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Abstract

Sampling from unnormalised discrete distributions is a fundamental problem across
various domains. While Markov chain Monte Carlo offers a principled approach, it
often suffers from slow mixing and poor convergence. In this paper, we propose
Discrete Neural Flow Samplers (DNFS), a trainable and efficient framework for
discrete sampling. DNFS learns the rate matrix of a continuous-time Markov
chain such that the resulting dynamics satisfy the Kolmogorov equation. As this
objective involves the intractable partition function, we then employ control variates
to reduce the variance of its Monte Carlo estimation, leading to a coordinate
descent learning algorithm. To further facilitate computational efficiency, we
propose locally equivaraint Transformer, a novel parameterisation of the rate matrix
that significantly improves training efficiency while preserving powerful network
expressiveness. Empirically, we demonstrate the efficacy of DNFS in a wide
range of applications, including sampling from unnormalised distributions, training
discrete energy-based models, and solving combinatorial optimisation problems.

1 Introduction

We consider the task of sampling from a discrete distribution m(x) = %, known only up to a
normalising constant Z = ) p(x). This problem is foundamental in a wide range of scientific
domains, including Bayesian inference (Murray et al., 2012), statistical physics (Newman & Barkema,
1999), and computational biology (Lartillot & Philippe, 2004). However, efficient sampling from
such unnormalised distributions remains challenging, especially when the state space is large and
combinatorially complex, making direct enumeration or exact computation of Z infeasible.

Conventional sampling techniques, such as Markov Chain Monte Carlo (MCMC) (Metropolis et al.,
1953) have been widely employed with great success. Nevertheless, MCMC often suffers from poor
mixing and slow convergence due to the issues of Markov chains getting trapped in local minima and
large autocorrelation (Neal et al., 2011). These limitations have motivated the development of neural
samplers (Wu et al., 2020; Vargas et al., 2024; Maté & Fleuret, 2023), which leverage deep neural
networks to improve sampling efficiency and convergence rates. In discrete settings, autoregressive
models (Box et al., 2015) have been successfully applied to approximate Boltzmann distributions of
spin systems in statistical physics (Wu et al., 2019). Inspired by recent advances in discrete diffusion
models (Austin et al., 2021; Sun et al., 2023c; Campbell et al., 2022), Sanokowski et al. (2024,
2025) propose diffusion-based samplers with applications to solving combinatorial optimisation
problems. Moreover, Holderrieth et al. (2025) introduces an alternative discrete sampler by learning
a parametrised continuous-time Markov chain (CMCT) (Norris, 1998) to minimise the variance of
importance weights between the CMCT-induced distribution and the target distribution.

Building on these advances, the goal of our paper is to develop a sampling method for discrete
distributions that is both efficient and scalable. To this end, we introduce Discrete Neural Flow
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Samplers (DNFS), a novel framework that learns the rate matrix of a CTMC whose dynamics satisfy
the Kolmogorov forward equation (Oksendal, 2013). In contrast to discrete flow models (Campbell
et al., 2024; Gat et al., 2024), which benefit from access to training data to fit the generative process,
DNEFS operates in settings where no data samples are available. This data-free setting makes direct op-
timisation of the Kolmogorov objective particularly challenging and necessitates new methodological
advances to ensure stable and effective training. Specifically, the first difficulty lies in the dependence
of the objective on the intractable partition function. We mitigate this by using control variates
(Geffner & Domke, 2018) to reduce the variance of its Monte Carlo estimate, which enables efficient
optimisation via coordinate descent. More critically, standard neural network parameterisations of
the rate matrix render the objective computationally prohibitive. To make learning tractable, a locally
equivariant Transformer architecture is introduced to enhance computational efficiency significantly
while retaining strong model expressiveness. Empirically, DNFS proves to be an effective sampler
for discrete unnormalised distributions. We further demonstrate its versatility in diverse applications,
including training discrete energy-based models and solving combinatorial optimization problems.

2 Preliminaries

We begin by introducing the key preliminaries: the Continuous Time Markov Chain (CTMC) (Norris,
1998) and the Kolmogorov forward equation (Oksendal, 2013). Let = be a sample in the d-dimensional
discrete space {1,...,S}¢ £ X. A continuous-time discrete Markov chain at time ¢ is characterised
by arate matrix R; : X x X — R, which captures the instantaneous rate of change of the transition
probabilities. Specifically, the entries of I?; are defined by
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which equivalently yields the local expansion p; 4 a¢j¢ (y|2) = 1y—s + Ri(y, ©) At + o(t) and the rate
matrix satisfies R¢(y,z) > 0if y # @ and Ry(2,z) = — 3, , Ri(y, ). Given Ry, the marginal
distribution p;(x;) for any ¢ € R is uniquely determined. Let x9<;<; be a sample trajectory. Our
goal is to seek a rate matrix R; that transports an initial distribution pg o< 7 to the target distribution
p1 o p. The trajectory then can be obtained via the Euler method (Sun et al., 2023c)
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and the induced probability path p; by R; satisfies the Kolmogorov equation (Oksendal, 2013)
Ope(z) = Z Ri(z,y)pe(y) = Z Ri(x,y)pi(y) — Ri(y, ©)pe (). 3
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In this case, we say that the rate matrix R; generates the probability path p;. Dividing both sides of
the Kolmogorov equation by p; leads to

Bulogpu(z) = 3 Ru(w, y) 2L
pe(x)
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In the next section, we describe how to leverage Equation (4) to learn a model-based rate matrix for
sampling from a given target distribution 7, followed by the discussion of applications to discrete
energy-based modelling and combinatorial optimisation.

— Ry(y,x). @)

3 Discrete Neural Flow Samplers

The rate matrix R, that transports the initial distribution to the target is generally not unique. However,
we can select a particular path by adopting an annealing interpolation between the prior 7 and the
target p, defined as p; o< p'n'~t £ §, (Gelman & Meng, 1998; Neal, 2001). This annealing path
coincides with the target distribution 7 o< p at time ¢ = 1. To construct an R; that generates the
probability path p;, we seek a rate matrix that satisfies the Kolmogorov equation in Equation (4).
Specifically, we learn a model-based rate matrix R?(y, ), parametrised by 6, by minimizing the loss
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where ¢; is an arbitrary reference distribution that has the same support as p;, and w(t) denotes a time
schedule distribution. At optimality, the condition d;(x; R?) = 0 holds for all # and z € X, implying
that the learned rate matrix R ensures the dynamics prescribed by the Kolmogorov equation are
satisfied along the entire interpolation path. In practice, minimising the loss (5) guides R to correctly
capture the infinitesimal evolution of the distribution p;, enabling accurate sampling from the target
distribution via controlled stochastic dynamics.

However, evaluating Equation (5) directly is computationally infeasible due to the intractable summa-
tion over y, which spans an exponentially large space of possible states, resulting in a complexity of
O(S4). To alleviate this issue, we follow Sun et al. (2023c); Campbell et al. (2022); Lou et al. (2024)
by assuming independence across dimensions. In particular, we restrict the rate matrix RY such that
it assigns non-zero values only to states y that differ from z in at most one dimension. Formally,
Rl(y,x) = 0if y ¢ N(x), where N'(z) := {y € X|y; # z; at most one i}. To improve clarity in
the subsequent sections, we renotate the rate matrix R? for y € N'(z) with y; # z; as

R(y,x) £ R (yi,ilz) and  Rf(zi,ile) =~ ) R{(yi,ilz), (©)
LY FET;
which yields a simplified and more tractable form of the loss in Equation (5)
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This approximation reduces the computational complexity from O(S%) to O(S x d). Nonetheless,
two main challenges persist. First, the time derivative 0; log p;(z) remains intractable due to the
dependence on the partition function, as it expands to 0; log p;(x) — 0y log Z; with Z, = > py(x)
being intractable. Second, evaluating Equation (7) requires evaluating the neural network [N ()]
times, which is computationally expensive for each x. In the following, we propose several techniques
to address these computational bottlenecks.

3.1 Estimating the Time Derivative of the Log-Partition Function

To estimate the time derivative, note that d; log Z; = E,,, () [0 log p¢ ()], which can be approximated

via the Monte Carlo estimator 0, log Z; = % Zle 0y log ﬁt(xgk)). However, this approach relies
on sampling from p;, which is typically impractical due to the lack of convergence guarantees for
short-run MCMC in practice and the high variance inherent in Monte Carlo estimation. To address
this issue, we leverage a key identity that holds for any given rate matrix R;

Orlog Z; = argmin By, (&(w Re) — )2, (w3 Re) 2 0, log pr(we) — Y Rl wﬁgyc; ®)
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tive (see Appendix A.l for details). Figure 1: Comparison of std. dev. and training loss for
Empirically, we observe that using different estimators of 9, log Z;. Lower variance estimator
Equation (8) results in a significantly  exhibits lower training loss, indicating a better learned rate
lower-variance estimator compared matrix satisfying the Kolmogorov equation in Equation (5).
to the direct Monte Carlo approach

Oilog Zy = E,,(4)[0¢ logpe(x)]. This reduction in variance can lead to improved optimisation
performance. To assess this, we conducted experiments on the Ising model (Mézard et al., 1987), min-
imising the loss in Equation (7) using two different estimators for 0, log Z;. The standard deviations
of both estimators, as well as their corresponding loss values during training, are plotted over training
steps in Figure 1. The results demonstrate that the estimator based on E,,&;(x; R;) consistently
achieves lower loss values, underscoring the benefits of reduced variance in estimating 0; log Z; for



improved training dynamics. In Appendix A.2, we provide a perspective of control variate (Geffner
& Domke, 2018) to further explain this observation. This insight enables a coordinate descent
approach to learning the rate matrix. Specifically: i) § < argmin, fol Eqg, (2) (&t (z; RY) — ¢)?dt;
and ii) ¢; < argmin,, Eq, (& (z; Ry) — ¢¢)?. Alternatively, the time derivative can be parameterised
directly via a neural network cf , allowing joint optimisation of 6 and ¢ through the objective

argming , = fol Eq, () (& (5 RY) — ¢?)2 dt. This formulation recovers the physics-informed neural
network (PINN) loss proposed in Holderrieth et al. (2025). A detailed discussion of the connection to
the PINN loss is provided in Appendix A.3.

3.2 Efficient Training with Locally Equivariant Networks

As previously noted, computing the § function in Equation (7) requires evaluating the neural network
|\V] times, which is computationally prohibitive. Inspired by Holderrieth et al. (2025), we proposed
to mitigate this issue by utilising locally equivariant networks, an architectural innovation that
significantly reduces the computational complexity with the potential to preserve the capacity of
network expressiveness. A central insight enabling this reduction is that any rate matrix can be
equivalently expressed as a one-way rate matrix', while still inducing the same probabilistic path.
This is formalised in the following proposition:

Proposition 1. For a rate matrix R; that generates the probabilistic path p., there exists a one-way
rate matrix Qu(y, @) = |Ru(y, @) — Ro(w,y) 2] LTy #wand Qu(e,x) = X, Quly, ). that

generates the same probabilistic path p;, where [z] 1 = max(z, 0) denotes the ReLU operation.

This result was originally introduced by Zhang et al. (2023b), and we include a proof in Appendix B.1
for completeness. Building on Proposition 1, we can parameterise R! directly as a one-way rate
matrix. To achieve this, we use a locally equivariant neural network as described by Holderrieth et al.
(2025). Specifically, a neural network G is locally equivariant if and only if:

GY(r,ilx) = —GY(x;,i|Swap(z,i,7)), i=1,...,d 9)

where Swap(x,i,7) = (1,...,%i_1,T, Tis1,---,7q) and 7 € {1,..., S} £ S. Based on this, the
one-way rate matrix can be defined as R (7,i|z) £ [GY(7,i|x)], . Substituting this parametrization
into Equation (7), we obtain the simplified expression:

~
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This formulation reduces the computational cost from O(]N]) to O(1), enabling far more efficient
training. We term the proposed method as discrete neural flow sampler (DNFS) and summarise the
training and sampling details in Appendix C. Nonetheless, the gain in efficiency introduces challenges
in constructing a locally equivariant network (leNet) that is both expressive and flexible.
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3.3 Instantiation of leNets: Locally Equivariant Transformer

To construct a locally equivariant network, we first introduce hollow network (Chen & Duve-
naud, 2019). Formally, let x; , = (21,...,2; = T,...,24) denote the input with its i-th token
set to 7. A function H : X — R%*" is termed a hollow network if it satisfies H(xir)i,:
H(zier)i:, V7, 7" € S, where M; . denotes the i-th row of the matrix M. Intuitively, it implies that
the output at position ¢ is invariant to the value of the ¢-th input token. Hollow networks provide
a foundational building block for constructing locally equivariant networks, as formalised in the

following proposition.

Proposition 2 (Instantiation of Locally Equivariant Networks). Let x € X denote the input tokens
and H : X — R¥" be a hollow network. Furthermore, for each token T € S, let w, € R" be a
learnable projection vector. Then, the locally equivariant network can be constructed as:

G(r,i|lz) = (wr — we,)TH(2);..

'A rate matrix R is said to be one-way if R(y, z) > 0 implies R(z,y) = 0. That is, if a transition from x to
y is permitted, the reverse transition must be impossible.




This can be verified via G(7,i|z) = —(wz, —w, )T H(Swap(x,i,7));. = —G(x;,i|Swap(z, i, 7)).
Although Proposition 2 offers a concrete approach to constructing locally equivariant networks, sig-
nificant challenges persist. In contrast to globally equivariant architectures (Cohen & Welling, 2016;
Fuchs et al., 2020), where the composition of equivariant layers inherently preserves equivariance,
locally equivariant networks are more delicate to design. In particular, stacking locally equivariant
layers does not, in general, preserve local equivariance. While Holderrieth et al. (2025) propose
leveraging multi-layer perceptions (MLPs), attention mechanisms, and convolutional layers (see
Appendix B.2 for details) to construct locally equivariant networks, these architectures may still fall
short in terms of representational capacity and flexibility.
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ant networks. Specifically, it employs Figure 2: Illustration of the 1eTF network.

two autoregressive Transformers (Vaswani et al., 2017; Radford et al., 2018) per layer; one processing
inputs from left to right, and the other from right to left. In the readout layer, the representations
from two directions are fused via attention to produce the output. This design ensures that each
output dimension remains independent of its corresponding input coordinate, while still leveraging
the expressiveness of multi-layer Transformers. Thereby, the final output G¢ (-, i|x) can be obtained
by taking the inner product between the hollow attention output and the token embeddings produced
by the projection layer. We term the proposed architecture as locally equivariant transformer (1eTF),
and defer the implementation details to Appendix B.3.
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nificantly worse, highlighting the importance of network expressiveness in achieving effective local
equivariance. Although leConv performs comparably to 1eTF, its convolutional design is inherently
less flexible. It is restricted to grid-structured data, such as images or the Ising model, and does not
readily generalise to other data types like text or graphs. Additionally, as shown in Figure 14, 1eTF
achieves lower training loss compared to leConv, further confirming its advantage in expressiveness.

4 Applications and Experiments

To support our theoretical discussion, we first evaluate the proposed methods by sampling from
predefined unnormalised distributions. We then demonstrate two important applications to DNFS: i)
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Figure 4: Comparison between different discrete samplers on pre-trained EBMs.

training discrete energy-based models and ii) solving combinatorial optimisation problems. Detailed
experimental settings and additional results are provided in Appendix E.

4.1 Sampling from Unnormalised Distributions

Sampling from Pre-trained EBMs. We begin by evaluating the effectiveness of our method
by sampling from a pre-trained deep energy-based model. Specifically, we train an EBM on 32-
dimensional binary data obtained by applying the Gray code transformation (Waggener & Waggener,
1995) to a 2D continuous plane, following Dai et al. (2020). The EBM consists of a 4-layer MLP
with 256 hidden units per layer and is trained using the discrete energy discrepancy introduced in
Schroder et al. (2024). Therefore, the trained EBM defines an unnormalised distribution, upon which
we train a discrete neural sampler. We benchmark DNFS against three baselines: (i) long-run Gibbs
sampling (Casella & George, 1992) as the oracle; (ii) GFlowNet with trajectory balance (Malkin
et al., 2022); and (iii) LEAPS (Holderrieth et al., 2025) with the proposed 1eTF network.

The results, shown in Figure 4, demonstrate that the proposed method, DNFS, produces samples that
closely resemble those from the oracle Gibbs sampler. In contrast, GFlowNet occasionally suffers
from mode collapse, particularly on structured datasets such as the checkerboard pattern. Although
LEAPS with 1eTF achieves performance comparable to DNFS, it sometimes produces inaccurate
samples that fall in smoother regions of the energy landscape, potentially due to imprecise estimation
of 9, log Z;. Furthermore, we observe that LEAPS with leConv performs poorly in this setting (see
Figure 12), reinforcing the limited expressiveness of locally equivariant convolutional networks when
applied to non-grid data structures. For a more comprehensive evaluation, additional visualisations
on other datasets are provided in Figure 11, further illustrating the effectiveness of our method.

Sampling from Ising Models. We further evaluate our method on the task of sampling from the
lattice Ising model, which has the form of

p(x)ocexp(a’ Ja), we {-1,1}", (11)

where J = 0 Ap with o € R and A being the adjacency matrix of a D x D grid.? In Figure 5, we
evaluate DNFS on a D = 10 x 10 lattice grid with ¢ = 0.1, comparing it to baselines methods in
terms of effective sample size (ESS) (see Appendix D.1 for details) and the energy histogram of 5, 000
samples. The oracle energy distribution is approximated using long-run Gibbs sampling. The results
show that DNFS performs competitively with LEAPS and significantly outperforms GFlowNet,
which fails to capture the correct mode of the energy distribution. Although LEAPS with leConv
achieves a comparable effective sample size, it yields a less accurate approximation of the energy
distribution compared to DNFS. Furthermore, DNFS attains a lower loss value, as shown in Figure 15.
These findings underscore the effec- 10
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’The adjacency matrix is constructed using A_D = igraph.Graph.Lattice(dim=[D, D], circular=True).
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Figure 6: Results of probability mass estimation in training discrete EBMs. We visualise the training
data, learned energy landscape, and the synthesised samples of DNFS.

4.2 Training Discrete Energy-based Models

A key application of DNFS is training energy-based models (EBMs). Specifically, EBMs define a
parametric distribution py, o exp(—FE(x)), where the goal is to learn an energy function E, that
approximates the data distribution. EBMs are typically trained using contrastive divergence (Hinton,
2002), which estimates the gradient of the log-likelihood as

Vg logpy(z) = Ep, ) [VeEys(y)] — Ve Ey(z). (12)

To approximate this intractable gradient, we train a rate matrix R¢ to sample from the target p,. This
enables using importance sampling to estimate the expectation (see Appendix D.1 for details).

By Vo Bp(o)] = 3 =2
pe(z) |V oL ~ =K i~
’ k=1 Zf:l exp(w(J))

This neural-sampler-based approach is more effective than traditional MCMC methods, as in optimal
training, it has garuantee to produce exact samples from the target distribution within a fixed number
of sampling steps. Moreover, neural samplers are arguabelly easier to discover regularities and jump
between modes compared to MCMC methods, leading to better exploration of the whole energy
landscape, and thus results in a more accurate estimate of the energy function (Zhang et al., 2022a).
To demonstrate the effectiveness of DNFES in energy-based modelling, we conduct experiments on
probability mass estimation with synthetic data and training Ising models.

1
Vg Ey(x®), w(k)z/ Ex(xy; RO) dt. (13)
0

Probability Mass Estimation. Following Dai et al. (2020), we first generate 2D floating-point data
from several two-dimensional distributions. Each dimension is then encoded using a 16-bit Gray
code, resulting in a 32-dimensional training dataset with 2 possible states per dimension.

Figure 6 illustrates the estimated energy landscape alongside samples generated using the trained
DNFS sampler. The results demonstrate that the learned EBM effectively captures the multi-modal
structure of the underlying distribution, accurately modelling the energy across the data support.
The sampler produces samples that closely resemble the training data, highlighting the effectiveness
of DNFS in training discrete EBMs. Additional qualitative results are presented in Figure 16. In
Table 3, we provide a quantitative comparison of our method with several baselines, focusing in
particular on two contrastive divergence (CD)-based approaches: PCD (Tieleman, 2008) with MCMC
and ED-GFN (Zhang et al., 2022a) with GFlowNet. Our method, built upon the proposed DNFS,
consistently outperforms PCD in most settings, underscoring the effectiveness of DNFS in training
energy-based models. While ED-GFN achieves better performance than DNFS, it benefits from
incorporating a Metropolis-Hastings (MH) (Hastings, 1970) correction to sample from the model
distribution py in Equation (12), which may offer an advantage over the importance sampling strategy
used in Equation (13). We leave the integration of MH into DNFS as a direction for future work.

Training Ising Models. We further assess Ground Truth Random Initialised Learned
DNFS for training the lattice model defined
in Equation (11). Following Grathwohl et al.
(2021), we generate training data using Gibbs
sampling and use these samples to learn a sym-
metric matrix .Jy to estimate the true matrix in : Moo BE
the Ising model. Importantly, the training algo- Figure 7: Results on learning Ising models.
rithms do not have access to the true data-generating matrix J, but only to the synthesised samples.

In Figure 7, we consider a D = 10 x 10 grid with o = 0.1 and visualise the learned matrix .J, using
a heatmap. The results show that the proposed method successfully captures the underlying pattern
of the ground truth, demonstrating the effectiveness of DNFS. Further quantitative analysis across
various configurations of D and o is presented in Table 5.



Table 1: Max independent set experimental results. We report the absolute performance, approxima-
tion ratio (relative to GUROBI), and inference time.

METHOD ER16-20 ER32-40 ER64-75

Sizeét Drop]) TIME] SizEt Drop| TIME| Sizé{1 Dror| TIME |
GUROBI 8.92 0.00% 4:00 14.62  0.00% 4:03 20.55 0.00% 4:10
RANDOM 5.21 41.6% 0:03 6.31 56.8% 0:06 8.63 58.0% 0:09
DMALA 8.81 1.23% 0:21 14.02 4.10% 0:22 19.54 4.91% 0:24
GFLOWNET 8.75 1.91% 0:02 13.93 4.712% 0:04 19.13  6.91% 0:07
DNFS 8.28 7.17% 0:03 13.18 9.85% 0:06 18.12 11.8% 0:09

DNFS+DMALA 891 0.11% 0:10 14.31 2.12% 0:15 20.06 2.38% 0:22

4.3 Solving Combinatorial Optimisation Problems

Another application of DNFS is solving combinatorial optimisation problems. As an example, we
describe how to formulate the maximum independent set as a sampling problem.

Maximum Independent Set as Sampling. Given a graph G = (V, E), the maximum independent
set (MIS) problem aims to find the largest subset of non-adjacent vertices. It can be encoded as a
binary vector x € {0, 1}“/', where x; = 1 if vertex ¢ is included in the set, and x; = 0 otherwise.

The objective is to maximise le‘gl x; subject to ;x; = 0 for all (4, j) € E. This can be formulated
as sampling from the following unnormalised distribution:

V]

1
p(r) x exp T ;xi—)\ Z T, , (14)

(1,j)EE

where T' > 0 is the temperature and A\ > 1 is a penalty parameter enforcing the independence
constraint. As T — 0, p(x) uniformly concentrates on the maximum independent sets.

Therefore, we can train DNFS to sample from p(x), which will produce high-quality solutions to the
MIS problem. To enable generalisation across different graphs GG, we condition the locally equivariant
transformer on the graph structure. Specifically, we incorporate the Graphformer architecture (Ying
et al., 2021), which adjusts attention weights based on the input graph. This allows the model to adapt
to varying graph topologies. We refer to this architecture as the locally equivariant Graphformer
(1eGF), with implementation details provided in Appendix D.4.

Experimental Settings. In this experiment, we apply our method to solve the Maximum Independent
Set (MIS) problem, with other settings deferred to Appendix E.3. Specifically, we benchmark MIS on
Erdés—Rényi (ER) random graphs (Erdos, 1961), comprising 1,000 training and 100 testing instances,
each with 16 to 75 vertices. Evaluation on the test set includes both performance and inference time.
We report the average solution size and the approximation ratio with respect to the best-performing
mixed-integer programming solver (GUROBI) (Gurobi, 2023), which serves as the oracle.

Results & analysis. We compare our method against two baselines: an annealed MCMC sampler
(Sun et al., 2023b) using DMALA (Zhang et al., 2022b), and a neural sampler based on GFlowNet
(Zhang et al., 2023a). Additionally, we include results from a randomly initialised version of DNFS
without training, which serves as an estimate of the task’s intrinsic difficulty. As shown in Table 1,
DNES after training substantially outperforms its untrained counterpart, highlighting the effectiveness
of our approach. While the MCMC-based method achieves the strongest overall performance, it
requires longer inference time. Compared to GFlowNet, another neural sampler, DNFS performs
slightly worse. This may be attributed to the fact that GFlowNet restricts sampling to feasible
solutions only along the trajectory, effectively reducing the exploration space and making the learning
problem easier. Incorporating this inductive bias into DNFS is a promising direction for future work.
Nevertheless, a key advantage of our method is that the unnormalised marginal distribution p; is
known, allowing us to integrate additional MCMC steps to refine the sampling trajectory. As shown
in the last row of Table 1, this enhancement leads to a substantial performance gain. Further analysis
of this approach is provided in Table 7 in the appendix.



5 Related Work

CTMC:s and Discrete Diffusion. Our work builds on the framework of continuous-time Markov
chains (CTMCs), which were first introduced in generative modelling by Austin et al. (2021); Sun
et al. (2023c); Campbell et al. (2022) under the context of continuous-time discrete diffusion models,
where the rate matrix is learned from training data. This approach was later simplified and generalised
to discrete-time masked diffusion (Shi et al., 2024; Sahoo et al., 2024; Ou et al., 2024), demonstrating
strong performance across a wide range of applications, including language modelling (Lou et al.,
2024; Zhang et al., 2025), molecular simulation (Campbell et al., 2024), and code generation (Gat
et al., 2024; Gong et al., 2025). However, these methods require training data and are inapplicable
when only an unnormalised target is given.

MCMC and Neural Samplers. Markov chain Monte Carlo (MCMC) (Metropolis et al., 1953) is the
de facto approach to sampling from a target distribution. In discrete spaces, Gibbs sampling (Casella
& George, 1992) is a widely adopted method. Building on this foundation, Zanella (2020) improve the
standard Gibbs method by incorporating locally informed proposals to improve sampling efficiency.
This method was extended to include gradient information to drastically reduce the computational
complexity of flipping bits in several places. This idea was further extended by leveraging gradient
information (Grathwohl et al., 2021; Sun et al., 2022a), significantly reducing the computational cost.
Inspired by these developments, discrete analogues of Langevin dynamics have also been introduced
to enable more effective sampling in high-dimensional discrete spaces (Zhang et al., 2022b; Sun
et al., 2023a). Despite their theoretical appeal, MCMC methods often suffer from slow mixing
and poor convergence in practice. To address these limitations, recent work has proposed neural
samplers, including diffusion-based (Vargas et al., 2024; Chen et al., 2024; Richter & Berner, 2024)
and flow-based (Maté & Fleuret, 2023; Tian et al., 2024; Chen et al., 2025) approaches. However, the
majority of these methods are designed for continuous spaces, and there remains a notable gap in the
literature when it comes to sampling methods for discrete distributions. A few exceptions include
Sanokowski et al. (2024, 2025), which are inspired by discrete diffusion models and primarily target
combinatorial optimisation problems. A concurrent work, MDNS (Zhu et al., 2025), introduces a
masked diffusion neural sampler grounded in stochastic optimal control theory (Berner et al., 2022).
LEAPS (Holderrieth et al., 2025) and our method DNFS are more closely related to discrete flow
models (Campbell et al., 2024; Gat et al., 2024), as both can be view as learning a CTMC to satisfy
the Kolmogorov forward equation. While LEAPS parametrise 0; log Z; using a neural network,
DNEFS estimates it via coordinate descent.

Discrete EBMs and Neural Combinatorial Optimisation. Contrastive divergence is the de facto
approach to train energy-based models, but it relies on sufficiently fast mixing of Markov chains,
which typically cannot be achieved (Nijkamp et al., 2020). To address this, several sampling-free
alternatives have been proposed, including energy discrepancy (Schroder et al., 2023; Schroder
et al., 2024), ratio matching (Lyu, 2012), and variational approaches (Lazaro-Gredilla et al., 2021).
More recently, Zhang et al. (2022a) replace MCMC with GFlowNet, a neural sampler that arguably
offers improvement by reducing the risk of getting trapped in local modes. Our work follows this
line of research by using DNFS as a neural alternative to MCMC for training energy-based models.
Sampling methods are also widely used to solve combinatorial optimisation problems (COPs). Early
work (Sun et al., 2022b) demonstrated the effectiveness of MCMC techniques for this purpose. More
recent approaches (Zhang et al., 2023a; Sanokowski et al., 2024, 2025) leverage neural samplers
to learn amortised solvers for COPs. In this paper, we further show that DNFS is well-suited for
combinatorial optimisation tasks, demonstrating its flexibility and broad applicability.

6 Conclusion and Limitation

We proposed discrete neural flow samplers (DNFS), a discrete sampler that learns a continuous-
time Markov chain to satisfy the Kolmogorov forward equation. While our empirical studies
demonstrate the effectiveness of DNFS across various applications, it also presents several limitations.
A natural direction for future work is to extend DNFS beyond binary settings. However, this poses
significant challenges due to the high computational cost of evaluating the ratios in Equation (7).
As demonstrated in Appendix C.2, a naive Taylor approximation introduces bias into the objective,
resulting in suboptimal solutions. Overcoming this limitation will require more advanced and
principled approximation techniques. Additionally, we find that the current framework struggles to



scale to very high-dimensional distributions. This difficulty arises mainly from the summation over
the ratios in Equation (7), which can lead to exploding loss values. Designing methods to stabilise
this computation represents a promising avenue for future research. Finally, extending DNFS to
the masked diffusion setting offers another compelling direction, with the potential to support more
flexible and efficient sampling over structured discrete spaces.

Broader impact. This paper aims to advance machine learning research. While there may be
potential societal impacts, none require specific mention at this time.
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7 NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Our claims are supported by the experimental results in Section 4.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitation of our work in Section 6.
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Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: All theoretical results are correct with the proof given in the appendix.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our code will be released in the open-source git repository. In addition, we
provide implementation details in the appendix to reproduce our results.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code and data will be fully open-sourced. In the interim, we provide the
code for sampling from Ising models in the supplementary materials whilst we prepare our
code for the full release.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Details of experimental settings are provided in Appendix E.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: To reduce the impact of randomness, we repeated each experiment multiple
times and report aggregated results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: All experiments are conducted on a single Nvidia RTX A6000 GPU.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have been strictly observing the relevant code of ethics, including but not
limited to the NeurIPS one.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our neural sampler does not pose any foreseeable societal impact as outlined
in the guidelines, as the specified concerns are either irrelevant or not applicable to our work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This does not apply to our case.
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Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Relevent open-sourced code and models are properly cited in our paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This does not apply to our case.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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15.

16.

Answer: [NA]
Justification: This does not apply to our case.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This does not apply to our case.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Variance Reduction and Control Variates

In this section, we analyse the variance reduction phenomenon shown in Figure 1 through the lens of
control variates. We begin with the proof of Equation (8) and the discussion of control variates, then
establish its connection to LEAPS (Holderrieth et al., 2025).

A.1 Proof of Equation (8)

Recall from Equation (8) that the following equation holds:

~—

pe(y
t (x

Oy log Z; = argmin By, (& (x; Ry) — 1), & (w5 Ry) £ 0y log py(my) — Z Ry(x,y)
Ct y

=

We now provide a detailed proof of this result, beginning with two supporting lemmas.
Lemma 1 (Discrete Stein Identity). Given a rate matrix R(y,x) that satisfies R(x,x) =
— > yza By, ), we have the identity E,, ) >°, R(x, y)2w — o,

p(x)
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Proof. To prove the result, notice that

Ep(a) Zny ZZRIZ/ =Y p(y) > _R(z,y) =0,
Yy x
which completes the proof. For a more comprehensive overview of the discrete Stein operator, see
Shi et al. (2022). O
Lemma 2. Let ¢; = argmin,, Ey, (& (25 Ry) — ¢1)?, then ¢ = B & (x5 Ry).

Proof. To see this, we can expand the objective

L(c;) = argminE,, (& (x; Ry) — ct)2 = c? —2¢,Ep, & (25 Ry) + ¢ = (¢ — Ep, & (x; Rt))2 +c,

Ct

where the final expression is minimized when ¢} = E,, &, (z; R;). O

We are now ready to prove Equation (8). Specifically:

c; = argminE,, (& (z; Ry) — ct)2

Ct

= Eptft(x§Rt)

=E,, 0 logpi(x) — E,, Z Ry(z,y) i

~—

~

=E,, 0 log ps(z) = 0 log Zt,

where the second and third equations follow Lemmas 1 and 2 respectively.

A.2 Discrete Stein Control Variates

To better understand the role of control variates (Geffner & Domke, 2018) in variance reduction as
shown in Figure 1, let us consider a standard Monte Carlo estimation problem. Suppose our goal is to
estimate the expectation u = E[f(x)], where f(z) is a function of interest. A basic estimator for

is the the Monte Carlo average i = % Zle f(:r(k)), x(®) ~ 7. Now, suppose we have access to
another function g(z), known as a control variate, which has a known expected value v = E[g(z)].

We can the use g(z) to construct a new estimator: fi = - sc(k)) Bg(x*))) + Bv. This
new estimator fi is unbiased for any choice of (3, since Eﬁt — BE[g(x)] + By = p. The
benefit of this construction lies not in bias correction but in varlance reductlon To see this, we can
compute the variance of i:

. 1
VIl = 2 (VIf] = 28Cov(f, 9) + B*Vg)). (15)
This is a quadratic function of (3, and since it is convex, ts minimum can be found by differentiating
w.r.t. £ and setting the derivative to zero. This yields the optimal coefficient 5* = Cov(f, g)/V][g].
Substituting it back into the variance expression (15) gives:

V[i = = VIl(1 - Corr(f,9)°). (16)

This result shows a key insight: the effectiveness of a control variate depends entirely on its correlation
with the target function f. As long as f and g are correlated (positively or negatively), the variance
of fi is strictly less than that of /i. The stronger the correlation, the greater the reduction. In practice,
the optimal coefficient 8’ can be estimated from the same sample used to compute the Monte Carlo
estimate, typically with minimal additional cost (Ranganath et al., 2014). However, the main challenge
lies in selecting or designing a suitable control variate g that both correlates well with f and has a
tractable expectation under 7. For an in-depth treatment of this topic and practical considerations,
see Geffner & Domke (2018).

Fortunately, Lemma 1 provides a principled way to construct a control variate tailored to our setting

E,, [f(z)] 2 E,, [0 log pi(2)] =~ L Sp, 9 log p(z*)), where z(¥) ~ p,. To reduce the variance
of this estimator, we seek a control variate g(x) whose expectation under p; is known. Inspired by
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the discrete Stein identity, we define g(z) = > Ri(z, y);’zg; , which satisfies E,,, [g(z)] = 0 by
Lemma 1. This makes g a valid control variate with known mean. Using this construction, we can
define a variance-reduced estimator as:

K

. Ry pe(y) k)
fi=z ) Ologpi(x (ZR (! NECTE z® ~py. (17)

k=1

This estimator remains unbiased for any /3, but with the optimal choice 3%, it can substantially reduce
variance. Moreover, in the special case where the parameter ¢ is optimal (in the sense that the
objective in Equation (5) equals zero), an even stronger result emerges: the control variate becomes
perfectly (negatively) correlated with the target function. That is, g(x) = — f(z) + ¢, where cis a
constant independent of the sample x, leading to Corr(f,g) = —1. In this idealised case, ji becomes
a zero-variance estimator, a rare but highly desirable scenario. For a more comprehensive discussion
of discrete Stein-based control variates and their applications in variance reduction, we refer the
reader to Shi et al. (2022).

A.3 Connection to LEAPS

Equation (8) provides a natural foundation for learning the rate matrix R? using coordinate ascent.
This involves alternating between two optimisation steps:

i) Updating the rate matrix parameters # by minimising the squared deviation of & (z; RY)
from a baseline ¢;, averaged over time and a chosen reference distribution ¢; ()

1
0+ argmin/ Eq, (o) (& (w3 Ri(0)) — ¢) dt
0 0

ii) Updating the baseline ¢; to match the expected value of & under the true distribution p; ()
¢y < argmin B, ;) (& (; R%) —¢,)?

Alternatively, instead of treating c; as a scalar baseline, we can directly parametrize it as a neural

network cf . This allows us to jointly learn both 6 and ¢ by solving the following objective:

y)

) b
which matches the Physics-Informed Neural Network (PINN) objectlve as derived in (Holderrieth
et al., 2025, Proposition 6.1). At optimality, this objective recovers two important conditions: i) The

learned network cf’ recovers the true derivative d; log Z;; and ii) The rate matrix RY ' satisfies the
Kolmogorov forward equation.

* * : 9 pt
0%, 9" = ar%gSunE w(t),q: (x [@ log pt(x) — Ct Z Ri( (18)

A key insight is that even though Equation (8) formally holds when the expectation is taken under p;,
the training objective in Equation (18) remains valid for any reference distribution ¢; as long as it
shares support with p;. This is because, at optimality, the residual

Oulog () = i = R (wy) Zg = 0,¥z.
Y

Integrating both sides with respect to p;, and invoking the discrete Stein identity (Lemma 1), we find:
E,, [8t log pi(z) — cf} =0 = cf’* =E,, [0:log pi(x)] = O, log Z;.

This also naturally admits a coordinate ascent training procedure, where ¢ and ¢ are updated in turn:

~

2
0« argmm Eoo(t),q0(2) [&g log p¢(x) — Ct Z R0 (z,9) (ﬂyv)] ,

b

p
Ct — Eut),qu(2) [at log p¢(x ZRG p: @)
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In this light, the term the term Zy RY(z,y) z :Egg serves as a control variate for estimating 9, log Z;,

effectively reducing variance in the learning signal. Under optimal training, cf* accurately captures
the log-partition derivative, confirming the correctness of the learned dynamics.

Since NDFS closely resembles LEAPS, we summarise the main distinctions below to highlight the
unique contributions of our work:

* While LEAPS and DNFS yield similar objective functions, they are derived from different
perspectives. DNFS derives the objective by learning the rate matrix to satisfy the Kol-
mogrove equation, whereas LEAPS learns the rate matrix by minimising the importance
weights. Perhaps surprisingly, these two perspectives lead to similar objectives. However,
the new perspective from the Kolmogorov equation offers a new insight for future research:
leveraging more accurate estimators of 0 log Z; to further improve performance, which is
not evident from the LEAPS framework.

* The success of DNFS highly depends on the proposed Locally Equivariant Transformer
(1eTF). Compared to the locally equivariant networks in LEAPS, 1eTF offers greater model
capacity and improved adaptability, making it more suitable for diverse modalities and
complex input structures. We hope this architectural advancement will inspire future
developments, which are essential for advancing both LEAPS and DNFS.

* Unlike LEAPS, which is only evaluated on synthetic Ising and Potts models, DNFS is tested
on broader applications, including sampling from Ising models, training EBMs, and solving
combinatorial optimisation problems. We hope this wider empirical scope will inspire
further research into additional applications of discrete neural samplers.

B Derivation of Locally Equivariant Transformer

B.1 Proof of Proposition 1

It is worth noting that Proposition 1 was first introduced in (Zhang et al., 2023b, Proposition 5), and
subsequently utilized by Campbell et al. (2024) to construct the conditional rate matrix, as well as by
Holderrieth et al. (2025) in the development of the locally equivariant network. For completeness, we
provide a detailed proof of Proposition 1 in this section.

We begin by formally defining the one-way rate matrix

Definition 1 (One-way Rate Matrix). A rate matrix R is one-way if and only if R(y,z) > 0 =
R(x,y) = 0. In other words, if a one-way rate matrix permits a transition from x to y, then the
transition probability from y to x must be zero.

We then restate Proposition 1 and provide a detailed proof as follows.

Proposition 1. For a rate matrix Ry that generates the probabilistic path py, there exists a one-way
rate matrix Q¢(y, z) = [Rt(y, x) — Ry(x,y) gzg‘zﬂ . ify # v and Qu(x,x) =3 ., Qi(y, ), that

generates the same probabilistic path p;, where [z]+ = max(z, 0) denotes the ReLU operation.

Proof. We first prove that the one-way rate matrix (J; generates the same probabilistic path as R;:

Z Qi(z,y)pe(y) = Z Qe(z,y)pe(y) — Qe(y, z)pe(x)

y#x

=2 Bi(wy)my) = By, o)pi(@)] — [Rely, 2)pe(@) = Rolw,y)pe(w)]
yF#w

= > Ri(x,y)pi(y) — Rly, x)pe(x)
y#T

= Ri(z,y)p:(y) = Oips(2),
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which completes the proof. We then show that @); is one-way:

Q) > 0 Ruly) — Bl ) 200 >0 Rufiny) - Ruly ) 248 <o
= Q) = Rl - Ry )2 =0 (19)
Thus, Q;(y,x) > 0 = Q(z,y) = 0, which completes the proof. O

B.2 Locally Equivariant Networks

Based on Proposition 1, we can parametrise Rf as a one-way rate matrix, which is theoretically
capable of achieving the optimum that minimizes Equation (5). Although the one-way rate matrix
is a restricted subset of general rate matrices and thus offers limited flexibility, it enables efficient
computation of the objective in Equation (5). To see this, we first formally define the local equivariant
network, originally proposed in Holderrieth et al. (2025).

Definition 2 (Locally Equivariant Network). A neural network G is locally equivariant if and only if
Gt(T7i|x) = 7Gt(xiai‘swap(x7ia7_))v i = 13"'7d (20)
where Swap(x,i,7) = (T1, ..., Ti—1,T, Titx1,---,2q) and T € {1,..., S}

We can then parametrise the one-way rate matrix R; using a locally equivariant network Gi:
Ry(rilz) = [Gi(7,i|x)]4, if 7 # z; and Ry(x, ) = 3, Ri(y,x). This construction ensures

that R, is a one-way rate matrix. To see this, consider a state y = (z1,...,%i—1,7T, Tit1,...,Tq). If
R.(y,x) > 0, then
Gi(t,i|z) > 0 = —G¢(z;, i|Swap(z,i,7)) > 0= Ri(x,y) <0, 21

demonstrating the one-way property. With this parameterisation, the objective function in Equation (5)
can be computed as

)

S Re) = Ologm() + 3 Re(yinile) — B (i, i) P

1Y T pt(w)
= dylogpi(e) + 3 (G uieile)] — (G i) 2
1,Yi AT pt(x)
=0 logpe(x) + > [Gf(yirilo)]s — [—Gf(yi,ilx)hpt(y),
i, yi AT pe(z)

where the final expression only requires a single forward pass of the network G? to compute the
entire sum, significantly reducing computational cost. To construct a locally equivariant network, we
first define its fundamental building block, the hollow network, as follows

Definition 3 (Hollow Network). Let x;« . = (z1,...,2; =T,...,x4) € X denote the input tokens
with its i-th component set to T. A function H : X — R is called a hollow network if it satisfies
the following condition

H(@ier)i: = H(@ier)i.: forall 7,7 € S,

where M; . denotes the i-th row of the matrix M. In other words, the output at position i is invariant
to the input at position i; that is, the i-th input does not influence the i-th output.

Inspired by Holderrieth et al. (2025), we then introduce the following proposition, which provides a
concrete method for instantiating a locally equivariant network.

Proposition 2 (Instantiation of Locally Equivariant Networks). Let x € X denote the input tokens
and H : X — R¥" be a hollow network. Furthermore, for each token T € S, let w, € R" be a
learnable projection vector. Then, the locally equivariant network can be constructed as:

G(Tv Z|x) = (WT - w:ci)TH(fE)z',:-
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Proof. We verify local equivariance by showing:
G(1,i|7) = (wr — wa,) T H(2);..
= —(wa, —w,)TH(Swap(z,i,7))..
= —G(z;,t|Swap(z, i, 1)),
where the second equality follows from the definition of the hollow network in Definition 3, which

ensures that the i-th output is invariant to the changes in the i-th input. This confirms that G satisfies
the required local equivariance condition as in Definition 2 O

Based on Proposition 2, we present two locally equivariant architectures introduced in Holderrieth
et al. (2025), followed by our proposed locally equivariant transformer.

Locally Equivariant MLP (1eMLP) (Holderrieth et al., 2025). Let 2 € RY*" be the embedded
input data. To construct a locally equivariant multilinear perceptron (MLP), we first define a
hollow MLP as Hyp(z) = Yor o(W*z + b¥) where each W € R is a weight matrix
with zero diagonal entries (i.e., W;; = 0 for all 1), bk e R" is the bias term, and o denotes an
element-wise activation function. A locally equivariant MLP can then be defined as G(7,i|z) =
(wr — we,)THypp ()i

Locally Equivariant Attention (leAttn) (Holderrieth et al., 2025). Let x = (2, ..., 74) € R¥*P
be the embedded input data. Similarly, we first define a hollow attention network as

exp(k(zs)"q(xs))

Havn(z)is: = ; Dt exp(k(xt)Tq(xt))U(xs)’

where ¢, k, v denote the query, key, and value functions, respectively. Thus a locally equivariant
attention network can be defined as G(r,i|z) = (w, — wy, )T Hagn(2);

Jie

While these two architectures® offer concrete approaches for constructing locally equivariant networks,
their flexibility is limited, as they each consider only a single layer. More importantly, naively stacking
multiple MLP or attention layers violates local equivariance, undermining the desired property.

B.3 Locally Equivariant TransFormer (1eTF)

In this section, we present the implementation de- output

tails of the proposed Locally Equivariant Transformer 4
Attention R¢adout Layer k
Feed Forward

(1eTF), an expressive network architecture designed (
to preserve local equivariance. As introduced in Sec- i
tion 3.3, 1eTF is formulated as i

GY(r,ilr) = (wr — wa,) " Hurr ()i, (22) |
where w denotes'the.learnable 'token emb.eddi'ngs pro- " Bidirechonal Causal Attertioh L ayer, N
duced by the projection layer (illustrated in Figure 2), r N\ [ N
and Hyrr represents the Hollow Transformer mod-
ule. In the following, we focus on the implementation e Feed
details of the hollow transformer HyT. Forward Forward
As illustrated in Figure 8, the hollow transformer L X e il
comprises L bidirectional causal attention layers fol-
lowed by a single attention readout layer. For clar-
ity, we omit details of each causal attention layer, Attention (e
as they follow the standard Transformer architecture { L4 4 JRe L4 4 J
(Vaswani et al., 2017). We denote the outputs of . T .
the final left-to-right and right-to-left causal attention positional @—?
layers as encoding

input
Qr, K,V = CausalAttnyog (input); Figure 8: Illustration of the hollow trans-
Qr, Kr, Vg = CausalAttngor, (input). former.

3Note that Holderrieth et al. (2025) also introduces a locally equivariant convolutional network; we refer
interested readers to their work for further details.
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Algorithm 1 Training Procedure of DNFS

Input: initial rate matrix R, probability path p;, time spans {ti }_,, outer-loop batch size M,
inner-loop batch size N, replay buffer B

I: B+ 0 > Initialise replay buffer
2: while Outer-Loop do
— Os,
3: {mtk }% Ii ke ™~ Qro-Re™® > Generate training samples
4 et 5 X Ologpe(a™) — X, R (2™ y) e (€2> vt € {ty <, > 8, log Z,
5: B+ BU{(tg, xﬁjf))}m 1 k=0 > update replay buffer
6: while Inner—Loop do
7: {(¢, a:tn)) n_q ~U(B) > Uniformly sample from buffer
8: & 0 logpu(al”) = T, B (" )2
t
9: L(O) + x>, (ftn —¢)? > Compute training loss
10: 6 < optimizer_step(6, Vo L(6)) > Perform gradient update

11: end while
12: end while

Output: trained rate matrix R?

Because causal attention restricts each token to attend only to its preceding tokens, the resulting
outputs @, K, V inherently satisfy the hollow constraint. In the readout layer, we first fuse the two
query representations by computing () = Q1 + @Q g, and then apply a masked multi-head attention to
produce the final output

KoMy, Kro©Mg|"

QKL OMp, Kp® MRg] )[Vi, Val,
v 2dy,

where ® denotes the element-wise product, dj, is the dimensionality of the key vectors, and M|,

and My masks that enforce the hollow constraint by masking out future-token dependencies in the
left-to-right and right-to-left streams, respectively.

softmax (

C Details of Training and Sampling of DNFS

C.1 Training and Sampling Algorithms

The training and sampling procedures are presented in Algorithms 1 and 2. For clarity, the rate
matrix Rf is parametrised using the proposed locally equivariant network, defined as R (y, z) =
[GY(y:,i|2)]+, where y and 2 only differ at the 4-th coordinate. To initiate training, we discretise the
time interval [0, 1] into a set of evenly spaced time spans {t }5X_, satisfying 0 = to < --- < tx =1
and 2t = tx41 + ty—1 for all valid indices k.

In each outer loop of training, we generate trajectory samples by simulating the forward process
under the current model parameters. Specifically, samples are drawn from the probability path

@)Povasg, defined by the initial distribution po and the current rate matrix Rfsg, where 6, denotes
stop_gradient(#). This forward trajectory is simulated using the Euler—Maruyama method, as
detailed in Algorithm 2, and stored in a replay buffer for reuse. During the inner training loop, we draw
mini-batches uniformly from the buffer and compute the training loss based on Equation (10). The
model parameters are then updated via gradient descent, as described in steps 6—11 of Algorithm 1.

C.2 Efficient Ratio Computation

Although the ratio [p +(9) can be computed in parallel, it remains computationally expensive

pt () }

yEN (z)
in general. However, in certain settings, such as sampling from Ising models and solving combinatorial
optimisation problems, the ratio can be evaluated efficiently due to the specific form of the underlying

distribution. In these cases, the unnormalized distribution takes a quadratic form:
p(z) < p(z) £ exp(a? Wz + hTz), z€{0,1}4, W e R4 h e RY, (23)
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Algorithm 2 Sampling Procedure of DNFS

Input: trained rate matrix R? initial density pg, # steps K

1: ©g ~ po, AL+ %, t<0 > Initialisation
2: fork=0,..., K—1do

3: Tty At < Cat(lmter:w + Rt(xHAt, x)At) > Euler-Maruyama update
4: t—t+ At

5: end for

Qutput: generated samples 1

where the neighbourhood N () is defined as the 1-Hamming Ball around z, i.e., all vectors differing
from x in exactly one bit. Let y be such a neighbor obtained by flipping the i-th bit: y; = —z; and
y; = x; for j # . The log of the unnormalised probability can be decomposed as:

logp(z) = Y xaWapmp+ai » Wipay + 25 Y 2aWai + 2iWiiti + Y hata.  (24)

a#i,b#1 b#1 a#i a
Thus, the change in log-probability when flipping bit  is:

logp(y) —logp(x) = (1= 22:) | > Wipap + > xaWai + Wii + by | - (25)
b#i a#i
This expression can be vectorised to efficiently compute the log-ratios for all neighbours:
log p(y) =(1-22)0 (W + W)z — diag(W) + h), (26)

P() | yenr(a)
where © denotes element-wise multiplication. Furthermore, in special cases, such as combinatorial
optimisation where W is symmetric with zero diagonal, the log-ratio simplifies to

_log p(y) =(1-2z)© 2Waz + h). (27)

P() | yen(a)

In more general settings, where x is a categorical variable and the energy is non-quadratic, there is no
closed-form solution for efficiently calculating the likelihood ratio. However, it can be approximated
through a first-order Taylor expansion (Grathwohl et al., 2021). Specifically,

log pi(y) —logpi(z) = (y — 2)Va log pi(), (28)
which gives the following approximation:
{log b (y>] = [Valogpu(@)]i,; — o7 [V log pi ()i 29)
pi() ],
where {log Zggﬂ - Zlog pt(“"'"’“"i;;(’i’)miH """ 24) and we take the fact that y and z differ only in
3

one position. This approximation requires computing V. log p;(z) just once to estimate the ratio for
the entire neighbourhood, thus improving computational efficiency. However, it introduces bias into
the training objective in Equation (5), potentially leading to suboptimal solutions.

To illustrate this, we train DNFS to sample from pre-trained deep EBMs by minimising the objective

in Equation (5) using two methods for computing the ratio 5 jg; : 1) exact computation in parallel;

and ii) an approximation via the Taylor expansion in Equation (29). As shown Figure 9, using the
approximate ratio leads to inaccurate samples that tend to lie in overly smoothed regions of the
energy landscape. This degradation in sample quality is likely caused by the bias introduced by the
approximation. Consequently, in deep EBM settings where the energy function is non-quadratic, we
opt to compute the exact ratio in parallel, leaving the development of more efficient and unbiased
approximations for future work.

D Applications to Discrete Neural Flow Samplers

In this section, we introduce details of two applications to discrete neural flow samplers: training
discrete energy-based models and solving combinatorial optimisation problems.
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Figure 9: Illustration of the effect of ratio computation in Equation (5). Top row: results using the

Taylor expansion approximation; bottom row: results using exact computation. The approximated
ratio yields less accurate samples, likely due to the bias introduced in the training objective.

D.1 Importance Sampling

We begin by reviewing the fundamentals of importance sampling, followed by a proof based on the
Radon-Nikodym derivative. This approach was also introduced in Lee et al. (2025); Holderrieth
et al. (2025); Pani et al. (2025). For completeness, we include a brief recap to make the paper more
self-contained.

Importance Sampling. Consider a target distribution 7(z) = @, where p(z) > 0 is the un-
normalised distribution and Z = ) _ p(z) denotes the normalising constant, which is typically
intractable. For a test function ¢(x) of interest, estimating its expectation under = through direct
sampling can be challenging. Importance Sampling (IS) (Kahn, 1950) addresses this by introducing
a proposal distribution ¢(z) that is easier to sample from. The expectation under 7 can then be
re-expressed as

1 p(x) )
Z a(@) Eq(a) [%3]
This leads to the Monte Carlo estimator:
LS () . .
Er() ()] = ) $(x®), 2™ ~ q(x), (31)

K -
1 Zj:l w(])

where w*) = 2 E”” ) denotes the importance weight. Although this estimator is consistent as

K — o0, it often suffers from high variance and low effective sample size (Thiébaux & Zwiers,
1984), especially when the proposal g is poorly matched to the target 7. In theory, the variance of
the estimator is minimized when ¢(x) « p(z)¢(z), yielding a zero-variance estimator. While this
condition is rarely attainable in practice, it provides a useful guideline: a well-designed proposal
should closely approximate the target distribution, i.e., ¢(x) = 7(x).

CTMT-Inspired Importance Sampling. As noted previously, an ideal proposal should should
closely approximate the target, i.e., ¢(x) = 7(x). This motivates the use of continuous-time Markov
chains (CTMCs) to construct the proposal. Specifically, let R:(y,x) denote a rate matrix that
defines a forward CTMC with initial distribution py o 7, generating a probability path denoted
by @”’Rt. To complement this, we define a backward CTMC with initial distribution p; < p and
interpolated marginals p; oc p; := p'n'~*. The backward process £ governed by the rate matrix
Ri(y,z) = Re(x,y) 2 ZE;’%, leading to the backward path distribution Q#%¢. This construction yields
the following importance sampling identity:

YA
B 0@ =B, ___gonl0@)]=E,__ gon %m(i¢ w6

which can be approximated via Monte Carlo sampling:

B lb@] 3 =2 o), ol ~ G, O MGatle) gy
m(x) (P\T)] ~ =k 21 7)s To<i<a ™Y fow 34-
k=1 jzlwm Qm R'( " <1)
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This estimator is consistent for any choice of R;, and it becomes zero-variance when R; satisfies the
Kolmogorov equation in Equation (4), a condition that can be approximately enforced by minimizing

’
p Ry

the loss in Equation (5). Before delving into the computation of the importance weights we

n,Ry ”
introduce two key lemmas that underpin the derivation.

Lemma 3 (Radon-Nikodym Derivative (Del Moral & Penev, 2017)). Let py and p; be two initial
distributions; Ry and R., be two rate matrices, which induce the forward and backward CTMCs

% /
Qro-® and @p“R over the time interval [0, t], respectively. Then,

log @::7: _ /Ot R.(z4,75) — Rs(xs,75)ds + S IZ# log m, (34)
which induces that
Qe ) o (Jo Bofons) ds) [ felee 35)
Qro-Be Po(20) exp (fg Rs(xs,xs)dS) iy Ry(zs,25)

Proof. For a comprehensive proof, we refer readers to (Campbell et al., 2024, Appendix C.1), which
follows the exposition in Del Moral & Penev (2017). L]

Lemma 4 (Fundamental Theorem of Calculus). Let f : [0,7] — R be a piecewise differentiable
function on the interval [0, T']. Suppose that f is differentiable except at a finite set of discontinuity
points {s;}"_, C [0, T), where the left-hand limit f(s; ) and the right-hand limit f(s]) at each s;
exist but are not necessarily equal. Then, the total change of f can be expressed as

¢
fO- 10 = [ Feds+ 3 [ - 60 36)
0 s€{si}7_,N(0,1)
forallt € [0, T), where f'(s) denotes the derivative of f at points where f is differentiable.

Now, it is ready to compute the importance weight. Specifically,

LI p Z, t R (x5, x4)

Dt 0 / s\ Tg »Ts

lo =log 2t +1o —+/ Rl(s, ) — Re(xs, ) ds + log =558
g o —log o tlog o | o ( ) ( ) E;ﬁ gRs(xs,:c;)

Z

t t I (
. R/ (x;,xs)ps(xs)

=1lo —O—i—/ 0slo Sds—l—/R’S Zs,Ts)—Rs(xs, z5) ds + lo 57
g7, | Oslogp ; ( )— R ( ) > 8 Rle o pa(es)

$,Ts #Ts

Z t t
=log—0+/ 6slogﬁsds+/ Rl (xs,1s) — Rs(ws, ws) ds
Zt 0 0

Zo /t N / ¢ ps(y)
=log — + Oslogps ds + — Ry (xs, — Ry (xs,z5)ds
gz, + ) Oslogp ; y;ws @s:9) 2] (x5, 25)

ZO /t ~ pe(y)
=log — + Oslogps — E Ry(zs,y)—=ds,
g 7, . g Ps : ( s y)ps(xs)

where the first equation follows from Lemma 3, and the second from Lemma 4, leveraging the fact
that ¢ — log p; is piecewise differentiable. The final equality holds by the detailed balance condition
satisfied by the backward rate matrix, namely R} (y, x)p:(x) = R¢(x, y)p:(y). Importantly, although
the partition function Z; is generally intractable, it cancels out in practice through the use of the
self-normalised importance sampling estimator as in Equation (32).
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Free Energy and Internal Energy Estimation. To estimate the log-partition function log Z,, we
consider the following lower bound

(_
th,Ri é
QPO»Rt ZO

Z,
log Zt = log ]Ept |:Z;:| = lOg EIogsgt"’@pO’Rt

Pt, Z
ID<5<t~@pO R llog (:(ipo, t + log Zo
B ps(y)
= EIogsgtN@po’Rt l/o Os log ps(zs) — ZRS(xS’y)pS(mS) ds] , (37)
Y

where we assume that Z; = 1. Considering the test function ¢ = log p;, one can also estimate the
negative entropy, which is related to the internal energy:

(k)

pt, Ry K ex
- - Z plw
Ep‘ [lngt] :]E10<s<t~@>p0ﬁt [ logpt(xt)‘|% ( : )(J)
T o k=1 Z] L exp(wy”’)

where :v(()ké)sét ~ @”’Rf, and wt(k) (xék<)5<t fo 0 logps( ) >, Rs(ws O )%
Effective Sample Size (ESS). The Effective Sample Size (ESS) (Liu & Liu, 2001, Chapter 2)
quantifies how many independent and equally weighted samples a set of importance-weighted Monte
Carlo samples is effectively worth. It reflects both the quality and diversity of the weights: when most
weights are small and a few dominate, the ESS is low, indicating that only a small subset of samples
contributes meaningfully to the estimate. Formally, consider the importance sampling estimator:

log ("),  (38)

ds.

~—

K (k) (k)
E ~ exp(w'®)) ®), ] 1 p(z
plo(2)] kz=:1 —Zle exp(w®) P(z), w 0g q(z®)’

where ¢ is the proposal distribution. The normalised ESS is given by:

a® ~q(z), (39

(k)
ESS (Zk 1 eXp('IU )) e 1 , (40)
K Zk L exp(2w®) KZk:1(“~’(k))2

denotes the normalised importance weight. In CTMC-based importance

exp(w®))
> exp(w)
sampling, the estimator takes the form:

where (%) =

K (k)
exp(w; ) k k .
B o] ~ Y ety o), afdi ~ T o)
k=1 ZJ 1eXp( )
with log-weight wt fo 0s log pé(a:s ) >y Bs ( )ﬁ ds. Thus, the corresponding
ESS is computed as
(k)
1
ESS= ————m5 O = —EXp(wt )(j) (42)
K3 (W) Z] L exp(wy”’)

Log-Likelihood Estimation. Let RY (y,z) 2 RY(r,i|z) = [GY(7,i|x)], be a learned rate matrix,
where y = (z1,...,%i—1,7T,Zit+1,---,Zq4). This matrix parameterizes a forward that progressively
transforms noise into data via Euler-Maruyama discretization:

Tepar ~ Cat (]—zt+At:zt + Rf($t+At,$t)At) y Lo ~ Po- (43)
The corresponding reverse-time rate matrix is given by
RY (5,2) = RO ) 2 — (60 i) 2D — (G0 g 2 e
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which enables simulating the reverse CTMC that maps data back into noise:

zi-ap~ Cat | 1y, apma, + RY (24,20 At)ZMAt 1~ p1. (45)
Pe(w¢)

This reverse process enables estimation of a variational lower bound (ELBO) on the data log-
likelihood:

—2po
QRt|w0
log Ep,... [pe ()] = logEleP17$0§t<lN(@Rtgl‘ml Wpo(xo)

RelfL’o
> EMNPM%QQN@R%M [1 gz—iQRe,‘ + logpo(zo)]

(k)

~ §:log§@—@R9'T +logpo(e), 2y ~ pa(e) QI
~ 7y (k) ) o<t<1 ™ )
K Pt RY'|

where the log-ratio log gRe/‘ can be evaluated using Lemma 3

—= 0
R |zo 0 o ) d _)
= R, (zs,7s5) — Ts, Tg)ds + 75
R ( & 2 * R (5 .)
ps(y):| ps(xs)
(y, ) — Rl(zs,y ds + log ===
/1 ;[ o) ) Z pe(as)
0
~ [ X (il - [-Clunite)) 2 d +Y b
Li=1,..d T4z, ( )

D.2 Training Discrete EBMs with Importance Sampling

To train a discrete EBM py () o< exp(—Eg(x)), we employ contrastive divergence, which estimates
the gradient of the log-likelihood as

Vo Epiaa(@) 108 pg(2)] = Ep, () [V Eg ()] — Ep,a(a) [V Eg ()], (46)

where the second term can be easily approximated using the training data with Monte Carlo estimation.
To estimate the intractable expectation over pg, MCMC method is typically used. However, for
computational efficiency, only a limited number of MCMC steps are performed, resulting in a biased
maximum likelihood estimator and suboptimal energy function estimates (Nijkamp et al., 2020). To
address this issue, we replace MCMC with the proposed discrete neural flow samplers. Specifically,
we train a rate matrix RY to sample from the target EBM pgs. The expectation over pgcan then be
estimated using CTMT-inspired importance sampling, as described in Appendix D.1:

%

! K
Epy@)[VoEs(2)] =E,_goo.nt gﬁvaﬂ%(ﬂ?) %Z?M—w%V¢E¢(m(k)),
o~ Qo | o Re = S exp(wl)

where w(*) = fol & (z4; R9) dt. To summarise, we jointly train the EBM p, and the DNFS by
alternating the following two steps until convergence:

1) Updating the rate matrix parameters 6 using the training procedure described in Algorithm 1;
2) Updating EBM p,, via contrastive divergence, as defined in Equation (46).

D.3 Combinatorial Optimisation as Sampling
Consider a general combinatorial optimisation problem of the form min,cxy f(z) subject to

¢(x) = 0. This problem can be reformulated as sampling from an unnormalised distribution
p(z) < exp(—FE(x)/T), where the energy function is defined as E(z) = f(z) + Ac(z) (Sun et al.,
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2023b). As the temperature T — oo, p(z) approaches the uniform distribution over X', while as
T — 0, p(z) concentrates on the optimal solutions, becoming uniform over the set of minimisers. In
this paper, we focus on two combinatorial optimisation problems: Maximum Independent Set (MIS)
and Maximum Cut (MaxCut). Below, we define the energy functions used for each task following
Sun et al. (2022b). Given a graph G = (V, E), we denote its adjacency matrix by A, which is a
symmetric and zero-diagonal binary matrix.

MIS. The MIS problem can be formulated as the following constrained optimisation task:

V]
min — x;, s.t.x;x; =0,Y(i,5) € E. 47
vel01)e ; j ( ]) 47

We define the corresponding energy function in quadratic form as:

T
A
—logp(z) x BE(z) = —17x + AL 5 ) (48)

Thus, the log-probability ratio between neighboring configurations y € N (), differing from z by a
single bit flip, has a closed-form expression

g 2

1
=(1-22) 0 (x— -AAzx). 49

Following Sun et al. (2022b), we set A = 1.0001. After inference, we apply a post-processing step to
ensure feasibility: we iterate over each node z;, and if any neighbour z; = 1 for (z;,z;) € E, we
set x; <— 0. This guarantees that the resulting configuration x is a valid independent set.

Maxcut. The Maxcut problem can be formulated as
1—z;z;
i — A | —2 ). 50
iy 3 s (5) o0
1,jEE

We define the corresponding energy function as

1
—logp(x) x E(z) = ZJ:TAJ:. (51)
This leads to the following closed-form expression for the log-ratio
1
{log p(y)} = Az (52)
P() ] yenr(a) 2

Since any binary assignment yields a valid cut, no post-processing is required for MaxCut.

D.4 Locally Equivariant GraphFormer (leGF)

To train an amortized version of DNFS for solving combina-

torial optimization problems, it is essential to condition the TR T \
model on the underlying graph structure. To this end, we inte- | Y |
grate Graphormer (Ying et al., 2021) into our proposed Locally | T
Equivariant Transformer (IeTF), resulting in the Locally Equiv- ! b - i
ariant Graphformer (1eGF). i éM— w i
The leGF architecture largely follows the structure of 1eTF, with i Q E
the key difference being the computation of attention weights, ! . |
which are modified to incorporate graph-specific structural bi- | m o
ases. Following Ying et al. (2021), given a graph G = (V, E), - S (S N SR

we define ¢ (v;, v;) as the shortest-path distance between nodes Q K V

v; and v; if a path exists; otherwise, we assign it a special Figure 10: Illustration of the graph-
value (e.g., —1). Each possible output of ¢ is associated with a aware attention mechanism. The
learnable scalar by,(y, ), Which serves as a structural bias term figure is adapted from (Ying et al.,

in the self-attention mechanism. Let A; ; denote the (i, j)-th 2021, Figure 1)
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Figure 11: Additional visualisation of sampling from pre-trained EBMs.

element of the Query-Key interaction matrix. The attention
weights are then computed as:

T .
i K

A; ; = softmax( + bw(ij)),
where by, (., .,) 1s shared across all attention layers. An illustration of this graph-aware attention
mechanism is shown in Figure 10. For further details, we refer the reader to Ying et al. (2021).

E Details of Experimental Settings and Additional Results

In this section, we present the detailed experimental settings and additional results. All experiments
are conducted on a single Nvidia RTX A6000 GPU.

E.1 Sampling from Unnormalised Distributions

E.1.1 Experimental Details

Sampling from Pre-trained EBMs. In this experiment, we adopt energy discrepancy” to train an
EBM, implemented as a 4 layer MLP with 256 hidden units and Swish activation. Once trained, the
pretrained EBM serves as the target unnormalized distribution, with the initial distribution pg set
to uniform. A probability path is then constructed using a linear schedule with 128 time steps. To
parameterise the rate matrix, we employ the proposed locally equivariant transformer, in which the
causal attention block consists of 3 multi-head attention layers, each with 4 heads and 128 hidden
units. The model is trained using the AdamW optimizer with a learning rate of 0.0001 and a batch
size of 128 for 1,000 epochs (100 steps per epoch). To prevent numerical instability from exploding

i :EZ% is clipped to a maximum value of 5.

loss, the log-ratio term log

Sampling from Ising Models. We follow the experimental setup described in (Grathwohl et al.,
2021, Section F.1). The energy function of the Ising model is given by log p(z) x az® Jx + bTx. In
Figure 5, we set a = 0.1 and b = 0. The probability path is constructed using a linear schedule with
64 time steps, starting from a uniform initial distribution. The 1eTF model comprises 3 bidirectional
causal attention layers, each with 4 heads and 128 hidden units. Training is performed using the
AdamW optimizer with a learning rate of 0.001, a batch size of 128, and for 1,000 epochs (100 steps
per epoch). To prevent numerical instability, the log-ratio term is clipped to a maximum value of 5.

Experimental Setup for Figures 1 and 3. In this experiment, we set @ = 0.1 and b = 0.2. The
probability path is defined via a linear schedule over 64 time steps, starting from a uniform initial
distribution. The 1eTF model is composed of 3 bidirectional causal attention layers, each with 4 heads

*https://github.com/J-zin/discrete-energy-discrepancy/tree/density_estimation
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and 64 hidden units. Training is conducted using the AdamW optimiser with a learning rate of 0.001,
a batch size of 128, and for 500 epochs (100 steps per epoch). To mitigate numerical instability, the
log-ratio term is clipped to a maximum value of 5.

E.1.2 Additional Results

Additional Results of Sampling from Pre-trained EBMs. We present additional results comparing
DNES to baseline methods on sampling from pre-trained EBMs in Figure 11. The results demonstrate
that DNFS produces samples that closely resemble those from the oracle distribution.

LEAPS with leConv and leTF. While leConv performs

comparably to DNFS on Ising models, its convolutional

architecture may struggle to adapt to non-grid data struc-
tures. In this experiment, we use the LEAPS® algorithm
(Holderrieth et al., 2025) to train a neural sampler with two
different locally equivariant architectures: leConv (Hold-
errieth et al., 2025) and 1eTF (ours). Given the data has
32 dimensions, we pad it to 36 and reshape it into a 6 X 6
grid to make it compatible with leConv. As shown in
Figure 12, LEAPS with leConv fails to achieve meaning-
ful performance, whereas the proposed transformer-based
architecture 1eTF performs comparably to DNFS. This Figure 12: Comparison of leConv
result highlights the limitations of leConv, whose expres- and leTF on sampling from pre-trained

LEAPS + 1eTF LEAPS + leConv

siveness is constrained on non-grid data, while 1eTF offers EBMs with LEAPS.
greater flexibility and generalisation across diverse input
structures.
Comparing to MCMC Methods. Compared to MCMC
methods, a key advantage of neural samplers is their ability g
. . [ Oracle
to guarantee convergence when trained optimally, whereas 1 DNFS
MCMC methods often suffer from slow mixing and poor .15 Gibbs
convergence. To highlight this benefit, we adopt the same L1 GwG
setting as in Figure 5, using DNFS with 64 sampling o0.10; = DMALA
steps. For a fair comparison, we evaluate MCMC baselines
with the same number of steps, including Gibbs sampling  0.05
(Casella & George, 1992), Gradient with Gibbs (GwG)
(Grathwohl et al., 2021), and the Discrete Metropolis- 090 ——53="=i5~ -1 =5 o0 3
adjusted Langevin Algorithm (DMALA) (Zhang et al., Energy

2022b). We present energy histograms based on 5,000
samples in Figure 13, with a long-run Gibbs sampler serv-
ing as the oracle. The results show that short-run MCMC

Figure 13: Histogram of sample energy
for different sampling methods.

methods struggle to produce accurate samples, although gradient-based variants (GwG and DMALA)
outperform conventional Gibbs sampling. In contrast, the energy distribution produced by DNFS
closely matches the oracle, demonstrating the effectiveness of the proposed neural sampler.

Training Loss Comparison. We

train our model by minimising 000\ —— IeTF (ours) z — DNFS
the loss function defined in Equa- 75 leConv ol LEAPs
tion (5), where a smaller loss § >° ] | — leAtin 2

4 25 “\\,\ﬂﬂ— leMLP 3
value reflects a better fitto the pa- g, g O
rameterised rate matrix. As such, ~ _zs! - 'j:
the loss value serves as a proxy -5 I

for training quality and model — ~7°'%

convergence. In Figure 14, we
compare the training loss across
different locally equivariant net-
work architectures. The results
show that the proposed locally

20K 30K
Training Steps

10K

works (ref: Figure 3).

40K

Figure 14: Training loss of dif-
ferent locally equivariant net-

40K 60K 100K

Training Steps

50K 0 20K 80K
Figure 15: Training loss com-
parison between DNFS and

LEAPS (ref: Figure 5).

equivariant transformer achieves the lowest loss value, indicating its superior capacity to fit the target

“https://github.com/malbergo/leaps
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Table 2: Comparison of the estimated free energy F /D, internel energy £/D, entropy S/ D, and
effective sample size for Ising models on D = 10 x 10 grids at different temperatures.

| Method | ESS Free Energy /D  Internal Energy £/D  Entropy S/D
Optimal Value 1 —-3.6727 —0.4282 0.6489
oc=0.1 |LEAPS 0.9956 £+ 0.0001 —3.6709 £4.9182¢~°  —0.4262 £ 0.0034 0.6489 4 0.0006
DNFS 0.9985 4+ 4.6912e 7> —3.6709 4 6.2463¢™>  —0.4271 4 0.0010 0.6488 =+ 0.0002
Optimal Value 1 —2.1242 —1.4763 0.2855
o = 0.22305 | LEAPS 0.3631 +£0.1184 —2.1011 £ 0.0002 —1.4493 £0.0130 0.2873 £ 0.0057
DNFS 0.9685 4+ 0.0010  —2.1120 4 6.6258¢ %> —1.4743 £ 0.0068 0.2811 % 0.0030

Table 3: Experiment results of probability mass estimation on seven synthetic datasets. We display
the negative log-likelihood (NLL) and MMD (in units of 1 x 10™%).

Metric | Method | 2spirals 8gaussians circles moons pinwheel swissroll checkerboard

PCD 20.094 19.991  20.565 19.763 19.593  20.172 21.214
ALOE+ 20.062 19.984  20.570 19.743 19.576  20.170 21.142
NLL| ED-Bern | 20.039 19.992  20.601 19.710 19.568  20.084 20.679

EB-GFN | 20.050 19.982  20.546 19.732 19.554  20.146 20.696
EB-DNFS | 20.118 19.990  20.517 19.789 19.566  20.145 20.682

PCD 2.160 0.954 0.188 0.962  0.505 1.382 2.831
ALOE+ 0.149 0.078 0.636 0.516 1.746 0.718 12.138
MMD| ED-Bern 0.120 0.014 0.137 0.088  0.046 0.045 1.541
EB-GFN 0.583 0.531 0.305 0.121 0.492 0.274 1.206
EB-DNFS | 0.603 0.070 0.527 0.223  0.524 0.388 0.716

rate matrix. Furthermore, Figure 15 compares the loss values between DNFS and LEAPS, showing
that our approach again outperforms the baseline. This demonstrates the combined effectiveness of
our coordinate descent learning algorithm and transformer-based architecture.

Quantatitive Results. Recall Equation (11), where the Ising model is defined as
p(x) < exp(~E(z)) £ exp(oa’ Apz), =€ {-1,1} (53)

where o € R is the temperature and Ap denote the adjacency matrix of the lattice graph. We evaluate
our method by comparing the estimated free energy F = — 5= log Z, internal energy £ = E,[E(z)],
and entropy S = 20(€ — F) with their theoretically optimal values derived in Ferdinand & Fisher
(1969). The free energy and internal energy are estimated using Equations (37) and (38), respectively.
We compare DNFS with LEAPS under two temperature settings, o = 0.1 and o = 0.22305, where
the latter corresponds to the critical temperature and thus presents a more challenging sampling
problem. The result is reported in Table 2, where we use 2,048 Monte Carlo samples to estimate the
values and report the mean and standard deviation averaged over 10 independent runs. The results
show that DNFS provides accurate estimates of the free and internal energies, closely matching the
theoretical value with low variance. In contrast, LEAPS exhibits significantly lower ESS and larger
deviations in other metrics under the critical temperature setting, which may indicate insufficient
mode coverage. These comparisons highlight the robustness of DNFS and suggest it is less prone to
mode collapse across different temperatures.

E.2 Training Discrete EBMs
E.2.1 Experimental Details

Probability Mass Estimation. This experiment follows the setup of Dai et al. (2020). We first
sample 2D data points & £ [#1, 2] € R? from a continuous distribution p, and then quantise each
point into a 32-dimensional binary vector z € {0, 1}32 using Gray code. Formally, the resulting
discrete distribution follows p(z) x p([GradyToFloat(x1.16), GradyToFloat(z17.32)])-

Following Schroder et al. (2024), we parameterise the energy function using a 4-layer MLP with 256
hidden units and Swish activation. The IeTF model consists of 3 bidirectional causal attention layers,
each with 4 heads and 128 hidden units. The probability path is defined by a linear schedule over 64
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Table 4: Experimental Results of EBM and DNFS on probability mass estimation: Rows labelled
‘EBM’ represent metrics evaluated using the trained EBM model, while rows labelled ‘DNFS’
represent metrics evaluated using the trained DNFS.

Metric | Method | 2spirals 8gaussians circles moons pinwheel swissroll checkerboard

NLL| EBM 20.118 19.990  20.517 19.789 19.566  20.145 20.682
DNFS | 20.947  20.948  21.043 20.908 21.011  20.899 21.106
MMD| EBM 2.553 1.429 0.897 2.808 1.733 0.731 6.168
DNFS 0.603 0.070 0.527 0.223  0.524 0.388 0.716
Data Energy Samples Data Energy Samples Data Energy Samples
Energy Samples Energy Samples Energy Samples

Figure 16: Additional qualitative results in training discrete EBMs. We visualise the training data,
learned energy landscape, and the synthesised samples of DNFS.

time steps, starting from a uniform initial distribution. Both the EBM and DNFS are trained using
the AdamW optimiser with a learning rate of 0.0001 and a batch size of 128. Notably, each update
step of the EBM is performed after every 10 update steps of DNFS. To ensure numerical stability, the
log-ratio term is clipped at a maximum value of 5.

After training, we quantitatively evaluate all methods using negative log-likelihood (NLL) and
maximum mean discrepancy (MMD), as reported in Table 3. Specifically, the NLL is computed using
the trained EBM on 4,000 samples drawn from the data distribution, with the normalization constant
estimated via importance sampling using 1,000,000 samples from a variational Bernoulli distribution
with p = 0.5. For the MMD metric, we follow the protocol in Zhang et al. (2022a), employing an
exponential Hamming kernel with a bandwidth of 0.1. All reported results are averaged over 10
independent runs, where each run uses 4,000 samples generated by the trained DNFS.

Training Ising Models. Following Grathwohl et al. (2021); Zhang et al. (2022b), we train a learnable
adjacency matrix Jy to approximate the true matrix J in the Ising model. To construct the dataset,
we generate 2,000 samples using Gibbs sampling with 1,000,000 steps per instance. The 1eTF model
consists of three bidirectional causal attention layers, each with four heads and 128 hidden units. The
probability path is defined by a linear schedule over 64 time steps, starting from a uniform distribution.
Jg is optimised using the AdamW optimiser with a learning rate of 0.0001 and a batch size of 128.
To promote sparsity, we follow Zhang et al. (2022a) and apply [; regularisation with a coefficient of
0.05. DNFS is trained separately using AdamW with a learning rate of 0.001 and the same batch size.
To ensure numerical stability, the log-ratio term is clipped at a maximum value of 5. We train both
models iteratively, performing one update step for Jy for every ten update steps of DNFS.

E.2.2 Additional Results

Additional Results of Probability Mass Estimation. We compare DNFS to various baselines,
including PCD (Tieleman, 2008), ALOE+ (Dai et al., 2020), ED-Bern (Schroder et al., 2024), and
EB-GFN (Zhang et al., 2022a). As shown in Table 3, DNFS outperforms both Persistent Contrastive
Divergence (PCD), which relies on conventional MCMC methods, and the variational approach
ALOE+, demonstrating the effectiveness of our method. Additional qualitative results are provided in
Figure 16, where DNFS consistently produces accurate energy landscapes and high-quality samples
that closely resemble the training data. Furthermore, Figure 17 illustrates the sampling trajectory of
DNEFS alongside marginal samples from long-run Gibbs sampling. The comparison shows that DNFS
produces samples that closely resemble those from Gibbs, demonstrating its ability to approximate
the target distribution with high fidelity.
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Notably, since the EBM and the sampler are trained jointly, we can evaluate the negative log-likelihood
(NLL) of the data using the trained CTMC, as described in Appendix D.1, and assess sample quality
via the maximum mean discrepancy (MMD) using samples generated by the trained sampler. In
Table 4, we report results under four evaluation settings: i) NLL (EBM): using the trained EBM
with importance sampling; ii) NLL (DNFS): using the trained CTMC following the method in
Appendix D.1; iii) MMD (EBM): samples drawn via Gibbs sampling from the EBM; and iv) MMD
(DNFS): samples generated by DNFS. It can be seen that samples generated by DNFS achieved
lower MMD compared to those generated by Gibbs sampling, demonstrating the superiority of the
learned sampler in capturing the target distribution and producing higher-fidelity samples. However,
we observe that DNFS yields less accurate likelihood estimates compared to importance sampling
performed with the trained energy function. This is likely because DNFS is trained to satisfy the
Kolmogorov equation rather than explicitly optimising the evidence lower bound, as is common
in other discrete diffusion models for generative modelling (Shi et al., 2024; Sahoo et al., 2024).
Moreover, it is noteworthy that the sample quality and likelihood are not necessarily consistent (Theis
et al., 2016, Section 3.2), and DNFS does not directly optimise the likelihood. Thus, the performance
of DNFS on NLL is not guaranteed.

Additional Results of Training Ising
Models. We further provide a quan- Table 5: Mean negative log-RMSE (higher is better) between

titative comparison against baselines the learned connectivity matrix .J; and the true matrix J for
for training Ising models. Following different values of D and o.

Zhang et al. (2022a); Schroder et al. D = 102 D=92
(2024), we evaluate on D = 10 x Method \ o

10 grids with o = 0.1,0.2,...,0.5 01 02 03 04 05 —-01 -—02
and D = 9 x 9 grids with ¢ = Gibbs 4.8 47 34 26 23 4.8 4.7
—0.1, —0.2. Performance is measured GwG 4.8 4.7 34 26 23 4.8 4.7

by the negative log_RMSE between ED-Bern 5.1 40 2.9 2.6 2.3 5.1 43
the estimated J, and the true adja- EB-GFN 61 51 33 26 23 57 51
cency matrix J. As shown in Table 5, DNFS 46 39 31 26 23 46 3.9
while our method underperforms ED-
GFN, which is also a neural sampler, it achieves results comparable to Gibbs, GwG, and ED-Bern in
most settings, demonstrating its ability to uncover the underlying structure in the data.

E.3 Solving Combinatorial Optimisation Problems

E.3.1 Experimental Details

This experiment follows the setup in (Zhang et al., 2023a), where we train an amortised combinatorial
solver using DNFS on 1,000 training graphs and evaluate it by reporting the average solution size over
100 test graphs. To be specific, we use Erd6s—Rényi (ER) (Erdos, 1961) and Barabasi—Albert (BA)
(Barabasi & Albert, 1999) random graphs to benchmark the MIS and MCut problems, respectively.
Due to scalability limitations of our current method, we restrict our evaluation to small graphs with
16 to 75 vertices, leaving the exploration of more complex graphs for future work.

We parameterise the rate matrix using the proposed locally equivariant GraphFormer (leGF), which
consists of 5 bidirectional causal attention layers, each with 4 heads and 256 hidden units. Training is
performed using the AdamW optimiser with a learning rate of 0.0001 and a batch size of 256. The
log-ratio term is clipped to a maximum value of 5 to ensure stability. More importantly, we find that
the temperature 7" plays a crucial role in performance. Fixed temperature values generally lead to
suboptimal results. Therefore, we adopt a temperature annealing strategy: starting from an inverse
temperature of 0.1 and gradually increasing it to a final value of 5. A more comprehensive annealing
strategy, such as adaptive schedules based on loss plateaus, may further improve performance by
better aligning the sampling dynamics with the learning process. Exploring such adaptive annealing
schemes is a promising direction for future work.

E.3.2 Additional Results
Additional Results on Maximum Cut. We further evaluate DNFS on the maximum cut problem.

As shown in Table 6, the trained DNFS significantly outperforms its untrained version, underscoring
the effectiveness of our approach. While DNFS slightly lags behind the baselines DMALA and
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Table 6: Maximum cut experimental results. We report the absolute performance, approximation
ratio (relative to GUROBI), and inference time.

BA16-20 BA32-40 BA64-75

METHOD

Sizét Drop| TIME] Sizét Drop] TIME] SizE{1 Drop| TIME|
GUROBI 40.85  0.00% 0:02 93.67  0.00% 0:05 194.08 0.00% 0:14
RANDOM 25.70  37.1% 0:03 46.19 50.7% 0:05 81.19 58.2% 0:08
DMALA 40.32 1.30% 0:04 93.47 0.21% 0:06 192.33 0.90% 0:07
GFLOWNET 39.93 2.25% 0:02 90.65 3.22% 0:04 186.60 3.85% 0:07
DNFS 39.60  3.06% 0:03 88.64 5.3™% 0:05 181.75 6.35% 0:08

DNFS+DMALA 40.76  0.22% 0:08 93.63 0.01% 0:12 19230 0.92% 0:17

Table 8: Results for the maximum independent set problem on RB32-40 graphs with varying
parameter p. Reported values include the solution size (larger is better) and the percentage drop in
performance relative to GUROBI (lower is better), indicated in brackets.

p= 0.1 0.3 0.5 0.7 0.9 1.0
GUROBI 8.52(0.00%) 8.24(0.00%) 7.06(0.00%) 7.89(0.00%) 8.05(0.00%) 8.63(0.00%)
Random 3.38(60.3%) 4.59(44.2%) 4.25(39.8%) 5.54(29.7%) 6.29(21.8%) 6.93(19.6%)
DMALA 8.50(0.23%) 8.16(0.97%) 7.01(0.70%) 7.84(0.63%) 8.04(0.12%) 8.63(0.00%)
GflowNet 8.20(3.75%) 7.93(3.76%) 6.83(3.25%) 7.78(1.39%) 8.03(0.62%) 8.63(0.00%)
DNFS 8.00(6.10%) 7.65(7.16%) 6.67(5.52%) 7.66(2.91%) 7.97(0.99%) 8.63(0.00%)
DNFS+DMALA 8.51(0.11%) 8.19(0.60%) 7.02(0.56%) 7.85(0.50%) 8.04(0.12%) 8.63(0.00%)

GFlowNet, its MCMC-refined variant achieves the best overall performance, closely approaching the
oracle solution provided by Gurobi.

MCMC_ Refined DNSF. As previ- Table 7: Comparison between DNFS and its DLAMA-
ously discussed, a key advantage of refined version by solving MIS on the ER16-20 dataset.
DNEFS is its ability to incorporate addi-

tional MCMC steps to refine the sam- STEPS DLAMA DNFS+DLAMA
pling trajectory, thanks to the known

marginal distribution p;. To vali- Sizet TIME(S)) SzET TIME(S)+
date the effectiveness of this MCMC- 1 8.33 1.75 8.37 4.53
refined sampling, we conduct an ex- 2 8.53 3.19 8.63 5.89
periment on the MIS problem us- i SZ; g;g Sgi ggg
ing the ER16-20 dataset. In this ex- p 8.80 7 md 801 10.47

periment, we compare two methods:
DMALA (Zhang et al., 2022b) and
DNFS combined with DLAMA, both sampling from the same interpolated distribution p; o< pé_tpﬁ.
For reference, the average solution size obtained by DNFS without DLAMA refinement is 8.28. As
shown in Table 7, applying DLAMA refinement significantly boosts performance, with improvements
increasing as more refinement steps are added. More importantly, integrating the proposed neural sam-
pler (DNFS) with the MCMC method (i.e., DNFS + DLAMA) outperforms the standalone MCMC
baseline (i.e., DMALA), demonstrating that the learned sampler provides a strong initialisation that
guides the refinement process toward better solutions. This result confirms the synergy between
neural samplers and MCMC refinement in solving challenging combinatorial problems.

Benchmarking on the RB Graphs. Following Sanokowski et al. (2024), we further evaluate our
method on the Maximum Independent Set problem using the RB32-40 graphs, varying the parameter,
which controls the problem’s difficulty. Specifically, higher p values of yield easier instances,
while lower values result in more challenging graphs. For each setting, we report the solution size,
along with the percentage performance drop relative to GUROBI. As shown in Table 8, the results
are consistent with the observation in Table 1. On easier instances (i.e., higher values of p), our
method performs competitively, approaching the performance of the oracle solver GUROBI. On
more challenging instances, however, DNFS exhibits a performance gap relative to GFlowNet. This
gap arises because GFlowNet restricts its sampling trajectories to the feasible solution, effectively
narrowing the exploration space. Introducing such an inductive bias into DNFS represents a promising
direction for future work. Nevertheless, despite DNFS underperforming GFlowNet in its pure
form, it offers a distinct advantage: the intermediate target distribution is explicitly known. This
property enables integration with MCMC-based refinement methods (e.g., DNFS+DMALA), which
significantly improves performance.
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Noise to Data (t : 0 — 1)

Data to Noise (¢ : 1 — O

Marginal Samples with Gibbs Sampling (¢ : 0 — 1)

Figure 17: The sampling trajectory of DNFS in discrete EBM training. Top: noise to data trajectory;
Middle: data to noise trajectory; Bottom: marginal samples with Gibbs sampling.
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