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ABSTRACT

Diffusion models have achieved strong performance in multichannel speech en-
hancement, especially in unseen noisy scenarios. However, most existing dif-
fusion method rely on globally consistent guidance applied either to the output
or uniformly across denoiser layers, which fails to provide layer-specific adapta-
tion and introduces redundancy, thereby constraining denoising performance.To
address these challenges,we propose a novel hierarchical graph-coding diffu-
sion model with adaptive information bottleneck (HG-Diff-IB) for multichannel
speech enhancement. Specifically, we introduce a hierarchical alignment method
to align graph-coding with the denoiser at different depths, together with a layer-
wise graph-coding modulation mechanism that injects graph information into in-
termediate features, enabling layer-specific guidance of diffusion feature distribu-
tions. Furthermore, we introduce an adaptive information bottleneck that dynam-
ically adjusts the feature compression according to the estimated SNR, effectively
balancing noise suppression and target feature preservation. Experimental results
demonstrate that our proposed method outperforms baselines in various evaluation
metrics.

1 INTRODUCTION

Multichannel speech enhancement has witnessed significant progress in recent years, driven by the
synergy of deep learning innovations. By leveraging the spatiotemporal correlations across multiple
microphone arrays, it has become a powerful approach for enhancing speech quality in dynamic
acoustic environments (Hao et al., 2022; Chau et al., 2024). This advancement not only enables
more robust noise suppression, but also delivers better generalization capabilities across diverse real-
world scenarios, such as in smart speakers, mobile phones, and hearing aids, where non-stationary
noise and interference are prevalent (Doclo et al., 2015; Sainath et al., 2017; Saryuddin Assaqty
et al., 2020).

Recently, diffusion models have shown remarkable potential in speech enhancement (Lu et al., 2021;
Gonzalez et al., 2024), achieving high-quality reconstruction even under challenging acoustic con-
ditions. By leveraging iterative denoising, these models provide stronger robustness compared to
other approaches (Elgiriyewithana & Kodikara, 2024). However, despite these advances, existing
diffusion-based SE methods still face two critical limitations.

Firstly, most approaches lack layer-specific guidance, limiting their ability to fully exploit hierar-
chical representations in denoise process. For example, G-DiffuMSE (Yu et al., 2025) adjust the
sampling mean in each denoise step by introducing STGCN reconstruction loss and adversarial
loss. NADiffuSE (Wang et al., 2023) and FUSE (Yang et al., 2024) introduce condition to guide
each layer of the diffusion model, but it provides the same guidance for every layer, resulting in a
lack of targeted adaptation.

Secondly, the adopted guidance features often contain substantial redundancy, introducing irrelevant
information that may mislead the denoising process. For instance, DOSE(Tai et al., 2023) and
CDiffuSE (Lu et al., 2022) directly concatenates noisy speech into the input to guide denoising,
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which will inevitably carry redundant noise information and may even mislead the denoiser. DAVSE
(Chen et al., 2024) introduce the visual modality as a condition into the audio diffusion, which has
a large amount of information and contains redundancy across modalities.

To address the aforementioned challenges, this paper introduces a novel hierarchical graph-coding
diffusion model with adaptive information bottleneck (HG-Diff-IB) for multichannel speech en-
hancement. The main contributions can be summarized as follows:

1) Hierarchical alignment method: aligning shallow and deep graph-coding features with the de-
noiser encoder and decoder for hierarchical guidance.

2) Layer-wise graph-coding modulation: injecting graph information into intermediate layers of the
denoiser for precise feature distribution adjustment.

3)Adaptive information bottleneck: dynamically regulating feature compression according to esti-
mated SNR to balance noise suppression and target preservation.

2 METHOD

In this section, we will introduce the proposed hierarchical graph-coding diffusion model, as il-
lustrated in Fig. 1(a). It comprises three main components: 1) hierarchical alignment method, 2)
layer-wise graph-coding modulation, and 3) information bottleneck with SNR adaptation for opti-
mization.
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Figure 1: Overview of the proposed HG-Diff-IB framework, including hierarchical graph-coding
extraction, layer-wise graph-coding modulation, and adaptive information bottleneck.

2.1 HIERARCHICAL ALIGNMENT METHOD

To provide specific guidance throughout the diffusion process, we propose a hierarchical alignment
method, aligning hierarchical graph-coding extracted by the STGCN (Hao et al., 2022; Zhang, 2024)
with the denoiser’s latent features.The denoiser refers to the UNet utilized in the diffusion process.

As shown in Fig.1, shallow graph-coding, containing frame level features and partial phonetic and
semantic level features, guides the encoder to extract target speech structures. Deep graph-coding,
rich in frame level features, guides the decoder to deliver detailed temporal cues, enabling precise
speech reconstruction.

Specifically, we formalize the hierarchical hymmetric alignment as HA : I −→ J . Here, I =
{1, 2, ..., i, ..., I} denotes the layer index set of hierarchical graph-coding and J = {1, 2, ..., j, ..., J}
represent that of the UNet. For any layer index i ∈ I, its corresponding layer index j = HA(i) can
be written as:

HA(i) =

⌊
J − 1

I − 1
· (i− 1) + 1

⌋
(1)
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Through its layer-specific alignment mechanism, this hierarchical alignment enables graph-coding
features to be smoothly embedded into the corresponding layers of the denoiser, rather than be-
ing crudely fed into a single layer. This integration ensures that at each stage of the entire diffusion
process, the denoiser can leverage local detail cues to enhance signal precision and rely on global re-
construction hints to maintain the consistency of speech structure, thereby preventing the generation
of distorted speech.

2.2 LAYER-WISE GRAPH-CODING MODULATION

Based on the hierarchical alignment method established in Sec.2.1, we further introduce a layer-
wise graph-coding modulation mechanism inspired by (Hudson et al., 2024), which directly injects
graph-coding information into the intermediate features of the denoiser to achieve adjustment for
the denoiser feature distribution.

Specifically, given the i-th graph-coding Fϕ,i(xt) and the HA(i)-th layer latent feature of the de-
noiser θHA(i)(xt, t), the affine-modulated latent feature is given by:

θ
′

HA(i)(xt, t) = zs ·AdaIN(θHA(i)(xt, t)) + zb (2)

Here, zs and zb denote the scale and bias parameters derived from a linear projection of Fϕ,i(xt),
which directly modulate the feature distribution. The adaptive instance normalization AdaIN(·)
normalizes each channel independently and is commonly defined as (Huang & Belongie, 2017):

AdaIN(θHA(i)(xt, t)) =
θHA(i)(xt, t)− µ

σ
(3)

Here, µ and σ are the mean and standard deviation of the feature θHA(i)(xt, t), computed indepen-
dently for each channel.

Speech signals exhibit strong correlation and regularity across multiple channels, while the statis-
tical characteristics of noise are typically more random. AdaIN can normalize the joint features of
multiple channels to highlight the consistent patterns of speech features, suppress the random fluc-
tuations of noise, and thereby enable the model to more easily distinguish between speech and noise
components.

2.3 INFORMATION BOTTLENECK FOR OPTIMIZATION

2.3.1 INFORMATION BOTTLENECK WITH SNR ADAPTATION

To effectively suppress noise while preserving target features, we introduce an adaptive information
bottleneck that dynamically regulates the feature compression according to the estimated SNR. It
ensures that the model retains sufficient information under high SNR conditions, while enforcing
stronger compression to suppress noise under low SNR conditions.

Formally, based on the general form of the information bottleneck loss(Hu et al., 2024), the adaptive
information bottleneck loss is defined as:

LIB = −I(Z;Y ) + βadaptI(Z;X) (4)

where I(·; ·) denotes mutual information, βadapt controls the tradeoff, large values results in a highly
compressed representation, X , Y and Z denote the input, output, and latent representation, respec-
tively.

The adaptive parameter βadapt is computed directly from the temporal similarity of the input STFT
features. Let xt ∈ RC×T be the signal of the t-th denoise step, and WQ,WK ∈ RT×dk learned
projection matrices. Then βadapt is obtained as

βadapt = softmax

(
WQxt ·WKx⊤

t√
dk

)
(5)

In this way, the adaptive information bottleneck allows the model to flexibly regulate feature com-
pression based on real-time SNR, improving both noise reduction and information preservation in
diverse SNR conditions.
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2.3.2 COLLABORATIVE OPTIMIZATION FOR GRAPH AND DIFFUSION

To prevent potential bias caused by using graph-coding to guide the denoiser alone, we propose a
cooperative optimization strategy between the Graph and Diffusion modules. At each denoising step
t, the intermediate latent feature of the diffusion model is first updated via layer-wise hierarchical
graph-coding modulation, according to Eq.2. Then, the graph network is optimized using the loss:

LIB = ∥Fϕ(xt)− x0,t∥22 + βadaptI(Z;X) (6)

where x0,t =
1

(1−mt)
√
αt

(
xt −mt

√
αty −

√
δtϵθ(xt)

)
is the estimated target at step t by denoiser.

Instead of using a single set of graph-coding features to guide all steps, the graph-coding features
are dynamically updated with step t. Even if a temporary deviation occurs at a certain step, the
graph network optimization process in subsequent steps can quickly correct it, thereby preventing
the accumulation of deviations.

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

Datasets: For dataset construction, we synthesize 6,000 six-channel recordings using the speech
from DNS-Challenge Dubey et al. (2022) and noise from ESC50 (Piczak, 2015) dataset via the
gpuRIR toolkit (Diaz-Guerra et al., 2021). These recordings simulate general speech-noise scenarios
in a 5m×4m×3m room, with a six-channel microphone array placed at the center of the room. For
evaluation, we use a test set consisting of 108 samples from DNS-Challenge combined with noise
from FSD50K (Fonseca et al., 2021), which includes unseen noise types and covers SNRs ranging
from -5 dB to 10 dB.

Baselines: Proposed framework are compared with: (1) DM-STGCN-NTA (Zhang, 2024): a frame-
work which employs GCN and spatio-temporal convolution to capture spatial temporal spectral cor-
relations; (2) Diffwave (Kong et al., 2020): a diffusion model with bidirectional dilated conv; (3)
DOSE (Tai et al., 2023): a framework which adopts dropout and adaptive prior to address con-
dition collapse; (4) CDiffuSE (Lu et al., 2022): a conditional diffusion which uses the observed
noisy speech signal as condition to adapt to non-Gaussian noise; (5) G-DiffuMSE (Yu et al., 2025):
a mechanism integrates graph-guided diffusion with noise-conditional modeling for robust multi-
channel SE.

Metrics: PESQ (Rix et al., 2001)and STOI (Taal et al., 2011) are used to measure speech quality,
whose value ranges are [-0.5, 4.5] and [0, 1], respectively.

For pre-training, we initialize Diffusion with VoiceBank (Veaux et al., 2013)-pretrained weights and
fine-tune it on synthetic data for 301 epochs with learning rate setted to 1e-4. And we pre-trained
DM-STGCN-NTA on synthetic data for 351 epochs with learning rate setted to 1e-4. During the
sampling process, we further update the DM-STGCN-NTA using the optimization strategy men-
tioned in Sec.2.3 for 10 epochs with a learning rate of 1e-6.

3.2 RESULTS AND ANALYSIS

Table 1: PESQ results of models with different input SNRs

SNR=-5dB SNR=0dB SNR=5dB SNR=10dB Avg.

Noisy 1.0338±0.0187 1.0362±0.0202 1.0824±0.0643 1.1122±0.0568 1.0662±0.0558
DM-STGCN-NTA 1.0599±0.0347 1.1465±0.0930 1.2676±0.1320 1.4014±0.1523 1.2189±0.1708

Diffwave 1.0331±0.0178 1.0443±0.0407 1.1104±0.1055 1.1461±0.0838 1.0835±0.0849
DOSE 1.0438±0.0197 1.0987±0.0548 1.1431±0.0587 1.2119±0.0605 1.0944±0.0754

CDiffuSE 1.0882±0.1286 1.1148±0.1425 1.2351±0.1941 1.4474±0.1999 1.2214±0.2207
G-DiffuMSE 1.0617±0.0398 1.1503±0.0995 1.2758±0.1429 1.4010±0.1342 1.2222±0.1701

HG-Diff-IB(ours) 1.1088±0.0566 1.1971±0.0944 1.3171±0.1340 1.4357±0.1258 1.2647±0.1634
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3.2.1 MULTI-MODEL COMPARISON UNDER DIFFERENT SNRS

Table.1 presents the PESQ performance of all models across different SNR conditions. Overall,
our proposed hierarchical graph-coding diffusion model with adaptive information bottleneck con-
sistently outperforms both discriminative and diffusion-based baselines, achieving robust improve-
ments across all noise levels.

As against the discriminative baselines, our method outperforms DM-STGCN-NTA by an average
of 3.76%, as well as 4.61% and 4.41% gain at -5dB and 0dB, which verifies its ability to suppress
strong noise.

Compared with diffusion-based baselines, it gains average improvements of 16.72%, 15.56%, 3.55%
and 3.48% over Diffwave, DOSE, CDiffuSE and G-DiffuMSE, respectively, which shows the robust-
ness of our method in unseen noisy scenarios. Notably, proposed methed shows significant perfor-
mance gains at -5dB and 0dB: it outperforms Diffwave by 7.32% and 14.64%, DOSE by 6.23% and
8.95%, CDiffuSE by 1.90% and 7.38%, and G-DiffuMSE by 4.43% and 4.07%, confirming robust
noise suppression in tough scenarios.

3.2.2 ABLATION STUDY

Table.2 and Fig.2 presents an ablation study to assess the contribution of each component in the
proposed method.

Table 2: Ablation study on PESQ and STOI
PESQ

Input SNR -5dB 0dB 5dB 10dB Avg.

Noisy 1.0338 1.0362 1.0824 1.1122 1.0662
Diffusion 1.0617 1.1503 1.2758 1.4010 1.2222

+FiLM Perez et al. (2017) 1.0633 1.1552 1.2861 1.4181 1.2307
+AdaGN Wu & He (2018) 1.0608 1.1521 1.2860 1.4314 1.2326

+AdaIN Huang & Belongie (2017) 1.0628 1.1579 1.2952 1.4332 1.2373
++fixedIB 1.1063 1.1963 1.3166 1.4261 1.2613

++adaptiveIB 1.1088 1.1971 1.3171 1.4357 1.2647

STOI

Input SNR -5dB 0dB 5dB 10dB Avg.

Noisy 0.6539 0.7270 0.7744 0.8385 0.7484
Diffusion 0.6999 0.8015 0.8507 0.8933 0.8114
+FiLM 0.7024 0.8006 0.8484 0.8911 0.8106

+AdaGN 0.6960 0.7999 0.8490 0.8911 0.8090
+AdaIN 0.6972 0.8019 0.8495 0.8923 0.8103

++IB 0.7308 0.8030 0.8444 0.8811 0.8148
++adaptiveIB 0.7305 0.8069 0.8460 0.8814 0.8162

Note: “+” denotes adding a module based on the diffusion module;
“++” is cumulative stacking on top of the previous modules.

FiLM is a general-purpose conditioning method for neural networks that performs feature-wise affine
transformations on the network’s features based on conditioning information.

AdaGN is an innovative normalization method that integrates time-step and class embedding
information into the group normalization operation.

It is obvious that incorporating layer-wise graph-coding modulation performs better than the diffu-
sion baseline on both metrics. For PESQ, it achieves improvements of 0.70% with FiLM, 0.85%
with AdaGN, and 1.24% with AdaIN over original diffusion. In terms of STOI, there are enhance-
ments of 1.49% with FiLM, 1.32% with AdaGN, and 1.15% with AdaIN. These results verify the
effectiveness of hierarchical graph-coding modulation and also highlight the superiority of AdaIN.

Furthermore, adding the information bottleneck module further enhances both PESQ and STOI
results. For PESQ, improvements are observed particularly under extremely noisy environments,
for inatance, 4.09% at -5dB and 3.32% at 0dB, verifying its ability to suppress redundant noise
information. In terms of STOI, there are also gains, such as 4.43% at -5dB and 2.05% at 0dB.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Clean ++adaptive IB+AdaINDiffusion

10dB

0dB

5dB

-5dB

Clean ++adaptive IB+AdaINDiffusion

10dB

0dB

5dB

-5dB

Figure 2: Spectrogram Comparison in Ablation Study

While a fixed information bottleneck causes minor degradation in PESQ and STOI at high SNR, the
adaptive IB eliminates this drawback and maintain stable performance on average SNR levels. It
can also be observed from the spectrogram shown in Fig.2 that the adaptive IB module can achieve
background noise suppression and gain much sparser backgrounds under all SNR conditions.

4 CONCLUSIONS

This paper presented HG-Diff-IB, a hierarchical graph-coding diffusion model with adaptive in-
formation bottleneck for multichannel speech enhancement. The proposed method enables pre-
cise feature modulation through layer-wise graphcoding and adaptively balances noise suppression
with feature preservation. Experimental results show improvements over both discriminative and
diffusion-based baselines, especially under challenging scenarios.
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