 0.812 (0.021) 0.731 (0.014) 0.803 (0.017)
cPSNR (dB) 27.0 (0.8) 31.5 (2.7) 29.6 (1.4) 31.9 (2.4) 32.3 (2.5) 27.1 (1.7) 32.3 (2.6)

Noise (light)
SSIM 0.830 (0.024) 0.786 (0.032) 0.778 (0.049) 0.761 (0.049) 0.857 (0.015) 0.854 (0.033) 0.840 (0.034)
cPSNR (dB) 33.8 (0.3) 33.7 (0.3) 34.2 (0.3) 34.2 (0.3) 34.0 (0.1) 34.8 (0.2) 34.8 (0.2)

Noise (heavy)
SSIM 0.807 (0.015) 0.758 (0.024) 0.745 (0.054) 0.739 (0.051) 0.823 (0.008) 0.830 (0.033) 0.812 (0.033)
cPSNR (dB) 32.2 (0.3) 32.0 (0.3) 33.5 (0.3) 33.4 (0.3) 32.4 (0.1) 34.0 (0.3) 33.9 (0.3)

and +0.089 SSIM and +2.5dB cPSNR over MRAugment with VORTEX (Image + Physics). In
Table 2, we observe consistent improvements over both Supervised and Aug baselines for light and
heavy motion cases, with a large improvement of +0.106 SSIM and +5.3dB cPSNR with VORTEX
(Motion) over Supervised for heavy motion-corruptions, demonstrating the strength of our method
at varying levels of OOD corruptions at inference time. Also, we depict a large improvement of
+0.079 SSIM/+0.6dB pSNR with VORTEX (Motion) and +0.084 SSIM/+0.6dB cPSNR with VORTEX
(Noise) compared to the supervised baseline for in-distribution data while none of the Aug baselines
show any meaningful improvement. Example reconstructions are shown in Fig. 3.

The substantial performance gain with VORTEX in both in-distribution and OOD settings
suggests that the consistency training framework is amenable to both image-based and physics-
driven augmentations. While supervised training requires noise statistics-preserving augmentations,
consistency training can relax this constraint and allow for more diverse augmentations (see Appendix
B.1). We highlight that our proposed consistency-based improvements are considerably larger
than prior reported values for DL methods that use different architectures, loss functions, or data
consistency schemes (Zbontar et al., 2018; Hammernik et al., 2021). We also note that SSIM is
clinically preferred to cPSNR for quantifying perceptual quality (Knoll et al., 2020).

6. Conclusion

We propose VORTEX, a semi-supervised consistency training framework for accelerated MRI
reconstruction that uses a generalized data augmentation pipeline for improved label-efficiency and
robustness to clinically relevant distribution drifts. VORTEX enforces invariance to physics-driven,
acquisition-based augmentations and enforces equivariance to image-based augmentations, enables
composing data augmentations of different types, and allows for curriculum learning based on
the difficulty of physics-driven augmentations. We demonstrate strong improvements over fully-
supervised baselines and state-of-the-art data augmentation (MRAugment) and self-supervised
(SSDU) methods on both in-distribution and OOD data. Our framework is model-agnostic and could
be used with any other MRI reconstruction models or even for other image-to-image tasks with
appropriate data augmentations. Besides the strengths of our method, we also note several limitations.
While our framework is flexible to work with any motion model, we utilized a simpler 1D motion
model. We also did not evaluate VORTEX on prospective data or consider complex artifacts that
are challenging to model such as B0 variations. In future work, we plan to extend physics-driven,
acquisition-based augmentations to account for more complex motion models, additional OOD MRI
artifacts, and non-Cartesian undersampling patterns in prospectively acquired clinical data to work
towards building robust DL-based MR reconstruction models that can be safely deployed in clinics.
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Jacques Hadamard. Sur les problèmes aux dérivées partielles et leur signification physique. Princeton
university bulletin, pages 49–52, 1902.

Kerstin Hammernik, Teresa Klatzer, Erich Kobler, Michael P Recht, Daniel K Sodickson, Thomas
Pock, and Florian Knoll. Learning a variational network for reconstruction of accelerated mri data.
Magnetic resonance in medicine, 79(6):3055–3071, 2018.

Kerstin Hammernik, Jo Schlemper, Chen Qin, Jinming Duan, Ronald M Summers, and Daniel Rueck-
ert. Systematic evaluation of iterative deep neural networks for fast parallel mri reconstruction
with sensitivity-weighted coil combination. Magnetic Resonance in Medicine, 2021.

10



PHYSICS-DRIVEN DATA AUGMENTATIONS FOR ROBUST ACCELERATED MRI RECONSTRUCTION

Kyong Hwan Jin, Ji-Yong Um, Dongwook Lee, Juyoung Lee, Sung-Hong Park, and Jong Chul Ye.
Mri artifact correction using sparse+ low-rank decomposition of annihilating filter-based hankel
matrix. Magnetic resonance in medicine, 78(1):327–340, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Florian Knoll, Tullie Murrell, Anuroop Sriram, Nafissa Yakubova, Jure Zbontar, Michael Rabbat,
Aaron Defazio, Matthew J Muckley, Daniel K Sodickson, C Lawrence Zitnick, et al. Advancing
machine learning for mr image reconstruction with an open competition: Overview of the 2019
fastmri challenge. Magnetic resonance in medicine, 84(6):3054–3070, 2020.

Anish Lahiri, Guanhua Wang, Saiprasad Ravishankar, and Jeffrey A Fessler. Blind primed supervised
(blips) learning for mr image reconstruction. arXiv preprint arXiv:2104.05028, 2021.

Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. arXiv preprint
arXiv:1610.02242, 2016.

Ke Lei, Morteza Mardani, John M Pauly, and Shreyas S Vasanawala. Wasserstein gans for mr
imaging: from paired to unpaired training. IEEE transactions on medical imaging, 40(1):105–115,
2020.

Jiaming Liu, Yu Sun, Cihat Eldeniz, Weijie Gan, Hongyu An, and Ulugbek S Kamilov. Rare: Image
reconstruction using deep priors learned without groundtruth. IEEE Journal of Selected Topics in
Signal Processing, 14(6):1088–1099, 2020.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Wenmiao Lu, Kim Butts Pauly, Garry E Gold, John M Pauly, and Brian A Hargreaves. Semac:
slice encoding for metal artifact correction in mri. Magnetic Resonance in Medicine: An Official
Journal of the International Society for Magnetic Resonance in Medicine, 62(1):66–76, 2009.

Michael Lustig, David Donoho, and John M Pauly. Sparse mri: The application of compressed
sensing for rapid mr imaging. Magnetic Resonance in Medicine: An Official Journal of the
International Society for Magnetic Resonance in Medicine, 58(6):1182–1195, 2007.

Michael Lustig, David L Donoho, Juan M Santos, and John M Pauly. Compressed sensing mri. IEEE
signal processing magazine, 25(2):72–82, 2008. doi: 10.1109/MSP.2007.914728.

Albert Macovski. Noise in mri. Magnetic resonance in medicine, 36(3):494–497, 1996.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training: a
regularization method for supervised and semi-supervised learning. IEEE transactions on pattern
analysis and machine intelligence, 41(8):1979–1993, 2018.

F Ong and M Lustig. Sigpy: a python package for high performance iterative reconstruction. In
Proceedings of the ISMRM 27th Annual Meeting, Montreal, Quebec, Canada, volume 4819, 2019.

F Ong, S Amin, S Vasanawala, and M Lustig. Mridata.org: An open archive for sharing mri raw data.
In Proc. Intl. Soc. Mag. Reson. Med, volume 26, page 1, 2018.

11



PHYSICS-DRIVEN DATA AUGMENTATIONS FOR ROBUST ACCELERATED MRI RECONSTRUCTION

Kamlesh Pawar, Zhaolin Chen, N. Jon Shah, and Gary F. Egan. Suppressing motion artefacts in mri
using an inception-resnet network with motion simulation augmentation. NMR in Biomedicine,
Dec 2019. ISSN 1099-1492. doi: 10.1002/nbm.4225. URL http://dx.doi.org/10.
1002/nbm.4225.

Klaas P Pruessmann, Markus Weiger, Markus B Scheidegger, and Peter Boesiger. Sense: sensitivity
encoding for fast mri. Magnetic Resonance in Medicine: An Official Journal of the International
Society for Magnetic Resonance in Medicine, 42(5):952–962, 1999.

Philip M Robson, Aaron K Grant, Ananth J Madhuranthakam, Riccardo Lattanzi, Daniel K Sodickson,
and Charles A McKenzie. Comprehensive quantification of signal-to-noise ratio and g-factor
for image-based and k-space-based parallel imaging reconstructions. Magnetic Resonance in
Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine,
60(4):895–907, 2008.

Peter B Roemer, William A Edelstein, Cecil E Hayes, Steven P Souza, and Otward M Mueller. The
nmr phased array. Magnetic resonance in medicine, 16(2):192–225, 1990.

Yaniv Romano, Michael Elad, and Peyman Milanfar. The little engine that could: Regularization by
denoising (red). SIAM Journal on Imaging Sciences, 10(4):1804–1844, 2017.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pages 234–241. Springer, 2015.

Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen. Regularization with stochastic transfor-
mations and perturbations for deep semi-supervised learning. Advances in neural information
processing systems, 29:1163–1171, 2016.

Christopher M. Sandino, Joseph Y. Cheng, Feiyu Chen, Morteza Mardani, John M. Pauly, and
Shreyas S. Vasanawala. Compressed sensing: From research to clinical practice with deep neural
networks: Shortening scan times for magnetic resonance imaging. IEEE Signal Process. Mag., 37
(1):117–127, 2020. doi: 10.1109/MSP.2019.2950433. URL https://doi.org/10.1109/
MSP.2019.2950433.

Christopher M Sandino, Peng Lai, Shreyas S Vasanawala, and Joseph Y Cheng. Accelerating cardiac
cine mri using a deep learning-based espirit reconstruction. Magnetic Resonance in Medicine, 85
(1):152–167, 2021.

Anuroop Sriram, Jure Zbontar, Tullie Murrell, Aaron Defazio, C Lawrence Zitnick, Nafissa Yakubova,
Florian Knoll, and Patricia Johnson. End-to-end variational networks for accelerated mri recon-
struction. In International Conference on Medical Image Computing and Computer-Assisted
Intervention, pages 64–73. Springer, 2020.

Martin Uecker, Peng Lai, Mark J Murphy, Patrick Virtue, Michael Elad, John M Pauly, Shreyas S
Vasanawala, and Michael Lustig. Espirit—an eigenvalue approach to autocalibrating parallel mri:
where sense meets grappa. Magnetic resonance in medicine, 71(3):990–1001, 2014.

12

http://dx.doi.org/10.1002/nbm.4225
http://dx.doi.org/10.1002/nbm.4225
https://doi.org/10.1109/MSP.2019.2950433
https://doi.org/10.1109/MSP.2019.2950433


PHYSICS-DRIVEN DATA AUGMENTATIONS FOR ROBUST ACCELERATED MRI RECONSTRUCTION

Muhammad Usman, Siddique Latif, Muhammad Asim, Byoung-Dai Lee, and Junaid Qadir. Ret-
rospective motion correction in multishot mri using generative adversarial network. Scientific
reports, 10(1):1–11, 2020.

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised data augmentation
for consistency training. Advances in Neural Information Processing Systems, 33, 2020.

Burhaneddin Yaman, Seyed Amir Hossein Hosseini, Steen Moeller, Jutta Ellermann, Kâmil Uğurbil,
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Appendix A. Glossary

Table 3 provides the notation used in the paper.

Table 3: Summary of notation used in this work.
Notation Description

MRI forward model x, y Image, k-space measurements
y
(s)
i , y

(u)
i Fully-sampled (supervised) k-space, prospectively undersampled (unsupervised) k-space

Ω,F ,S Undersampling mask, fourier transform matrix, coil sensitivity maps
A The forward MRI acquisition operator
ε Additive complex-valued Gaussian noise

Augmentation transforms T Set of data transforms
TI , TE Set of invariant and equivariant data transforms
g, gE , gI Transform, equivariant transform, invariant transform
ḠE , ḠI Sequence of sampled invariant and equivariant data transforms
N (0,σ) Complex gaussian distribution with zero-mean, variance σ2

α Motion-induced phase error amplitude
φki Phase error for kth phase encode line in example i
R(·) Range
β(t) Difficulty scale
LM, HM Light motion (α=0.2), heavy motion (α=0.4)
LN, HN Light noise (σ=0.2), heavy noise (σ=0.4)

Model components Lsup, Lcons Supervised, consistency loss
and losses λ Consistency loss weight

Ri U-Net resolution level i
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Appendix B. Extended Related Work

In this section, we summarize the key differences between VORTEX and prior work in data augmen-
tations (i.e. MRAugment) and in consistency training (i.e. Noise2Recon). Specifically, we highlight
two advantages of VORTEX:

1. Image-based and Acquisition-based Augmentations. VORTEX can relax the assumption
that augmentations must preserve the noise statistics of the data (Fabian et al., 2021). This
allows VORTEX to leverage both image-based and acquisition-based augmentations, which
do not preserve the noise statistics of the data.

2. Regularization Beyond Noise. VORTEX can leverage physics-driven augmentations beyond
the standard denoising regularization used in prior work in both consistency (Desai et al.,
2021a) and pre-training (Romano et al., 2017). Thus, it is feasible to extend VORTEX to other
relevant clinical artifacts while maintaining the regularization properties of the well-studied
denoising task.

B.1. VORTEX vs MRAugment

MRAugment proposes a framework for applying image-based augmentations on fully-supervised
training data. This approach showed improved performance in data-limited settings, which may
suggest the family of image-based augmentations are helpful in reducing model overfitting. It also
suggests scheduling the likelihood of applying an augmentation can be helpful for reducing the
number of augmented examples in early stages of training.

Image vs Acquisition Augmentations. MRAugment focuses on the use of image-based aug-
mentations for supervised training. In VORTEX, both image-based and MRI acquisition-based
augmentations are used for semi-supervised consistency training to 1) reduce dependence on su-
pervised training data and 2) increase robustness to physics-driven perturbations that are frequently
observed during MRI acquisition.

Relaxing Assumption of Preserved Noise Statistics. MRAugment notes that the family of image-
based augmentations were selected to ensure that noise statistics of the training data were preserved.
However, this constraint excludes acquisition-based augmentations, particularly noise and motion,
which are needed to build robustness to noise and motion artifacts in MRI. However, these acquisition-
based augmentations inherently change the effective noise floor (and thus SNR) of the scan, and thus
violate this constraint. We empirically validate this claim in supervised settings, where acquisition-
based augmentations perform worse than standard supervised training in in-distribution settings
(Table 2). This tradeoff between in-distribution performance and OOD robustness would preclude
the application of acquisition-based augmentations in practice.

However, with VORTEX, not only is this tradeoff mitigated but the performance in both in-
distribution and OOD settings is significantly improved (Table 10). This improved performance
empirically demonstrates that the assumption that augmentations must preserve noise statistics can
be relaxed in the VORTEX framework. Thus, both image-based and acquisition-based augmentations
can be leveraged simultaneously, which leads to improvements in performance over either family of
augmentations alone (Table 10).
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Precomputing Coil Sensitivity Maps. Integrating coil sensitivity maps is standard clinical practice
to help constrain the optimization problem for MRI image reconstruction (Sandino et al., 2021;
Robson et al., 2008; Roemer et al., 1990). MRAugment utilizes the end-to-end VarNet, which
learns to jointly estimate coil sensitivities and reconstruct images (Sriram et al., 2020). Thus, the
augmentation pipeline in MRAugment does not need to explicitly account for the effect of image-
based transformations on sensitivity maps. It also has the added benefit of optimzing sensitivity map
estimtion with respect to augmented data. In practice, precomputing coil sensitivities is feasible and
routine with sensitivity map estimation methods such as ESPIRiT (Uecker et al., 2014) and JSENSE
(Ying and Sheng, 2007). Additionally, precomputed maps are important in multi-coil datasets where
the number of coils are not constant across different scans, which is critical when patients with
heterogenous anatomies are being imaged (Desai et al., 2021b).

VORTEX utilizes precomputed sensitivity maps estimated from auto-calibration regions in each
scan. Because image-based augmentations are designed to emulate shifts in the imaging target, they
also impact the coil geometry and sensitivity maps that are estimated. In contrast to the MRAugment
sensitivity map formulation, which assumes sensitivity maps are fixed, VORTEX integrates physics-
based modeling to appropriately warp sensitivity maps based on image-based augmentations. Given
some equivariant image-based transform gE , the augmented image for coil i (x̃i) can be defined as

x̃i = gE(Si)gE(x)

Scheduling Augmentation Difficulty. MRAugment and VORTEX also differ in the mechanism
of how augmentations are scheduled. MRAugment proposes an augmentation scheduling method
that schedules the probability of applying an augmentation. Thus, training can occur predominantly
on collected data in earlier stages of training and augmentations can help reduce overfitting at later
training stages.

VORTEX is designed to build robustness to OOD perturbations, where the extent (and, more
generally, difficulty) of these perturbations will be unknown at test time. In this framework, augmenta-
tions must not only function as a regularization method for improved performance on in-distribution
data, but also appropriately model a separate distribution of data with respect to which the model
can be trained. Thus, the model must learn to jointly optimize for both in-distribution (default
training data) and OOD (perturbation-corrupt data) examples simultaneously. Intuitively, we need to
design an augmentation scheduling scheme that will allow the model to gradually learn to generalize
to higher extents (more difficult) perturbations over time while still ensuring examples from both
distributions are sampled for joint optimization. To ensure that augmentations are always applied but
at different extents, we propose a curriculum learning strategy for scheduling the difficulty of the
augmentation.

B.2. VORTEX vs Noise2Recon

Noise2Recon proposes a semi-supervised consistency based framework for joint denoising and
reconstruction. This approach showed improved performance in label-limited settings, where the
training dataset consists of both supervised and unsupervised data. VORTEX 1) extends this
consistency training paradigm to a broader family of acquisition-based perturbations, 2) exhaustively
studies how this framework can be leveraged for both image and acquisition-based augmentations,
and 3) proposes a curriculum learning strategy to gradually increase reconstruction difficulty.
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Robustness to Motion. Noise2Recon proposes a novel consistency framework for semi-supervised
MRI reconstruction but solely focuses on applications to noise artifacts. While denoising is a well-
known regularizer for inverse problems (Romano et al., 2017; Batson and Royer, 2019), many other
acquisition-related artifacts in MRI are commonplace. In VORTEX, we explore the utility of motion
augmentations as 1) a regularizer to improve robustness in label-limited settings and 2) a method
to increase robustness to OOD motion artifacts. We demonstrate that motion artifact removal is as
effective of a regularizer as denoising (Tables 1 and 2).

Composing Augmentations for Multi-Artifact Correction. Existing MRI artifact correction or
removal methods, including Noise2Recon, separately handle reconstruction and artifact removal
tasks, are limited to correcting for a single artifact, or require multiple unique workflows to correct
for different artifacts (Usman et al., 2020; Lu et al., 2009; Jin et al., 2017). However, in practice,
effects of multiple acquisition-related artifacts can be compounded even in accelerated MRI. Thus a
unified framework for removing these artifacts is desirable. VORTEX establishes a framework for
both image-based and acquisition-based augmentations that can be utilized to jointly reconstruct and
remove multiple artifacts with a single approach.

Curriculum Learning for Augmentations. VORTEX extends basic consistency training to in-
clude a scheduling protocol for increasing the difficulty of augmentations over the training cycle.
Results demonstrate that designing curricula for augmentations in the consistency framework can
lead to considerable performance improvements in OOD settings without losing performance among
in-distribution scans (Table 5). Such curricula can be helpful for joint optimization of both artifactual
and artifact-free images, particularly when example difficulty is extensive (Bengio et al., 2009).

B.3. Summary of Technical Contributions

In this work, we characterize the interface between physics-based MRI acquisition-motivated and
image-based augmentations to 1) reduce label dependency and 2) increase robustness to clinically-
relevant distribution shifts that are pervasive during MRI acquisition. We extend the semi-supervised
consistency framework in Noise2Recon to handle both acquisition and image based perturbations in a
way that is motivated by the physics-driven forward model of MRI acquisition. To ensure that we are
inclusive of a broader family of acquisition-based perturbations than was available in Noise2Recon,
we propose extending the semi-supervised consistency framework to handle motion, a common
artifact in MRI. We exhaustively study the interaction between physics/acquisition based and image
based augmentations in both fully supervised training with augmentations and semi-supervised
training with the proposed consistency.

Appendix C. Equivariant and Invariant Transforms

In this section, we provide an extended discussion of the choice of and interaction between equivariant
and invariant transforms.

Equivariance. We simplify the precise definition of equivariance that requires group theory (Celle-
doni et al., 2021) to denote fθ(g(x)) = g(fθ(x)) for all g ∈ T where T is the set of data augmentation
transformations. Intuitively, if a trained model fθ is equivariant to a transformation g, then the trans-
formation of the input directly corresponds to the transformation of the model output.
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Invariance. Similarly, we simplify the definition of invariance to fθ(g(x)) = fθ(x) for all g ∈ T
where T is the the set of transformations we use for data augmentation. Intuitively, fθ is invariant to
transformation g if the output of the model does not change upon applying g to the input. Details on
how these definitions motivate the structure of augmentations in VORTEX are provided below.

Choosing Equivariance or Invariance. It is important to note that, practically, specifying to
which transforms the model should be equivariant or invariant is a design choice and often task-
dependent. In the case of MRI, image-based augmentations proposed in MRAugment are meant to
simulate differences in patient positioning and spatial scan parameters (e.g. field-of-view, nominal
resolution). The differences are typically prescribed at scan time (i.e. scan parameters) or are
correctable prior to the scan. In contrast, motion and noise are perturbations that occur during
acquisition, and therefore cannot be corrected a priori. Thus, building networks that are invariant
to these perturbations are critical. Based on this paradigm of transforms in MRI, spatial image
transforms are classified as equivariant transforms while the physics-based transforms we propose
are classified as invariant transforms.

Composing Transforms (Extended). Section 4.1 introduces the intuition for equivariant and
invariant transformations. In this section, we formalize how transforms from these families are
composed.

Let g1, . . . , gK be an ordered sequence of unique transforms sampled from a set of transforms
T . Let ḠE , ḠI be the sequence of sampled equivariant and invariant transforms, respectively. Thus,
ḠE = (gi if gi ∈ TE ∀ i = 1, . . . ,K) (similarly for ḠI ). Let GE and GI be the compositions of
each transform in ḠE , ḠI , respectively. Thus, GE = ḠE|ḠE |

◦ · · · ◦ ḠE1 (similarly for GI ).
As a design choice, we select all physics-driven, acquisition-related transforms to be in the family

of invariant transforms. This choice is made to ensure reconstructions are invariant to plausible
acquisition-related perturbations. Thus, the family of physics-driven transforms are synonymous
with the family of invariant transforms for our purposes.

Because signal from physics-driven perturbations (noise and motion) is sampled at acquisition,
these perturbations are applied after undersampling in the supervised augmentation methods, where
fully-sampled data is available.

Appendix D. Experimental Details

D.1. Dataset

In this section, we provide details for the two datasets used in this study: the mridata 3D FSE knee
dataset and the fastMRI 2D multi-coil brain dataset.

D.1.1. MRIDATA 3D FSE KNEE DATASET

Dataset Splits. The mridata 3D FSE knee dataset consists of 6080 fully-Cartesian-sampled knee
slices (19 scans) from healthy participants. The dataset was randomly partitioned into 4480 slices
(14 scans) for training, 640 slices (2 scans) for validation, and 960 slices (3 scans) for testing.

Simulating Data-Limited and Label-Limited Settings. In this study, we evaluate all methods
in the data-limited and label-limited regimes, where supervised examples are scarce compared to
unsupervised (undersampled) examples. To simulate this scenario, a subset of training scans are
retrospectively undersampled using fixed undersampling masks, resulting in unsupervised training
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examples. To limit the total (supervised and unsupervised) amount of available training data, we
train with only 6 of the 14 training scans, where 1 scan is supervised and 5 scans are unsupervised.

K-space Hybridization and Sensitivity Maps. 3D FSE scans were acquired in 3D, resulting in
Fourier encoded signal along all dimensions (kx × ky × kz). Because the readout dimension kx is
fully-sampled in these scans, scans were decoded along the kx dimension, resulting in a hybridized
k-space as mentioned in Section 4. All sensitivity maps were estimated with JSENSE as implemented
in SigPy (Ong and Lustig, 2019), with a kernel width of 8 and a 20×20 center k-space auto-calibration
region.

Mask Generation. Scans for training and evaluation were undersampled using 2D Poisson Disc
undersampling, a compressed sensing-motivated pattern for 3D Cartesian imaging. Given an ac-
celeration rate R, undersampling masks were generated in the ky × kz dimensions for all scans
such that the number of pixels sampled would be approximately |ky ||kz |R . To maintain consistency
with generated sensitivity maps, a 20×20 center k-space auto-calibration region was used when
constructing undersampling masks for all examples. To simulate prospectively undersampled ac-
quisitions, scans were retrospectively undersampled with a fixed 2D Poisson Disc undersampling
pattern (Bridson, 2007). Following Cartesian undersampling convention, all ky × kz slices for a
single scan are undersampled with the identical 2D Poisson Disc mask. This procedure was used for
both simulating prospectively undersampled scans during training (i.e. unsupervised examples) and
evaluation. All undersampling masks for testing and simulating undersampled k-space are generated
with an unique, fixed random seed for each scan to ensure reproducibility.

D.1.2. FASTMRI BRAIN MULTI-COIL DATASET

Dataset Splits. The distributed validation split of the fastMRI 2D brain multi-coil dataset was
divided into 757 scans for training, 207 scans for validation, and 414 scans for testing. To control
for confounding variables when comparing performance between reconstruction methods, all data
splits were filtered to include only T2-weighted scans acquired at a 3T field strength, resulting in 266,
70, and 137 scans for training, validation, and testing, respectively. Data-limited and label-limited
training settings were simulated by limiting training data to 18 supervised and 36 unsupervised scans
and validation data to 50 scans.

Sensitivity Maps. Like for mridata, sensitivity maps were estimated using JSENSE with a kernel
width of 8 and calibration region of 12×12. This calibration region corresponds to the 4% auto-
calibration region used for 8x undersampling.

Mask Generation. Scans for training and evaluation were undersampled using 1D random under-
sampling, a compressed sensing-motivated pattern for 2D Cartesian imaging (Lustig et al., 2007).
Given an acceleration rateR, undersampling masks were generated in the ky phase-encode dimension
for all scans such that the number of readout lines sampled would be approximately |ky |R . Training
and evaluation was conducted at R = 8 acceleration with a 4% auto-calibration region. Like in
mridata, fixed undersampling masks were generated to simulate prospectively undersampled data
and for the testing data to ensure reproducibility.
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D.2. Baselines

We compared VORTEX to state-of-the-art supervised, supervised augmentation, and self-supervised
MRI reconstruction baselines. We provide an overview of these methods and their notation in the
main text. Hyperparameters for all methods are provided in Appendix D.3.1.

Supervised. We compared VORTEX to standard supervised training without augmentations
(termed Supervised). In supervised training, fully-sampled scans are retrospectively undersam-
pled. The model is trained to reconstruct the fully-sampled scan from its undersampled counterpart.
Note, in supervised settings, only fully-sampled scans can be used for training. Any prospectively
undersampled (unsupervised) scans cannot be leveraged in this setup.

Supervised+Augmentation (Aug) and MRAugment. Supervised baselines with augmentation
(termed Aug) were trained with image and/or physics-based augmentations, which are denoted by
parentheses. Image-based augmentations were applied prior to the retrospective undersampling,
following the MRAugment protocol. Physics-based acquisition augmentations were applied after
this undersampling to model the MRI data acquisition process. For example Aug (Motion) indicates
a supervised method trained with motion augmentations. Image-based augmentations were identical
to those used in MRAugment. As such, Aug (Image) is equivalent to MRAugment, and is referred to
as such for readability.

SSDU. We also compared VORTEX to the state-of-the-art self-supervised learning via data un-
dersampling (SSDU) baseline (Yaman et al., 2020). This method was originally proposed for fully
unsupervised learning, in which all training scans are prospectively undersampled. We propose a
trivial extension to adapt it for the semi-supervised setting. In cases of prospectively undersampled
(unsupervised) data, the training protocol proposed in SSDU was used. Fully-sampled (supervised)
data was retrospectively undersampled using the undersampling method and acceleration for the
specified experiment. These simulated undersampled scans were used as inputs to the SSDU protocol.
Because the retrospective undersampling is done dynamically (i.e. each time a supervised example is
sampled), it may serve as a method of augmenting supervised scans.

Compressed Sensing (CS). As a non-DL baseline, we used `1-wavelet regularized CS (Lustig
et al., 2007). Note, because of the time-intensive nature of CS-based reconstructions, CS is difficult
to scale for reconstructing large datasets like the fastMRI brain dataset. Thus, we only evaluate CS
on the mridata 3D FSE knee dataset.

D.3. Training Details

All code is written in Python with PyTorch 1.6 and is available at https://github.com/ad12/
meddlr.

D.3.1. HYPERPARAMETERS

Architecture and Optimization. All models used a 2D U-Net architecture with (Ronneberger
et al., 2015) with 4 pooling layers. Convolutional block at depth d consisted of two convolutional
layers with 32d channels for d = {1, . . . , 5}. All models were trained with the Adam optimizer with
default parameters (β1=0.9, β2=0.999) and weight decay of 1e-4 for 200 epochs (Kingma and Ba,
2014; Loshchilov and Hutter, 2017). Training was conducted with an effective training batch size
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Table 4: Data augmentation configuration for mridata 3D FSE knee dataset experiments. p is the
effective probability of applying an augmentation. In MRAugment, this is equivalent to the
base probability multiplied by the weighting factor. Acquisition-based augmentations were
configured in separate experiments at both light and heavy settings.

Kind Transform Parameters p

Image

H-Flip N/A 0.275
V-Flip N/A 0.275
k × 90◦ rotation k ∈ {2} 0.275
Rotation [-180◦, 180◦] 0.275
Translation [-10%, 10%] 0.55
Scale [0.75, 1.25] 0.55
Shear [-15◦, 15◦] 0.55

Acquisition
Gaussian Noise

σ=[0.1,0.3] (light)
σ=[0.2,0.5] (heavy)

0.2

Motion
α=[0.1,0.3] (light)
α=[0.2,0.5] (heavy)

0.2

of 24 and learning rate η=1e-3. All models used VORTEX methods used 1:1 balanced sampling
between supervised and unsupervised examples (Desai et al., 2021a).

Aug Baselines and MRAugment. Supervised augmentation baselines were trained with image-
based and acquisition-based augmentations. Image-based augmentations for each dataset followed
the augmentation configuration provided in the MRAugment. With the mridata 3D FSE knee dataset,
integer rotations could only be conducted at 180 degrees due to the anisotropic matrix shape of the
ky× kz slice. Aug baselines using physics-driven acquisition-based augmentations used a maximum
probability of p = 0.2 as recommended by Desai et al. (2021a), and use the same range of σ for
noise and α for motion that are used in the corresponding VORTEX experiments. Augmentations,
their parameters, and their effective probabilities used for the mridata 3D FSE knee dataset are listed
in Table 4. All augmentation methods were trained with the exponential augmentation probability
scheduler with γ = 5 and a scheduling period equivalent to the training length as proposed by Fabian
et al. (2021).

SSDU. SSDU is sensitive to the loss function and masking extent (ρ). Thus, these hyperparameters
that should be optimized for different datasets. We swept through loss functions k-space `1, k-space
`1-`2, and image `1 and masking extent ρ = 0.2, 0.4, 0.6. Models with the highest validation cPSNR
were selected for all SSDU experiments. For the mridata 3D FSE knee dataset, the configuration
with loss function k-space `1 and ρ = 0.4 was used. For the fastMRI multi-coil brain dataset, the
configuration with normalized `1-`2 loss in k-space and ρ = 0.2 was used.

Compressed Sensing (CS). Because CS is sensitive to the regularization parameter λ, this pa-
rameter must be carefully tuned for different motion and noise settings. To hand-tune λ for both
light and heavy motion levels, we swept through λ values within the range [0, 0.5] and selected the
optimal λ that balances reconstruction quality and artifact mitigation. For the 3D FSE mridata knee
dataset, λ = 0.1 was used for light motion, and λ = 0.15 was used for heavy motion at 12x and 16x
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Table 5: Comparison of different scheduling methods and warmup periods on the mridata knee
multi-coil dataset with heavy motion augmentations. All scheduling methods outperform
non-scheduled training (base). There is no advantage of a specific scheduling protocol,
suggesting that some curriculum is better than none.

Perturbation None Motion (light) Motion (heavy)

Curricula SSIM cPSNR (dB) SSIM cPSNR (dB) SSIM cPSNR (dB)

None 0.861 36.4 0.855 35.8 0.819 33.2
Linear (20e) 0.866 36.4 0.862 35.8 0.828 33.3
Linear (100e) 0.877 36.3 0.871 35.8 0.822 32.6
Linear (200e) 0.869 36.4 0.865 35.8 0.817 32.7
Exp (20e, γ = 5) 0.865 36.4 0.857 35.9 0.822 33.4
Exp (100e, γ = 5) 0.864 36.3 0.857 35.8 0.812 33.2
Exp (200e, γ = 5) 0.877 36.4 0.867 35.8 0.812 32.3

acceleration. For in-distribution (no noise, no motion), light noise, and heavy noise settings, we use
the regularization parameters suggested by Desai et al. (2021a).

Consistency Augmentations in VORTEX. Like Aug baselines, VORTEX was trained with com-
binations of image and physics-based augmentations. We use the same parenthetical nomenclature to
indicate the augmentation type used in the consistency branch (e.g. VORTEX (Motion) for motion
consistency). The family of image augmentations used for consistency in VORTEX were identical to
those used in MRAugment. Physics-based consistency augmentations were sampled from either the
light (R(·)=[0.1, 0.3)) or heavy (R(·)=[0.2, 0.5)) range during training.

D.4. Evaluation

D.4.1. EVALUATION SETTINGS

We perform evaluation in both in-distribution and clinically-relevant, simulated OOD settings. In-
distribution evaluation consisted of evaluation on the test set described in D.1.

For OOD evalution, we considered two critical settings that have been shown to affect image
quality: (1) decrease in SNR and (2) motion corruption. The extent of the distribution shift is
synonymous with the difficulty level for each perturbation (σ for noise, α for motion), where larger
difficulty levels indicate correspond to larger shifts. Thus, we define low and heavy noise and motion
difficulty levels for evaluation – low noise σ=0.2, heavy noise σ=0.4, low motion α=0.2, heavy
motion α=0.4. These values are selected based on visual inspection of clinical scans (see 4.1.1).
Note, by definition (σ=0, α=0) corresponds to the in-distribution evaluation.

Given difficulty levels for motion and noise, each scan was perturbed by a noise or phase error
(motion) maps generated with a set difficulty level. These perturbations were fixed for each testing
scan to ensure reproducibiilty and identical perturbations in the test set across different experiments.

In the text, we refer to different evaluation configurations as perturbations. None indicates the
in-distribution setting. LN, HN, LM, HM correspond to light noise, heavy noise, light motion, and
heavy motion, respectively.
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Table 6: Impact of training duration on cPSNR of supervised methods without augmentations (Su-
pervised), supervised methods with motion augmentations (Aug (Motion)), MRAugment,
and VORTEX with motion consistency (VORTEX (Motion)). Training duration are percent-
ages of the full training duration (200 epochs). Asterisk (*) indicates the default training
configuration. Both supervised augmentation methods and MRAugment are more sensitive
to training time than Supervised or VORTEX methods. Supervised underperforms Aug,
MRAugment, and VORTEX. VORTEX achieves highest performance and is insensitive to
training duration relative to the other methods.

Perturbation

Model None Motion (light) Motion (heavy)

Supervised (10%) 35.0 33.3 27.4
Supervised (25%) 35.3 32.3 27.1
Supervised (50%) 35.5 32.0 26.4
Supervised (100%)* 35.8 33.6 27.0
Supervised (200%) 36.0 33.9 27.6
Supervised (300%) 36.0 33.9 27.6

MRAugment (10%) 35.4 32.3 26.0
MRAugment (25%) 35.8 31.5 25.1
MRAugment (50%) 36.0 31.5 24.3
MRAugment (100%) 36.2 31.8 24.0
MRAugment (200%) 36.3 32.2 24.3
MRAugment (300%) 36.4 33.4 25.0

Aug (Motion) (10%) 34.8 33.9 30.8
Aug (Motion) (25%) 35.3 34.5 31.4
Aug (Motion) (50%) 35.4 34.6 31.1
Aug (Motion) (100%)* 35.9 35.1 31.5
Aug (Motion) (200%) 36.0 35.1 30.8
Aug (Motion) (300%) 36.0 35.2 32.1

VORTEX (Motion) (10%) 36.2 35.5 32.4
VORTEX (Motion) (25%) 36.3 35.7 33.1
VORTEX (Motion) (50%) 36.4 35.8 33.2
VORTEX (Motion) (100%)* 36.4 35.8 33.2
VORTEX (Motion) (200%) 36.3 35.7 33.0
VORTEX (Motion) (300%) 36.3 35.7 33.0

D.4.2. METRIC SELECTION

Conventional computational imaging uses magnitude metrics for quantifying image quality. However,
MRI images contain both magnitude and phase information (i.e. real and imaginary components).
Because phase-related errors may not be captured by magnitude metrics, we use a combination
of complex and magnitude metrics – complex PSNR (cPSNR) and magnitude SSIM – to quantify
image quality. Equation 1 defines the cPSNR formulation for complex-valued ground truth xref
and prediction xpred. || · ||2 corresponds to the complex-`2 norm and | · | denotes the magnitude of
complex-valued input. Additionally, SSIM has shown to be a better corollary for MRI reconstruction
quality compared to pSNR on magnitude images (Knoll et al., 2020). Thus, we use SSIM to quantify
magnitude image quality.

cPSNR (dB) = 20 log10
max |xref |

||xpred − xref ||2
(1)
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Table 7: Ablation for acceleration – 12x vs 16x. Similar to results at 16x acceleration, VORTEX
(Motion) outperformed supervised methods, and MRAugment at 12x acceleration. This
may suggest that VORTEX is broadly applicable to different acceleration levels.

Perturbation None Motion (light) Motion (heavy)

Aug Range Model SSIM cPSNR (dB) SSIM cPSNR (dB) SSIM cPSNR (dB)

N/A Supervised 12x 0.814 36.2 0.814 32.4 0.689 25.4
Supervised 16x 0.798 35.8 0.809 33.6 0.706 27.0

N/A MRAugment 12x 0.828 36.5 0.814 31.9 0.637 23.6
MRAugment 16x 0.811 36.2 0.793 31.8 0.660 24.0

N/A SSDU 12x 0.819 34.9 0.816 34.5 0.762 30.9
SSDU 16x 0.787 34.9 0.783 34.7 0.734 31.9

light Aug (Motion) 12x 0.811 36.1 0.807 35.3 0.765 31.3
Aug (Motion) 16x 0.802 35.6 0.793 34.7 0.739 30.4

heavy Aug (Motion) 12x 0.818 36.1 0.811 35.2 0.758 31.2
Aug (Motion) 16x 0.793 35.9 0.793 35.1 0.751 31.5

light VORTEX Motion 12x 0.881 36.8 0.875 36.1 0.815 32.1
VORTEX Motion 16x 0.882 36.4 0.875 35.7 0.813 31.5

heavy VORTEX Motion 12x 0.888 36.7 0.883 36.1 0.846 33.5
VORTEX Motion 16x 0.861 36.4 0.855 35.8 0.819 33.2

Table 8: Pixel-level vs. latent space consistency. LM: light motion; HM: heavy motion.
Model cPSNR (dB) SSIM cPSNR (dB) (LM) SSIM (LM) cPSNR (dB) (HM) SSIM (HM)

Supervised 35.8 0.798 33.6 0.809 27.1 0.706

Pixel-Level 36.4 0.873 35.9 0.866 33.2 0.828

R4 36.4 0.877 34.7 0.865 29.8 0.778
R3,R4 36.4 0.873 34.0 0.852 30.1 0.781
R2,R3,R4 36.3 0.873 34.4 0.854 29.5 0.769
R1,R2,R3,R4 36.3 0.875 34.7 0.864 30.3 0.775

By default, metrics were computed over the full 3D scan. An additional set of metrics were also
computed per reconstructed slice (termed slice metrics). Because different slices have different
extents of relevant anatomy, per-slice metrics can provide a more nuanced comparison of 2D slice
reconstructions among different methods. Statistical comparisons were conducted using Kruskal-
Wallis tests and corresponding Dunn posthoc tests with Bonferroni correction (α=0.05). All statistical
analyses were performed using the SciPy library.

Appendix E. Ablations

We perform ablations to understand two design questions for key components in our framework: (1)
Can consistency be enforced at different points in the network; (2) How should example difficulty be
specified during training. All methods use the default configurations specified in Appendix D.3. To
evaluate each piece thoroughly, we consider augmentation and VORTEX approaches trained with
heavy motion perturbations.
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E.1. Latent Space vs Pixel-level Consistency
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Figure 4: Ablation for balanced sam-
pling (SB) and augmentation
curricula (curr) in VORTEX
(Motion).

We compare enforcing consistency at the pixel-level output
image versus learned latent representations at varying U-
Net resolution levels. Let Rk be kth resolution level at
which consistency is enforced, where k ∈ {1, 2, 3, 4}
since our U-Net architecture had 4 pooling layers. For
the kth resolution level, we enforce consistency after the
final convolution in the encoder, and after the transpose
convolution in the decoder. For k = 4, consistency is
enforced at the bottleneck layer, after the convolution in
the encoder. To control for the impact of loss weighting,
we normalize λ by the number of consistency losses that
are computed in latent space when consistency is enforced at multiple resolution levels Rk. We
compare these approaches in the case of light and heavy motion.

We find that latent space consistency performed similarly across all resolution levels, outperform-
ing the Supervised baseline on both in- and out-of-distribution data (Table 8). For in-distribution
data, latent space consistency at any resolution level performed on par with pixel-level consistency.
However, for OOD data, it performed considerably worse than pixel-level consistency, by at least
0.047 SSIM and 3.2dB cPSNR under heavy motion. Although not common in the consistency
training literature, we find that pixel-level consistency was a better technique for capturing the
semantics of global distribution shifts such as motion for accelerated MRI reconstruction, which
might occur at the pixel-level.

E.2. Augmentation Scheduling.
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Figure 5: Augmentation difficulty cur-
ricula over training period of
200 epochs using linear and
exponential (exp) schedulers
defined in §4.2. Time con-
stant for exponential schedul-
ing τ = M

γ where γ=5.

We seek to quantify the utility of scheduling augmentation
difficulty in VORTEX’s consistency branch (see §4.2). We
evaluate linear and exponential scheduling functions with
different warm up schedules – 10%, 50%, and 100% of
the training period. We show that curricula methods out-
performed non-curricula methods for both in-distribution
and OOD evaluation (Table 5 in the Appendix). However,
no one curricula configuration outperformed others, which
may indicate that all curricula methods are feasible ways
to schedule augmentations. Curriculum learning is also
compatible with the balanced sampling protocol proposed
by Desai et al. (2021a), where supervised and unsuper-
vised examples are sampled at a fixed ratio during training.
Incorporating balanced sampling (SB) into training led to an increase in SSIM for both in-distribution
and OOD light motion and light noise evaluation configurations (Fig. 4). Increase in SSIM may
indicate that curricula can help the network gradually learn useful representations without a mode
collapse into the trivial solution (i.e. image blurring), which is common for pixel-level losses.
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Table 9: Average performance on mridata 3D FSE knee dataset with light motion (α=0.2) and noise
(σ=0.2) perturbations. Physics augmentations are compositions of noise and motion in their
heavy (R(α) = R(σ) = [0.2, 0.5]) training difficulty configurations. Models are identical
to those reported in Table 1.

Perturbation Motion (light) Noise (light)

SSIM cPSNR (dB) SSIM cPSNR (dB)

Compressed Sensing 0.810 (0.024) 29.8 (1.7) 0.828 (0.002) 32.9 (0.2)
Supervised 0.809 (0.028) 33.6 (0.2) 0.830 (0.024) 33.8 (0.3)
MRAugment 0.793 (0.021) 31.8 (1.8) 0.793 (0.024) 33.0 (0.4)
SSDU 0.783 (0.025) 34.7 (0.2) 0.752 (0.024) 33.7 (0.3)
Aug (Physics) 0.785 (0.036) 35.0 (0.4) 0.761 (0.049) 34.2 (0.3)
Aug (Image+Physics) 0.782 (0.045) 35.5 (0.4) 0.750 (0.051) 34.6 (0.5)
VORTEX (Image) 0.831 (0.036) 32.5 (0.8) 0.859 (0.004) 33.6 (0.1)
VORTEX (Physics) 0.846 (0.025) 35.2 (0.4) 0.841 (0.035) 34.7 (0.2)
VORTEX (Image+Physics) 0.849 (0.024) 35.0 (0.5) 0.850 (0.028) 34.3 (0.1)

E.3. Training Time

We ablate the sensitivity of the performance of supervised, augmentation, and VORTEX methods
to training duration. To compute the performance at different training duration, we select best
checkpoints (quantified by validation cPSNR) up to a given duration and run evaluation using these
weights. As all methods were trained for 200 epochs, we compare the performance at training times of
10% (20 epochs), 25% (50 epochs), 50% (100 epochs), and 100% (200 epochs). Supervised methods
were insensitive to training time, but considerably underperformed both supervised augmentation
(Aug) and VORTEX (Table 6). Augmentation based methods were sensitive to training time, with
changes in cPSNR of >1dB. VORTEX achieved the highest performance across all metrics and
evaluation setups and was relatively insensitive to training duration.

E.4. Sensitivity to Acceleration Factors

We evaluated the performance of VORTEX at different acceleration factors in Table 7. At 12x
acceleration, VORTEX trained with heavy motion recovered +0.061 SSIM and +0.8dB cPSNR
compared to the Supervised baseline in the in-distribution setting. At the same acceleration, VORTEX
also outperformed the Supervised baseline by +0.157 SSIM and +8.1dB cPSNR. The stability of
VORTEX at different accelerations may indicate that VORTEX is generalizable across different
acceleration extents.

Appendix F. Extended Results

In this section, we provide extended results for the mridata dataset using slice metrics and for the
fastMRI multi-coil brain dataset (Zbontar et al., 2018).

F.1. Extended mridata Results

Light Perturbations. Table 9 shows performance of baselines and VORTEX on the mridata knee
dataset with light motion (α=0.2) and noise (σ=0.2) perturbations. Like in heavy settings (Table 1),
VORTEX methods consistently achieve higher SSIM than and comprable cPSNR to baselines.
Improved SSIM values may indicate VORTEX can recover structural features in the image in cases
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Table 10: Slice metrics (mean [standard deviation]) on the mridata knee dataset. Asterisk (*)
indicates significant performance of VORTEX over all baselines (p <0.05).

Perturbation None Motion (heavy) Noise (heavy)

Model SSIM cPSNR (dB) SSIM cPSNR (dB) SSIM cPSNR (dB)

Compressed Sensing 0.682 (0.122) 29.4 (3.2) 0.559 (0.135) 18.9 (2.4) 0.534 (0.102) 24.8 (2.5)
Supervised 0.635 (0.133) 29.7 (3.7) 0.545 (0.117) 21.4 (2.5) 0.591 (0.139) 25.8 (2.9)
MRAugment 0.653 (0.130) 30.1 (3.5) 0.505 (0.106) 18.6 (2.3) 0.563 (0.128) 25.0 (2.8)
SSDU 0.621 (0.147) 28.9 (3.4) 0.564 (0.146) 25.9 (3.5) 0.528 (0.142) 26.7 (2.8)
Aug (Physics) 0.623 (0.144) 29.6 (3.6) 0.566 (0.136) 26.0 (3.8) 0.557 (0.144) 27.6 (3.1)
Aug (Image+Physics) 0.618 (0.136) 30.1 (3.4) 0.565 (0.134) 26.9 (3.8) 0.540 (0.134) 27.9 (2.8)
VORTEX (Image) 0.718 (0.125)* 30.4 (3.4) 0.499 (0.110) 20.6 (2.3) 0.584 (0.104) 25.8 (2.5)
VORTEX (Physics) 0.729 (0.138)* 30.3 (3.4) 0.628 (0.137)* 26.0 (3.8) 0.653 (0.143)* 28.1 (2.8)
VORTEX (Image+Physics) 0.716 (0.131)* 30.3 (3.4) 0.616 (0.130)* 25.3 (3.7) 0.658 (0.132)* 27.5 (2.7)

Figure 6: SSIM at different perturbation levels on center 50% of slices. Asterisk (*) indicates
significant performance (p<0.05) over all baselines (Compressed Sensing, Supervised,
MRAugment, SSDU, Aug). VORTEX methods significantly outperformed baselines in
both in-distribution and OOD perturbation settings. VORTEX also had less variance across
slices, which may indicate more consistent per-slice reconstruction than baseline methods.

of varying extents of perturbations. This trait may be useful for generalizing to data with unknown
perturbation extents and may reduce the need for extensive hyperparameter search.

Slice metrics. Table 10 shows slice metrics of baselines and VORTEX on the mridata knee dataset.
Among slice metrics, VORTEX also outperforms all baselines in both in-distribution and OOD
settings. In particular, VORTEX significantly outperformed all baselines in SSIM in all evaluation
settings (p<0.05). This may indicate that VORTEX has higher fidelity in recovering image structure
even in OOD settings where perturbations can result in a considerable degradation in SSIM. To
understand the efficacy of VORTEX in anatomically-dense regions of the image, slice metrics were
also computed on the center 50% of axial slices (Fig. 6). Not only does VORTEX significantly
outperform all baselines (p<0.05), it also had the least variance among all reconstruction methods.
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Figure 7: Sample scan reconstruction (mridata) with different extents of motion (α) and noise (σ)
perturbations. Scans were reconstructed along axial slices, but are reformatted along the
sagittal direction to illustrate through-plane artifacts. Unresolved motion artifacts can
result in coherent ghosting and streaking artifacts along the through-plane direction. Noise
artifacts are also more prominent in fat-suppressed regions (e.g. bone) and near articular
(femoral, tibial, patellar) cartilage. VORTEX suppresses both noise and motion artifacts,
producing higher quality images even along reformatted directions.

This may indicate VORTEX can consistently reconstruct higher quality images compared to state-of-
the-art supervised, augmentation-based, and self-supervised methods.

Scan reformatting. Reconstructed scans are often reformatted to enable anatomical inspection
from multiple views. In Fig. 7, we show an example mridata 3D FSE scan, which has been
reformatted to the sagittal plane. Artifacts in reconstructions from baseline compressed sensing
and deep learning-based methods are acutely visible in the reformatted slice. Motion ghosting
artifacts seen in the axial plane (Fig. 3) appeared as coherent streaks in the sagittal reformat. Noise
artifacts were amplified by DL-based baselines and lead to blurring among compressed sensing
reconstructions. In contrast, VORTEX-based reconstructions sufficiently suppressed these artifacts,
resulting in high-quality reformatted images.
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Table 11: Test performance (mean [standard deviation]) on the fastMRI multi-coil brain dataset at
8x acceleration. Results are shown on both in-distribution data and different motion levels
of α = 0.4, 0.6, 0.8, 1.0 for Supervised, SSDU, MRAugment, augmentation baselines,
and VORTEX.

Perturbation None Motion (α = 0.4) Motion (α = 0.6) Motion (α = 0.8) Motion (α = 1.0)

Model SSIM cPSNR (dB) SSIM cPSNR (dB) SSIM cPSNR (dB) SSIM cPSNR (dB) SSIM cPSNR (dB)

Supervised 0.811 (0.052) 27.4 (2.6) 0.681 (0.108) 21.6 (3.2) 0.594 (0.161) 18.8 (3.7) 0.537 (0.172) 16.7 (3.9) 0.522 (0.160) 15.2 (3.8)
MRAugment 0.852 (0.037) 29.2 (1.4) 0.731 (0.097) 21.9 (3.6) 0.641 (0.164) 18.7 (4.1) 0.578 (0.182) 16.3 (4.3) 0.564 (0.171) 14.7 (4.0)
SSDU 0.844 (0.042) 27.9 (1.3) 0.798 (0.081) 22.8 (3.4) 0.704 (0.178) 19.6 (4.3) 0.622 (0.208) 17.0 (4.6) 0.592 (0.197) 15.2 (4.4)
Noise2Recon (R(σ) = [0.5, 0.7] 0.842 (0.044) 29.7 (1.5) 0.736 (0.102) 22.2 (3.7) 0.642 (0.168) 18.9 (4.2) 0.577 (0.181) 16.4 (4.4) 0.558 (0.168) 14.7 (4.1)
Aug (Motion,R(α) = [0.2, 0.5]) 0.816 (0.048) 28.1 (1.5) 0.782 (0.084) 24.2 (2.8) 0.687 (0.189) 21.0 (4.2) 0.607 (0.224) 18.2 (5.0) 0.589 (0.207) 16.1 (5.2)
Aug (Motion,R(α) = [0.5, 0.7]) 0.809 (0.048) 27.8 (1.4) 0.767 (0.079) 24.2 (2.5) 0.678 (0.175) 22.2 (3.8) 0.605 (0.203) 19.7 (4.5) 0.582 (0.193) 17.8 (4.5)
VORTEX (Motion,R(α) = [0.2, 0.5]) 0.840 (0.045) 29.4 (1.5) 0.823 (0.050) 25.9 (2.2) 0.749 (0.148) 23.2 (3.7) 0.688 (0.181) 20.1 (5.2) 0.676 (0.170) 17.8 (5.8)
VORTEX (Motion,R(α) = [0.5, 0.7]) 0.833 (0.045) 29.2 (1.5) 0.781 (0.059) 25.8 (1.9) 0.741 (0.084) 24.3 (2.7) 0.702 (0.100) 22.8 (3.3) 0.683 (0.097) 21.7 (3.2)
VORTEX (Image+Motion, (α) = [0.5, 0.7]) 0.840 (0.043) 29.0 (1.5) 0.783 (0.064) 24.1 (2.7) 0.711 (0.133) 21.9 (3.3) 0.661 (0.146) 19.6 (4.1) 0.652 (0.137) 17.7 (4.4)
VORTEX (Image+Physics, (α) = [0.5, 0.7]) 0.834 (0.043) 29.3 (1.6) 0.740 (0.097) 22.2 (3.7) 0.645 (0.168) 18.9 (4.2) 0.581 (0.180) 16.4 (4.4) 0.565 (0.168) 14.7 (4.1)

Figure 8: Sample fastMRI brain reconstructions with heavy motion (α=0.4) perturbation. All
baseline methods suffer from coherent ghosting artifacts. SSDU can suppress the coherence
of these artifacts, but results in extensive blurring of vasculature. VORTEX can minimize
this blurring while suppressing coherent ghosting artifacts.

F.2. fastMRI Results

We compare VORTEX to Supervised, SSDU, Aug (Motion), and MRAugment baselines for in
distribution and OOD motion settings of different motion levels on the fastMRI multi-coil brain
dataset in Table 11 (Zbontar et al., 2018). Data preparation and experimental details follow the
description in Appendix D, and all experiments are conducted at 8x acceleration. We demonstrate
that VORTEX has comparable performance to baselines for in distribution, and outperforms SSDU
by +0.025 SSIM and +3.1dB cPSNR, and MRAugment by +0.092 SSIM and 4.0dB cPSNR on
motion level α = 0.4; SSDU by +0.045 SSIM and +4.7dB cPSNR, and MRAugment by +0.108
SSIM and +5.6dB cPSNR on motion level α = 0.6; SSDU by +0.08 SSIM and +5.8dB cPSNR,
and MRAugment by +0.124 SSIM and +6.5dB cPSNR on motion level α = 0.8; SSDU by +0.091
SSIM and +6.5dB cPSNR, and MRAugment by +0.119 SSIM and +7.0dB cPSNR on motion level
α = 1.0. This demonstrates that the effectiveness of VORTEX for both in distribution and OOD data
generalizes to 2D MRI sequences which implies broader clinical utility. Sample reconstructions are
shown in Fig. 8.
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