
Discrete Neural Flow Samplers with Locally Equivariant Transformer

Zijing Ou¹, Ruixiang Zhang², Yingzhen Li¹

¹Imperial College London, ²Apple

{z.ou22, yingzhen.li}@imperial.ac.uk ruixiang_zhang2@apple.com

Abstract

Sampling from unnormalised discrete distributions is a fundamental problem across various domains. While Markov chain Monte Carlo offers a principled approach, it often suffers from slow mixing and poor convergence. In this paper, we propose Discrete Neural Flow Samplers (DNFS), a trainable and efficient framework for discrete sampling. DNFS learns the rate matrix of a continuous-time Markov chain such that the resulting dynamics satisfy the Kolmogorov equation. As this objective involves the intractable partition function, we then employ control variates to reduce the variance of its Monte Carlo estimation, leading to a coordinate descent learning algorithm. To further facilitate computational efficiency, we propose locally equivariant Transformer, a novel parameterisation of the rate matrix that significantly improves training efficiency while preserving powerful network expressiveness. Empirically, we demonstrate the efficacy of DNFS in a wide range of applications, including sampling from unnormalised distributions, training discrete energy-based models, and solving combinatorial optimisation problems.

1 Introduction

We consider the task of sampling from a discrete distribution $\pi(x) = \frac{\rho(x)}{Z}$, known only up to a normalising constant $Z = \sum_x \rho(x)$. This problem is fundamental in a wide range of scientific domains, including Bayesian inference (Murray et al., 2012), statistical physics (Newman & Barkema, 1999), and computational biology (Lartillot & Philippe, 2004). However, efficient sampling from such unnormalised distributions remains challenging, especially when the state space is large and combinatorially complex, making direct enumeration or exact computation of Z infeasible.

Conventional sampling techniques, such as Markov Chain Monte Carlo (MCMC) (Metropolis et al., 1953) have been widely employed with great success. Nevertheless, MCMC often suffers from poor mixing and slow convergence due to the issues of Markov chains getting trapped in local minima and large autocorrelation (Neal et al., 2011). These limitations have motivated the development of neural samplers (Wu et al., 2020; Vargas et al., 2024; Máté & Fleuret, 2023), which leverage deep neural networks to improve sampling efficiency and convergence rates. In discrete settings, autoregressive models (Box et al., 2015) have been successfully applied to approximate Boltzmann distributions of spin systems in statistical physics (Wu et al., 2019). Inspired by recent advances in discrete diffusion models (Austin et al., 2021; Sun et al., 2023c; Campbell et al., 2022), Sanokowski et al. (2024, 2025) propose diffusion-based samplers with applications to solving combinatorial optimisation problems. Moreover, Holderrieth et al. (2025) introduces an alternative discrete sampler by learning a parametrised continuous-time Markov chain (CMCT) (Norris, 1998) to minimise the variance of importance weights between the CMCT-induced distribution and the target distribution.

Building on these advances, the goal of our paper is to develop a sampling method for discrete distributions that is both efficient and scalable. To this end, we introduce Discrete Neural Flow

Samplers (DNFS), a novel framework that learns the rate matrix of a CTMC whose dynamics satisfy the Kolmogorov forward equation (Oksendal, 2013). In contrast to discrete flow models (Campbell et al., 2024; Gat et al., 2024), which benefit from access to training data to fit the generative process, DNFS operates in settings where no data samples are available. This data-free setting makes direct optimisation of the Kolmogorov objective particularly challenging and necessitates new methodological advances to ensure stable and effective training. Specifically, the first difficulty lies in the dependence of the objective on the intractable partition function. We mitigate this by using control variates (Geffner & Domke, 2018) to reduce the variance of its Monte Carlo estimate, which enables efficient optimisation via coordinate descent. More critically, standard neural network parameterisations of the rate matrix render the objective computationally prohibitive. To make learning tractable, a locally equivariant Transformer architecture is introduced to enhance computational efficiency significantly while retaining strong model expressiveness. Empirically, DNFS proves to be an effective sampler for discrete unnormalised distributions. We further demonstrate its versatility in diverse applications, including training discrete energy-based models and solving combinatorial optimization problems.

2 Preliminaries

We begin by introducing the key preliminaries: the Continuous Time Markov Chain (CTMC) (Norris, 1998) and the Kolmogorov forward equation (Oksendal, 2013). Let x be a sample in the d -dimensional discrete space $\{1, \dots, S\}^d \triangleq \mathcal{X}$. A continuous-time discrete Markov chain at time t is characterised by a rate matrix $R_t : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$, which captures the instantaneous rate of change of the transition probabilities. Specifically, the entries of R_t are defined by

$$R_t(y, x) = \lim_{\Delta t \rightarrow 0} \frac{p_{t+\Delta t|t}(y|x) - \mathbf{1}_{y=x}}{\Delta t}, \quad \mathbf{1}_{y=x} = \begin{cases} 1, & y = x \\ 0, & y \neq x \end{cases}, \quad (1)$$

which equivalently yields the local expansion $p_{t+\Delta t|t}(y|x) = \mathbf{1}_{y=x} + R_t(y, x)\Delta t + o(t)$ and the rate matrix satisfies $R_t(y, x) \geq 0$ if $y \neq x$ and $R_t(x, x) = -\sum_{y \neq x} R_t(y, x)$. Given R_t , the marginal distribution $p_t(x_t)$ for any $t \in \mathbb{R}$ is uniquely determined. Let $x_{0 \leq t \leq 1}$ be a sample trajectory. Our goal is to seek a rate matrix R_t that transports an initial distribution $p_0 \propto \eta$ to the target distribution $p_1 \propto \rho$. The trajectory then can be obtained via the Euler method (Sun et al., 2023c)

$$x_{t+\Delta t} \sim \text{Cat}\left(x; \mathbf{1}_{x_{t+\Delta t}=x} + R_t(x_{t+\Delta t}, x)\Delta t\right), \quad x_0 \sim p_0, \quad (2)$$

and the induced probability path p_t by R_t satisfies the Kolmogorov equation (Oksendal, 2013)

$$\partial_t p_t(x) = \sum_y R_t(x, y)p_t(y) = \sum_{y \neq x} R_t(x, y)p_t(y) - R_t(y, x)p_t(x). \quad (3)$$

In this case, we say that the rate matrix R_t generates the probability path p_t . Dividing both sides of the Kolmogorov equation by p_t leads to

$$\partial_t \log p_t(x) = \sum_{y \neq x} R_t(x, y) \frac{p_t(y)}{p_t(x)} - R_t(y, x). \quad (4)$$

In the next section, we describe how to leverage Equation (4) to learn a model-based rate matrix for sampling from a given target distribution π , followed by the discussion of applications to discrete energy-based modelling and combinatorial optimisation.

3 Discrete Neural Flow Samplers

The rate matrix R_t that transports the initial distribution to the target is generally not unique. However, we can select a particular path by adopting an annealing interpolation between the prior η and the target ρ , defined as $p_t \propto \rho^t \eta^{1-t} \triangleq \tilde{p}_t$ (Gelman & Meng, 1998; Neal, 2001). This annealing path coincides with the target distribution $\pi \propto \rho$ at time $t = 1$. To construct an R_t that generates the probability path p_t , we seek a rate matrix that satisfies the Kolmogorov equation in Equation (4). Specifically, we learn a model-based rate matrix $R_t^\theta(y, x)$, parametrised by θ , by minimizing the loss

$$\mathcal{L}(\theta) = \mathbb{E}_{w(t), q_t(x)} \delta_t^2(x; R_t^\theta), \quad \delta_t(x; R_t^\theta) \triangleq \partial_t \log p_t(x) + \sum_{y \neq x} R_t^\theta(y, x) - R_t^\theta(x, y) \frac{p_t(y)}{p_t(x)}, \quad (5)$$

where q_t is an arbitrary reference distribution that has the same support as p_t , and $w(t)$ denotes a time schedule distribution. At optimality, the condition $\delta_t(x; R_t^\theta) = 0$ holds for all t and $x \in \mathcal{X}$, implying that the learned rate matrix R_t^θ ensures the dynamics prescribed by the Kolmogorov equation are satisfied along the entire interpolation path. In practice, minimising the loss (5) guides R_t^θ to correctly capture the infinitesimal evolution of the distribution p_t , enabling accurate sampling from the target distribution via controlled stochastic dynamics.

However, evaluating Equation (5) directly is computationally infeasible due to the intractable summation over y , which spans an exponentially large space of possible states, resulting in a complexity of $\mathcal{O}(S^d)$. To alleviate this issue, we follow Sun et al. (2023c); Campbell et al. (2022); Lou et al. (2024) by assuming independence across dimensions. In particular, we restrict the rate matrix R_t^θ such that it assigns non-zero values only to states y that differ from x in at most one dimension. Formally, $R_t^\theta(y, x) = 0$ if $y \notin \mathcal{N}(x)$, where $\mathcal{N}(x) := \{y \in \mathcal{X} | y_i \neq x_i \text{ at most one } i\}$. To improve clarity in the subsequent sections, we renote the rate matrix R_t^θ for $y \in \mathcal{N}(x)$ with $y_i \neq x_i$ as

$$R_t^\theta(y, x) \triangleq R_t^\theta(y_i, i|x) \quad \text{and} \quad R_t^\theta(x_i, i|x) = - \sum_{i, y_i \neq x_i} R_t^\theta(y_i, i|x), \quad (6)$$

which yields a simplified and more tractable form of the loss in Equation (5)

$$\delta_t(x; v_t) = \partial_t \log p_t(x) + \sum_{i, y_i \neq x_i} R_t^\theta(y_i, i|x) - R_t^\theta(x_i, i|y) \frac{p_t(y)}{p_t(x)}. \quad (7)$$

This approximation reduces the computational complexity from $\mathcal{O}(S^d)$ to $\mathcal{O}(S \times d)$. Nonetheless, two main challenges persist. First, the time derivative $\partial_t \log p_t(x)$ remains intractable due to the dependence on the partition function, as it expands to $\partial_t \log \tilde{p}_t(x) - \partial_t \log Z_t$ with $Z_t = \sum_x \tilde{p}_t(x)$ being intractable. Second, evaluating Equation (7) requires evaluating the neural network $|\mathcal{N}(x)|$ times, which is computationally expensive for each x . In the following, we propose several techniques to address these computational bottlenecks.

3.1 Estimating the Time Derivative of the Log-Partition Function

To estimate the time derivative, note that $\partial_t \log Z_t = \mathbb{E}_{p_t(x)}[\partial_t \log \tilde{p}_t(x)]$, which can be approximated via the Monte Carlo estimator $\partial_t \log Z_t \approx \frac{1}{K} \sum_{k=1}^K \partial_t \log \tilde{p}_t(x_t^{(k)})$. However, this approach relies on sampling from p_t , which is typically impractical due to the lack of convergence guarantees for short-run MCMC in practice and the high variance inherent in Monte Carlo estimation. To address this issue, we leverage a key identity that holds for any given rate matrix R_t

$$\partial_t \log Z_t = \underset{c_t}{\operatorname{argmin}} \mathbb{E}_{p_t}(\xi_t(x; R_t) - c_t)^2, \quad \xi_t(x; R_t) \triangleq \partial_t \log \tilde{p}_t(x_t) - \sum_y R_t(x, y) \frac{p_t(y)}{p_t(x)} \quad (8)$$

Because the objective (8) is convex in c_t , the minimizer is given by $\partial_t \log Z_t = \mathbb{E}_{p_t} \xi_t(x; R_t)$. Moreover, in practice, the expectation over p_t can be safely replaced by an expectation over any distribution q_t with the same support, still yielding a valid estimate of the time derivative (see Appendix A.1 for details). Empirically, we observe that using Equation (8) results in a significantly lower-variance estimator compared to the direct Monte Carlo approach

$\partial_t \log Z_t = \mathbb{E}_{p_t(x)}[\partial_t \log \tilde{p}_t(x)]$. This reduction in variance can lead to improved optimisation performance. To assess this, we conducted experiments on the Ising model (Mézard et al., 1987), minimising the loss in Equation (7) using two different estimators for $\partial_t \log Z_t$. The standard deviations of both estimators, as well as their corresponding loss values during training, are plotted over training steps in Figure 1. The results demonstrate that the estimator based on $\mathbb{E}_{p_t} \xi_t(x; R_t)$ consistently achieves lower loss values, underscoring the benefits of reduced variance in estimating $\partial_t \log Z_t$ for

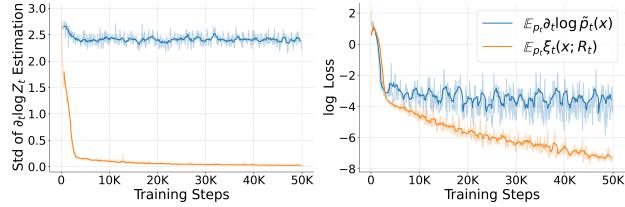


Figure 1: Comparison of std. dev. and training loss for different estimators of $\partial_t \log Z_t$. Lower variance estimator exhibits lower training loss, indicating a better learned rate matrix satisfying the Kolmogorov equation in Equation (5).

improved training dynamics. In Appendix A.2, we provide a perspective of control variate (Geffner & Domke, 2018) to further explain this observation. This insight enables a coordinate descent approach to learning the rate matrix. Specifically: i) $\theta \leftarrow \operatorname{argmin}_\theta \int_0^1 \mathbb{E}_{q_t(x)} (\xi_t(x; R_t^\theta) - c_t)^2 dt$; and ii) $c_t \leftarrow \operatorname{argmin}_{c_t} \mathbb{E}_{q_t} (\xi_t(x; R_t) - c_t)^2$. Alternatively, the time derivative can be parameterised directly via a neural network c_t^ϕ , allowing joint optimisation of θ and ϕ through the objective $\operatorname{argmin}_{\theta, \phi} \int_0^1 \mathbb{E}_{q_t(x)} (\xi_t(x; R_t^\theta) - c_t^\phi)^2 dt$. This formulation recovers the physics-informed neural network (PINN) loss proposed in Holderrieth et al. (2025). A detailed discussion of the connection to the PINN loss is provided in Appendix A.3.

3.2 Efficient Training with Locally Equivariant Networks

As previously noted, computing the δ function in Equation (7) requires evaluating the neural network $|\mathcal{N}|$ times, which is computationally prohibitive. Inspired by Holderrieth et al. (2025), we proposed to mitigate this issue by utilising locally equivariant networks, an architectural innovation that significantly reduces the computational complexity with the potential to preserve the capacity of network expressiveness. A central insight enabling this reduction is that any rate matrix can be equivalently expressed as a one-way rate matrix¹, while still inducing the same probabilistic path. This is formalised in the following proposition:

Proposition 1. *For a rate matrix R_t that generates the probabilistic path p_t , there exists a one-way rate matrix $Q_t(y, x) = \left[R_t(y, x) - R_t(x, y) \frac{p_t(y)}{p_t(x)} \right]_+$ if $y \neq x$ and $Q_t(x, x) = \sum_{y \neq x} Q_t(y, x)$, that generates the same probabilistic path p_t , where $[z]_+ = \max(z, 0)$ denotes the ReLU operation.*

This result was originally introduced by Zhang et al. (2023b), and we include a proof in Appendix B.1 for completeness. Building on Proposition 1, we can parameterise R_t^θ directly as a one-way rate matrix. To achieve this, we use a locally equivariant neural network as described by Holderrieth et al. (2025). Specifically, a neural network G is locally equivariant if and only if:

$$G_t^\theta(\tau, i|x) = -G_t^\theta(x_i, i|\operatorname{Swap}(x, i, \tau)), \quad i = 1, \dots, d \quad (9)$$

where $\operatorname{Swap}(x, i, \tau) = (x_1, \dots, x_{i-1}, \tau, x_{i+1}, \dots, x_d)$ and $\tau \in \{1, \dots, S\} \triangleq \mathcal{S}$. Based on this, the one-way rate matrix can be defined as $R_t^\theta(\tau, i|x) \triangleq [G_t^\theta(\tau, i|x)]_+$. Substituting this parametrization into Equation (7), we obtain the simplified expression:

$$\delta_t(x; R_t^\theta) = \partial_t \log p_t(x) + \sum_{i, y_i \neq x_i} [G_t^\theta(y_i, i|x)]_+ - [-G_t^\theta(y_i, i|x)]_+ \frac{p_t(y)}{p_t(x)}. \quad (10)$$

This formulation reduces the computational cost from $\mathcal{O}(|\mathcal{N}|)$ to $\mathcal{O}(1)$, enabling far more efficient training. We term the proposed method as discrete neural flow sampler (DNFS) and summarise the training and sampling details in Appendix C. Nonetheless, the gain in efficiency introduces challenges in constructing a locally equivariant network (leNet) that is both expressive and flexible.

3.3 Instantiation of leNets: Locally Equivariant Transformer

To construct a locally equivariant network, we first introduce *hollow network* (Chen & Duvenaud, 2019). Formally, let $x_{i \leftarrow \tau} = (x_1, \dots, x_i = \tau, \dots, x_d)$ denote the input with its i -th token set to τ . A function $H : \mathcal{X} \mapsto \mathbb{R}^{d \times h}$ is termed a hollow network if it satisfies $H(x_{i \leftarrow \tau})_{i,:} = H(x_{i \leftarrow \tau})_{i,:}, \forall \tau, \tau' \in \mathcal{S}$, where $M_{i,:}$ denotes the i -th row of the matrix M . Intuitively, it implies that the output at position i is invariant to the value of the i -th input token. Hollow networks provide a foundational building block for constructing locally equivariant networks, as formalised in the following proposition.

Proposition 2 (Instantiation of Locally Equivariant Networks). *Let $x \in \mathcal{X}$ denote the input tokens and $H : \mathcal{X} \mapsto \mathbb{R}^{d \times h}$ be a hollow network. Furthermore, for each token $\tau \in \mathcal{S}$, let $\omega_\tau \in \mathbb{R}^h$ be a learnable projection vector. Then, the locally equivariant network can be constructed as:*

$$G(\tau, i|x) = (\omega_\tau - \omega_{x_i})^T H(x)_{i,:}.$$

¹A rate matrix R is said to be one-way if $R(y, x) > 0$ implies $R(x, y) = 0$. That is, if a transition from x to y is permitted, the reverse transition must be impossible.

This can be verified via $G(\tau, i|x) = -(\omega_{x_i} - \omega_\tau)^T H(\text{Swap}(x, i, \tau))_{i,:} = -G(x_i, i|\text{Swap}(x, i, \tau))$. Although Proposition 2 offers a concrete approach to constructing locally equivariant networks, significant challenges persist. In contrast to globally equivariant architectures (Cohen & Welling, 2016; Fuchs et al., 2020), where the composition of equivariant layers inherently preserves equivariance, locally equivariant networks are more delicate to design. In particular, stacking locally equivariant layers does not, in general, preserve local equivariance. While Holderith et al. (2025) propose leveraging multi-layer perceptions (MLPs), attention mechanisms, and convolutional layers (see Appendix B.2 for details) to construct locally equivariant networks, these architectures may still fall short in terms of representational capacity and flexibility.

Locally Equivariant Transformer.

As shown in Proposition 2, a crucial component to construct a locally equivariant network is the hollow network. Specifically, the key design constraint is that the network’s output at dimension i must be independent of the corresponding input value x_i . Otherwise, any dependence would result in information leakage and violate local equivariance. However, the i -th output may depend freely on all other coordinates of the input token x except for the i -th entry. This insight motivates the use of hollow transformers (Sun et al., 2023c) as a foundation for constructing locally equivariant networks. Specifically, it employs two autoregressive Transformers (Vaswani et al., 2017; Radford et al., 2018) per layer; one processing inputs from left to right, and the other from right to left. In the readout layer, the representations from two directions are fused via attention to produce the output. This design ensures that each output dimension remains independent of its corresponding input coordinate, while still leveraging the expressiveness of multi-layer Transformers. Thereby, the final output $G_t^\theta(\cdot, i|x)$ can be obtained by taking the inner product between the hollow attention output and the token embeddings produced by the projection layer. We term the proposed architecture as locally equivariant transformer (leTF), and defer the implementation details to Appendix B.3.

Comparison of Different leNets. In Figure 3, we compare leTF with other locally equivariant networks for training a discrete neural flow sampler on the Ising model. The results show that leTF achieves lower estimation errors and higher effective sample sizes (see Appendix E.1 for experimental details). leAttn and leMLP, which each consist of only a single locally equivariant layer, perform significantly worse, highlighting the importance of network expressiveness in achieving effective local equivariance. Although leConv performs comparably to leTF, its convolutional design is inherently less flexible. It is restricted to grid-structured data, such as images or the Ising model, and does not readily generalise to other data types like text or graphs. Additionally, as shown in Figure 14, leTF achieves lower training loss compared to leConv, further confirming its advantage in expressiveness.

4 Applications and Experiments

To support our theoretical discussion, we first evaluate the proposed methods by sampling from predefined unnormalised distributions. We then demonstrate two important applications to DNFS: i)

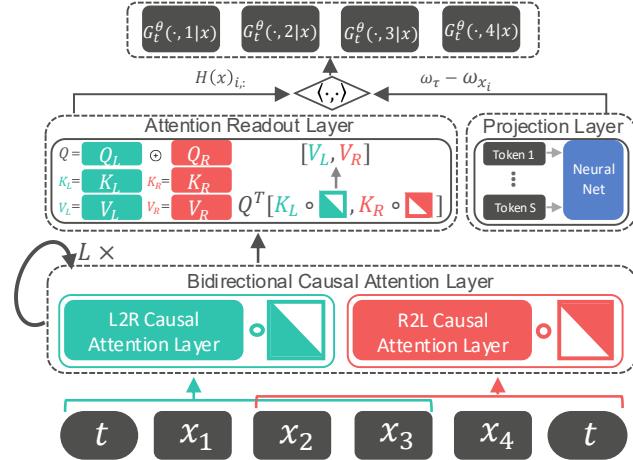


Figure 2: Illustration of the leTF network.

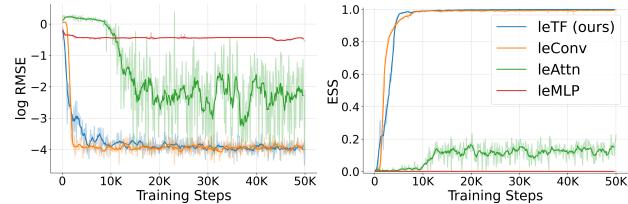


Figure 3: Comparison of log RMSE (\downarrow) and ESS (\uparrow) for different locally equivariant networks. More expressive networks achieve better performance.

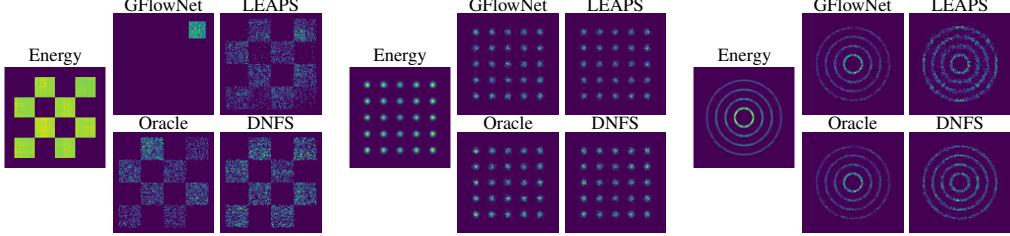


Figure 4: Comparison between different discrete samplers on pre-trained EBMs.

training discrete energy-based models and ii) solving combinatorial optimisation problems. Detailed experimental settings and additional results are provided in Appendix E.

4.1 Sampling from Unnormalised Distributions

Sampling from Pre-trained EBMs. We begin by evaluating the effectiveness of our method by sampling from a pre-trained deep energy-based model. Specifically, we train an EBM on 32-dimensional binary data obtained by applying the Gray code transformation (Waggener & Waggener, 1995) to a 2D continuous plane, following Dai et al. (2020). The EBM consists of a 4-layer MLP with 256 hidden units per layer and is trained using the discrete energy discrepancy introduced in Schröder et al. (2024). Therefore, the trained EBM defines an unnormalised distribution, upon which we train a discrete neural sampler. We benchmark DNFS against three baselines: (i) long-run Gibbs sampling (Casella & George, 1992) as the oracle; (ii) GFlowNet with trajectory balance (Malkin et al., 2022); and (iii) LEAPS (Holderrieth et al., 2025) with the proposed leTF network.

The results, shown in Figure 4, demonstrate that the proposed method, DNFS, produces samples that closely resemble those from the oracle Gibbs sampler. In contrast, GFlowNet occasionally suffers from mode collapse, particularly on structured datasets such as the checkerboard pattern. Although LEAPS with leTF achieves performance comparable to DNFS, it sometimes produces inaccurate samples that fall in smoother regions of the energy landscape, potentially due to imprecise estimation of $\partial_t \log Z_t$. Furthermore, we observe that LEAPS with leConv performs poorly in this setting (see Figure 12), reinforcing the limited expressiveness of locally equivariant convolutional networks when applied to non-grid data structures. For a more comprehensive evaluation, additional visualisations on other datasets are provided in Figure 11, further illustrating the effectiveness of our method.

Sampling from Ising Models. We further evaluate our method on the task of sampling from the lattice Ising model, which has the form of

$$p(x) \propto \exp(x^T J x), x \in \{-1, 1\}^D, \quad (11)$$

where $J = \sigma A_D$ with $\sigma \in \mathbb{R}$ and A_D being the adjacency matrix of a $D \times D$ grid.² In Figure 5, we evaluate DNFS on a $D = 10 \times 10$ lattice grid with $\sigma = 0.1$, comparing it to baselines methods in terms of effective sample size (ESS) (see Appendix D.1 for details) and the energy histogram of 5,000 samples. The oracle energy distribution is approximated using long-run Gibbs sampling. The results show that DNFS performs competitively with LEAPS and significantly outperforms GFlowNet, which fails to capture the correct mode of the energy distribution. Although LEAPS with leConv achieves a comparable effective sample size, it yields a less accurate approximation of the energy distribution compared to DNFS. Furthermore, DNFS attains a lower loss value, as shown in Figure 15. These findings underscore the effectiveness of the proposed neural sampler learning algorithm and highlight the strong generalisation capability of leTF across both grid-structured and non-grid data. For a more comprehensive evaluation, we also compare our method with MCMC-based approaches in Figure 13, further demonstrating the efficacy of our approach.

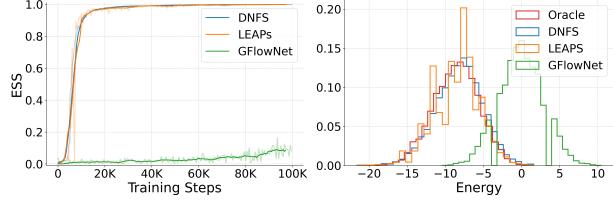


Figure 5: Comparison of effective sample size and histogram of sample energy on the lattice Ising model.

²The adjacency matrix is constructed using $A_D = \text{igraph.Graph.Lattice}(\text{dim}=[D, D], \text{circular}=\text{True})$.

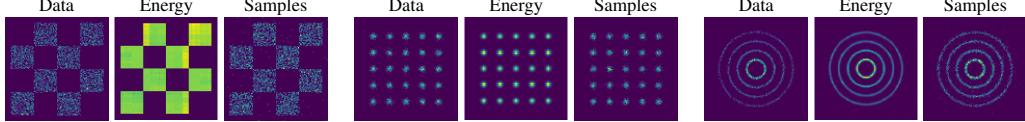


Figure 6: Results of probability mass estimation in training discrete EBMs. We visualise the training data, learned energy landscape, and the synthesised samples of DNFS.

4.2 Training Discrete Energy-based Models

A key application of DNFS is training energy-based models (EBMs). Specifically, EBMs define a parametric distribution $p_\phi \propto \exp(-E_\phi(x))$, where the goal is to learn an energy function E_ϕ that approximates the data distribution. EBMs are typically trained using contrastive divergence (Hinton, 2002), which estimates the gradient of the log-likelihood as

$$\nabla_\phi \log p_\phi(x) = \mathbb{E}_{p_\phi(y)}[\nabla_\phi E_\phi(y)] - \nabla_\phi E_\phi(x). \quad (12)$$

To approximate this intractable gradient, we train a rate matrix R_t^θ to sample from the target p_ϕ . This enables using importance sampling to estimate the expectation (see Appendix D.1 for details).

$$\mathbb{E}_{p_\phi(x)}[\nabla_\phi E_\phi(x)] \approx \sum_{k=1}^K \frac{\exp(w^{(k)})}{\sum_{j=1}^K \exp(w^{(j)})} \nabla_\phi E_\phi(x^{(k)}), \quad w^{(k)} = \int_0^1 \xi_t(x_t; R_t^\theta) dt. \quad (13)$$

This neural-sampler-based approach is more effective than traditional MCMC methods, as in optimal training, it has guarantee to produce exact samples from the target distribution within a fixed number of sampling steps. Moreover, neural samplers are arguably easier to discover regularities and jump between modes compared to MCMC methods, leading to better exploration of the whole energy landscape, and thus results in a more accurate estimate of the energy function (Zhang et al., 2022a). To demonstrate the effectiveness of DNFS in energy-based modelling, we conduct experiments on probability mass estimation with synthetic data and training Ising models.

Probability Mass Estimation. Following Dai et al. (2020), we first generate 2D floating-point data from several two-dimensional distributions. Each dimension is then encoded using a 16-bit Gray code, resulting in a 32-dimensional training dataset with 2 possible states per dimension.

Figure 6 illustrates the estimated energy landscape alongside samples generated using the trained DNFS sampler. The results demonstrate that the learned EBM effectively captures the multi-modal structure of the underlying distribution, accurately modelling the energy across the data support. The sampler produces samples that closely resemble the training data, highlighting the effectiveness of DNFS in training discrete EBMs. Additional qualitative results are presented in Figure 16. In Table 3, we provide a quantitative comparison of our method with several baselines, focusing in particular on two contrastive divergence (CD)-based approaches: PCD (Tieleman, 2008) with MCMC and ED-GFN (Zhang et al., 2022a) with GFlowNet. Our method, built upon the proposed DNFS, consistently outperforms PCD in most settings, underscoring the effectiveness of DNFS in training energy-based models. While ED-GFN achieves better performance than DNFS, it benefits from incorporating a Metropolis-Hastings (MH) (Hastings, 1970) correction to sample from the model distribution p_ϕ in Equation (12), which may offer an advantage over the importance sampling strategy used in Equation (13). We leave the integration of MH into DNFS as a direction for future work.

Training Ising Models. We further assess DNFS for training the lattice model defined in Equation (11). Following Grathwohl et al. (2021), we generate training data using Gibbs sampling and use these samples to learn a symmetric matrix J_ϕ to estimate the true matrix in the Ising model. Importantly, the training algorithms do not have access to the true data-generating matrix J , but only to the synthesised samples.

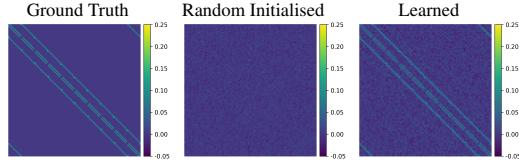


Figure 7: Results on learning Ising models.

In Figure 7, we consider a $D = 10 \times 10$ grid with $\sigma = 0.1$ and visualise the learned matrix J_ϕ using a heatmap. The results show that the proposed method successfully captures the underlying pattern of the ground truth, demonstrating the effectiveness of DNFS. Further quantitative analysis across various configurations of D and σ is presented in Table 5.

Table 1: Max independent set experimental results. We report the absolute performance, approximation ratio (relative to GUROBI), and inference time.

METHOD	ER 16-20			ER 32-40			ER 64-75		
	SIZE \uparrow	DROP \downarrow	TIME \downarrow	SIZE \uparrow	DROP \downarrow	TIME \downarrow	SIZE \uparrow	DROP \downarrow	TIME \downarrow
GUROBI	8.92	0.00%	4:00	14.62	0.00%	4:03	20.55	0.00%	4:10
RANDOM	5.21	41.6%	0:03	6.31	56.8%	0:06	8.63	58.0%	0:09
DMALA	8.81	1.23%	0:21	14.02	4.10%	0:22	19.54	4.91%	0:24
GFLOWNET	8.75	1.91%	0:02	13.93	4.72%	0:04	19.13	6.91%	0:07
DNFS	8.28	7.17%	0:03	13.18	9.85%	0:06	18.12	11.8%	0:09
DNFS+DMALA	8.91	0.11%	0:10	14.31	2.12%	0:15	20.06	2.38%	0:22

4.3 Solving Combinatorial Optimisation Problems

Another application of DNFS is solving combinatorial optimisation problems. As an example, we describe how to formulate the maximum independent set as a sampling problem.

Maximum Independent Set as Sampling. Given a graph $G = (V, E)$, the maximum independent set (MIS) problem aims to find the largest subset of non-adjacent vertices. It can be encoded as a binary vector $x \in \{0, 1\}^{|V|}$, where $x_i = 1$ if vertex i is included in the set, and $x_i = 0$ otherwise. The objective is to maximise $\sum_{i=1}^{|V|} x_i$ subject to $x_i x_j = 0$ for all $(i, j) \in E$. This can be formulated as sampling from the following unnormalised distribution:

$$p(x) \propto \exp \left(\frac{1}{T} \left(\sum_{i=1}^{|V|} x_i - \lambda \sum_{(i,j) \in E} x_i x_j \right) \right), \quad (14)$$

where $T > 0$ is the temperature and $\lambda > 1$ is a penalty parameter enforcing the independence constraint. As $T \rightarrow 0$, $p(x)$ uniformly concentrates on the maximum independent sets.

Therefore, we can train DNFS to sample from $p(x)$, which will produce high-quality solutions to the MIS problem. To enable generalisation across different graphs G , we condition the locally equivariant transformer on the graph structure. Specifically, we incorporate the Graphformer architecture (Ying et al., 2021), which adjusts attention weights based on the input graph. This allows the model to adapt to varying graph topologies. We refer to this architecture as the locally equivariant Graphformer (leGF), with implementation details provided in Appendix D.4.

Experimental Settings. In this experiment, we apply our method to solve the Maximum Independent Set (MIS) problem, with other settings deferred to Appendix E.3. Specifically, we benchmark MIS on Erdős–Rényi (ER) random graphs (Erdos, 1961), comprising 1,000 training and 100 testing instances, each with 16 to 75 vertices. Evaluation on the test set includes both performance and inference time. We report the average solution size and the approximation ratio with respect to the best-performing mixed-integer programming solver (GUROBI) (Gurobi, 2023), which serves as the oracle.

Results & analysis. We compare our method against two baselines: an annealed MCMC sampler (Sun et al., 2023b) using DMALA (Zhang et al., 2022b), and a neural sampler based on GFlowNet (Zhang et al., 2023a). Additionally, we include results from a randomly initialised version of DNFS without training, which serves as an estimate of the task’s intrinsic difficulty. As shown in Table 1, DNFS after training substantially outperforms its untrained counterpart, highlighting the effectiveness of our approach. While the MCMC-based method achieves the strongest overall performance, it requires longer inference time. Compared to GFlowNet, another neural sampler, DNFS performs slightly worse. This may be attributed to the fact that GFlowNet restricts sampling to feasible solutions only along the trajectory, effectively reducing the exploration space and making the learning problem easier. Incorporating this inductive bias into DNFS is a promising direction for future work. Nevertheless, a key advantage of our method is that the unnormalised marginal distribution p_t is known, allowing us to integrate additional MCMC steps to refine the sampling trajectory. As shown in the last row of Table 1, this enhancement leads to a substantial performance gain. Further analysis of this approach is provided in Table 7 in the appendix.

5 Related Work

CTMCs and Discrete Diffusion. Our work builds on the framework of continuous-time Markov chains (CTMCs), which were first introduced in generative modelling by Austin et al. (2021); Sun et al. (2023c); Campbell et al. (2022) under the context of continuous-time discrete diffusion models, where the rate matrix is learned from training data. This approach was later simplified and generalised to discrete-time masked diffusion (Shi et al., 2024; Sahoo et al., 2024; Ou et al., 2024), demonstrating strong performance across a wide range of applications, including language modelling (Lou et al., 2024; Zhang et al., 2025), molecular simulation (Campbell et al., 2024), and code generation (Gat et al., 2024; Gong et al., 2025). However, these methods require training data and are inapplicable when only an unnormalised target is given.

MCMC and Neural Samplers. Markov chain Monte Carlo (MCMC) (Metropolis et al., 1953) is the *de facto* approach to sampling from a target distribution. In discrete spaces, Gibbs sampling (Casella & George, 1992) is a widely adopted method. Building on this foundation, Zanella (2020) improve the standard Gibbs method by incorporating locally informed proposals to improve sampling efficiency. This method was extended to include gradient information to drastically reduce the computational complexity of flipping bits in several places. This idea was further extended by leveraging gradient information (Grathwohl et al., 2021; Sun et al., 2022a), significantly reducing the computational cost. Inspired by these developments, discrete analogues of Langevin dynamics have also been introduced to enable more effective sampling in high-dimensional discrete spaces (Zhang et al., 2022b; Sun et al., 2023a). Despite their theoretical appeal, MCMC methods often suffer from slow mixing and poor convergence in practice. To address these limitations, recent work has proposed neural samplers, including diffusion-based (Vargas et al., 2024; Chen et al., 2024; Richter & Berner, 2024) and flow-based (Máté & Fleuret, 2023; Tian et al., 2024; Chen et al., 2025) approaches. However, the majority of these methods are designed for continuous spaces, and there remains a notable gap in the literature when it comes to sampling methods for discrete distributions. A few exceptions include Sanokowski et al. (2024, 2025), which are inspired by discrete diffusion models and primarily target combinatorial optimisation problems. A concurrent work, MDNS (Zhu et al., 2025), introduces a masked diffusion neural sampler grounded in stochastic optimal control theory (Berner et al., 2022). LEAPS (Holderrieth et al., 2025) and our method DNFS are more closely related to discrete flow models (Campbell et al., 2024; Gat et al., 2024), as both can be viewed as learning a CTMC to satisfy the Kolmogorov forward equation. While LEAPS parametrise $\partial_t \log Z_t$ using a neural network, DNFS estimates it via coordinate descent.

Discrete EBMs and Neural Combinatorial Optimisation. Contrastive divergence is the *de facto* approach to train energy-based models, but it relies on sufficiently fast mixing of Markov chains, which typically cannot be achieved (Nijkamp et al., 2020). To address this, several sampling-free alternatives have been proposed, including energy discrepancy (Schröder et al., 2023; Schröder et al., 2024), ratio matching (Lyu, 2012), and variational approaches (Lázaro-Gredilla et al., 2021). More recently, Zhang et al. (2022a) replace MCMC with GFlowNet, a neural sampler that arguably offers improvement by reducing the risk of getting trapped in local modes. Our work follows this line of research by using DNFS as a neural alternative to MCMC for training energy-based models. Sampling methods are also widely used to solve combinatorial optimisation problems (COPs). Early work (Sun et al., 2022b) demonstrated the effectiveness of MCMC techniques for this purpose. More recent approaches (Zhang et al., 2023a; Sanokowski et al., 2024, 2025) leverage neural samplers to learn amortised solvers for COPs. In this paper, we further show that DNFS is well-suited for combinatorial optimisation tasks, demonstrating its flexibility and broad applicability.

6 Conclusion and Limitation

We proposed discrete neural flow samplers (DNFS), a discrete sampler that learns a continuous-time Markov chain to satisfy the Kolmogorov forward equation. While our empirical studies demonstrate the effectiveness of DNFS across various applications, it also presents several limitations. A natural direction for future work is to extend DNFS beyond binary settings. However, this poses significant challenges due to the high computational cost of evaluating the ratios in Equation (7). As demonstrated in Appendix C.2, a naive Taylor approximation introduces bias into the objective, resulting in suboptimal solutions. Overcoming this limitation will require more advanced and principled approximation techniques. Additionally, we find that the current framework struggles to

scale to very high-dimensional distributions. This difficulty arises mainly from the summation over the ratios in Equation (7), which can lead to exploding loss values. Designing methods to stabilise this computation represents a promising avenue for future research. Finally, extending DNFS to the masked diffusion setting offers another compelling direction, with the potential to support more flexible and efficient sampling over structured discrete spaces.

Broader impact. This paper aims to advance machine learning research. While there may be potential societal impacts, none require specific mention at this time.

Acknowledgements

ZO is supported by the Lee Family Scholarship. We would like to thank Tobias Schröder and Sangwoong Yoon for their valuable discussions on the early draft of this work. ZO also thanks Peter Holderith for generously sharing his insights on LEAPS during their discussion at ICLR 2025.

References

Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and van den Berg, R. Structured denoising diffusion models in discrete state-spaces. In Ranzato, M., Beygelzimer, A., Dauphin, Y. N., Liang, P., and Vaughan, J. W. (eds.), *Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*, pp. 17981–17993, 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/958c530554f78bcd8e97125b70e6973d-Abstract.html>.

Barabási, A.-L. and Albert, R. Emergence of scaling in random networks. *science*, 286(5439):509–512, 1999.

Berner, J., Richter, L., and Ullrich, K. An optimal control perspective on diffusion-based generative modeling. *arXiv preprint arXiv:2211.01364*, 2022.

Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. *Time series analysis: forecasting and control*. John Wiley & Sons, 2015.

Campbell, A., Benton, J., Bortoli, V. D., Rainforth, T., Deligiannidis, G., and Doucet, A. A continuous time framework for discrete denoising models. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.), *Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022*, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/b5b528767aa35f5b1a60fe0aaeca0563-Abstract-Conference.html.

Campbell, A., Yim, J., Barzilay, R., Rainforth, T., and Jaakkola, T. S. Generative flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=kQwSbv0BR4>.

Casella, G. and George, E. I. Explaining the gibbs sampler. *The American Statistician*, 46(3):167–174, 1992.

Chen, J., Richter, L., Berner, J., Blessing, D., Neumann, G., and Anandkumar, A. Sequential controlled langevin diffusions. *ArXiv preprint*, abs/2412.07081, 2024. URL <https://arxiv.org/abs/2412.07081>.

Chen, R. T. and Duvenaud, D. K. Neural networks with cheap differential operators. *Advances in Neural Information Processing Systems*, 32, 2019.

Chen, W., Ou, Z., and Li, Y. Neural flow samplers with shortcut models. *ArXiv preprint*, abs/2502.07337, 2025. URL <https://arxiv.org/abs/2502.07337>.

Cohen, T. and Welling, M. Group equivariant convolutional networks. In Balcan, M. and Weinberger, K. Q. (eds.), *Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016*, volume 48 of *JMLR Workshop and Conference Proceedings*, pp. 2990–2999. JMLR.org, 2016. URL <http://proceedings.mlr.press/v48/cohenc16.html>.

Dai, H., Singh, R., Dai, B., Sutton, C., and Schuurmans, D. Learning discrete energy-based models via auxiliary-variable local exploration. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.), *Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/7612936dcc85282c6fa4dd9d4ffe57f1-Abstract.html>.

Del Moral, P. and Penev, S. *Stochastic processes: From applications to theory*. Chapman and Hall/CRC, 2017.

Erdos, P. On the evolution of random graphs. *Bulletin of the Institute of International Statistics*, 38:343–347, 1961.

Ferdinand, A. E. and Fisher, M. E. Bounded and inhomogeneous ising models. i. specific-heat anomaly of a finite lattice. *Physical Review*, 185(2):832, 1969.

Fuchs, F., Worrall, D. E., Fischer, V., and Welling, M. Se(3)-transformers: 3d roto-translation equivariant attention networks. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.), *Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/15231a7ce4ba789d13b722cc5c955834-Abstract.html>.

Gat, I., Remez, T., Shaul, N., Kreuk, F., Chen, R. T. Q., Synnaeve, G., Adi, Y., and Lipman, Y. Discrete flow matching. In Globersons, A., Mackey, L., Belgrave, D., Fan, A., Paquet, U., Tomczak, J. M., and Zhang, C. (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/f0d629a734b56a642701bba7bc8bb3ed-Abstract-Conference.html.

Geffner, T. and Domke, J. Using large ensembles of control variates for variational inference. In Bengio, S., Wallach, H. M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.), *Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada*, pp. 9982–9992, 2018. URL <https://proceedings.neurips.cc/paper/2018/hash/dead35fa1512ad67301d09326177c42f-Abstract.html>.

Gelman, A. and Meng, X.-L. Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. *Statistical science*, pp. 163–185, 1998.

Gong, S., Zhang, R., Zheng, H., Gu, J., Jaitly, N., Kong, L., and Zhang, Y. Diffucoder: Understanding and improving masked diffusion models for code generation. *arXiv preprint arXiv:2506.20639*, 2025.

Grathwohl, W., Swersky, K., Hashemi, M., Duvenaud, D., and Maddison, C. J. Oops I took A gradient: Scalable sampling for discrete distributions. In Meila, M. and Zhang, T. (eds.), *Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event*, volume 139 of *Proceedings of Machine Learning Research*, pp. 3831–3841. PMLR, 2021. URL <http://proceedings.mlr.press/v139/grathwohl21a.html>.

Gurobi, O. Llc gurobi optimizer reference manual. <https://www.gurobi.com/>, 2023.

Hastings, W. K. Monte carlo sampling methods using markov chains and their applications. 1970.

Hinton, G. E. Training products of experts by minimizing contrastive divergence. *Neural computation*, 14(8): 1771–1800, 2002.

Holderrieth, P., Albergo, M. S., and Jaakkola, T. Leaps: A discrete neural sampler via locally equivariant networks. 2025. URL <https://api.semanticscholar.org/CorpusID:276408852>.

Kahn, H. Random sampling (monte carlo) techniques in neutron attenuation problems. i. *Nucleonics (US Ceased publication)*, 6(See also NSA 3-990), 1950.

Lartillot, N. and Philippe, H. A bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. *Molecular biology and evolution*, 21(6):1095–1109, 2004.

Lázaro-Gredilla, M., Dedieu, A., and George, D. Perturb-and-max-product: Sampling and learning in discrete energy-based models. In Ranzato, M., Beygelzimer, A., Dauphin, Y. N., Liang, P., and Vaughan, J. W. (eds.), *Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*, pp. 928–940, 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/07b1c04a30f798b5506c1ec5acfb9031-Abstract.html>.

Lee, C. K., Jeha, P., Frellsen, J., Lio, P., Albergo, M. S., and Vargas, F. Debiasing guidance for discrete diffusion with sequential monte carlo. *ArXiv preprint, abs/2502.06079*, 2025. URL <https://arxiv.org/abs/2502.06079>.

Liu, J. S. and Liu, J. S. *Monte Carlo strategies in scientific computing*, volume 10. Springer, 2001.

Lou, A., Meng, C., and Ermon, S. Discrete diffusion modeling by estimating the ratios of the data distribution. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=CNicRIVIPA>.

Lyu, S. Interpretation and generalization of score matching. *arXiv preprint arXiv:1205.2629*, 2012.

Malkin, N., Jain, M., Bengio, E., Sun, C., and Bengio, Y. Trajectory balance: Improved credit assignment in gflownets. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.), *Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022*, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/27b51baca8377a0cf109f6ecc15a0f70-Abstract-Conference.html.

Máté, B. and Fleuret, F. Learning interpolations between boltzmann densities. *ArXiv preprint*, abs/2301.07388, 2023. URL <https://arxiv.org/abs/2301.07388>.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. Equation of state calculations by fast computing machines. *The journal of chemical physics*, 21(6):1087–1092, 1953.

Mézard, M., Parisi, G., and Virasoro, M. A. *Spin glass theory and beyond: An Introduction to the Replica Method and Its Applications*, volume 9. World Scientific Publishing Company, 1987.

Murray, I., Ghahramani, Z., and MacKay, D. Mcmc for doubly-intractable distributions. *arXiv preprint arXiv:1206.6848*, 2012.

Neal, R. M. Annealed importance sampling. *Statistics and computing*, 11:125–139, 2001.

Neal, R. M. et al. Mcmc using hamiltonian dynamics. *Handbook of markov chain monte carlo*, 2(11):2, 2011.

Newman, M. E. and Barkema, G. T. *Monte Carlo methods in statistical physics*. Clarendon Press, 1999.

Nijkamp, E., Hill, M., Han, T., Zhu, S., and Wu, Y. N. On the anatomy of mcmc-based maximum likelihood learning of energy-based models. In *The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020*, pp. 5272–5280. AAAI Press, 2020. URL <https://aaai.org/ojs/index.php/AAAI/article/view/5973>.

Norris, J. R. *Markov chains*. Number 2. Cambridge university press, 1998.

Oksendal, B. *Stochastic differential equations: an introduction with applications*. Springer Science & Business Media, 2013.

Ou, J., Nie, S., Xue, K., Zhu, F., Sun, J., Li, Z., and Li, C. Your absorbing discrete diffusion secretly models the conditional distributions of clean data. *ArXiv preprint*, abs/2406.03736, 2024. URL <https://arxiv.org/abs/2406.03736>.

Pani, C., Ou, Z., and Li, Y. Test-time alignment of discrete diffusion models with sequential monte carlo. *arXiv preprint arXiv:2505.22524*, 2025.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al. Improving language understanding by generative pre-training. 2018.

Ranganath, R., Gerrish, S., and Blei, D. M. Black box variational inference. In *Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, AISTATS 2014, Reykjavik, Iceland, April 22-25, 2014*, volume 33 of *JMLR Workshop and Conference Proceedings*, pp. 814–822. JMLR.org, 2014. URL <http://proceedings.mlr.press/v33/ranganath14.html>.

Richter, L. and Berner, J. Improved sampling via learned diffusions. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=h4pNR0s006>.

Sahoo, S. S., Arriola, M., Schiff, Y., Gokaslan, A., Marroquin, E., Chiu, J. T., Rush, A., and Kuleshov, V. Simple and effective masked diffusion language models. In Globersons, A., Mackey, L., Belgrave, D., Fan, A., Paquet, U., Tomczak, J. M., and Zhang, C. (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/eb0b13cc515724ab8015bc978fdde0ad-Abstract-Conference.html.

Sanokowski, S., Hochreiter, S., and Lehner, S. A diffusion model framework for unsupervised neural combinatorial optimization. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=AFFX1KFHXJ>.

Sanokowski, S., Berghammer, W., Ennemoser, M., Wang, H. P., Hochreiter, S., and Lehner, S. Scalable discrete diffusion samplers: Combinatorial optimization and statistical physics. *ArXiv preprint*, abs/2502.08696, 2025. URL <https://arxiv.org/abs/2502.08696>.

Schröder, T., Ou, Z., Lim, J., Li, Y., Vollmer, S., and Duncan, A. Energy discrepancies: a score-independent loss for energy-based models. *Advances in Neural Information Processing Systems*, 36:45300–45338, 2023.

Schröder, T., Ou, Z., Li, Y., and Duncan, A. B. Energy-based modelling for discrete and mixed data via heat equations on structured spaces. In Globersons, A., Mackey, L., Belgrave, D., Fan, A., Paquet, U., Tomczak, J. M., and Zhang, C. (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/90812824c8b36622e6f61803d03b2926-Abstract-Conference.html.

Shi, J., Zhou, Y., Hwang, J., Titsias, M. K., and Mackey, L. Gradient estimation with discrete stein operators. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.), *Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022*, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/a5a5b0ff87c59172a13342d428b1e033-Abstract-Conference.html.

Shi, J., Han, K., Wang, Z., Doucet, A., and Titsias, M. K. Simplified and generalized masked diffusion for discrete data. In Globersons, A., Mackey, L., Belgrave, D., Fan, A., Paquet, U., Tomczak, J. M., and Zhang, C. (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/bad233b9849f019aead5e5cc60cef70f-Abstract-Conference.html.

Sun, H., Dai, H., Xia, W., and Ramamurthy, A. Path auxiliary proposal for MCMC in discrete space. In *The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022*. OpenReview.net, 2022a. URL <https://openreview.net/forum?id=JSR-YDImK95>.

Sun, H., Guha, E. K., and Dai, H. Annealed training for combinatorial optimization on graphs. *ArXiv preprint*, abs/2207.11542, 2022b. URL <https://arxiv.org/abs/2207.11542>.

Sun, H., Dai, H., Dai, B., Zhou, H., and Schuurmans, D. Discrete langevin samplers via wasserstein gradient flow. In Ruiz, F. J. R., Dy, J. G., and van de Meent, J. (eds.), *International Conference on Artificial Intelligence and Statistics, 25-27 April 2023, Palau de Congressos, Valencia, Spain*, volume 206 of *Proceedings of Machine Learning Research*, pp. 6290–6313. PMLR, 2023a. URL <https://proceedings.mlr.press/v206/sun23f.html>.

Sun, H., Goshvadi, K., Nova, A., Schuurmans, D., and Dai, H. Revisiting sampling for combinatorial optimization. In Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., and Scarlett, J. (eds.), *International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of *Proceedings of Machine Learning Research*, pp. 32859–32874. PMLR, 2023b. URL <https://proceedings.mlr.press/v202/sun23c.html>.

Sun, H., Yu, L., Dai, B., Schuurmans, D., and Dai, H. Score-based continuous-time discrete diffusion models. In *The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023c. URL <https://openreview.net/pdf?id=BYWWwSY2G5s>.

Theis, L., van den Oord, A., and Bethge, M. A note on the evaluation of generative models. In Bengio, Y. and LeCun, Y. (eds.), *4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings*, 2016. URL [http://arxiv.org/abs/1511.01844](https://arxiv.org/abs/1511.01844).

Thiébaut, H. J. and Zwiers, F. W. The interpretation and estimation of effective sample size. *Journal of Applied Meteorology and Climatology*, 23(5):800–811, 1984.

Tian, Y., Panda, N., and Lin, Y. T. Liouville flow importance sampler. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=OMKNBzf6HJ>.

Tieleman, T. Training restricted boltzmann machines using approximations to the likelihood gradient. In Cohen, W. W., McCallum, A., and Roweis, S. T. (eds.), *Machine Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008), Helsinki, Finland, June 5-9, 2008*, volume 307 of *ACM International Conference Proceeding Series*, pp. 1064–1071. ACM, 2008. doi: 10.1145/1390156.1390290. URL <https://doi.org/10.1145/1390156.1390290>.

Vargas, F., Padhy, S., Blessing, D., and Nüsken, N. Transport meets variational inference: Controlled monte carlo diffusions. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=PP1rudnxiW>.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention is all you need. In Guyon, I., von Luxburg, U., Bengio, S., Wallach, H. M., Fergus, R., Vishwanathan, S. V. N., and Garnett, R. (eds.), *Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA*, pp. 5998–6008, 2017. URL <https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fb053c1c4a845aa-Abstract.html>.

Waggener, B. and Waggener, W. N. *Pulse code modulation techniques*. Springer Science & Business Media, 1995.

Wu, D., Wang, L., and Zhang, P. Solving statistical mechanics using variational autoregressive networks. *Physical review letters*, 122(8):080602, 2019.

Wu, H., Köhler, J., and Noé, F. Stochastic normalizing flows. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.), *Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/41d80bfc327ef980528426fc810a6d7a-Abstract.html>.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., and Liu, T. Do transformers really perform badly for graph representation? In Ranzato, M., Beygelzimer, A., Dauphin, Y. N., Liang, P., and Vaughan, J. W. (eds.), *Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*, pp. 28877–28888, 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/f1c1592588411002af340cbaedd6fc33-Abstract.html>.

Zanella, G. Informed proposals for local mcmc in discrete spaces. *Journal of the American Statistical Association*, 115(530):852–865, 2020.

Zhang, D., Malkin, N., Liu, Z., Volokhova, A., Courville, A. C., and Bengio, Y. Generative flow networks for discrete probabilistic modeling. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvári, C., Niu, G., and Sabato, S. (eds.), *International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA*, volume 162 of *Proceedings of Machine Learning Research*, pp. 26412–26428. PMLR, 2022a. URL <https://proceedings.mlr.press/v162/zhang22v.html>.

Zhang, D., Dai, H., Malkin, N., Courville, A. C., Bengio, Y., and Pan, L. Let the flows tell: Solving graph combinatorial problems with gflownets. In Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., and Levine, S. (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023*, 2023a. URL http://papers.nips.cc/paper_files/paper/2023/hash/27571b74d6cd650b8eb6cf1837953ae8-Abstract-Conference.html.

Zhang, P., Yin, H., Li, C., and Xie, X. Formulating discrete probability flow through optimal transport. In Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., and Levine, S. (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023*, 2023b. URL http://papers.nips.cc/paper_files/paper/2023/hash/e6e706454d72c18582b9c1ff70b11f7d-Abstract-Conference.html.

Zhang, R., Liu, X., and Liu, Q. A langevin-like sampler for discrete distributions. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvári, C., Niu, G., and Sabato, S. (eds.), *International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA*, volume 162 of *Proceedings of Machine Learning Research*, pp. 26375–26396. PMLR, 2022b. URL <https://proceedings.mlr.press/v162/zhang22t.html>.

Zhang, R., Zhai, S., Zhang, Y., Thornton, J., Ou, Z., Susskind, J., and Jaitly, N. Target concrete score matching: A holistic framework for discrete diffusion. *arXiv preprint arXiv:2504.16431*, 2025.

Zhu, Y., Guo, W., Choi, J., Liu, G.-H., Chen, Y., and Tao, M. Mdns: Masked diffusion neural sampler via stochastic optimal control. *arXiv preprint arXiv:2508.10684*, 2025.

7 NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: **The papers not including the checklist will be desk rejected.** The checklist should follow the references and follow the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each question in the checklist:

- You should answer **[Yes]** , **[No]** , or **[NA]** .
- **[NA]** means either that the question is Not Applicable for that particular paper or the relevant information is Not Available.
- Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions) with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While "**[Yes]**" is generally preferable to "**[No]**", it is perfectly acceptable to answer "**[No]**" provided a proper justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or "we were unable to find the license for the dataset we used"). In general, answering "**[No]**" or "**[NA]**" is not grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer **[Yes]** to a question, in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

- **Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist”**,
- **Keep the checklist subsection headings, questions/answers and guidelines below.**
- **Do not modify the questions and only use the provided macros for your answers.**

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope?

Answer: **[Yes]**

Justification: Our claims are supported by the experimental results in Section 4.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: **[Yes]**

Justification: We discuss the limitation of our work in Section 6.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [\[Yes\]](#)

Justification: All theoretical results are correct with the proof given in the appendix.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [\[Yes\]](#)

Justification: Our code will be released in the open-source git repository. In addition, we provide implementation details in the appendix to reproduce our results.

Guidelines:

- The answer NA means that the paper does not include experiments.

- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Our code and data will be fully open-sourced. In the interim, we provide the code for sampling from Ising models in the supplementary materials whilst we prepare our code for the full release.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).

- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [\[Yes\]](#)

Justification: Details of experimental settings are provided in Appendix E.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[Yes\]](#)

Justification: To reduce the impact of randomness, we repeated each experiment multiple times and report aggregated results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: All experiments are conducted on a single Nvidia RTX A6000 GPU.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.

- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: **[Yes]**

Justification: We have been strictly observing the relevant code of ethics, including but not limited to the NeurIPS one.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: **[Yes]**

Justification: Our neural sampler does not pose any foreseeable societal impact as outlined in the guidelines, as the specified concerns are either irrelevant or not applicable to our work.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: **[NA]**

Justification: This does not apply to our case.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Relevant open-sourced code and models are properly cited in our paper.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: This does not apply to our case.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This does not apply to our case.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This does not apply to our case.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorosity, or originality of the research, declaration is not required.

Answer: [No]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.

Appendix for ‘‘Discrete Neural Flow Samplers with Locally Equivariant Transformer’’

Contents

A	Variance Reduction and Control Variates	22
A.1	Proof of Equation (8)	22
A.2	Discrete Stein Control Variates	23
A.3	Connection to LEAPS	24
B	Derivation of Locally Equivariant Transformer	25
B.1	Proof of Proposition 1	25
B.2	Locally Equivariant Networks	26
B.3	Locally Equivariant TransFormer (leTF)	27
C	Details of Training and Sampling of DNFS	28
C.1	Training and Sampling Algorithms	28
C.2	Efficient Ratio Computation	28
D	Applications to Discrete Neural Flow Samplers	29
D.1	Importance Sampling	30
D.2	Training Discrete EBMs with Importance Sampling	33
D.3	Combinatorial Optimisation as Sampling	33
D.4	Locally Equivariant GraphFormer (leGF)	34
E	Details of Experimental Settings and Additional Results	35
E.1	Sampling from Unnormalised Distributions	35
E.2	Training Discrete EBMs	37
E.3	Solving Combinatorial Optimisation Problems	39

A Variance Reduction and Control Variates

In this section, we analyse the variance reduction phenomenon shown in Figure 1 through the lens of control variates. We begin with the proof of Equation (8) and the discussion of control variates, then establish its connection to LEAPS (Holderrieth et al., 2025).

A.1 Proof of Equation (8)

Recall from Equation (8) that the following equation holds:

$$\partial_t \log Z_t = \operatorname{argmin}_{c_t} \mathbb{E}_{p_t} (\xi_t(x; R_t) - c_t)^2, \quad \xi_t(x; R_t) \triangleq \partial_t \log \tilde{p}_t(x_t) - \sum_y R_t(x, y) \frac{p_t(y)}{p_t(x)}.$$

We now provide a detailed proof of this result, beginning with two supporting lemmas.

Lemma 1 (Discrete Stein Identity). *Given a rate matrix $R(y, x)$ that satisfies $R(x, x) = -\sum_{y \neq x} R(y, x)$, we have the identity $\mathbb{E}_{p(x)} \sum_y R(x, y) \frac{p(y)}{p(x)} = 0$.*

Proof. To prove the result, notice that

$$\mathbb{E}_{p(x)} \sum_y R(x, y) \frac{p(y)}{p(x)} = \sum_x \sum_y R(x, y) p(y) = \sum_y p(y) \sum_x R(x, y) = 0,$$

which completes the proof. For a more comprehensive overview of the discrete Stein operator, see [Shi et al. \(2022\)](#). \square

Lemma 2. *Let $c_t^* = \operatorname{argmin}_{c_t} \mathbb{E}_{p_t} (\xi_t(x; R_t) - c_t)^2$, then $c_t^* = \mathbb{E}_{p_t} \xi_t(x; R_t)$.*

Proof. To see this, we can expand the objective

$$\mathcal{L}(c_t) = \operatorname{argmin}_{c_t} \mathbb{E}_{p_t} (\xi_t(x; R_t) - c_t)^2 = c_t^2 - 2c_t \mathbb{E}_{p_t} \xi_t(x; R_t) + c = (c_t - \mathbb{E}_{p_t} \xi_t(x; R_t))^2 + c',$$

where the final expression is minimized when $c_t^* = \mathbb{E}_{p_t} \xi_t(x; R_t)$. \square

We are now ready to prove Equation (8). Specifically:

$$\begin{aligned} c_t^* &= \operatorname{argmin}_{c_t} \mathbb{E}_{p_t} (\xi_t(x; R_t) - c_t)^2 \\ &= \mathbb{E}_{p_t} \xi_t(x; R_t) \\ &= \mathbb{E}_{p_t} \partial_t \log \tilde{p}_t(x) - \mathbb{E}_{p_t} \sum_y R_t(x, y) \frac{p_t(y)}{p_t(x)} \\ &= \mathbb{E}_{p_t} \partial_t \log \tilde{p}_t(x) = \partial_t \log Z_t, \end{aligned}$$

where the second and third equations follow Lemmas 1 and 2 respectively.

A.2 Discrete Stein Control Variates

To better understand the role of control variates ([Geffner & Domke, 2018](#)) in variance reduction as shown in Figure 1, let us consider a standard Monte Carlo estimation problem. Suppose our goal is to estimate the expectation $\mu = \mathbb{E}_\pi[f(x)]$, where $f(x)$ is a function of interest. A basic estimator for μ is the the Monte Carlo average $\hat{\mu} = \frac{1}{K} \sum_{k=1}^K f(x^{(k)})$, $x^{(k)} \sim \pi$. Now, suppose we have access to another function $g(x)$, known as a control variate, which has a known expected value $\gamma = \mathbb{E}_\pi[g(x)]$. We can the use $g(x)$ to construct a new estimator: $\check{\mu} = \frac{1}{K} \sum_{k=1}^K (f(x^{(k)}) - \beta g(x^{(k)})) + \beta \gamma$. This new estimator $\check{\mu}$ is *unbiased* for any choice of β , since $\mathbb{E}[\check{\mu}] = \mathbb{E}[f(x)] - \beta \mathbb{E}[g(x)] + \beta \gamma = \mu$. The benefit of this construction lies not in bias correction but in variance reduction. To see this, we can compute the variance of $\check{\mu}$:

$$\mathbb{V}[\check{\mu}] = \frac{1}{K} (\mathbb{V}[f] - 2\beta \operatorname{Cov}(f, g) + \beta^2 \mathbb{V}[g]). \quad (15)$$

This is a quadratic function of β , and since it is convex, its minimum can be found by differentiating w.r.t. β and setting the derivative to zero. This yields the optimal coefficient $\beta^* = \operatorname{Cov}(f, g) / \mathbb{V}[g]$. Substituting it back into the variance expression (15) gives:

$$\mathbb{V}[\check{\mu}] = \frac{1}{K} \mathbb{V}[\hat{\mu}] (1 - \operatorname{Corr}(f, g)^2). \quad (16)$$

This result shows a key insight: the effectiveness of a control variate depends entirely on its correlation with the target function f . As long as f and g are correlated (positively or negatively), the variance of $\check{\mu}$ is strictly less than that of $\hat{\mu}$. The stronger the correlation, the greater the reduction. In practice, the optimal coefficient β^* can be estimated from the same sample used to compute the Monte Carlo estimate, typically with minimal additional cost ([Ranganath et al., 2014](#)). However, the main challenge lies in selecting or designing a suitable control variate g that both correlates well with f and has a tractable expectation under π . For an in-depth treatment of this topic and practical considerations, see [Geffner & Domke \(2018\)](#).

Fortunately, Lemma 1 provides a principled way to construct a control variate tailored to our setting $\mathbb{E}_{p_t}[f(x)] \triangleq \mathbb{E}_{p_t}[\partial_t \log \tilde{p}_t(x)] \approx \frac{1}{K} \sum_{k=1}^K \partial_t \log \tilde{p}_t(x^{(k)})$, where $x^{(k)} \sim p_t$. To reduce the variance of this estimator, we seek a control variate $g(x)$ whose expectation under p_t is known. Inspired by

the discrete Stein identity, we define $g(x) = \sum_y R_t(x, y) \frac{p_t(y)}{p_t(x)}$, which satisfies $\mathbb{E}_{p_t}[g(x)] = 0$ by Lemma 1. This makes g a valid control variate with known mean. Using this construction, we can define a variance-reduced estimator as:

$$\check{\mu} = \frac{1}{K} \sum_{k=1}^K \partial_t \log \tilde{p}_t(x^{(k)}) - \beta^* \left(\sum_y R_t(x^{(k)}, y) \frac{p_t(y)}{p_t(x^{(k)})} \right), \quad x^{(k)} \sim p_t. \quad (17)$$

This estimator remains unbiased for any β , but with the optimal choice β^* , it can substantially reduce variance. Moreover, in the special case where the parameter θ is optimal (in the sense that the objective in Equation (5) equals zero), an even stronger result emerges: the control variate becomes perfectly (negatively) correlated with the target function. That is, $g(x) = -f(x) + c$, where c is a constant independent of the sample x , leading to $\text{Corr}(f, g) = -1$. In this idealised case, $\check{\mu}$ becomes a zero-variance estimator, a rare but highly desirable scenario. For a more comprehensive discussion of discrete Stein-based control variates and their applications in variance reduction, we refer the reader to [Shi et al. \(2022\)](#).

A.3 Connection to LEAPS

Equation (8) provides a natural foundation for learning the rate matrix R_t^θ using coordinate ascent. This involves alternating between two optimisation steps:

- i) Updating the rate matrix parameters θ by minimising the squared deviation of $\xi_t(x; R_t^\theta)$ from a baseline c_t , averaged over time and a chosen reference distribution $q_t(x)$

$$\theta \leftarrow \operatorname{argmin}_\theta \int_0^1 \mathbb{E}_{q_t(x)} (\xi_t(x; R_t^\theta) - c_t)^2 dt$$

- ii) Updating the baseline c_t to match the expected value of ξ_t under the true distribution $p_t(x)$

$$c_t \leftarrow \operatorname{argmin}_{c_t} \mathbb{E}_{p_t(x)} (\xi_t(x; R_t^\theta) - c_t)^2$$

Alternatively, instead of treating c_t as a scalar baseline, we can directly parametrize it as a neural network c_t^ϕ . This allows us to jointly learn both θ and ϕ by solving the following objective:

$$\theta^*, \phi^* = \operatorname{argmin}_{\theta, \phi} \mathbb{E}_{w(t), q_t(x)} \left[\partial_t \log \tilde{p}_t(x) - c_t^\phi - \sum_y R_t^\theta(x, y) \frac{p_t(y)}{p_t(x)} \right]^2, \quad (18)$$

which matches the Physics-Informed Neural Network (PINN) objective as derived in ([Holderith et al., 2025](#), Proposition 6.1). At optimality, this objective recovers two important conditions: i) The learned network c_t^ϕ recovers the true derivative $\partial_t \log Z_t$; and ii) The rate matrix $R_t^{\theta'}$ satisfies the Kolmogorov forward equation.

A key insight is that even though Equation (8) formally holds when the expectation is taken under p_t , the training objective in Equation (18) remains valid for any reference distribution q_t as long as it shares support with p_t . This is because, at optimality, the residual

$$\partial_t \log \tilde{p}_t(x) - c_t^{\phi^*} - \sum_y R_t^{\theta^*}(x, y) \frac{p_t(y)}{p_t(x)} = 0, \forall x.$$

Integrating both sides with respect to p_t , and invoking the discrete Stein identity (Lemma 1), we find:

$$\mathbb{E}_{p_t} \left[\partial_t \log \tilde{p}_t(x) - c_t^{\phi^*} \right] = 0 \Rightarrow c_t^{\phi^*} = \mathbb{E}_{p_t} [\partial_t \log \tilde{p}_t(x)] = \partial_t \log Z_t.$$

This also naturally admits a coordinate ascent training procedure, where θ and ϕ are updated in turn:

$$\begin{aligned} \theta &\leftarrow \operatorname{argmin}_\theta \mathbb{E}_{w(t), q_t(x)} \left[\partial_t \log \tilde{p}_t(x) - c_t^\phi - \sum_y R_t^\theta(x, y) \frac{p_t(y)}{p_t(x)} \right]^2, \\ c_t^\phi &\leftarrow \mathbb{E}_{w(t), q_t(x)} \left[\partial_t \log \tilde{p}_t(x) - \sum_y R_t^\theta(x, y) \frac{p_t(y)}{p_t(x)} \right], \end{aligned}$$

In this light, the term the term $\sum_y R_t^\theta(x, y) \frac{p_t(y)}{p_t(x)}$ serves as a control variate for estimating $\partial_t \log Z_t$, effectively reducing variance in the learning signal. Under optimal training, c_t^ϕ accurately captures the log-partition derivative, confirming the correctness of the learned dynamics.

Since NDFS closely resembles LEAPS, we summarise the main distinctions below to highlight the unique contributions of our work:

- While LEAPS and DNFS yield similar objective functions, they are derived from different perspectives. DNFS derives the objective by learning the rate matrix to satisfy the Kolmogrove equation, whereas LEAPS learns the rate matrix by minimising the importance weights. Perhaps surprisingly, these two perspectives lead to similar objectives. However, the new perspective from the Kolmogorov equation offers a new insight for future research: leveraging more accurate estimators of $\partial_t \log Z_t$ to further improve performance, which is not evident from the LEAPS framework.
- The success of DNFS highly depends on the proposed Locally Equivariant Transformer (leTF). Compared to the locally equivariant networks in LEAPS, leTF offers greater model capacity and improved adaptability, making it more suitable for diverse modalities and complex input structures. We hope this architectural advancement will inspire future developments, which are essential for advancing both LEAPS and DNFS.
- Unlike LEAPS, which is only evaluated on synthetic Ising and Potts models, DNFS is tested on broader applications, including sampling from Ising models, training EBMs, and solving combinatorial optimisation problems. We hope this wider empirical scope will inspire further research into additional applications of discrete neural samplers.

B Derivation of Locally Equivariant Transformer

B.1 Proof of Proposition 1

It is worth noting that Proposition 1 was first introduced in (Zhang et al., 2023b, Proposition 5), and subsequently utilized by Campbell et al. (2024) to construct the conditional rate matrix, as well as by Holderrieth et al. (2025) in the development of the locally equivariant network. For completeness, we provide a detailed proof of Proposition 1 in this section.

We begin by formally defining the one-way rate matrix

Definition 1 (One-way Rate Matrix). *A rate matrix R is one-way if and only if $R(y, x) > 0 \Rightarrow R(x, y) = 0$. In other words, if a one-way rate matrix permits a transition from x to y , then the transition probability from y to x must be zero.*

We then restate Proposition 1 and provide a detailed proof as follows.

Proposition 1. *For a rate matrix R_t that generates the probabilistic path p_t , there exists a one-way rate matrix $Q_t(y, x) = \left[R_t(y, x) - R_t(x, y) \frac{p_t(y)}{p_t(x)} \right]_+$ if $y \neq x$ and $Q_t(x, x) = \sum_{y \neq x} Q_t(y, x)$, that generates the same probabilistic path p_t , where $[z]_+ = \max(z, 0)$ denotes the ReLU operation.*

Proof. We first prove that the one-way rate matrix Q_t generates the same probabilistic path as R_t :

$$\begin{aligned}
\sum_y Q_t(x, y) p_t(y) &= \sum_{y \neq x} Q_t(x, y) p_t(y) - Q_t(y, x) p_t(x) \\
&= \sum_{y \neq x} [R_t(x, y) p_t(y) - R_t(y, x) p_t(x)]_+ - [R_t(y, x) p_t(x) - R_t(x, y) p_t(y)]_+ \\
&= \sum_{y \neq x} R_t(x, y) p_t(y) - R_t(y, x) p_t(x) \\
&= \sum_y R_t(x, y) p_t(y) = \partial_t p_t(x),
\end{aligned}$$

which completes the proof. We then show that Q_t is one-way:

$$\begin{aligned} Q_t(y, x) > 0 &\Rightarrow R_t(y, x) - R_t(x, y) \frac{p_t(y)}{p_t(x)} > 0 \Rightarrow R_t(x, y) - R_t(y, x) \frac{p_t(x)}{p_t(y)} < 0 \\ &\Rightarrow Q_t(x, y) = \left[R_t(x, y) - R_t(y, x) \frac{p_t(x)}{p_t(y)} \right]_+ = 0. \end{aligned} \quad (19)$$

Thus, $Q_t(y, x) > 0 \Rightarrow Q_t(x, y) = 0$, which completes the proof. \square

B.2 Locally Equivariant Networks

Based on Proposition 1, we can parametrise R_t^θ as a one-way rate matrix, which is theoretically capable of achieving the optimum that minimizes Equation (5). Although the one-way rate matrix is a restricted subset of general rate matrices and thus offers limited flexibility, it enables efficient computation of the objective in Equation (5). To see this, we first formally define the local equivariant network, originally proposed in Holderrieth et al. (2025).

Definition 2 (Locally Equivariant Network). *A neural network G is locally equivariant if and only if*

$$G_t(\tau, i|x) = -G_t(x_i, i|Swap(x, i, \tau)), \quad i = 1, \dots, d \quad (20)$$

where $Swap(x, i, \tau) = (x_1, \dots, x_{i-1}, \tau, x_{i+1}, \dots, x_d)$ and $\tau \in \{1, \dots, S\}$.

We can then parametrise the one-way rate matrix R_t using a locally equivariant network G_t : $R_t(\tau, i|x) = [G_t(\tau, i|x)]_+$, if $\tau \neq x_i$ and $R_t(x, x) = \sum_{y \neq x} R_t(y, x)$. This construction ensures that R_t is a one-way rate matrix. To see this, consider a state $y = (x_1, \dots, x_{i-1}, \tau, x_{i+1}, \dots, x_d)$. If $R_t(y, x) > 0$, then

$$G_t(\tau, i|x) > 0 \Rightarrow -G_t(x_i, i|Swap(x, i, \tau)) > 0 \Rightarrow R_t(x, y) < 0, \quad (21)$$

demonstrating the one-way property. With this parameterisation, the objective function in Equation (5) can be computed as

$$\begin{aligned} \delta_t(x; R_t) &= \partial_t \log p_t(x) + \sum_{i, y_i \neq x_i} R_t^\theta(y_i, i|x) - R_t^\theta(x_i, i|y) \frac{p_t(y)}{p_t(x)} \\ &= \partial_t \log p_t(x) + \sum_{i, y_i \neq x_i} [G_t^\theta(y_i, i|x)]_+ - [G_t^\theta(x_i, i|y)]_+ \frac{p_t(y)}{p_t(x)} \\ &= \partial_t \log p_t(x) + \sum_{i, y_i \neq x_i} [G_t^\theta(y_i, i|x)]_+ - [-G_t^\theta(y_i, i|x)]_+ \frac{p_t(y)}{p_t(x)}, \end{aligned}$$

where the final expression only requires a single forward pass of the network G_t^θ to compute the entire sum, significantly reducing computational cost. To construct a locally equivariant network, we first define its fundamental building block, the hollow network, as follows

Definition 3 (Hollow Network). *Let $x_{i \leftarrow \tau} = (x_1, \dots, x_i = \tau, \dots, x_d) \in \mathcal{X}$ denote the input tokens with its i -th component set to τ . A function $H : \mathcal{X} \mapsto \mathbb{R}^{d \times h}$ is called a hollow network if it satisfies the following condition*

$$H(x_{i \leftarrow \tau})_{i,:} = H(x_{i \leftarrow \tau'})_{i,:} \quad \text{for all } \tau, \tau' \in \mathcal{S},$$

where $M_{i,:}$ denotes the i -th row of the matrix M . In other words, the output at position i is invariant to the input at position i ; that is, the i -th input does not influence the i -th output.

Inspired by Holderrieth et al. (2025), we then introduce the following proposition, which provides a concrete method for instantiating a locally equivariant network.

Proposition 2 (Instantiation of Locally Equivariant Networks). *Let $x \in \mathcal{X}$ denote the input tokens and $H : \mathcal{X} \mapsto \mathbb{R}^{d \times h}$ be a hollow network. Furthermore, for each token $\tau \in \mathcal{S}$, let $\omega_\tau \in \mathbb{R}^h$ be a learnable projection vector. Then, the locally equivariant network can be constructed as:*

$$G(\tau, i|x) = (\omega_\tau - \omega_{x_i})^T H(x)_{i,:}.$$

Proof. We verify local equivariance by showing:

$$\begin{aligned} G(\tau, i|x) &= (\omega_\tau - \omega_{x_i})^T H(x)_{i,:} \\ &= -(\omega_{x_i} - \omega_\tau)^T H(\text{Swap}(x, i, \tau))_{i,:} \\ &= -G(x_i, i|\text{Swap}(x, i, \tau)), \end{aligned}$$

where the second equality follows from the definition of the hollow network in Definition 3, which ensures that the i -th output is invariant to the changes in the i -th input. This confirms that G satisfies the required local equivariance condition as in Definition 2 \square

Based on Proposition 2, we present two locally equivariant architectures introduced in Holderrieth et al. (2025), followed by our proposed locally equivariant transformer.

Locally Equivariant MLP (leMLP) (Holderrieth et al., 2025). Let $x \in \mathbb{R}^{d \times h}$ be the embedded input data. To construct a locally equivariant multilinear perceptron (MLP), we first define a hollow MLP as $H_{\text{MLP}}(x) = \sum_{k=1}^K \sigma(W^k x + b^k)$ where each $W^k \in \mathbb{R}^{d \times d}$ is a weight matrix with zero diagonal entries (i.e., $W_{ii} = 0$ for all i), $b^k \in \mathbb{R}^h$ is the bias term, and σ denotes an element-wise activation function. A locally equivariant MLP can then be defined as $G(\tau, i|x) = (\omega_\tau - \omega_{x_i})^T H_{\text{MLP}}(x)_{i,:}$.

Locally Equivariant Attention (leAttn) (Holderrieth et al., 2025). Let $x = (x_1, \dots, x_d) \in \mathbb{R}^{d \times h}$ be the embedded input data. Similarly, we first define a hollow attention network as

$$H_{\text{Attn}}(x)_{i,:} = \sum_{s \neq i} \frac{\exp(k(x_s)^T q(x_s))}{\sum_{t \neq i} \exp(k(x_t)^T q(x_t))} v(x_s),$$

where q, k, v denote the query, key, and value functions, respectively. Thus a locally equivariant attention network can be defined as $G(\tau, i|x) = (\omega_\tau - \omega_{x_i})^T H_{\text{Attn}}(x)_{i,:}$.

While these two architectures³ offer concrete approaches for constructing locally equivariant networks, their flexibility is limited, as they each consider only a single layer. More importantly, naively stacking multiple MLP or attention layers violates local equivariance, undermining the desired property.

B.3 Locally Equivariant TransFormer (leTF)

In this section, we present the implementation details of the proposed Locally Equivariant Transformer (leTF), an expressive network architecture designed to preserve local equivariance. As introduced in Section 3.3, leTF is formulated as

$$G_t^\theta(\tau, i|x) = (\omega_\tau - \omega_{x_i})^T H_{\text{HTF}}(x)_{i,:}, \quad (22)$$

where ω denotes the learnable token embeddings produced by the projection layer (illustrated in Figure 2), and H_{HTF} represents the Hollow Transformer module. In the following, we focus on the implementation details of the hollow transformer H_{HTF} .

As illustrated in Figure 8, the hollow transformer comprises L bidirectional causal attention layers followed by a single attention readout layer. For clarity, we omit details of each causal attention layer, as they follow the standard Transformer architecture (Vaswani et al., 2017). We denote the outputs of the final left-to-right and right-to-left causal attention layers as

$$\begin{aligned} Q_L, K_L, V_L &= \text{CausalAttn}_{\text{L2R}}(\text{input}); \\ Q_R, K_R, V_R &= \text{CausalAttn}_{\text{R2L}}(\text{input}). \end{aligned}$$

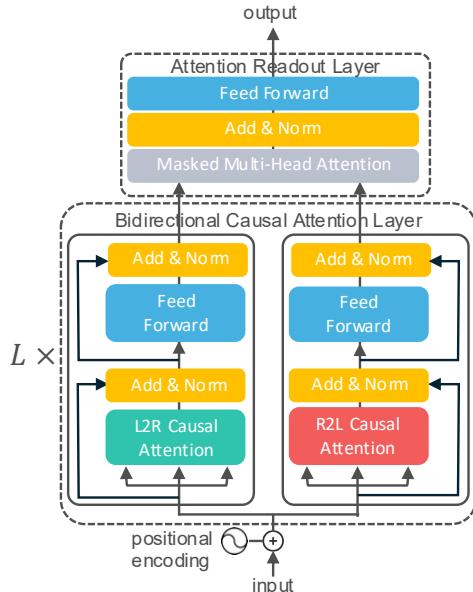


Figure 8: Illustration of the hollow transformer.

³Note that Holderrieth et al. (2025) also introduces a locally equivariant convolutional network; we refer interested readers to their work for further details.

Algorithm 1 Training Procedure of DNFS

Input: initial rate matrix R_t^θ , probability path p_t , time spans $\{t_k\}_{k=0}^K$, outer-loop batch size M , inner-loop batch size N , replay buffer \mathcal{B}

```

1:  $\mathcal{B} \leftarrow \emptyset$  ▷ Initialise replay buffer
2: while Outer-Loop do
3:    $\{x_{t_k}^{(m)}\}_{m=1,k=0}^{M,K} \sim \overrightarrow{\mathbb{Q}}^{p_0, R_t^{\theta_{\text{sg}}}}$  ▷ Generate training samples
4:    $c_t \leftarrow \frac{1}{M} \sum_m \partial_t \log \tilde{p}_t(x_t^{(m)}) - \sum_y R_t^{\theta_{\text{sg}}}(x_t^{(m)}, y) \frac{p_t(y)}{p_t(x_t^{(m)})}, \forall t \in \{t_k\}_{k=0}^K$  ▷  $\partial_t \log Z_t$ 
5:    $\mathcal{B} \leftarrow \mathcal{B} \cup \{(t_k, x_{t_k}^{(m)})\}_{m=1,k=0}^{M,K}$  ▷ update replay buffer
6:   while Inner-Loop do
7:      $\{(t, x_t^{(n)})\}_{n=1}^N \sim \mathcal{U}(\mathcal{B})$  ▷ Uniformly sample from buffer
8:      $\xi_t^{(n)} \leftarrow \partial_t \log \tilde{p}_t(x_t^{(n)}) - \sum_y R_t^\theta(x_t^{(n)}, y) \frac{p_t(y)}{p_t(x_t^{(n)})}$ 
9:      $\mathcal{L}(\theta) \leftarrow \frac{1}{N} \sum_n (\xi_t^{(n)} - c_t)^2$  ▷ Compute training loss
10:     $\theta \leftarrow \text{optimizer\_step}(\theta, \nabla_\theta \mathcal{L}(\theta))$  ▷ Perform gradient update
11:   end while
12: end while
Output: trained rate matrix  $R_t^\theta$ 


---



```

Because causal attention restricts each token to attend only to its preceding tokens, the resulting outputs Q, K, V inherently satisfy the hollow constraint. In the readout layer, we first fuse the two query representations by computing $Q = Q_L + Q_R$, and then apply a masked multi-head attention to produce the final output

$$\text{softmax}\left(\frac{Q[K_L \odot M_L, K_R \odot M_R]^T}{\sqrt{2d_k}}\right)[V_L, V_R],$$

where \odot denotes the element-wise product, d_k is the dimensionality of the key vectors, and M_L and M_R masks that enforce the hollow constraint by masking out future-token dependencies in the left-to-right and right-to-left streams, respectively.

C Details of Training and Sampling of DNFS

C.1 Training and Sampling Algorithms

The training and sampling procedures are presented in Algorithms 1 and 2. For clarity, the rate matrix R_t^θ is parametrised using the proposed locally equivariant network, defined as $R_t^\theta(y, x) \triangleq [G_t^\theta(y_i, i|x)]_+$, where y and x only differ at the i -th coordinate. To initiate training, we discretise the time interval $[0, 1]$ into a set of evenly spaced time spans $\{t_k\}_{k=0}^K$, satisfying $0 = t_0 < \dots < t_K = 1$ and $2t_k = t_{k+1} + t_{k-1}$ for all valid indices k .

In each outer loop of training, we generate trajectory samples by simulating the forward process under the current model parameters. Specifically, samples are drawn from the probability path $\overrightarrow{\mathbb{Q}}^{p_0, R_t^{\theta_{\text{sg}}}}$, defined by the initial distribution p_0 and the current rate matrix $R_t^{\theta_{\text{sg}}}$, where θ_{sg} denotes $\text{stop_gradient}(\theta)$. This forward trajectory is simulated using the Euler–Maruyama method, as detailed in Algorithm 2, and stored in a replay buffer for reuse. During the inner training loop, we draw mini-batches uniformly from the buffer and compute the training loss based on Equation (10). The model parameters are then updated via gradient descent, as described in steps 6–11 of Algorithm 1.

C.2 Efficient Ratio Computation

Although the ratio $\left[\frac{p_t(y)}{p_t(x)} \right]_{y \in \mathcal{N}(x)}$ can be computed in parallel, it remains computationally expensive in general. However, in certain settings, such as sampling from Ising models and solving combinatorial optimisation problems, the ratio can be evaluated efficiently due to the specific form of the underlying distribution. In these cases, the unnormalized distribution takes a quadratic form:

$$p(x) \propto \tilde{p}(x) \triangleq \exp(x^T W x + h^T x), \quad x \in \{0, 1\}^d, W \in \mathbb{R}^{d \times d}, h \in \mathbb{R}^d, \quad (23)$$

Algorithm 2 Sampling Procedure of DNFS

Input: trained rate matrix R_t^θ , initial density p_0 , # steps K

- 1: $x_0 \sim p_0, \quad \Delta t \leftarrow \frac{1}{K}, \quad t \leftarrow 0$ ▷ Initialisation
- 2: **for** $k = 0, \dots, K - 1$ **do**
- 3: $x_{t+\Delta t} \leftarrow \text{Cat}(\mathbf{1}_{x_{t+\Delta t}=x} + R_t(x_{t+\Delta t}, x)\Delta t)$ ▷ Euler-Maruyama update
- 4: $t \leftarrow t + \Delta t$
- 5: **end for**

Output: generated samples x_1

where the neighbourhood $\mathcal{N}(x)$ is defined as the 1-Hamming Ball around x , i.e., all vectors differing from x in exactly one bit. Let y be such a neighbor obtained by flipping the i -th bit: $y_i = \neg x_i$ and $y_j = x_j$ for $j \neq i$. The log of the unnormalised probability can be decomposed as:

$$\log \tilde{p}(x) = \sum_{a \neq i, b \neq i} x_a W_{ab} x_b + x_i \sum_{b \neq i} W_{ib} x_b + x_i \sum_{a \neq i} x_a W_{ai} + x_i W_{ii} x_i + \sum_a h_a x_a. \quad (24)$$

Thus, the change in log-probability when flipping bit i is:

$$\log p(y) - \log p(x) = (1 - 2x_i) \left(\sum_{b \neq i} W_{ib} x_b + \sum_{a \neq i} x_a W_{ai} + W_{ii} + h_i \right). \quad (25)$$

This expression can be vectorised to efficiently compute the log-ratios for all neighbours:

$$\left[\log \frac{p(y)}{p(x)} \right]_{y \in \mathcal{N}(x)} = (1 - 2x) \odot ((W + W^T)x - \text{diag}(W) + h), \quad (26)$$

where \odot denotes element-wise multiplication. Furthermore, in special cases, such as combinatorial optimisation where W is symmetric with zero diagonal, the log-ratio simplifies to

$$\left[\log \frac{p(y)}{p(x)} \right]_{y \in \mathcal{N}(x)} = (1 - 2x) \odot (2Wx + h). \quad (27)$$

In more general settings, where x is a categorical variable and the energy is non-quadratic, there is no closed-form solution for efficiently calculating the likelihood ratio. However, it can be approximated through a first-order Taylor expansion (Grathwohl et al., 2021). Specifically,

$$\log p_t(y) - \log p_t(x) = (y - x) \nabla_x \log p_t(x), \quad (28)$$

which gives the following approximation:

$$\left[\log \frac{p_t(y)}{p_t(x)} \right]_{i,j} = [\nabla_x \log p_t(x)]_{i,j} - x_i^T [\nabla_x \log p_t(x)]_{i,:}, \quad (29)$$

where $\left[\log \frac{p_t(y)}{p_t(x)} \right]_{i,j} \triangleq \log \frac{p_t(x_1, \dots, x_{i-1}, j, x_{i+1}, \dots, x_d)}{p_t(x)}$ and we take the fact that y and x differ only in one position. This approximation requires computing $\nabla_x \log p_t(x)$ just once to estimate the ratio for the entire neighbourhood, thus improving computational efficiency. However, it introduces bias into the training objective in Equation (5), potentially leading to suboptimal solutions.

To illustrate this, we train DNFS to sample from pre-trained deep EBMs by minimising the objective in Equation (5) using two methods for computing the ratio $\frac{p_t(y)}{p_t(x)}$: i) exact computation in parallel; and ii) an approximation via the Taylor expansion in Equation (29). As shown Figure 9, using the approximate ratio leads to inaccurate samples that tend to lie in overly smoothed regions of the energy landscape. This degradation in sample quality is likely caused by the bias introduced by the approximation. Consequently, in deep EBM settings where the energy function is non-quadratic, we opt to compute the exact ratio in parallel, leaving the development of more efficient and unbiased approximations for future work.

D Applications to Discrete Neural Flow Samplers

In this section, we introduce details of two applications to discrete neural flow samplers: training discrete energy-based models and solving combinatorial optimisation problems.

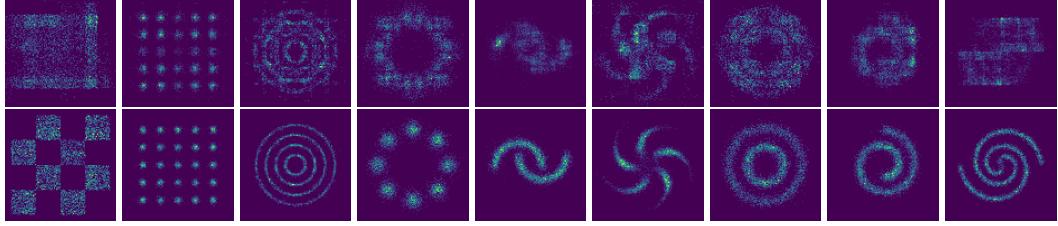


Figure 9: Illustration of the effect of ratio computation in Equation (5). Top row: results using the Taylor expansion approximation; bottom row: results using exact computation. The approximated ratio yields less accurate samples, likely due to the bias introduced in the training objective.

D.1 Importance Sampling

We begin by reviewing the fundamentals of importance sampling, followed by a proof based on the Radon-Nikodym derivative. This approach was also introduced in [Lee et al. \(2025\)](#); [Holderrieth et al. \(2025\)](#); [Pani et al. \(2025\)](#). For completeness, we include a brief recap to make the paper more self-contained.

Importance Sampling. Consider a target distribution $\pi(x) = \frac{\rho(x)}{Z}$, where $\rho(x) \geq 0$ is the un-normalised distribution and $Z = \sum_x \rho(x)$ denotes the normalising constant, which is typically intractable. For a test function $\phi(x)$ of interest, estimating its expectation under π through direct sampling can be challenging. Importance Sampling (IS) ([Kahn, 1950](#)) addresses this by introducing a proposal distribution $q(x)$ that is easier to sample from. The expectation under π can then be re-expressed as

$$\mathbb{E}_{\pi(x)}[\phi(x)] = \frac{1}{Z} \mathbb{E}_{q(x)} \left[\frac{\rho(x)}{q(x)} \phi(x) \right] = \frac{\mathbb{E}_{q(x)} \left[\frac{\rho(x)}{q(x)} \phi(x) \right]}{\mathbb{E}_{q(x)} \left[\frac{\rho(x)}{q(x)} \right]}. \quad (30)$$

This leads to the Monte Carlo estimator:

$$\mathbb{E}_{\pi(x)}[\phi(x)] \approx \sum_{k=1}^K \frac{w^{(k)}}{\sum_{j=1}^K w^{(j)}} \phi(x^{(k)}), \quad x^{(k)} \sim q(x), \quad (31)$$

where $w^{(k)} = \frac{\rho(x^{(k)})}{q(x^{(k)})}$ denotes the importance weight. Although this estimator is consistent as $K \rightarrow \infty$, it often suffers from high variance and low effective sample size ([Thiébaut & Zwiers, 1984](#)), especially when the proposal q is poorly matched to the target π . In theory, the variance of the estimator is minimized when $q(x) \propto \rho(x)\phi(x)$, yielding a zero-variance estimator. While this condition is rarely attainable in practice, it provides a useful guideline: a well-designed proposal should closely approximate the target distribution, i.e., $q(x) \approx \pi(x)$.

CTMT-Inspired Importance Sampling. As noted previously, an ideal proposal should closely approximate the target, i.e., $q(x) \approx \pi(x)$. This motivates the use of continuous-time Markov chains (CTMCs) to construct the proposal. Specifically, let $R_t(y, x)$ denote a rate matrix that defines a forward CTMC with initial distribution $p_0 \propto \eta$, generating a probability path denoted by $\overrightarrow{\mathbb{Q}}^{\eta, R_t}$. To complement this, we define a backward CTMC with initial distribution $p_1 \propto \rho$ and interpolated marginals $p_t \propto \tilde{p}_t := \rho^t \eta^{1-t}$. The backward process is governed by the rate matrix $R'_t(y, x) = R_t(x, y) \frac{p_t(y)}{p_t(x)}$, leading to the backward path distribution $\overleftarrow{\mathbb{Q}}^{\rho, R'_t}$. This construction yields the following importance sampling identity:

$$\mathbb{E}_{\pi(x)}[\phi(x)] = \mathbb{E}_{x_{0 \leq t \leq 1} \sim \overleftarrow{\mathbb{Q}}^{\rho, R'_t}} [\phi(x_1)] = \mathbb{E}_{x_{0 \leq t \leq 1} \sim \overleftarrow{\mathbb{Q}}^{\eta, R_t}} \left[\frac{\overleftarrow{\mathbb{Q}}^{\rho, R'_t}(x_{0 \leq t \leq 1})}{\overrightarrow{\mathbb{Q}}^{\eta, R_t}(x_{0 \leq t \leq 1})} \phi(x_1) \right], \quad (32)$$

which can be approximated via Monte Carlo sampling:

$$\mathbb{E}_{\pi(x)}[\phi(x)] \approx \sum_{k=1}^K \frac{w^{(k)}}{\sum_{j=1}^K w^{(j)}} \phi(x_1^{(k)}), \quad x_{0 \leq t \leq 1}^{(k)} \sim \overleftarrow{\mathbb{Q}}^{\eta, R_t}, \quad w^{(k)} = \frac{\overleftarrow{\mathbb{Q}}^{\rho, R'_t}(x_{0 \leq t \leq 1}^{(k)})}{\overrightarrow{\mathbb{Q}}^{\eta, R_t}(x_{0 \leq t \leq 1}^{(k)})}. \quad (33)$$

This estimator is consistent for any choice of R_t , and it becomes zero-variance when R_t satisfies the Kolmogorov equation in Equation (4), a condition that can be approximately enforced by minimizing the loss in Equation (5). Before delving into the computation of the importance weights $\frac{\overleftarrow{\mathbb{Q}}^{\rho, R'_t}}{\overrightarrow{\mathbb{Q}}^{\eta, R_t}}$, we introduce two key lemmas that underpin the derivation.

Lemma 3 (Radon-Nikodym Derivative (Del Moral & Penev, 2017)). *Let p_0 and p_t be two initial distributions; R_s and R'_s be two rate matrices, which induce the forward and backward CTMCs $\overrightarrow{\mathbb{Q}}^{p_0, R}$ and $\overleftarrow{\mathbb{Q}}^{p_t, R'}$ over the time interval $[0, t]$, respectively. Then,*

$$\log \frac{\overleftarrow{\mathbb{Q}}^{R'_t | p_t}}{\overrightarrow{\mathbb{Q}}^{R_t | p_0}} = \int_0^t R'_s(x_s, x_s) - R_s(x_s, x_s) \, ds + \sum_{s, x_s^- \neq x_s} \log \frac{R'_s(x_s^-, x_s)}{R_s(x_s, x_s^-)}, \quad (34)$$

which induces that

$$\frac{\overleftarrow{\mathbb{Q}}^{p_t, R'_t}}{\overrightarrow{\mathbb{Q}}^{p_0, R_t}} = \frac{p_t(x_t)}{p_0(x_0)} \frac{\exp \left(\int_0^t R'_s(x_s, x_s) \, ds \right)}{\exp \left(\int_0^t R_s(x_s, x_s) \, ds \right)} \prod_{s, x_s^- \neq x_s} \frac{R'_s(x_s^-, x_s)}{R_s(x_s, x_s^-)}. \quad (35)$$

Proof. For a comprehensive proof, we refer readers to (Campbell et al., 2024, Appendix C.1), which follows the exposition in Del Moral & Penev (2017). \square

Lemma 4 (Fundamental Theorem of Calculus). *Let $f : [0, T] \rightarrow \mathbb{R}$ be a piecewise differentiable function on the interval $[0, T]$. Suppose that f is differentiable except at a finite set of discontinuity points $\{s_i\}_{i=1}^n \subset [0, T]$, where the left-hand limit $f(s_i^-)$ and the right-hand limit $f(s_i^+)$ at each s_i exist but are not necessarily equal. Then, the total change of f can be expressed as*

$$f(t) - f(0) = \int_0^t f'(s) \, ds + \sum_{s \in \{s_i\}_{i=1}^n \cap (0, t)} [f(s^+) - f(s^-)], \quad (36)$$

for all $t \in [0, T]$, where $f'(s)$ denotes the derivative of f at points where f is differentiable.

Now, it is ready to compute the importance weight. Specifically,

$$\begin{aligned} \log \frac{\overleftarrow{\mathbb{Q}}^{p_t, R'_t}}{\overrightarrow{\mathbb{Q}}^{p_0, R_t}} &= \log \frac{\tilde{p}_t}{\tilde{p}_0} + \log \frac{Z_0}{Z_t} + \int_0^t R'_s(x_s, x_s) - R_s(x_s, x_s) \, ds + \sum_{s, x_s^- \neq x_s} \log \frac{R'_s(x_s^-, x_s)}{R_s(x_s, x_s^-)} \\ &= \log \frac{Z_0}{Z_t} + \int_0^t \partial_s \log \tilde{p}_s \, ds + \int_0^t R'_s(x_s, x_s) - R_s(x_s, x_s) \, ds + \sum_{s, x_s^- \neq x_s} \log \frac{R'_s(x_s^-, x_s) p_s(x_s)}{R_s(x_s, x_s^-) p_s(x_s^-)} \\ &= \log \frac{Z_0}{Z_t} + \int_0^t \partial_s \log \tilde{p}_s \, ds + \int_0^t R'_s(x_s, x_s) - R_s(x_s, x_s) \, ds \\ &= \log \frac{Z_0}{Z_t} + \int_0^t \partial_s \log \tilde{p}_s \, ds + \int_0^t - \sum_{y \neq x_s} R_s(x_s, y) \frac{p_s(y)}{p_s(x_s)} - R_s(x_s, x_s) \, ds \\ &= \log \frac{Z_0}{Z_t} + \int_0^t \partial_s \log \tilde{p}_s - \sum_y R_s(x_s, y) \frac{p_s(y)}{p_s(x_s)} \, ds, \end{aligned}$$

where the first equation follows from Lemma 3, and the second from Lemma 4, leveraging the fact that $t \mapsto \log \tilde{p}_t$ is piecewise differentiable. The final equality holds by the detailed balance condition satisfied by the backward rate matrix, namely $R'_t(y, x)p_t(x) = R_t(x, y)p_t(y)$. Importantly, although the partition function Z_t is generally intractable, it cancels out in practice through the use of the self-normalised importance sampling estimator as in Equation (32).

Free Energy and Internal Energy Estimation. To estimate the log-partition function $\log Z_t$, we consider the following lower bound

$$\begin{aligned}\log Z_t &= \log \mathbb{E}_{p_t} \left[\frac{Z_t}{Z_0} \right] = \log \mathbb{E}_{x_0 \leq s \leq t \sim \vec{\mathbb{Q}}^{p_0, R_t}} \left[\frac{\overleftarrow{\mathbb{Q}}^{p_t, R'_t} Z_t}{\overrightarrow{\mathbb{Q}}^{p_0, R_t} Z_0} \right] \\ &\geq \mathbb{E}_{x_0 \leq s \leq t \sim \vec{\mathbb{Q}}^{p_0, R_t}} \left[\log \frac{\overleftarrow{\mathbb{Q}}^{p_t, R'_t}}{\overrightarrow{\mathbb{Q}}^{p_0, R_t}} + \log \frac{Z_t}{Z_0} \right] \\ &= \mathbb{E}_{x_0 \leq s \leq t \sim \vec{\mathbb{Q}}^{p_0, R_t}} \left[\int_0^t \partial_s \log \tilde{p}_s(x_s) - \sum_y R_s(x_s, y) \frac{p_s(y)}{p_s(x_s)} \, ds \right],\end{aligned}\quad (37)$$

where we assume that $Z_0 = 1$. Considering the test function $\phi = \log \tilde{p}_t$, one can also estimate the negative entropy, which is related to the internal energy:

$$\mathbb{E}_{p_t} [\log \tilde{p}_t] = \mathbb{E}_{x_0 \leq s \leq t \sim \vec{\mathbb{Q}}^{p_0, R_t}} \left[\frac{\overleftarrow{\mathbb{Q}}^{p_t, R'_t}}{\overrightarrow{\mathbb{Q}}^{p_0, R_t}} \log \tilde{p}_t(x_t) \right] \approx \sum_{k=1}^K \frac{\exp(w_t^{(k)})}{\sum_{j=1}^K \exp(w_t^{(j)})} \log \tilde{p}_t(x_t^{(k)}), \quad (38)$$

where $x_{0 \leq s \leq t}^{(k)} \sim \vec{\mathbb{Q}}^{\eta, R_t}$, and $w_t^{(k)}(x_{0 \leq s \leq t}^{(k)}) = \int_0^t \partial_s \log \tilde{p}_s(x_s^{(k)}) - \sum_y R_s(x_s^{(k)}, y) \frac{p_s(y)}{p_s(x_s^{(k)})} \, ds$.

Effective Sample Size (ESS). The Effective Sample Size (ESS) (Liu & Liu, 2001, Chapter 2) quantifies how many independent and equally weighted samples a set of importance-weighted Monte Carlo samples is effectively worth. It reflects both the quality and diversity of the weights: when most weights are small and a few dominate, the ESS is low, indicating that only a small subset of samples contributes meaningfully to the estimate. Formally, consider the importance sampling estimator:

$$\mathbb{E}_p[\phi(x)] \approx \sum_{k=1}^K \frac{\exp(w^{(k)})}{\sum_{j=1}^K \exp(w^{(j)})} \phi(x^{(k)}), \quad w^{(k)} = \log \frac{p(x^{(k)})}{q(x^{(k)})}, \quad x^{(k)} \sim q(x), \quad (39)$$

where q is the proposal distribution. The normalised ESS is given by:

$$\text{ESS} = \frac{1}{K} \frac{(\sum_{k=1}^K \exp(w^{(k)}))^2}{\sum_{k=1}^K \exp(2w^{(k)})} = \frac{1}{K \sum_{k=1}^K (\tilde{w}^{(k)})^2}, \quad (40)$$

where $\tilde{w}^{(k)} = \frac{\exp(w^{(k)})}{\sum_{j=1}^K \exp(w^{(j)})}$ denotes the normalised importance weight. In CTMC-based importance sampling, the estimator takes the form:

$$\mathbb{E}_{p_t} [\phi(x_t)] \approx \sum_{k=1}^K \frac{\exp(w_t^{(k)})}{\sum_{j=1}^K \exp(w_t^{(j)})} \phi(x_t^{(k)}), \quad x_{0 \leq s \leq t}^{(k)} \sim \vec{\mathbb{Q}}^{\eta, R_t}, \quad (41)$$

with log-weight $w_t^{(k)} = \int_0^t \partial_s \log \tilde{p}_s(x_s^{(k)}) - \sum_y R_s(x_s^{(k)}, y) \frac{p_s(y)}{p_s(x_s^{(k)})} \, ds$. Thus, the corresponding ESS is computed as

$$\text{ESS} = \frac{1}{K \sum_{k=1}^K (\tilde{w}_t^{(k)})^2}, \quad \tilde{w}_t^{(k)} = \frac{\exp(w_t^{(k)})}{\sum_{j=1}^K \exp(w_t^{(j)})}. \quad (42)$$

Log-Likelihood Estimation. Let $R_t^\theta(y, x) \triangleq R_t^\theta(\tau, i|x) = [G_t^\theta(\tau, i|x)]_+$ be a learned rate matrix, where $y = (x_1, \dots, x_{i-1}, \tau, x_{i+1}, \dots, x_d)$. This matrix parameterizes a forward that progressively transforms noise into data via Euler-Maruyama discretization:

$$x_{t+\Delta t} \sim \text{Cat} (\mathbf{1}_{x_{t+\Delta t}=x_t} + R_t^\theta(x_{t+\Delta t}, x_t) \Delta t), \quad x_0 \sim p_0. \quad (43)$$

The corresponding reverse-time rate matrix is given by

$$R_t^{\theta'}(y, x) = R_t^\theta(x, y) \frac{p_t(y)}{p_t(x)} = [G_t^\theta(x_i, i|y)]_+ \frac{\tilde{p}_t(y)}{\tilde{p}_t(x)} = [G_t^\theta(y_i, i|x)]_+ \frac{\tilde{p}_t(y)}{\tilde{p}_t(x)}, \quad (44)$$

which enables simulating the reverse CTMC that maps data back into noise:

$$x_{t-\Delta t} \sim \text{Cat} \left(\mathbf{1}_{x_{t-\Delta t}=x_t} + R_t^\theta(x_t, x_{t-\Delta t}) \frac{\tilde{p}_t(x_{t-\Delta t})}{\tilde{p}_t(x_t)} \Delta t \right), \quad x_1 \sim p_1. \quad (45)$$

This reverse process enables estimation of a variational lower bound (ELBO) on the data log-likelihood:

$$\begin{aligned} \log \mathbb{E}_{p_{\text{data}}}[p_\theta(x)] &= \log \mathbb{E}_{x_1 \sim p_1, x_0 \leq t \leq 1 \sim \overleftarrow{\mathbb{Q}}^{R_t^{\theta'}|x_1}} \left[\frac{\overrightarrow{\mathbb{Q}}^{R_t^\theta|x_0}}{\overleftarrow{\mathbb{Q}}^{R_t^{\theta'}|x_1}} p_0(x_0) \right] \\ &\geq \mathbb{E}_{x_1 \sim p_1, x_0 \leq t \leq 1 \sim \overleftarrow{\mathbb{Q}}^{R_t^{\theta'}|x_1}} \left[\log \frac{\overrightarrow{\mathbb{Q}}^{R_t^\theta|x_0}}{\overleftarrow{\mathbb{Q}}^{R_t^{\theta'}|x_1}} + \log p_0(x_0) \right] \\ &\approx \frac{1}{K} \sum_{k=1}^K \log \frac{\overrightarrow{\mathbb{Q}}^{R_t^\theta|x_0^{(k)}}}{\overleftarrow{\mathbb{Q}}^{R_t^{\theta'}|x_1^{(k)}}} + \log p_0(x_0^{(k)}), \quad x_0^{(k)} \leq t \leq 1 \sim p_1(x_1) \overleftarrow{\mathbb{Q}}^{R_t^{\theta'}|x_1}, \end{aligned}$$

where the log-ratio $\log \frac{\overrightarrow{\mathbb{Q}}^{R_t^\theta|x_0}}{\overleftarrow{\mathbb{Q}}^{R_t^{\theta'}|x_1}}$ can be evaluated using Lemma 3

$$\begin{aligned} \log \frac{\overrightarrow{\mathbb{Q}}^{R_t^\theta|x_0}}{\overleftarrow{\mathbb{Q}}^{R_t^{\theta'}|x_1}} &= \int_1^0 R_s^{\theta'}(x_s, x_s) - R_s^\theta(x_s, x_s) \, ds + \sum_{s, x_s^- \neq x_s} \log \frac{R_s^\theta(x_s, x_s^-)}{R_t^{\theta'}(x_s^-, x_s)} \\ &= \int_1^0 \sum_{y \neq x_s} \left[R_s^\theta(y, x_s) - R_s^\theta(x_s, y) \frac{p_s(y)}{p_s(x_s)} \right] \, ds + \sum_{s, x_s^- \neq x_s} \log \frac{p_s(x_s)}{p_s(x_s^-)} \\ &= \int_1^0 \sum_{\substack{i=1, \dots, d \\ y \in N(x), y_i \neq x_i}} [G_s^\theta(y_i, i|x_s)]_+ - [-G_s^\theta(y_i, i|x_s)] \frac{\tilde{p}_s(y)}{\tilde{p}_s(x_s)} \, ds + \sum_{s, x_s^- \neq x_s} \log \frac{\tilde{p}_s(x_s)}{\tilde{p}_s(x_s^-)}. \end{aligned}$$

D.2 Training Discrete EBMs with Importance Sampling

To train a discrete EBM $p_\phi(x) \propto \exp(-E_\phi(x))$, we employ contrastive divergence, which estimates the gradient of the log-likelihood as

$$\nabla_\phi \mathbb{E}_{p_{\text{data}}(x)} [\log p_\phi(x)] = \mathbb{E}_{p_\phi(x)} [\nabla_\phi E_\phi(x)] - \mathbb{E}_{p_{\text{data}}(x)} [\nabla_\phi E_\phi(x)], \quad (46)$$

where the second term can be easily approximated using the training data with Monte Carlo estimation. To estimate the intractable expectation over p_ϕ , MCMC method is typically used. However, for computational efficiency, only a limited number of MCMC steps are performed, resulting in a biased maximum likelihood estimator and suboptimal energy function estimates (Nijkamp et al., 2020). To address this issue, we replace MCMC with the proposed discrete neural flow samplers. Specifically, we train a rate matrix R_t^θ to sample from the target EBM p_ϕ . The expectation over p_ϕ can then be estimated using CTMT-inspired importance sampling, as described in Appendix D.1:

$$\mathbb{E}_{p_\phi(x)} [\nabla_\phi E_\phi(x)] = \mathbb{E}_{x \sim \overrightarrow{\mathbb{Q}}^{p_0, R_t^\theta}} \left[\frac{\overleftarrow{\mathbb{Q}}^{p_\phi, R_t^{\theta'}}}{\overrightarrow{\mathbb{Q}}^{p_0, R_t^\theta}} \nabla_\phi E_\phi(x) \right] \approx \sum_{k=1}^K \frac{\exp(w^{(k)})}{\sum_{j=1}^K \exp(w^{(j)})} \nabla_\phi E_\phi(x^{(k)}),$$

where $w^{(k)} = \int_0^1 \xi_t(x_t; R_t^\theta) \, dt$. To summarise, we jointly train the EBM p_ϕ and the DNFS by alternating the following two steps until convergence:

- 1) Updating the rate matrix parameters θ using the training procedure described in Algorithm 1;
- 2) Updating EBM p_ϕ via contrastive divergence, as defined in Equation (46).

D.3 Combinatorial Optimisation as Sampling

Consider a general combinatorial optimisation problem of the form $\min_{x \in \mathcal{X}} f(x)$ subject to $c(x) = 0$. This problem can be reformulated as sampling from an unnormalised distribution $p(x) \propto \exp(-E(x)/T)$, where the energy function is defined as $E(x) = f(x) + \lambda c(x)$ (Sun et al.,

2023b). As the temperature $T \rightarrow \infty$, $p(x)$ approaches the uniform distribution over \mathcal{X} , while as $T \rightarrow 0$, $p(x)$ concentrates on the optimal solutions, becoming uniform over the set of minimisers. In this paper, we focus on two combinatorial optimisation problems: Maximum Independent Set (MIS) and Maximum Cut (MaxCut). Below, we define the energy functions used for each task following Sun et al. (2022b). Given a graph $G = (V, E)$, we denote its adjacency matrix by A , which is a symmetric and zero-diagonal binary matrix.

MIS. The MIS problem can be formulated as the following constrained optimisation task:

$$\min_{x \in \{0,1\}^d} - \sum_{i=1}^{|V|} x_i, \quad \text{s.t. } x_i x_j = 0, \forall (i, j) \in E. \quad (47)$$

We define the corresponding energy function in quadratic form as:

$$-\log p(x) \propto E(x) = -1^T x + \lambda \frac{x^T A x}{2}. \quad (48)$$

Thus, the log-probability ratio between neighboring configurations $y \in \mathcal{N}(x)$, differing from x by a single bit flip, has a closed-form expression

$$\left[\log \frac{p(y)}{p(x)} \right]_{y \in \mathcal{N}(x)} = (1 - 2x) \odot (x - \frac{1}{2} \lambda A x). \quad (49)$$

Following Sun et al. (2022b), we set $\lambda = 1.0001$. After inference, we apply a post-processing step to ensure feasibility: we iterate over each node x_i , and if any neighbour $x_j = 1$ for $(x_i, x_j) \in E$, we set $x_j \leftarrow 0$. This guarantees that the resulting configuration x is a valid independent set.

Maxcut. The Maxcut problem can be formulated as

$$\min_{x \in \{-1,1\}^d} - \sum_{i,j \in E} A_{i,j} \left(\frac{1 - x_i x_j}{2} \right). \quad (50)$$

We define the corresponding energy function as

$$-\log p(x) \propto E(x) = \frac{1}{4} x^T A x. \quad (51)$$

This leads to the following closed-form expression for the log-ratio

$$\left[\log \frac{p(y)}{p(x)} \right]_{y \in \mathcal{N}(x)} = -\frac{1}{2} A x \quad (52)$$

Since any binary assignment yields a valid cut, no post-processing is required for MaxCut.

D.4 Locally Equivariant GraphFormer (leGF)

To train an amortized version of DNFS for solving combinatorial optimization problems, it is essential to condition the model on the underlying graph structure. To this end, we integrate Graphomer (Ying et al., 2021) into our proposed Locally Equivariant Transformer (leTF), resulting in the Locally Equivariant Graphformer (leGF).

The leGF architecture largely follows the structure of leTF, with the key difference being the computation of attention weights, which are modified to incorporate graph-specific structural biases. Following Ying et al. (2021), given a graph $G = (V, E)$, we define $\psi(v_i, v_j)$ as the shortest-path distance between nodes v_i and v_j if a path exists; otherwise, we assign it a special value (e.g., -1). Each possible output of ψ is associated with a learnable scalar $b_{\psi(v_i, v_j)}$, which serves as a structural bias term in the self-attention mechanism. Let $A_{i,j}$ denote the (i, j) -th

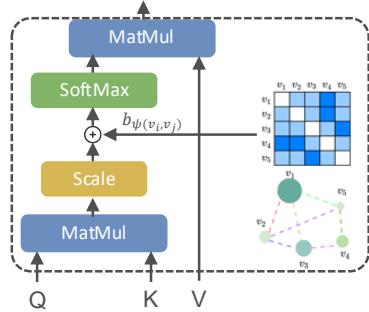


Figure 10: Illustration of the graph-aware attention mechanism. The figure is adapted from (Ying et al., 2021, Figure 1)

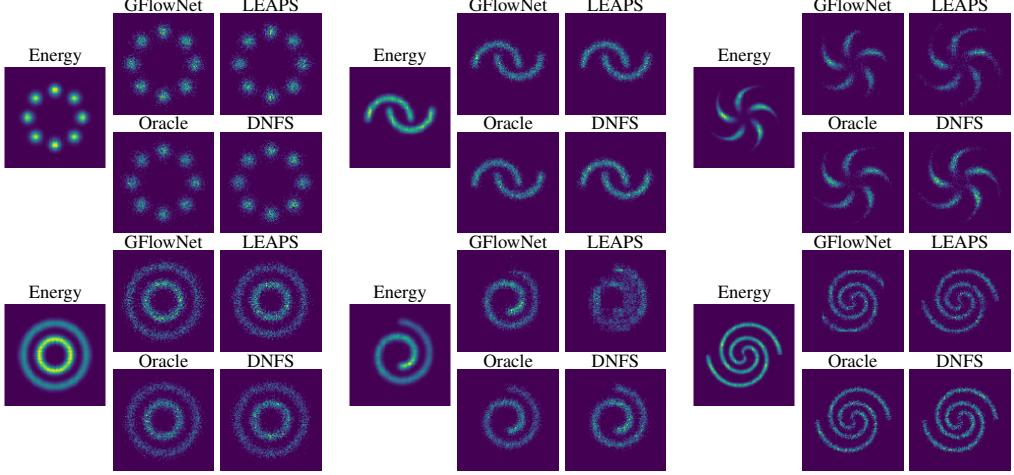


Figure 11: Additional visualisation of sampling from pre-trained EBMs.

element of the Query-Key interaction matrix. The attention weights are then computed as:

$$A_{i,j} = \text{softmax}\left(\frac{Q_i^T K_j}{\sqrt{d_k}} + b_{\psi(v_i, v_j)}\right),$$

where $b_{\psi(v_i, v_j)}$ is shared across all attention layers. An illustration of this graph-aware attention mechanism is shown in Figure 10. For further details, we refer the reader to Ying et al. (2021).

E Details of Experimental Settings and Additional Results

In this section, we present the detailed experimental settings and additional results. All experiments are conducted on a single Nvidia RTX A6000 GPU.

E.1 Sampling from Unnormalised Distributions

E.1.1 Experimental Details

Sampling from Pre-trained EBMs. In this experiment, we adopt energy discrepancy⁴ to train an EBM, implemented as a 4 layer MLP with 256 hidden units and Swish activation. Once trained, the pre-trained EBM serves as the target unnormalized distribution, with the initial distribution p_0 set to uniform. A probability path is then constructed using a linear schedule with 128 time steps. To parameterise the rate matrix, we employ the proposed locally equivariant transformer, in which the causal attention block consists of 3 multi-head attention layers, each with 4 heads and 128 hidden units. The model is trained using the AdamW optimizer with a learning rate of 0.0001 and a batch size of 128 for 1,000 epochs (100 steps per epoch). To prevent numerical instability from exploding loss, the log-ratio term $\log \frac{p_t(y)}{p_t(x)}$ is clipped to a maximum value of 5.

Sampling from Ising Models. We follow the experimental setup described in (Grathwohl et al., 2021, Section F.1). The energy function of the Ising model is given by $\log p(x) \propto ax^T Jx + b^T x$. In Figure 5, we set $a = 0.1$ and $b = 0$. The probability path is constructed using a linear schedule with 64 time steps, starting from a uniform initial distribution. The leTF model comprises 3 bidirectional causal attention layers, each with 4 heads and 128 hidden units. Training is performed using the AdamW optimizer with a learning rate of 0.001, a batch size of 128, and for 1,000 epochs (100 steps per epoch). To prevent numerical instability, the log-ratio term is clipped to a maximum value of 5.

Experimental Setup for Figures 1 and 3. In this experiment, we set $a = 0.1$ and $b = 0.2$. The probability path is defined via a linear schedule over 64 time steps, starting from a uniform initial distribution. The leTF model is composed of 3 bidirectional causal attention layers, each with 4 heads

⁴https://github.com/J-zin/discrete-energy-discrepancy/tree/density_estimation

and 64 hidden units. Training is conducted using the AdamW optimiser with a learning rate of 0.001, a batch size of 128, and for 500 epochs (100 steps per epoch). To mitigate numerical instability, the log-ratio term is clipped to a maximum value of 5.

E.1.2 Additional Results

Additional Results of Sampling from Pre-trained EBMs. We present additional results comparing DNFS to baseline methods on sampling from pre-trained EBMs in Figure 11. The results demonstrate that DNFS produces samples that closely resemble those from the oracle distribution.

LEAPS with leConv and leTF. While leConv performs comparably to DNFS on Ising models, its convolutional architecture may struggle to adapt to non-grid data structures. In this experiment, we use the LEAPS⁵ algorithm (Holderith et al., 2025) to train a neural sampler with two different locally equivariant architectures: leConv (Holderith et al., 2025) and leTF (ours). Given the data has 32 dimensions, we pad it to 36 and reshape it into a 6×6 grid to make it compatible with leConv. As shown in Figure 12, LEAPS with leConv fails to achieve meaningful performance, whereas the proposed transformer-based architecture leTF performs comparably to DNFS. This result highlights the limitations of leConv, whose expressiveness is constrained on non-grid data, while leTF offers greater flexibility and generalisation across diverse input structures.

Comparing to MCMC Methods. Compared to MCMC methods, a key advantage of neural samplers is their ability to guarantee convergence when trained optimally, whereas MCMC methods often suffer from slow mixing and poor convergence. To highlight this benefit, we adopt the same setting as in Figure 5, using DNFS with 64 sampling steps. For a fair comparison, we evaluate MCMC baselines with the same number of steps, including Gibbs sampling (Casella & George, 1992), Gradient with Gibbs (GwG) (Grathwohl et al., 2021), and the Discrete Metropolis-adjusted Langevin Algorithm (DMALA) (Zhang et al., 2022b). We present energy histograms based on 5,000 samples in Figure 13, with a long-run Gibbs sampler serving as the oracle. The results show that short-run MCMC methods struggle to produce accurate samples, although gradient-based variants (GwG and DMALA) outperform conventional Gibbs sampling. In contrast, the energy distribution produced by DNFS closely matches the oracle, demonstrating the effectiveness of the proposed neural sampler.

Training Loss Comparison. We train our model by minimising the loss function defined in Equation (5), where a smaller loss value reflects a better fit to the parameterised rate matrix. As such, the loss value serves as a proxy for training quality and model convergence. In Figure 14, we compare the training loss across different locally equivariant network architectures. The results show that the proposed locally equivariant transformer achieves the lowest loss value, indicating its superior capacity to fit the target

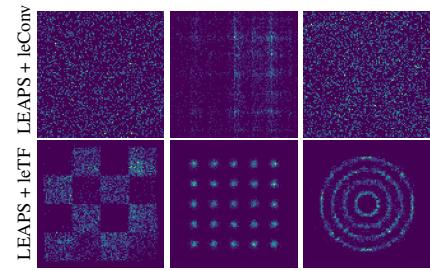


Figure 12: Comparison of leConv and leTF on sampling from pre-trained EBMs with LEAPS.

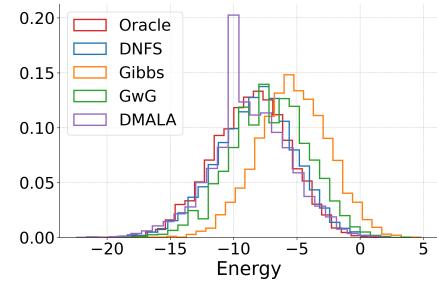


Figure 13: Histogram of sample energy for different sampling methods.

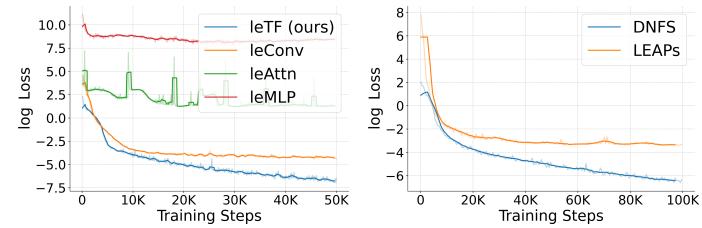


Figure 14: Training loss of different locally equivariant networks (ref: Figure 3).

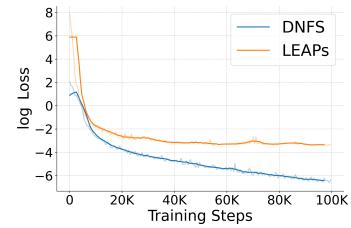


Figure 15: Training loss comparison between DNFS and LEAPS (ref: Figure 5).

⁵<https://github.com/malbergo/leaps>

Table 2: Comparison of the estimated free energy \mathcal{F}/D , internal energy \mathcal{E}/D , entropy \mathcal{S}/D , and effective sample size for Ising models on $D = 10 \times 10$ grids at different temperatures.

	Method	ESS	Free Energy \mathcal{F}/D	Internal Energy \mathcal{E}/D	Entropy \mathcal{S}/D
$\sigma = 0.1$	Optimal Value	1	-3.6727	-0.4282	0.6489
	LEAPS	0.9956 ± 0.0001	$-3.6709 \pm 4.9182e^{-5}$	-0.4262 ± 0.0034	0.6489 ± 0.0006
	DNFS	$0.9985 \pm 4.6912e^{-5}$	$-3.6709 \pm 6.2463e^{-5}$	-0.4271 ± 0.0010	0.6488 ± 0.0002
$\sigma = 0.22305$	Optimal Value	1	-2.1242	-1.4763	0.2855
	LEAPS	0.3631 ± 0.1184	-2.1011 ± 0.0002	-1.4493 ± 0.0130	0.2873 ± 0.0057
	DNFS	0.9685 ± 0.0010	$-2.1120 \pm 6.6258e^{-5}$	-1.4743 ± 0.0068	0.2811 ± 0.0030

Table 3: Experiment results of probability mass estimation on seven synthetic datasets. We display the negative log-likelihood (NLL) and MMD (in units of 1×10^{-4}).

Metric	Method	2spirals	8gaussians	circles	moons	pinwheel	swissroll	checkerboard
NLL↓	PCD	20.094	19.991	20.565	19.763	19.593	20.172	21.214
	ALOE+	20.062	19.984	20.570	19.743	19.576	20.170	21.142
	ED-Bern	20.039	19.992	20.601	19.710	19.568	20.084	20.679
	EB-GFN	20.050	19.982	20.546	19.732	19.554	20.146	20.696
	EB-DNFS	20.118	19.990	20.517	19.789	19.566	20.145	20.682
MMD↓	PCD	2.160	0.954	0.188	0.962	0.505	1.382	2.831
	ALOE+	0.149	0.078	0.636	0.516	1.746	0.718	12.138
	ED-Bern	0.120	0.014	0.137	0.088	0.046	0.045	1.541
	EB-GFN	0.583	0.531	0.305	0.121	0.492	0.274	1.206
	EB-DNFS	0.603	0.070	0.527	0.223	0.524	0.388	0.716

rate matrix. Furthermore, Figure 15 compares the loss values between DNFS and LEAPS, showing that our approach again outperforms the baseline. This demonstrates the combined effectiveness of our coordinate descent learning algorithm and transformer-based architecture.

Quantitative Results. Recall Equation (11), where the Ising model is defined as

$$p(x) \propto \exp(-E(x)) \triangleq \exp(\sigma x^T A_D x), \quad x \in \{-1, 1\}^D \quad (53)$$

where $\sigma \in \mathbb{R}$ is the temperature and A_D denote the adjacency matrix of the lattice graph. We evaluate our method by comparing the estimated free energy $\mathcal{F} = -\frac{1}{2\sigma} \log Z$, internal energy $\mathcal{E} = \mathbb{E}_p[E(x)]$, and entropy $\mathcal{S} = 2\sigma(\mathcal{E} - \mathcal{F})$ with their theoretically optimal values derived in [Ferdinand & Fisher \(1969\)](#). The free energy and internal energy are estimated using Equations (37) and (38), respectively. We compare DNFS with LEAPS under two temperature settings, $\sigma = 0.1$ and $\sigma = 0.22305$, where the latter corresponds to the critical temperature and thus presents a more challenging sampling problem. The result is reported in Table 2, where we use 2,048 Monte Carlo samples to estimate the values and report the mean and standard deviation averaged over 10 independent runs. The results show that DNFS provides accurate estimates of the free and internal energies, closely matching the theoretical value with low variance. In contrast, LEAPS exhibits significantly lower ESS and larger deviations in other metrics under the critical temperature setting, which may indicate insufficient mode coverage. These comparisons highlight the robustness of DNFS and suggest it is less prone to mode collapse across different temperatures.

E.2 Training Discrete EBMs

E.2.1 Experimental Details

Probability Mass Estimation. This experiment follows the setup of [Dai et al. \(2020\)](#). We first sample 2D data points $\hat{x} \triangleq [\hat{x}_1, \hat{x}_2] \in \mathbb{R}^2$ from a continuous distribution \hat{p} , and then quantise each point into a 32-dimensional binary vector $x \in \{0, 1\}^{32}$ using Gray code. Formally, the resulting discrete distribution follows $p(x) \propto \hat{p}([\text{GradyToFloat}(x_{1:16}), \text{GradyToFloat}(x_{17:32})])$.

Following [Schröder et al. \(2024\)](#), we parameterise the energy function using a 4-layer MLP with 256 hidden units and Swish activation. The leTF model consists of 3 bidirectional causal attention layers, each with 4 heads and 128 hidden units. The probability path is defined by a linear schedule over 64

Table 4: Experimental Results of EBM and DNFS on probability mass estimation: Rows labelled ‘EBM’ represent metrics evaluated using the trained EBM model, while rows labelled ‘DNFS’ represent metrics evaluated using the trained DNFS.

Metric	Method	2spirals	8gaussians	circles	moons	pinwheel	swissroll	checkerboard
NLL \downarrow	EBM	20.118	19.990	20.517	19.789	19.566	20.145	20.682
	DNFS	20.947	20.948	21.043	20.908	21.011	20.899	21.106
MMD \downarrow	EBM	2.553	1.429	0.897	2.808	1.733	0.731	6.168
	DNFS	0.603	0.070	0.527	0.223	0.524	0.388	0.716

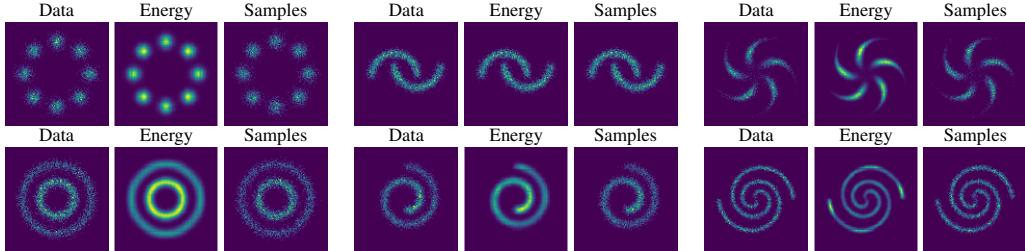


Figure 16: Additional qualitative results in training discrete EBMs. We visualise the training data, learned energy landscape, and the synthesised samples of DNFS.

time steps, starting from a uniform initial distribution. Both the EBM and DNFS are trained using the AdamW optimiser with a learning rate of 0.0001 and a batch size of 128. Notably, each update step of the EBM is performed after every 10 update steps of DNFS. To ensure numerical stability, the log-ratio term is clipped at a maximum value of 5.

After training, we quantitatively evaluate all methods using negative log-likelihood (NLL) and maximum mean discrepancy (MMD), as reported in Table 3. Specifically, the NLL is computed using the trained EBM on 4,000 samples drawn from the data distribution, with the normalization constant estimated via importance sampling using 1,000,000 samples from a variational Bernoulli distribution with $p = 0.5$. For the MMD metric, we follow the protocol in [Zhang et al. \(2022a\)](#), employing an exponential Hamming kernel with a bandwidth of 0.1. All reported results are averaged over 10 independent runs, where each run uses 4,000 samples generated by the trained DNFS.

Training Ising Models. Following [Grathwohl et al. \(2021\)](#); [Zhang et al. \(2022b\)](#), we train a learnable adjacency matrix J_ϕ to approximate the true matrix J in the Ising model. To construct the dataset, we generate 2,000 samples using Gibbs sampling with 1,000,000 steps per instance. The leTF model consists of three bidirectional causal attention layers, each with four heads and 128 hidden units. The probability path is defined by a linear schedule over 64 time steps, starting from a uniform distribution. J_ϕ is optimised using the AdamW optimiser with a learning rate of 0.0001 and a batch size of 128. To promote sparsity, we follow [Zhang et al. \(2022a\)](#) and apply l_1 regularisation with a coefficient of 0.05. DNFS is trained separately using AdamW with a learning rate of 0.001 and the same batch size. To ensure numerical stability, the log-ratio term is clipped at a maximum value of 5. We train both models iteratively, performing one update step for J_ϕ for every ten update steps of DNFS.

E.2.2 Additional Results

Additional Results of Probability Mass Estimation. We compare DNFS to various baselines, including PCD ([Tieleman, 2008](#)), ALOE+ ([Dai et al., 2020](#)), ED-Bern ([Schröder et al., 2024](#)), and EB-GFN ([Zhang et al., 2022a](#)). As shown in Table 3, DNFS outperforms both Persistent Contrastive Divergence (PCD), which relies on conventional MCMC methods, and the variational approach ALOE+, demonstrating the effectiveness of our method. Additional qualitative results are provided in Figure 16, where DNFS consistently produces accurate energy landscapes and high-quality samples that closely resemble the training data. Furthermore, Figure 17 illustrates the sampling trajectory of DNFS alongside marginal samples from long-run Gibbs sampling. The comparison shows that DNFS produces samples that closely resemble those from Gibbs, demonstrating its ability to approximate the target distribution with high fidelity.

Notably, since the EBM and the sampler are trained jointly, we can evaluate the negative log-likelihood (NLL) of the data using the trained CTMC, as described in Appendix D.1, and assess sample quality via the maximum mean discrepancy (MMD) using samples generated by the trained sampler. In Table 4, we report results under four evaluation settings: i) NLL (EBM): using the trained EBM with importance sampling; ii) NLL (DNFS): using the trained CTMC following the method in Appendix D.1; iii) MMD (EBM): samples drawn via Gibbs sampling from the EBM; and iv) MMD (DNFS): samples generated by DNFS. It can be seen that samples generated by DNFS achieved lower MMD compared to those generated by Gibbs sampling, demonstrating the superiority of the learned sampler in capturing the target distribution and producing higher-fidelity samples. However, we observe that DNFS yields less accurate likelihood estimates compared to importance sampling performed with the trained energy function. This is likely because DNFS is trained to satisfy the Kolmogorov equation rather than explicitly optimising the evidence lower bound, as is common in other discrete diffusion models for generative modelling (Shi et al., 2024; Sahoo et al., 2024). Moreover, it is noteworthy that the sample quality and likelihood are not necessarily consistent (Theis et al., 2016, Section 3.2), and DNFS does not directly optimise the likelihood. Thus, the performance of DNFS on NLL is not guaranteed.

Additional Results of Training Ising Models.

We further provide a quantitative comparison against baselines for training Ising models. Following Zhang et al. (2022a); Schröder et al. (2024), we evaluate on $D = 10 \times 10$ grids with $\sigma = 0.1, 0.2, \dots, 0.5$ and $D = 9 \times 9$ grids with $\sigma = -0.1, -0.2$. Performance is measured by the negative log-RMSE between the estimated J_ϕ and the true adjacency matrix J . As shown in Table 5, while our method underperforms ED-GFN, which is also a neural sampler, it achieves results comparable to Gibbs, GwG, and ED-Bern in most settings, demonstrating its ability to uncover the underlying structure in the data.

Table 5: Mean negative log-RMSE (higher is better) between the learned connectivity matrix J_ϕ and the true matrix J for different values of D and σ .

Method \ σ	$D = 10^2$					$D = 9^2$	
	0.1	0.2	0.3	0.4	0.5	-0.1	-0.2
Gibbs	4.8	4.7	3.4	2.6	2.3	4.8	4.7
GwG	4.8	4.7	3.4	2.6	2.3	4.8	4.7
ED-Bern	5.1	4.0	2.9	2.6	2.3	5.1	4.3
EB-GFN	6.1	5.1	3.3	2.6	2.3	5.7	5.1
DNFS	4.6	3.9	3.1	2.6	2.3	4.6	3.9

E.3 Solving Combinatorial Optimisation Problems

E.3.1 Experimental Details

This experiment follows the setup in (Zhang et al., 2023a), where we train an amortised combinatorial solver using DNFS on 1,000 training graphs and evaluate it by reporting the average solution size over 100 test graphs. To be specific, we use Erdős–Rényi (ER) (Erdos, 1961) and Barabási–Albert (BA) (Barabási & Albert, 1999) random graphs to benchmark the MIS and MCut problems, respectively. Due to scalability limitations of our current method, we restrict our evaluation to small graphs with 16 to 75 vertices, leaving the exploration of more complex graphs for future work.

We parameterise the rate matrix using the proposed locally equivariant GraphFormer (leGF), which consists of 5 bidirectional causal attention layers, each with 4 heads and 256 hidden units. Training is performed using the AdamW optimiser with a learning rate of 0.0001 and a batch size of 256. The log-ratio term is clipped to a maximum value of 5 to ensure stability. More importantly, we find that the temperature T plays a crucial role in performance. Fixed temperature values generally lead to suboptimal results. Therefore, we adopt a temperature annealing strategy: starting from an inverse temperature of 0.1 and gradually increasing it to a final value of 5. A more comprehensive annealing strategy, such as adaptive schedules based on loss plateaus, may further improve performance by better aligning the sampling dynamics with the learning process. Exploring such adaptive annealing schemes is a promising direction for future work.

E.3.2 Additional Results

Additional Results on Maximum Cut. We further evaluate DNFS on the maximum cut problem. As shown in Table 6, the trained DNFS significantly outperforms its untrained version, underscoring the effectiveness of our approach. While DNFS slightly lags behind the baselines DMALA and

Table 6: Maximum cut experimental results. We report the absolute performance, approximation ratio (relative to GUROBI), and inference time.

METHOD	BA16-20			BA32-40			BA64-75		
	SIZE \uparrow	DROP \downarrow	TIME \downarrow	SIZE \uparrow	DROP \downarrow	TIME \downarrow	SIZE \uparrow	DROP \downarrow	TIME \downarrow
GUROBI	40.85	0.00%	0:02	93.67	0.00%	0:05	194.08	0.00%	0:14
RANDOM	25.70	37.1%	0:03	46.19	50.7%	0:05	81.19	58.2%	0:08
DMALA	40.32	1.30%	0:04	93.47	0.21%	0:06	192.33	0.90%	0:07
GFLOWNET	39.93	2.25%	0:02	90.65	3.22%	0:04	186.60	3.85%	0:07
DNFS	39.60	3.06%	0:03	88.64	5.37%	0:05	181.75	6.35%	0:08
DNFS+DMALA	40.76	0.22%	0:08	93.63	0.01%	0:12	192.30	0.92%	0:17

Table 8: Results for the maximum independent set problem on RB32-40 graphs with varying parameter p . Reported values include the solution size (larger is better) and the percentage drop in performance relative to GUROBI (lower is better), indicated in brackets.

$p =$	0.1	0.3	0.5	0.7	0.9	1.0
GUROBI	8.52(0.00%)	8.24(0.00%)	7.06(0.00%)	7.89(0.00%)	8.05(0.00%)	8.63(0.00%)
Random	3.38(60.3%)	4.59(44.2%)	4.25(39.8%)	5.54(29.7%)	6.29(21.8%)	6.93(19.6%)
DMALA	8.50(0.23%)	8.16(0.97%)	7.01(0.70%)	7.84(0.63%)	8.04(0.12%)	8.63(0.00%)
GflowNet	8.20(3.75%)	7.93(3.76%)	6.83(3.25%)	7.78(1.39%)	8.03(0.62%)	8.63(0.00%)
DNFS	8.00(6.10%)	7.65(7.16%)	6.67(5.52%)	7.66(2.91%)	7.97(0.99%)	8.63(0.00%)
DNFS+DMALA	8.51(0.11%)	8.19(0.60%)	7.02(0.56%)	7.85(0.50%)	8.04(0.12%)	8.63(0.00%)

GFlowNet, its MCMC-refined variant achieves the best overall performance, closely approaching the oracle solution provided by Gurobi.

MCMC Refined DNSF. As previously discussed, a key advantage of DNFS is its ability to incorporate additional MCMC steps to refine the sampling trajectory, thanks to the known marginal distribution p_t . To validate the effectiveness of this MCMC-refined sampling, we conduct an experiment on the MIS problem using the ER16-20 dataset. In this experiment, we compare two methods: DMALA (Zhang et al., 2022b) and

DNFS combined with DLAMA, both sampling from the same interpolated distribution $p_t \propto p_0^{1-t} p_1^t$. For reference, the average solution size obtained by DNFS without DLAMA refinement is 8.28. As shown in Table 7, applying DLAMA refinement significantly boosts performance, with improvements increasing as more refinement steps are added. More importantly, integrating the proposed neural sampler (DNFS) with the MCMC method (i.e., DNFS + DLAMA) outperforms the standalone MCMC baseline (i.e., DMALA), demonstrating that the learned sampler provides a strong initialisation that guides the refinement process toward better solutions. This result confirms the synergy between neural samplers and MCMC refinement in solving challenging combinatorial problems.

Benchmarking on the RB Graphs. Following Sanokowski et al. (2024), we further evaluate our method on the Maximum Independent Set problem using the RB32-40 graphs, varying the parameter, which controls the problem’s difficulty. Specifically, higher p values of yield easier instances, while lower values result in more challenging graphs. For each setting, we report the solution size, along with the percentage performance drop relative to GUROBI. As shown in Table 8, the results are consistent with the observation in Table 1. On easier instances (i.e., higher values of p), our method performs competitively, approaching the performance of the oracle solver GUROBI. On more challenging instances, however, DNFS exhibits a performance gap relative to GFlowNet. This gap arises because GFlowNet restricts its sampling trajectories to the feasible solution, effectively narrowing the exploration space. Introducing such an inductive bias into DNFS represents a promising direction for future work. Nevertheless, despite DNFS underperforming GFlowNet in its pure form, it offers a distinct advantage: the intermediate target distribution is explicitly known. This property enables integration with MCMC-based refinement methods (e.g., DNFS+DMALA), which significantly improves performance.

Table 7: Comparison between DNFS and its DLAMA-refined version by solving MIS on the ER16-20 dataset.

STEPS	DLAMA		DNFS+DLAMA	
	SIZE \uparrow	TIME (S) \downarrow	SIZE \uparrow	TIME (S) \downarrow
1	8.33	1.75	8.37	4.53
2	8.53	3.19	8.63	5.89
3	8.71	4.70	8.75	7.62
4	8.77	6.12	8.84	8.85
5	8.80	7.74	8.91	10.47

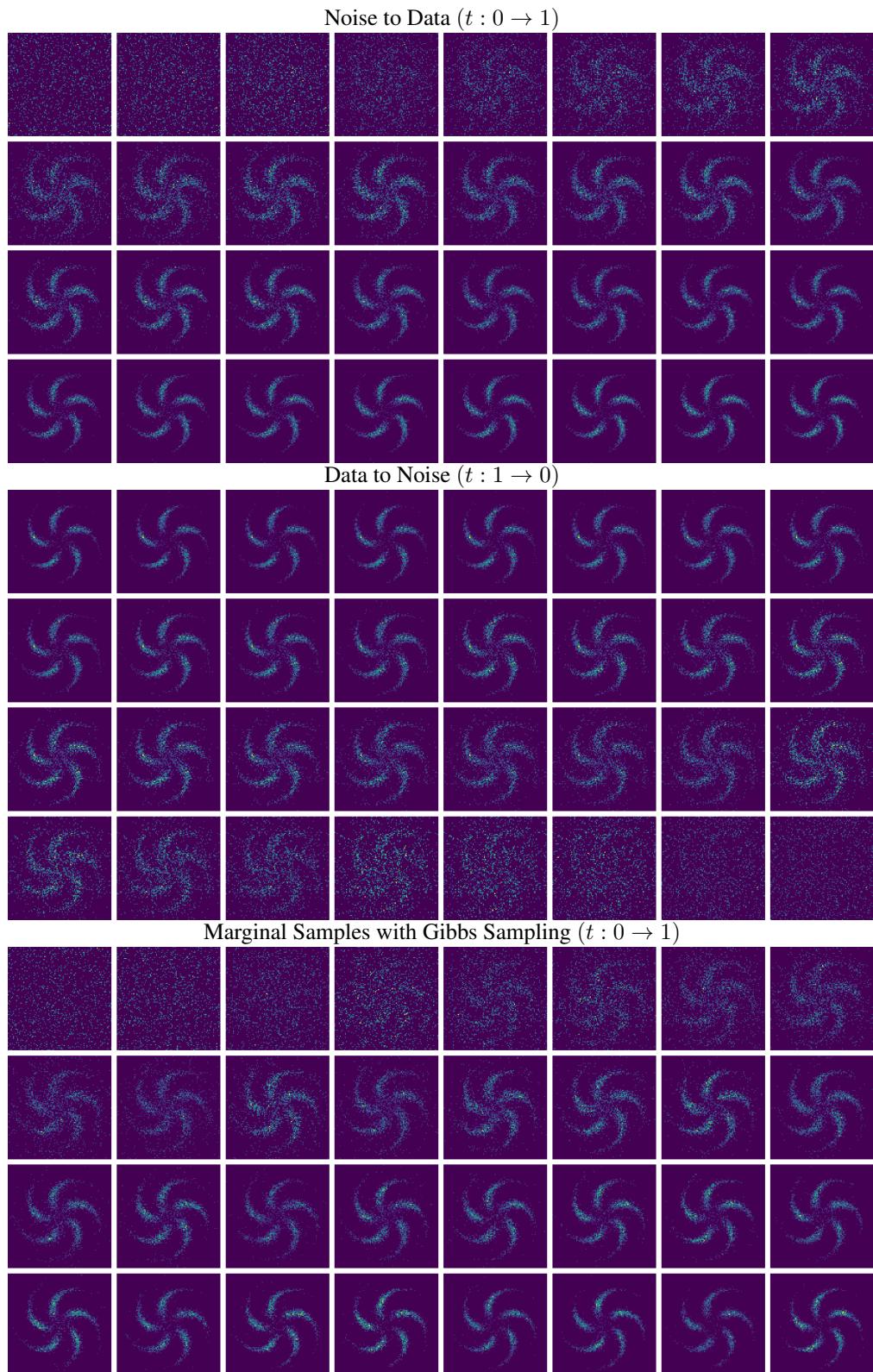


Figure 17: The sampling trajectory of DNFS in discrete EBM training. Top: noise to data trajectory; Middle: data to noise trajectory; Bottom: marginal samples with Gibbs sampling.