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ABSTRACT

The relationship between voice and face is well-established in neuroscience and
biology. Recent algorithmic advancements have yielded substantial improvements
in voice face matching. However, these approaches predominantly achieve suc-
cess by leveraging datasets with diverse demographic characteristics, which inher-
ently provide greater inter-speaker variability. We address the challenging prob-
lem of voice face matching and retrieval in homogeneous datasets, where speak-
ers share gender and ethnicity. Our novel deep architecture, featuring a weighted
triplet loss function based on face distances, achieves state-of-the-art performance
for voice face matching on these uniform populations. We evaluate our model on
a sequence of homogeneous datasets containing only voices and faces of people
sharing gender and ethnic group. In addition, we introduce percentile-recall, a
new metric for evaluating voice face retrieval tasks.

1 INTRODUCTION

(a) Matched face for the given audio

(b) Retrieved (Sorted) gallery

Figure 1: (a) Voice face matching: associating a
given audio sample the corresponding face out of
several possibilities. (b) Voice face retrieval: sort-
ing a given gallery of faces by proximity to a given
voice sample.

Neuroscientists and biologists have long es-
tablished a strong correlation between human
appearances and voices (Mavica & Baren-
holtz, 2013; Smith et al., 2016a;b). As Wells
et al. (2013) demonstrates, genetic informa-
tion and hormone levels during puberty shape
both voice-controlling organs and facial fea-
tures. The strength of this phenomenon is ev-
ident in mundane interactions: during phone
calls, we can often deduce various demographic
details about the person with whom we talk,
such as their gender, ethnicity, and approxi-
mate age. Conversely, watching muted TV
shows, we may be able to reconstruct charac-
ters’ voices, at least to some extent.

Recent advances in deep learning, particularly
in face (Kim et al., 2022; 2024) and audio
recognition (Koluguri et al., 2022; Chen et al.,
2022a;b), allow studying this link from a pre-
cise algorithmic perspective. Nagrani et al.
(2018a) were the first to explore the voice face
matching problem (see Figure 1a) as well as
face voice matching, proposing a CNN-based
deep neural network to embed both modalities
into a common latent space. The authors in-
troduced a metric for the task called identifi-
cation accuracy (which we recall in subsub-
section 2.3.1). This metric involves matching
a voice sample to a correct face out of two
choices (or in face voice matching, a face to
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Gender Demographic Group Train Val Test
# IDs # Faces # Speech # IDs # Faces # Speech # IDs # Faces # Speech

Male Asian 16893 113868 200533 2137 14173 14116 2103 14169 15205
Latino-Hispanic 10646 84065 115509 1381 10876 13430 1408 11068 12757
Middle-Eastern 8389 63269 88096 1026 7851 10971 1070 7994 10476
White 52111 390959 464928 6558 49292 61456 6470 48498 58075

Female Asian 4802 32377 32615 567 3748 2907 579 4024 4557
Latino-Hispanic 3105 22492 24571 359 2615 2950 394 2879 2806
Middle-Eastern 1239 8405 10079 149 989 1328 160 1099 1763
White 21852 162648 209712 2773 20821 23584 2678 20066 22723

Table 1: Dataset statistics showing the number of identities, face images, and speech segments for
each demographic group across train/val/test splits.

correct audio out of two choices). The authors provided a human baseline for the voice face match-
ing task and demonstrated that their system’s performance is nearly on par with human ability.

Building upon this foundation, subsequent works have further explored voice to face (and face to
voice) matching. Nagrani et al. (2018b) exhibited similar performance while introducing a cur-
riculum learning schedule for hard negative mining. Wen et al. (2019) were the first to surpass
human-level performance with their DIMNet: a deep architecture learning common representations
for faces and voices through their relationships to demographic covariates such as gender and na-
tionality. They achieved an accuracy of 84.12% in the identification metric. Recently, Zhu et al.
(2022) proposed a more accurate system, achieving 85.3% by combining contrastive learning with
unsupervised techniques.

Nevertheless, previous works attain these scores in the identification accuracy by considering het-
erogeneous datasets, including speakers of various genders and ethnicities, thus inducing larger
variance in the vocal and facial feature spaces. As Nagrani et al. (2018a) note, human performance
deteriorates markedly when assessed on voice face matching of speakers sharing gender, ethnic-
ity, or age group. Similarly, the works mentioned above, akin to human capabilities, fall short in
distinguishing between speakers sharing one or more of these covariates.

We propose a new deep architecture for studying common latent representations of voices and faces
from ”homogeneous” datasets. Our system is based on a weighted triplet loss, where the weights
are a function of the distance between faces (or rather their embeddings under a face encoder). This
particular choice of loss allows us to identify speakers among people sharing their gender and ethnic
group.

Another formulation of the voice face problem is voice face retrieval (see Figure 1b): given an audio
sample of a speaker and a face gallery containing one or more face images of the person to whom the
recording belongs. We then compute how similar the correct face(s) are to the given audio and sort
this gallery by the distance of the faces from the given audio. To measure the performance of our
deep architecture in this task, we propose a new metric, percentile recall, which is highly correlated
with identification accuracy. This metric allows us to quantify the quality of sorting mechanism for
galleries obtained in response to a given voice ”query”.

ORGANIZATION OF THE PAPER

We dedicate section 2 for introducing the implementation details. section 3 is dedicated for describ-
ing the model, section 4 for the results and section 5 for conclusions. We provide in the appendices
several insights about the influence of codecs and noising, separately and together on our model.
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Figure 2: Samples from the heterogenic datasets used for pre-training our model. From top to bot-
tom, samples from the datasets AVSpeech, VoxCeleb2 and Casual Conversations 2. Through a pre-
training session the model learns to some extent association of voice to face. Splitting AVSpeech,
we obtain plethora of homogeneous datasets.

2 IMPLEMENTATION DETAILS

2.1 DATASETS

2.1.1 HETEROGENEOUS DATA

We performed pre-training on the several homogeneous datasets, that is with male and female speak-
ers of various ethnicities,

• VoxCeleb2 (Nagrani et al., 2019): a dataset containing over 1 million clips corresponding
to 6,112 celebrities, mostly white, The data is extracted from 150,000 YouTube videos of
total length 2442 hours.

• Casual conversations 2 (Porgali et al., 2023): a dataset collected by Meta including 26,467
videos of 5,567 unique paid participants, with an average of almost 5 videos per person.
People appearing in the dataset originate from Asia, South and North America, representing
diverse demographic characteristics.

• AVSpeech(Ephrat et al., 2018): a large-scale dataset comprising speech video clips with
no interfering background noises. Each YouTube video was divided to short clips of vary-
ing lengths where the audible sound in the soundtrack is assumed to belong for a single
speaking person, visible in the video. The dataset contains 4700 hours of video segments,
from a total of 290k YouTube videos, spanning a wide variety of people, languages and
face poses. After pre-processing the clips we were able to extract approximately 150,000
different identities.

We supply in Figure 2 several face samples from each of the three datasets.

2.1.2 HOMOGENEOUS DATASETS

We partitioned the AVSpeech dataset, being a diverse collection of audiovisual data, previously
characterized in Oh et al. (2019), into distinct homogeneous subsets based on gender and ethnicity
demographics. To determine individual demographic attributes, we employed the DeepFace frame-
work Serengil & Ozpinar (2021). The detailed composition of each homogeneous subset is presented
in Figure 2. To maintain experimental integrity and since we perform fine-tuning of a model trained
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on the heterogeneous data above, we preserved the original train-validation-test splits when creating
these specialized subsets, thereby preventing data leakage across partitions. Specifically, subjects
appearing in any particular split (training, validation, or test) of the complete AVSpeech dataset
were consistently allocated to the corresponding split in their respective homogeneous subsets. Due
to limited representation of Black and Indian populations in the DeepFace-classified data, we de-
termined that training voice-face models for these demographic groups would not yield statistically
meaningful results at this time.

2.2 PRE-PROCESSING

In order to extract face images and corresponding audio samples from videos we first apply an active
speaker detector to split the video to smaller clips with a single speaker. Then, on each of these clips
we performed

• audio operations: split the audio into short segments ranging between 3 to 10 seconds.

• image operations: we first filter faces of bad quality; those having yaw, pitch or roll greater
than 15◦, with closed eyes or with open mouths. We then align the face using MTCNN
landmark extractor (Zhang et al., 2016), remove background and resize the image to be of
size 256× 256.

In order to generate the final image and audio datasets we clustered audios and images by using
DBSCAN on the Hadamard product of the matrices indicating the cosine distance between each
pair of embeddings. Altogether our procedure yields for each speaker several facial images, vocal
samples and corresponding embeddings.

NOTATIONS

Henceforth we denote the vector latent representation of a voice by v ∈ RL and the vector latent
representation of a face by f ∈ RL. Enumerating speakers in the dataset from 1 to N we denote
an audio vector representation of the j−th speaker by vj ∈ RL and a face vector representation of
them by fj ∈ RL.

2.3 METRICS

2.3.1 IDENTIFICATION AND BINARY ACCURACY

The performance of voice face matching architectures is often evaluated in the identification
accuracy (also known as 1:2-metric). Fixing N ′ triplets of the form (vi1 ,fσ(i1),fσ(i2)) with
i1 ̸= i2 ∈ {1, . . . , N ′} and σ being ”an involution”, that is{

σ(i1) = i1
σ(i2) = i2

or
{
σ(i1) = i2
σ(i2) = i1

(1)

The identification accuracy is defined as

I :=
1

N ′

∑
(i1,i2)

1dist(vi1 ,fi1 )<dist(vi1 ,fi2 )
, (2)

where dist is a distance between representations (we take the cosine distance). This ratio represents
the number of triplets where the audio’s true representation is more similar to the representation
of true face, compared to a random face from a different speaker. For the heterogeneous problem
(Nagrani et al., 2018a) mention human’s capacity in this metric is 81.3%, yet when considering
the problem in a completely homogeneous domain (with variance in gender, age and nationality
removed) the performance drops sharply to 57.1%. In addition to the identification accuracy it might
be interesting to benchmark the system in binary accuracy, i.e., given N ′

2 matching pairs (vi1 ,fi1)

and N ′

2 non-matching pairs (vi1 ,fi2) (with i1 ̸= i2) how many of them is classified correctly. For
that metric, we pick as a threshold for the binary classifier an ϵ yielding the equal error rate (EER).
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Audio
dataset

Face
dataset

Audio encoder

Face encoder F

Audio domain adaptation
ResNet (2 layers)

Image domain adaptation
ResNet (2 layers)

Weighted triplet loss LF

Initial audio
embeddings
(192-dim)

Initial image
embeddings
(512-dim)

Audio embeddings {vik}Kk=1

(512-dim)

Face embeddings {fik}Kk=1

(512-dim)

weighting factors

Common 512-dimensional
latent space

Figure 3: An outline of our model, relying on a Face Distance Weighted triplet loss

2.3.2 PERCENTILE RECALL

Assessing models performing voice face retrieval appears to be a more demanding task: naively
one would attempt measuring voice face retrieval by examining a ”1:N’-accuracy” (that is replace
triplets used in subsubsection 2.3.1 with tuples of the form (vi1 ,fσ(j0)...fσ(jN′−1)

) for some permu-
tation of faces σ attaining the value i1 for some unique jk. Nevertheless, as Nagrani et al. (2018a)
mention the value of this extended matching is exponentially decaying as N ′ increases. They ex-
plain it by the increasing probability of encountering face belonging to the same ethnicity, gender
and age of the anchor speaker. Inspired by their argument we introduce a weaker yet informative
metric, percentile recall: given an audio sample belonging to a speaker and a gallery of face images
with one or more of the speaker’s face, in which percentile is the correct face located on average?
Roughly speaking that amounts for defining a continuous random variable R which measures how
well the model is able to place faces of the correct speaker in a large gallery (Refer to Figure 4 for
the cumulative distributive functions we obtained from our experiments). We compute the metric
using a Monte Carlo approach as follows:

1. Setup:
(a) Consider a dataset of audio recordings belonging to N speakers {s1, . . . , sN} and a

corresponding dataset of their faces. Each speaker has ãj corresponding audio samples
in the audio dataset and p̃j face samples in the faces dataset with ãj , p̃j ≥ 1. By an
abuse of notation, enumerating the faces and voices corresponding to a speaker sj , we
denote their i−th common latent face representation by fi(sj) and their i−th voice
representation by vi(sj).

(b) In addition fix large positive integers M,a, p and ñ.

2. Monte Carlo Simulation: For each speaker sj (j ∈ {1, . . . , N}) consider aj =
min(a, ãj) of their voice samples.

(a) For each audio sample vi(sj):
i. Sample at random pj = min(p, p̃j) ”positive” face embeddings belonging to sj .

ii. Form a large gallery of negative face embeddings: pick another ”negative” speaker
sj′ , with j′ ̸= j, and append nj′ = min(ñ, p̃j′) face embeddings to a list of
negative face embeddings. While the list has less than ñ faces, repeat the process
with negative speakers that weren’t selected before. We end with a list of negative
faces containing n ≥ ñ faces.

iii. The positive and negative face images form a face gallery G of size n+ pj .
iv. Encode the audio recording and all gallery images using the cross-modal encoder.
v. Compute cosine similarity between the audio embedding and each of the image

embeddings.
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vi. For each positive face embedding fi′(sj), calculate its rank

rank(fi′(sj)) :=
#{negative n ∈ G : cos(fi′(sj), vi(sj)) < cos(n, vi(sj))}

n+ pj

vii. The rank of an audio sample is then defined by averaging

rank(vi(sj)) :=
1

pj

pj∑
i′=1

rank(fi′(sj)),

viii. Append the audio rank to the list of all ranks.
(b) Repeat the simulation M times.

3. Statistical Analysis: The continuous random variable R is then approximated by the inde-
pendent identically distributed random discrete variables rm (with m ∈ {1, . . . ,M}) given
by

P (rm ≤ α) :=

∑N
j=1 #{i ∈ {1, . . . , aj} : rank(vi(sj)) ≤ α}∑N

j=1 aj
(3)

This Monte Carlo simulation provides a robust approximation of R, allowing for accurate com-
putation of the percentile recall metric. It is often customary to compare between two models by
comparing p(R ≤ α) for fixed rational α, attaining the form α = k

N . This approximately describe
the probability of a positive face appearing in top k elements in a gallery of size N . For that purpose
we define a table Recall at N’s as we present in Table 2 , whose rows correspond to various gallery
sizes N ′, and whose columns to various k < N ′ and elements of the table are given by p(R ≤ k

N ′ ).

3 THE MODEL

Our model is based on embedding voice and face embeddings of pre-processed media, as discussed
in subsection 2.2, into a common latent space (see Figure 3) while teaching the model robust and
discriminative features for identity recognition. We begin with a pair of encoders generating embed-
dings for each modality separately: for audio samples we use TitaNet embedding (Koluguri et al.,
2022) and for face images a IR-SE50, combination of IR-50 (He et al., 2016) with SENet (Hu et al.,
2018), pre-trained with ArcFace loss (Deng et al., 2019). In addition the architecture consists of
two feed-forward neural networks outputting vectors of size 512. This pair of domain adaptation
networks is trained using a unique loss function. We apply a version of triplet loss due to Ivanov &
Krishtul (2023) called face distance weighted triplet loss: fixing f : R → R be a non-decreasing
function (i.e., sigmoid), we damp the summands by the initial representations distance,

LF :=

K∑
k=1

(
||vik − fik ||2 − ||vik − fjk ||2 + β

)+ · f(dist(fF
ik
,fF

jk
)) (4)

where

• β is the triplet loss margin constant

• the summation is done over the K triplets in the batch.

• for every k ∈ {1, . . . ,K}, ik is the k−th anchor speaker in the batch and jk ̸= ik is a
different speaker.

• fF
ik
,fF

jk
are the representations obtained from a frozen pre-trained face recognition network

F (in our settings, a IR-SE50 network trained with ArcFace loss) of the ik−th and jk−th
speakers respectively.

• dist is a distance between these representations. We consider cosine distance.

Compared to the standard triplet loss method employed for instance in FaceNet Schroff et al. (2015),
this damping process offers enhanced biometric performance by increasing the penalty for errors be-
tween dissimilar facial features while reducing it for mis-identifications for similar-looking speakers.

6
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Figure 4: The cumulative distribution functions of the percentile recall: (top) masculine homoge-
neous population and (bottom) feminine homogeneous population

4 RESULTS

Our experiment consists of two stages. First we pre-train a heterogeneous model, i.e., on the
demographically-varied datasets from subsubsection 2.1.1. We then fine-tune this model on each
of the homogeneous populations sharing gender and ethnicity. We use both for pre-training and for
fine-tuning the same architecture and weighted triplet loss mentioned above.

Our models’ performance in traditional biometric metrics is given in Figure 5a. Comparing the 1:N
accuracy Figure 5b) and Figure 5c we observe a consistent performance hierarchy across demo-
graphic groups as gallery size increases. Asian males and females maintain the highest accuracy
within their respective genders, while Latino-Hispanic males and White females show the steepest
degradation with increasing N. The performance gap between genders widens at larger gallery sizes,
with female groups showing more pronounced accuracy drops.

Examining these patterns in detail, , our voice-face matching system demonstrates varying perfor-
mance across demographic groups, with patterns suggesting complex interactions beyond simple
data quantity effects. While the system achieves the highest binary matching accuracy of 85.55%
for Asian males, followed by White males at 83.99%, the performance variations between groups

7
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out of
top 5 10 50 100 250 500 1000 5000

100 0.592 0.741 0.981 1 – – – –
1000 0.244 0.318 0.592 0.741 0.909 0.981 1 –

10,000 0.101 0.147 0.244 0.318 0.456 0.592 0.741 0.981

Table 2: Recall at N’ with various N’s and ks: probability of correct face retrieved in top k places
out of gallery of size N’. Obtained by sampling the precision recall curve of the model fine-tuned on
white male population.

point to the importance of intra-group diversity. We observe a consistent gender gap across all de-
mographic groups, with male subjects achieving higher performance across all three metrics (binary
accuracy, AUC, and identification accuracy). For instance, Asian females achieve 80.78% binary
accuracy compared to 85.55% for Asian males. This performance gap persists even in demographic
groups with substantial training data, suggesting that the diversity of features within each demo-
graphic group may be as crucial as the raw quantity of training examples. For the voice-face retrieval
task, Figure 4 presents the cumulative distribution functions stratified by gender across demographic
groups. Notably, while expanding the dataset improves performance, this improvement specifically
stems from increased intra-group variance - maintaining fixed gender and ethnicity while diversify-
ing other attributes such as age and facial features.

As an alternative performance measure, we evaluated our system using the Recall at N’ metric
defined in subsubsection 2.3.2, which quantifies how often the correct match appears within a given
gallery percentile. Table 2 demonstrates this analysis for the White male population, showing the
model positions correct faces within the top 10 percentile with probability 0.741.

5 PERSPECTIVES

Our analysis of voice-face matching in demographically homogeneous settings reveals both method-
ological insights and crucial data challenges. While our results demonstrate the system’s capability
to learn cross-modal associations within demographic groups, they also highlight the complex role
of intra-group variance - suggesting that attributes like age and facial features significantly influence
matching performance even when gender and ethnicity are fixed. This points to two parallel imper-
atives for advancing the field: expanding data collection for currently underrepresented groups (par-
ticularly Black and Indian populations), while simultaneously investigating how specific voice and
face attributes impact matching performance within demographic groups. Such dual focus would
enable both broader demographic coverage and deeper understanding of which multimodal features
drive successful matching across different populations. Future work could systematically vary addi-
tional covariates (e.g., age groups, accent variations, facial characteristics) within demographically
homogeneous groups to isolate their impact on cross-modal learning, providing insights into the
robustness and fairness of voice-face matching systems.

REPRODUCIBILITY OF RESULTS

Our results can be reproduced using publicly available components: The datasets shown in Figure 2
are available upon request from the respective research teams. Our homogeneous datasets can be
curated by applying DeepFace Serengil & Ozpinar (2021) demographic classification on AVSpeech.
Both TitaNet and IR-SE50 face encoder weights are publicly available. During pre-training, our
weighted sampler selected identities with probability 0.5 from AVSpeech and 0.25 from each of the
other datasets. The inter-domain networks use dropout= 0.2. Models were trained on NVIDIA RTX
3070 and 3080 GPUs.
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(b) 1:N accuracy for datasets of males. (c) 1:N accuracy for datasets of females.

Figure 5: Performance analysis across gender and ethnicity groups.
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Figure 6: The CDFs obtained from noising the audios

A SENSITIVITY TO VARIOUS AUDIO CONDITIONS ON WHITE MALE
POPULATION

Our model whose KPIs were given in Table 2 was only trained on data gathered from YouTube,
which differs significantly from data encountered in mundane situations. Therefore, we assess its
performance on challenging settings. We examine the situation only for the model trained for white
male population, for which there are statistically evident quantity of people in order to show the
effect of such settings on our model.

A.1 INFLUENCE OF NOISE INJECTION

In this test we noised our audios of white males from AVSpeech and re-evaluated our performance
in the percentile recall metric. Noising is measured in terms of the Signal-to-noise ratio (SNR): the
higher it is the noisier the signal is. We consider three scenarios: of minor (20-30 SNR), medium
(10-20 SNR) and major noising (0-10 SNR). We draw the respective CDFs in Figure 6 and notice
that our model shows minor sensitivity for noise, both when examining minor and of major noising.
In the latter we observe a decrease of 4% in terms of being in top 10 percentile.

This sensitivity to noise can be improved by introducing random noising as an augmentation per-
formed during training.

A.2 INFLUENCE OF CODECS

Another interesting application touches the compression and encoding of audios through mod-
ern communication devices, like telephones and mobile devices. We passed the audio recordings
through 4 different codecs:

• AMR (Adaptive Multi-Rate): A speech compression codec designed for mobile networks.
It supports multiple bit rates ranging from 4.75 to 12.2 kbps and adapts to network condi-
tions for optimal quality.

• G729: A low-bandwidth speech codec widely used in VoIP applications, operating at 8
kbps. It offers a good balance between audio quality and bandwidth efficiency, making it
popular for internet telephony.
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Figure 8: Precision recall curves obtained from adding codecs to the original audio recordings.
AMR and G729 cause significant drop in performance

• SILK: SILK is a variable bit rate codec, developed by Skype, operating between 6 to 40
kbps. It’s optimized for both speech and music transmission, providing flexibility for vari-
ous audio content types.

• G711: The standard codec for telephone systems and VoIP, using pulse code modulation
(PCM) at 64 kbps. It provides high-quality audio with minimal processing delay, making
it ideal for scenarios where bandwidth is not a constraint.

Codec SNR ID Acc. (%)

None - 91.43
20-30 91.15
10-20 90.73
0-10 89.71

AMR - 74.16
20-30 73.73
10-20 72.62
0-10 68.14

SILK - 87.42
20-30 86.06
10-20 85.55
0-10 83.49

G729 - 83.03
20-30 81.90
10-20 81.16
0-10 77.00

G711 - 88.49
20-30 89.14
10-20 87.32
0-10 87.08

Figure 7: Identification Accuracy for Various
Codecs and SNR Ranges (White male popula-
tion).

We then calculated the percentile-recall metric
for each dataset of encoded audios (see the re-
sults in Figure 8). In SILK and G711 we ob-
serve minor drop in performance yet when ap-
plying G729 and AMR we experience major
drop of ranks. We conjecture this phenomenon
is due to the ”aggressive” nature of their com-
pression . We suggest adding to training pro-
cedure codecs as part of artificial augmentation
of the data, with high percentage of audios be-
ing encoded using the more challenging codecs,
AMR and G729.

A.3 COMBINED
INFLUENCE OF CODECS AND NOISING

We ran additional trials combining each of the
codecs we mention above with minor, interme-
diate and major noising as before. We observe
a major decrease in the performance of model
in all scenarios. We refer the reader to Fig-
ure 9,Figure 10,Figure 11,Figure 12 for the full
CDFs. Finally we refer the reader to Figure 7
for the drop in the identification accuracy in the
examined scenarios.
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Figure 9: Percentile recall curves obtained from noising AMR encoded audios

Figure 10: Percentile recall curves obtained from noising G729 encoded audios
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Figure 11: Percentile recall curves obtained from noising G711 encoded audios

Figure 12: Percentile recall curves obtained from noising SILK encoded audios
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