
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NEXUS: SPECIALIZATION MEETS ADAPTABILITY FOR
EFFICIENTLY TRAINING MIXTURE OF EXPERTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficiency, specialization, and adaptability to new data distributions are qualities
that are hard to combine in current Large Language Models. The Mixture of Experts
(MoE) architecture has been the focus of significant research because its inherent
conditional computation enables such desirable properties. In this work, we focus
on “upcycling” dense expert models into an MoE, aiming to improve specialization
while also adding the ability to adapt to new tasks easily. We introduce Nexus, an
enhanced MoE architecture with adaptive routing where the model learns to project
expert embeddings from domain representations. This approach allows Nexus
to flexibly add new experts after the initial upcycling through separately trained
dense models, without requiring large-scale MoE training for unseen data domains.
Our experiments show that Nexus achieves a relative gain of up to 2.1% over the
baseline for initial upcycling, and a 18.8% relative gain for extending the MoE with
a new expert by using limited finetuning data. This flexibility of Nexus is crucial
to enable an open-source ecosystem where every user continuously assembles their
own MoE-mix according to their needs.

1 INTRODUCTION

In an era of bigger and bigger models (Canziani et al., 2016; Strubell et al., 2019; Rae et al., 2021;
Raffel et al., 2020; Bommasani et al., 2022; Hooker, 2024), there are several key objectives driving
state-of-art progress. Doing more with less by improving efficiency (Treviso et al., 2023) remains
paramount, but in addition to efficiency, the deployment of these models in the wild means that the
ability to adapt to new data (Pozzobon et al., 2023b; Gururangan et al., 2020a; Jang et al., 2022; Jin
et al., 2022), and specialization of compute (Zadouri et al., 2024; Shazeer et al., 2018; Riquelme et al.,
2021; Du et al., 2022; Fedus et al., 2022) have gained renewed focus. While all these properties are
desirable, a formidable challenge is designing architectures that can fulfill all of these requirements.

The Mixture of Experts (MoE) approach gained prominence because of its efficiency properties. In
contrast to dense models which require significant compute to deploy, MoE approaches only activate
a subset of the parameters for every single token. Intuitively, not all parameters are necessary for each
request, as some parameters will specialize on certain tasks, and those unrelated to the current request
can be ignored. However, while MoEs greatly improved efficiency, the ability to induce meaningful
specialization has been more limited, with observations that experts don’t appear to exhibit dedicated
expertise (Jiang et al., 2024; Zoph et al., 2022; Zadouri et al., 2023). Furthermore, MoEs tend to
suffer from severe training instabilities (Zoph et al., 2022).

Recent work has attempted to address both the training instabilities and the lack of specialization.
These techniques often train completely separate experts and “upcycle” (combine) them into a single
unified MoE model after dense training (Sukhbaatar et al., 2024). This reduces the memory and
communication cost, and improves efficiency during training as computations are more local and
cross-device communication is reduced (Li et al., 2022; Gururangan et al., 2023). Notably, the other
major advantage of these approaches is the increase in specialization with separate experts that are
trained on specific domains, making them clearly responsible for their human-interpretable subset of
the data. On the other hand, MoEs with a standard router, which needs to be trained on a mix of all
training data, are not designed to maintain domain specialization (Jiang et al., 2024).

However, efficiently integrating new experts into upcycled MoE models - a setting that is of great
interest for adaptability objectives - is far less studied. For most practitioners, given the scale of

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Training
data

Domain 1 Expert 1

Seed LLM

Expert 2

Expert N

FFN 1 FFN 2 FFN N

initialize

Expert N+1

Domain 2

Domain N

New domain

inherent
domains

Domain
embeddings

... ... ...

Embedding
model

FF N+1

Learned
projection

FFN output

Nexus

FFN input activations

Expert
emb.

A) Initial training

B) Add new data

Top-K
routing

FFN
Seed

1. Collect FFN layers
into MoE layer

routed experts2. Merge non-FFN
weights

Figure 1: Depiction of Nexus for a single Transformer block: A) In the initial training phase, each expert is
trained separately. Its training data is embedded by an embedding model and stored. The experts are combined
by initializing each block’s MoE layer with the expert FFNs, and finetuning the model on a mix of all domains.
During a forward pass, the seed model FFN is used as shared expert and always activated. For the other experts,
we perform top-1 routing based on the similarity of the input data with the transformed expert embeddings,
which is equivalent to viewing the learned projection as a hypernetwork whose output is the router weight matrix.
B) Later, we can add a new expert by appending its training data embedding to the existing domain embeddings.
The router function is independent of the number of experts, and therefore adapts fast to the new one.

modern LLMs (Brown et al., 2020; Touvron et al., 2023; Kaplan et al., 2020; Anil et al., 2023)
training MoEs repeatedly is an infeasible computational cost. Furthermore, most model development
fails to take into account distribution drift in use cases, with limited flexibility and applicability across
different tasks and domains (Pozzobon et al., 2023a; Gururangan et al., 2020b). However, human
language is shaped by a cumulative culture, constantly building upon itself and evolving over time
(Silvey, 2016). Also, specialized use cases such as multilingual, code and math often require tailored
additional training.

In this work, we attempt to reconcile all three desirable properties: efficiency, specialization, and
adaptability. We ask “how can we adaptively combine separately trained specialized experts?” To
address this, we introduce Nexus, a novel MoE architecture that parameterizes the router based
on domain-specific data by learning to project the embedding of each data domain to an expert
embedding. This learnable projection for the router allows for the easy extension of the MoE model
with new experts that are trained independently on new datasets of interest. This also avoids the
difficulties of MoE training, as our learned router scales with the number of experts without needing
to be trained from scratch, which enables adding or removing experts as desired.

Our experiments show that Nexus outperforms previous work when upscaling an MoE from separately
trained specialized domain experts. Going beyond the single upscaling phase, Nexus can be efficiently
extended with a new expert trained on a new domain, by finetuning it with much fewer tokens,
compared to the finetuning after the initial upcycling.

In summary, our contributions are as follows:

1. We present Nexus, a novel MoE framework designed to enhance sparse upcycling of
specialized dense experts, while reducing the training cost of MoEs by facilitating easy
adaptation to unseen data distributions. In Nexus, the traditional linear router from vanilla
MoE models is replaced with routing based on the similarity of layer inputs to an expert
embedding vector, derived from the average embedding of the corresponding expert dataset.

2. Our method outperforms the existing approach for upcycling specialized models into MoE,
leading to 2.1% and 1.6% relative increase over the upcycled MoE (linear router) in 470M
and 2.8B scales respectively. This enables performance increase in general tasks with 5.8%
and 7.4% relative gains over the dense seed model at 470M and 2.8B respectively.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3. Our method enables efficient adaptation to new domains by extending upcycled MoE with
the new experts trained on unseen datasets. In this setting, Nexus outperforms the baseline
MoE (linear router) when finetuning on the limited amount of data, leading 18.8% relative
gain on the new domain with 1B finetuning tokens upon MoE extension.

4. Finally, we show that our method is robust across different load balancing and data mix-
tures, and consistently outperforms the MoE with a linear router for specialized upcycling,
confirming the benefits of the adaptive routing based on domain projections used in Nexus.

2 BACKGROUND

Sparse Mixture of Experts architectures (Shazeer et al., 2017; Fedus et al., 2022) replace the feed-
forward network (FFN) with an MoE layer in the Transformer block (Vaswani et al., 2017). An
MoE layer consists of a router network R and a set of n experts, E1, ..., En, where each expert Ei

corresponds to an independent dense feed-forward network. The router network R is commonly
parameterized by trainable weights Wr ∈ Rh×n where h is the model hidden dimension, and followed
by a softmax function which takes an intermediate token representation x as input and combines the
output of each expert based on the gating scores s1, ..., sn. Sparse MoEs only use the top-k experts
Ek based on experts gating scores si.

si = R(x) = softmax(WT
r x) (Router)

sk = TopK(si) (Top-K Routing)

y =

k∑
i=1

sk · Ek(x) (MoE)

Sparse Upcycling (Komatsuzaki et al., 2023) initializes an MoE model from a dense Transformer
model by copying FFN layers as MoE experts, and the router layer is trained from scratch. BTX
(Sukhbaatar et al., 2024) generalize this approach to initialize each MoE expert from the FFN layer
of a different dense model, and all other parameters are averaged over the dense models.

In Nexus, we leverage upcycling specialized expert models similar to BTX, however, it diverges in
terms of MoE training, in particular with its novel MoE router, which enables to efficiently extend
the MoE in multiple rounds after the sparse upcycling. We describe our method in the next section.

3 ADAPTIVE ROUTER FOR UPCYCLING SPECIALIZED EXPERTS AS MOE

The core component of an MoE model is the router, as it determines which experts to activate
for any given input. In vanilla MoEs, the router is a learned linear layer that takes the token
intermediate representations as input and computes the expert probabilities. However, this router does
not necessarily learn specialization as MoEs are commonly trained using an auxiliary load balancing
loss to improve training stability (Fedus et al., 2022; Jiang et al., 2024). In Nexus, we propose a
novel MoE router where per MoE block we learn a projection layer from given pre-computed domain
embeddings to expert embeddings. We parametrize this projection layer Pr as a two-layer MLP with
a SwiGLU activation function (Shazeer, 2020):

ei = Pr(di) (Domain to Expert Embeddings)
= W2 · SwiGLU(W1 · di)

where di ∈ Rm, and ei ∈ Rh are the domain and expert embeddings for the ith domain respectively.,
where m and h are the domain embedding and the model dimensions. W1 ∈ R2h×d,W2 ∈ Rl×l

are linear layers, and SwiGLU is defined as R2n → Rn. Given the expert embeddings ei and layer
inputs x ∈ Rs×h, we then compute routing probabilities si as:

si = softmax(x · ei) (Routing Scores)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Unlike the standard router, Nexus’s router includes a stronger inductive bias through pre-computed
domain embeddings1 that enables expert embedding to specialize. Thus, x · ei gives a high value
for input tokens that are closer to the domain of the corresponding expert. Notably, this router is
particularly suited for the sparse upcycling setting where the dense experts are separately trained on
different domains.

Connection to hypernetworks. Our router parametrization is closely related to hypernetworks (Ha
et al., 2016) as the projection layer Pr generates parameters for the router during runtime for a given
input. We use domain embeddings as the input to the projection layer, enabling efficient adaptation
and also a better cross-domain transfer based on the similarity between domain embeddings as shown
in previous work (Mahabadi et al., 2021; Üstün et al., 2022).

Upcycling dense experts as an MoE. After training dense expert models, we merge the individual
experts into a unified MoE by appending their FFNs along a new dimension to create an MoE layer
per Transformer block. Unlike Sukhbaatar et al. (2024), instead of using the original FFN of the
seed model as one of the routed experts in an MoE layer, we use it as the “shared expert” FFNs

(Rajbhandari et al., 2022; Dai et al., 2024) to better preserve the previous capabilities in the MoE
model. For all non-FFN parameters including the attention weights, we merge expert parameters
using simple weight averaging:

FFNmoe = FFNs + [FFNe1,FFNe2, ...,FFNen] (MoE Layer FFNs)

ϕmoe =

∑n
i=1 ϕi

n
(Merge Non-FFN params.)

Efficient adaptation to new domains. An important advantage of method is that when a new data
domain is present after MoE training, we use the learned projection Pr to compute expert embedding
of the new domain as enew = Pr(dnew). This enables to enhance the trained MoE model with
additional dense experts, which are trained in the same way as the initial experts. The FFN parameters
of the new expert are simply appended to the array of existing experts.

To adequately preserve the non-FFN parameters of existing experts, we perform a weighted average
ϕf = (1 − λ) · ϕmoe + λ · ϕnew where ϕf , ϕe, and ϕmoe are parameters of the final MoE, dense
expert, and initial MoE model and λ = 1/(n+ 1). This enables efficiently adapting Nexus to new
domain by extending it with the new dense expert trained independently. After extending the MoE
with a new expert, we perform a lightweight finetuning with a limited number of tokens.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Our experimental setup includes 3 phases. Figure 1 shows the architecture of Nexus and the
corresponding experimental setting:

1. Training specialized expert LMs. For training the dense specialized experts, we use the
sub-datasets from the SlimPajama dataset (Soboleva et al., 2023), a 627B token English-language
corpus assembled from web data of various sources. We initialize four dense experts from the
weights of the seed model and train them on the ARXIV, BOOKS, C4, GITHUB, STACKEXCHANGE,
and WIKIPEDIA domains.2 As the seed model, we use 470M and 2.8B parameters decoder-only
autoregressive Transformer models (Radford et al., 2019), each of them trained with a standard
language modeling objective for 750B tokens. We train dense experts for 20 and 40 billion tokens for
470M and 2.8B seed models respectively. We use parallel attention layers, (Anil et al., 2023; Wang,
2021), SwiGLU activation (Shazeer, 2020), no biases in dense layers, and a byte-pair-encoding (BPE)
tokenizer with a vocabulary size of 256,000. During training, we use a linear warmup (10% of total
steps) to a maximum learning rate of 1e-3 and a cosine decay schedule to 3e-4.

1We used Cohere Embed v3 (Cohere, 2023) as an external embedding model to compute domain embeddings
based on individual data sources. However, similar to Gururangan et al. (2023), pre-training data can also be
clustered and the centroids can be used for domain embeddings.

2We exclude the Github and StackExchange datasets from SlimPajama in order to ablate adding a new expert
model using the CODE domain

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Downstream performance at different scales: Nexus consistently outperforms upcycled
baselines on both the 470M and 2.8B parameters scale, showing the robustness of our method. We
report the average performance on Knowledge, Science, Reasoning and MMLU.

2. MoE training. After the training of dense expert models, we merge them into a unified MoE by
appending their FFNs along a new dimension to create an MoE layer per Transformer block. For the
shared expert in our MoE layer, we use the original FFN layer of the seed model to better preserve
the previous capabilities in the MoE model. For all non-FFN parameters including the attention
weights, we merge expert parameters using simple weight averaging, following Sukhbaatar et al.
(2024). After the MoE model is created, we continually train it for an additional 25B and 40B tokens
respectively for the 470M and 2.8B experiments, on a mix of all domain and original pre-training
datasets, using the same training hyperparameters as in the single expert training. Finally, we train
the MoE models using an additional 1B tokens by upweighting the original pre-training dataset as
it includes high-quality data sources such as instruction-style datasets using a cosine learning rate
decay to 3e-5 (Parmar et al., 2024).

3. Extending the MoE model with new experts. After adding a new expert as defined in Section
3, we finetune the extended MoE model for up to 1 billion tokens using a uniformly sampled data
mix consisting of 50% the previous domains and pre-training data and 50% the new domain. For the
new expert (CODE), we train a dense model using code documents from StarCoder (Li et al., 2023)
with the same settings as for the training of the initial experts. As the 470M scale MoE did not have
sufficient instruction following capabilities to attempt the code benchmarks, we only tested extending
the MoEs with a new expert on the 2.8B scale.

4.2 BASELINES

We compare our experiments against two baselines:

Dense Merging where all separately pre-trained experts and the seed model merged into a dense
Transformer via equal weight averaging similar to BTM (Li et al., 2022). This allows us to ask What
are the benefits of routing MoE over simple averaging?

MoE (Linear Router) which is an MoE with a standard linear router that is upcycled from dense
experts, to evaluate Nexus’s novel router for upcycling. Here, we ask how does our specialized
routing compare to conventional learned linear routing? For a fair comparison, we also train this
MoE model on the same datasets and for the same number of tokens as our method, and use the same
architectural modifications such as shared experts.

4.3 EVALUATION

For the downstream evaluation, we measure the performance of each model on 15 tasks from five
evaluation categories that reflect different capabilities based on the tasks and the datasets used in the
benchmarks.

These task categories are (1) Knowledge, to measure question-answering capabilities based on world
knowledge and web documents such as Wikipedia, we report the performance on OpenBookQA
(Mihaylov et al., 2018), Natural Questions (Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017),

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Know. Science Reason. MMLU Code Avg.
(excl. in upcyc.) (w/o Code)

SEED MODEL (2.8B) 27.1 62.0 63.8 35.4 8.4 47.1

Upcycled Models
DENSE MERGING 17.6 60.3 59.2 36.0 3.4 43.3
MOE (LINEAR ROUTER) 31.5 66.5 62.9 38.6 2.6 49.8
NEXUS 33.2 67.3 62.6 39.4 2.7 50.6

Table 1: Downstream task results for Nexus with a 2.8B parameter seed model. Our approach outper-
forms the baselines in 3 out of 4 evaluation categories. Dense merging corresponds a dense
model with 2.8B parameters, while both Nexus and MoE(̇linear router) have 4.3B active
and 9.1B total parameters. Note that the trained models show severe forgetting on code benchmarks,
as we exclude CODE data on purpose during the upcycling phase to simulate extending models with a
new dataset in Section 5.2.

QUAC (Choi et al., 2018) (all 0-shot) and SQuAD (4-shot) (Rajpurkar et al., 2016). (2) Science, to
measure knowledge in science-oriented academic benchmarks, we use ARC-Easy, ARC-Challenge
(Clark et al., 2018), SciQ (Welbl et al., 2017) (all 0-shot). (3) Reasoning, we use CommonSenseQA
(Talmor et al., 2019), SIQA (Sap et al., 2019), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al.,
2019), and HellaSwag (Zellers et al., 2019) (all 0-shot). (4) General Language Understanding,
we use MMLU (5-shot) (Hendrycks et al., 2021). (5) Code, we evaluate models on MBPP (Austin
et al., 2021), LBPP (Matton et al., 2024) and HumanEval-Pack (Chen et al., 2021) that includes Cpp,
Javascript, Java, Go, Python, and Rust (all 0-shot).

5 RESULTS AND DISCUSSION

5.1 MAIN RESULTS FOR UPCYCLED MODELS

We first compare Nexus to the upcycled baselines MoE with linear router and dense
merging. Here, we ask “How does our MoE upcycling recipe with adaptive routing compare
against baseline upcycling approaches?”

470M parameter seed model. Table 4 (Appendix D) shows performances of upcycled models
including Nexus where a 470M seed model is used to train dense experts. Both Nexus and the
upcycled MoE(̇linear router) consist of 1 shared and 6 routed experts, corresponding to a
total number of 1.3B parameters where 605M parameters are activated per input for top-2 routing
(1 expert always activated, 1 chosen by the router). The dense merging baseline is created by
averaging the weights of all dense experts and the seed model, and therefore has the same number of
parameters as the seed model.

Compared to the seed model, Nexus performs better in all evaluation categories with a 5.8%
relative gain on average (38.5 vs 36.4). Compared to upcycled models, Nexus outperforms
MoE(̇linear router) in 3 out of 4 categories with 3.2% relative gain (38.5 vs 37.3) on aver-
age, and beats dense merging by 8.5% overall relative increase (38.5 vs 35.5). Notably, while
both upcycled MoEs outperform the seed model, dense merging underperforms on average,
showing the benefits of MoE upcycling over parameter averaging.

2.8B parameter seed model. Next, we experiment by upcycling dense models with 2.7B parameters
to validate if the results from the 470M seed model hold at a larger scale. Table 1 compares
Nexus with MoE(̇linear router) and dense merging. Both Nexus and MoE(̇linear
router) use 1 shared expert and 4 routed experts in these experiments, corresponding to 4.3B
active parameters per input (top-2) out of 9.1B total parameters.

Our results show that Nexus leads to higher upcycling results compared to the baselines at the 2.8B
scale, confirming the findings from smaller scale experiments. Nexus enables a 7.4% relative gain
over the seed model and outperforms the MoE(̇linear router) with a 1.6% relative increase
(50.6 vs. 49.8). Nexus outperforms the best baseline in 3 out of 4 task categories and achieves
the highest increase in knowledge tasks with 22.5% and 5.6% relative to the seed model and the

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Extending upcycled MoE models with the Code experts: After initial upcycling, we
extended MoEs (both Nexus and MoE with linear router) using an independently trained
dense Code expert and finetuned the resulting models small number of tokens (200M, 500M, and
1B finetuning tokens) as described in 3. Nexus consistently outperforms the baseline in Code
performance after extension without losing general performance. General tasks is the macro average
of the knowledge, science, reasoning, and general knowledge categories reported in section 5.1. Note
that the dense Code expert achieves scores of 42.1 and 14.3 for general and code tasks respectively.

MoE(̇linear router) respectively. These tasks include knowledge retrieval from Wikipedia in
which one of our specialized experts is trained for.

Similar to the 470M experiments, both Nexus and MoE(̇linear router) outperform the
dense merging baseline. We relate this to potential cross-task interference between diverse
specialized experts (including the seed model as an additional expert), leading to poor performance
by applying a simple weight averaging.

5.2 EXTENDING THE UPCYCLED MOE MODEL WITH A NEW EXPERT

To support fully modular and efficient training of MoEs, besides upcycling the existing expert models,
it is crucial for an adaptive method to have the ability to continuously extend the upcycled MoE with
new experts trained using previously unseen data domains. To evaluate this, we train a dense CODE
expert and extend the upcycled MoEs (both Nexus and MoE(̇linear router)) as described
in Section 3. We perform a small-scale finetuning of up to 1B tokens after extending the models.
Figure 3 shows both the general performance and the target code performance at 200M, 500M, and
1B finetuning tokens. Here, we ask “Can we continuously upcycle dense models into an MoE without
requiring large-scale MoE training each time?”

Performance on the new domain. As shown in Figure 3 (right), Nexus outperforms the
MoE(̇linear router) for 200M, 500M and 1B finetuning tokens with 18.4%, 6.2% and 18.8%
relative gains respectively. Unlike MoE(̇linear router), where the router weights are reset
after extending the MoE layers, Nexus uses the information that is available about the new domain
by mapping the domain embedding to a new expert embedding for the router, and therefore finetunes
the router weights without a restart.

Comparison with the dense models. Nexus reaches the code performance of the seed model while
retaining superior performance on general tasks. In comparison to the seed model and the dense code
expert (trained for 8B code-only tokens on top of the seed model), although the dense code expert
still performs higher than both upcycled MoEs with a score of 14.3, its performance on general tasks
is far inferior (42.1). Our method also achieves up to 18.8% relative gains over the MoE(̇linear
router). These results show that with a fraction of the original upcycling budget (1B vs 40B
tokens for initial upcycling, and 1B vs 8B tokens for code expert training), Nexus can acquire a new
capability.

Performance on general tasks. As a proxy for the knowledge for previously learned domains,
Figure 3 (left) shows the average performance of Nexus and MoE(̇linear router) in general
tasks. Although there is a slight drop on the general tasks for Nexus compared to initial upcycling

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Average routing proba-
bilities for each expert per domain
in Nexus: We compute the average
routing probabilities across Trans-
former blocks for 512 samples per
domain (from the 2.8B experiment).
The x-axis denotes the samples’ do-
main and the colored bars show the
routing probabilities for the corre-
sponding expert. We show the do-
mains that are used to train special-
ized experts.

(a relative decrease of 1.9%), the competitive performance is maintained across different numbers
of finetuning tokens. We relate this to the composition of the finetuning mix where we use a high
percentage of the code data (50% of the code and 50% of the previous domains).

5.3 EXPERT SPECIALIZATION

To measure the specialization in our MoE, we take a closer look at how the MoE experts are activated
for samples of separate domains. We compute average routing frequencies across all Transformer
layers in Figure 4, where the labels on the x-axis represent which domain the tokens are coming
from, and the colored bars show the routing frequencies for each of the experts trained on one
of the domains. Since we select only one routed expert per token in each MoE layer, and expert
FFN layers are inherited from dense experts, average routing frequencies present a good proxy for
specialization of each of the experts. Here, we ask “can Nexus retain a high degree of specialization
after upcycling?”

Routing for the upcycled experts. As shown in Figure 4, we find that the expert trained on the cor-
responding domain always receives the highest share of the tokens from that domain, confirming that
Nexus retains the specialization from the specialized dense models. Concretely, this specialization
is higher for ArXiv, Books, and Wikipedia with 63.0%, 64.7%, and 69.8% respectively. Interestingly,
tokens from C4 are routed only 40.9% of the time to the C4 expert and distributed to the other experts
approximately 20% for each one. We relate this to the broad coverage of the C4 dataset, which
potentially includes samples closer to other domains and also a large percentage of the C4 used in the
MoE training phase (proportional to its size in the SlimPjama dataset). Especially the latter factor
pushes tokens from C4 to be distributed to the other experts due to the load balancing factor.

Specialized routing for the new expert. Next, we measure expert specialization for the newly
added expert on the new code domain. Figure 5 shows the average routing probability per expert for
sampled code tokens. We compute routing probabilities on the Nexus model with the code expert
after 1B finetuning tokens (See Section 5.2 for details). Here, we see clearly that code tokens are
routed to the code expert 69.1% of the time on average. This shows that Nexus not only retains the
specialization for the initial upcycling but also exhibits a high degree of specialization for a newly
added expert for its own domain.

5.4 ABLATIONS

Mixture-of-expert models are known to be sensitive to the choice of load balancing loss factor (Fedus
et al., 2022; Zoph et al., 2022) and sampling weights for each data domains during training. As
additional ablations, we run two new sets of experiments at 470M scale, one with a lower load
balancing factor and the other one with equal weighting of each domain during training (whereas
originally the weights were proportional to the share of tokens of that domain in SlimPajama). Figure
6 compares Nexus and MoE(̇linear router) in terms of their downstream performances for
these ablations. Finally, in this section, we also visualize domain and projected expert embeddings to
see if the relationship between embeddings is preserved after the learned projection.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Average routing probabili-
ties per expert for the new domain in
extended Nexus: We show the routing
probabilities for code tokens after ex-
tending MoE (1B finetuning).

Figure 6: Comparison between Nexus and the base-
line in different load balancing and data sampling
setups: We compare Nexus and MoE (linear router) by
lowering the load balancing loss factor and uniformly
sampling the data domain during training in isolation.3

Lowering the load balancing loss factor. In Figure 6 (baseline vs low load-bal.), we compare
two Nexus models with the corresponding MoE(̇linear router) baselines where we use
load balancing loss factor of 0.05 and 0.0005 for each set of experiments. We find that using a
significantly lower factor for the load balancing loss hurts MoE(̇linear router) performance
by approximately 2% relative drop while Nexus shows a robust performance across both load
balancing factors. We hypothesize that because the expert embeddings in our router are always
based on the domain representations, we achieve more stable distribution of tokens even if the load
balancing loss is weighted extremely low.

Changing the training data composition. Next, we compare our default of sampling specialized
domain data proportional to the size of the domain (total amount of tokens in SlimPajama), with
a uniform sampling over all domains. Figure 6 (baseline vs equal data) shows the downstream
performances for both Nexus and MoE(̇linear router). Although sampling uniform sampling
domains’ data does not significantly impact the downstream performance for both models, we find that
it helps Nexus to improve specialization for all the domains in terms of expert routing probabilities
(Figure 11, Appendix I). In particular, compared to the size proportional sampling, tokens from the
C4 domain are routed more accurately (27.6% vs 71.1%) when data is equally sampled.

Domain embeddings before and after projection. Finally, in Figure 8, we visualize cosine
similarities between domains and the projected expert embeddings from the last Transformer block,
in our main upcycling experiments at the 470M scale. Comparing the embeddings before and after
mapping, we find that the router’s learned projection preserves the main relationship between domains.
For instance, relatively high cosine similarity between Books & C4, and StackExchange & GitHub
exist both between their domain embeddings and the projected expert embeddings. Interestingly,
while preserving the main relationships, we also find that the learned projection pushes expert
embeddings further away from each other, potentially due to our choice of only activating a single
expert per token besides the shared expert.

6 RELATED WORK

Routing Variants of MoEs. The most common MoE architecture (Shazeer et al., 2017; Lepikhin
et al., 2020; Fedus et al., 2022) employs a linear router with a top-k routing scheme, where k typically
equals 1 or 2. In this standard routing schema, only the k experts with the highest router gate
values are activated. There is substantial research proposing alternatives to top-k expert assignments
(Hazimeh et al., 2021; Lewis et al., 2021; Roller et al., 2021; Zhou et al., 2022; Zuo et al., 2022).
DeepSeek-MoE (Dai et al., 2024) introduces a routing variant where a number of experts are “shared”

3We report the average performance on Knowledge, Science, Reasoning, and MMLU.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

and always assigned to all tokens. Our work also adopts this approach for our general base expert.
However, these efforts primarily focus on improving the general performance and/or training stability
of MoEs. In contrast, our work puts emphasis adaptability and extensibility.

Efficient MoE Training by Re-Using Existing Dense Models. Training MoEs from scratch is
computationally expensive (Gale et al., 2023; Fedus et al., 2022) and often challenging due to training
instabilities (Zoph et al., 2022). Alternatively, recent works have explored re-using existing dense
models to initialize MoEs. Sparse Upcycling (Komatsuzaki et al., 2023) re-uses a single dense model
to initialize the MoE by replicating the FFN weights in an MoE layer. The router is initialized
randomly, and all other parameters are copied directly from the dense model. BTX (Sukhbaatar
et al., 2024) extends this approach by upcycling not from a single dense model, but from multiple
specialized dense expert models. Furthermore, BAM (Zhang et al., 2024) expands BTX to upcycle
not only FFN experts but also attention experts. Our work also leverages this approach by reusing
specialized dense experts for an MoE, while extending it further to facilitate on-the-fly adaptations
for new experts specialized in unseen data domains.

Efficient MoE Architectures. Zadouri et al. (2024) proposes replacing traditional MoE’s
computation-heavy feed-forward network (FFN) experts with more efficient experts comprised of
smaller vectors and adapters, which are activated in parallel to a single dense FFN. This lightweight
architecture necessitates only a limited number of parameter updates when finetuning, offering
efficiency advantages. However, unlike our approach, it does not leverage existing specialized dense
models and lacks a notion of specialized experts, which are central to our method. Similar to our
work, Muqeeth et al. (2024) and Ostapenko et al. (2024) study combining separately trained experts
into a unified model. However, they focus on parameter-efficient adapters such as LoRA (Hu et al.,
2021) and supervised finetuning. In this work, we focus on efficiently pre-training fully-fledged MoE
models via upcycling.

Adaptive MoEs and Ensemble Models. ModuleFormer (Shen et al., 2023) also aims to produce
adaptable MoEs. The authors achieve adaptability by freezing existing MoE parameters while
only training newly added modules with optimization constraints to the router. Unlike our work,
ModuleFormer does not leverage existing expert dense seed models for efficiency gains, nor does it
have a notion of specialization which is central to our work. Similar to our work, DEMix (Gururangan
et al., 2021) independently trains different FFN experts on specialized data domains, with each expert
functioning as a domain-specific module. Modules can be added on-the-fly for adaptability. Followup
works BTM and C-BTM (Li et al., 2022; Gururangan et al., 2023) extend DEMix to create adaptive
ensemble models. However, all three works use a router requiring a forward pass for every expert at
inference instead of sparsely activating them, which significantly increases inference costs, especially
with a large number of experts. Unlike these approaches, our router cost is approximately the same
as standard top-k routing during both training and inference, offering a more scalable solution for
adaptability.

7 CONCLUSION

We propose Nexus, a new LLM framework that enables efficient upcycling of specialized dense
experts into a sparsely activated MoE model. We show that individual experts in our method retain
their specialization after upcycling, and that our router based on expert embeddings outperforms
previous approaches for combining the dense experts. Furthermore, the model can be extended
efficiently with new dense experts after the initial training phase, saving much compute compared to
re-training the upcycled model or training from scratch.

8 LIMITATIONS

The MoE architecture is often employed for larger models in the multi-billion parameter range, where
efficiency is paramount. However, to facilitate a broader set of experiments, we limit our setup to
using 2.8B parameter seed models for the main results and 470M parameter seed models for ablations.
Furthermore, our dense experts are based on existing data sources in the SlimPajama dataset which is
pre-defined. Future work could extend our method by discovering specialized data domains through
unsupervised clustering similar to Gururangan et al. (2023).

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, Eric Chu, Jonathan H. Clark,
Laurent El Shafey, Yanping Huang, Kathy Meier-Hellstern, Gaurav Mishra, Erica Moreira, Mark
Omernick, Kevin Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang,
Gustavo Hernandez Abrego, Junwhan Ahn, Jacob Austin, Paul Barham, Jan Botha, James Bradbury,
Siddhartha Brahma, Kevin Brooks, Michele Catasta, Yong Cheng, Colin Cherry, Christopher A.
Choquette-Choo, Aakanksha Chowdhery, Clément Crepy, Shachi Dave, Mostafa Dehghani, Sunipa
Dev, Jacob Devlin, Mark Díaz, Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu Feng, Vlad
Fienber, Markus Freitag, Xavier Garcia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-Ari,
Steven Hand, Hadi Hashemi, Le Hou, Joshua Howland, Andrea Hu, Jeffrey Hui, Jeremy Hurwitz,
Michael Isard, Abe Ittycheriah, Matthew Jagielski, Wenhao Jia, Kathleen Kenealy, Maxim Krikun,
Sneha Kudugunta, Chang Lan, Katherine Lee, Benjamin Lee, Eric Li, Music Li, Wei Li, YaGuang
Li, Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu, Frederick Liu, Marcello Maggioni,
Aroma Mahendru, Joshua Maynez, Vedant Misra, Maysam Moussalem, Zachary Nado, John
Nham, Eric Ni, Andrew Nystrom, Alicia Parrish, Marie Pellat, Martin Polacek, Alex Polozov,
Reiner Pope, Siyuan Qiao, Emily Reif, Bryan Richter, Parker Riley, Alex Castro Ros, Aurko Roy,
Brennan Saeta, Rajkumar Samuel, Renee Shelby, Ambrose Slone, Daniel Smilkov, David R. So,
Daniel Sohn, Simon Tokumine, Dasha Valter, Vijay Vasudevan, Kiran Vodrahalli, Xuezhi Wang,
Pidong Wang, Zirui Wang, Tao Wang, John Wieting, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting
Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven Zheng, Ce Zheng, Weikang Zhou, Denny
Zhou, Slav Petrov, and Yonghui Wu. Palm 2 technical report, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel,
Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano
Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter
Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil
Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar
Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal
Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu
Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa,
Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles,
Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park,
Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda
Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa,
Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori, Armin W.
Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu,
Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang,
Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. On the opportunities
and risks of foundation models, 2022. URL https://arxiv.org/abs/2108.07258.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

11

https://arxiv.org/abs/2108.07258


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An Analysis of Deep Neural Network
Models for Practical Applications. arXiv e-prints, pp. arXiv:1605.07678, May 2016.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy Liang, and Luke
Zettlemoyer. Quac: Question answering in context. arXiv preprint arXiv:1808.07036, 2018.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Cohere. Introducing cohere embed v3, 2023. URL https://cohere.com/blog/
introducing-embed-v3.

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui,
and Wenfeng Liang. Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts
language models, 2024. URL https://arxiv.org/abs/2401.06066.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten Bosma,
Zongwei Zhou, Tao Wang, Yu Emma Wang, Kellie Webster, Marie Pellat, Kevin Robinson,
Kathleen Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc V Le, Yonghui Wu, Zhifeng
Chen, and Claire Cui. Glam: Efficient scaling of language models with mixture-of-experts, 2022.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity, 2022.

Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. Megablocks: Efficient sparse
training with mixture-of-experts. Proceedings of Machine Learning and Systems, 5:288–304, 2023.

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. Don’t stop pretraining: Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp.
8342–8360, Online, July 2020a. Association for Computational Linguistics. doi: 10.18653/v1/
2020.acl-main.740. URL https://aclanthology.org/2020.acl-main.740.

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. Don’t stop pretraining: Adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964, 2020b.

Suchin Gururangan, Mike Lewis, Ari Holtzman, Noah A Smith, and Luke Zettlemoyer. Demix layers:
Disentangling domains for modular language modeling. arXiv preprint arXiv:2108.05036, 2021.

Suchin Gururangan, Margaret Li, Mike Lewis, Weijia Shi, Tim Althoff, Noah A. Smith, and Luke
Zettlemoyer. Scaling expert language models with unsupervised domain discovery, 2023. URL
https://arxiv.org/abs/2303.14177.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Hussein Hazimeh, Zhe Zhao, Aakanksha Chowdhery, Maheswaran Sathiamoorthy, Yihua Chen,
Rahul Mazumder, Lichan Hong, and Ed H. Chi. Dselect-k: Differentiable selection in the mixture
of experts with applications to multi-task learning, 2021.

12

https://arxiv.org/abs/2107.03374
https://cohere.com/blog/introducing-embed-v3
https://cohere.com/blog/introducing-embed-v3
https://arxiv.org/abs/2401.06066
https://aclanthology.org/2020.acl-main.740
https://arxiv.org/abs/2303.14177


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021. URL https://arxiv.
org/abs/2009.03300.

Sara Hooker. On the limitations of compute thresholds as a governance strategy, 2024. URL
https://arxiv.org/abs/2407.05694.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

Joel Jang, Seonghyeon Ye, Sohee Yang, Joongbo Shin, Janghoon Han, Gyeonghun Kim, Stan-
ley Jungkyu Choi, and Minjoon Seo. Towards continual knowledge learning of language models,
2022. URL https://arxiv.org/abs/2110.03215.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024. URL https://arxiv.org/abs/2401.04088.

Xisen Jin, Bill Yuchen Lin, Mohammad Rostami, and Xiang Ren. Learn continually, generalize
rapidly: Lifelong knowledge accumulation for few-shot learning, 2022. URL https://arxiv.
org/abs/2104.08808.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1601–
1611, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/
v1/P17-1147. URL https://aclanthology.org/P17-1147.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models,
2020.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil Mustafa, Joshua
Ainslie, Yi Tay, Mostafa Dehghani, and Neil Houlsby. Sparse upcycling: Training mixture-of-
experts from dense checkpoints, 2023.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Matthew Kelcey, Jacob Devlin, Kenton Lee, Kristina N.
Toutanova, Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov.
Natural questions: a benchmark for question answering research. Transactions of the Association
of Computational Linguistics, 2019.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding, 2020.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base layers:
Simplifying training of large, sparse models. In Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 6265–6274.
PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/lewis21a.
html.

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff, Noah A. Smith, and Luke
Zettlemoyer. Branch-train-merge: Embarrassingly parallel training of expert language models,
2022. URL https://arxiv.org/abs/2208.03306.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro,
Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar

13

https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2407.05694
https://arxiv.org/abs/2110.03215
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2104.08808
https://arxiv.org/abs/2104.08808
https://aclanthology.org/P17-1147
https://proceedings.mlr.press/v139/lewis21a.html
https://proceedings.mlr.press/v139/lewis21a.html
https://arxiv.org/abs/2208.03306


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason
Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang,
Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas,
Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire
Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried,
Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun
Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source be with you!, 2023.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-
efficient multi-task fine-tuning for transformers via shared hypernetworks, 2021.

Alexandre Matton, Tom Sherborne, Dennis Aumiller, Elena Tommasone, Milad Alizadeh, Jingyi He,
Raymond Ma, Maxime Voisin, Ellen Gilsenan-McMahon, and Matthias Gallé. On leakage of code
generation evaluation datasets. arXiv preprint arXiv:2407.07565, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381–2391, Brussels, Belgium,
October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1260.
URL https://aclanthology.org/D18-1260.

Mohammed Muqeeth, Haokun Liu, Yufan Liu, and Colin Raffel. Learning to route among specialized
experts for zero-shot generalization. arXiv preprint arXiv:2402.05859, 2024.

Oleksiy Ostapenko, Zhan Su, Edoardo Maria Ponti, Laurent Charlin, Nicolas Le Roux, Matheus
Pereira, Lucas Caccia, and Alessandro Sordoni. Towards modular llms by building and reusing a
library of loras. arXiv preprint arXiv:2405.11157, 2024.

Jupinder Parmar, Shrimai Prabhumoye, Joseph Jennings, Mostofa Patwary, Sandeep Subramanian,
Dan Su, Chen Zhu, Deepak Narayanan, Aastha Jhunjhunwala, Ayush Dattagupta, Vibhu Jawa, Jiwei
Liu, Ameya Mahabaleshwarkar, Osvald Nitski, Annika Brundyn, James Maki, Miguel Martinez,
Jiaxuan You, John Kamalu, Patrick LeGresley, Denys Fridman, Jared Casper, Ashwath Aithal,
Oleksii Kuchaiev, Mohammad Shoeybi, Jonathan Cohen, and Bryan Catanzaro. Nemotron-4 15b
technical report, 2024. URL https://arxiv.org/abs/2402.16819.

Luiza Pozzobon, Beyza Ermis, Patrick Lewis, and Sara Hooker. Goodtriever: Adaptive toxi-
city mitigation with retrieval-augmented models. In Findings of the Association for Com-
putational Linguistics: EMNLP 2023, pp. 5108–5125, Singapore, December 2023a. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.339. URL
https://aclanthology.org/2023.findings-emnlp.339.

Luiza Pozzobon, Beyza Ermis, Patrick Lewis, and Sara Hooker. Goodtriever: Adaptive toxicity
mitigation with retrieval-augmented models, 2023b. URL https://arxiv.org/abs/2310.
07589.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners, 2019. URL https://api.semanticscholar.
org/CorpusID:160025533.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan,
Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks,
Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron
Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu,
Erich Elsen, Siddhant Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen
Simonyan, Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro,
Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou, Arthur Mensch,
Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug Fritz, Thibault Sottiaux,
Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d’Autume,
Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas,
Aurelia Guy, Chris Jones, James Bradbury, Matthew Johnson, Blake Hechtman, Laura Weidinger,

14

https://aclanthology.org/D18-1260
https://arxiv.org/abs/2402.16819
https://aclanthology.org/2023.findings-emnlp.339
https://arxiv.org/abs/2310.07589
https://arxiv.org/abs/2310.07589
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Iason Gabriel, William Isaac, Ed Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol
Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu,
and Geoffrey Irving. Scaling Language Models: Methods, Analysis & Insights from Training
Gopher, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2020.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. DeepSpeed-MoE: Advancing mixture-of-experts
inference and training to power next-generation AI scale. In Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp.
18332–18346. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/
rajbhandari22a.html.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pp. 2383–2392, Austin, Texas, November 2016. Association
for Computational Linguistics. doi: 10.18653/v1/D16-1264. URL https://aclanthology.
org/D16-1264.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
Advances in Neural Information Processing Systems, 34:8583–8595, 2021.

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam, and Jason Weston. Hash layers for large sparse
models, 2021.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale, 2019.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Commonsense
reasoning about social interactions, 2019. URL https://arxiv.org/abs/1904.09728.

Noam Shazeer. Glu variants improve transformer, 2020. URL https://arxiv.org/abs/
2002.05202.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer, 2017.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanantakool,
Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, Ryan Sepassi, and Blake
Hechtman. Mesh-tensorflow: Deep learning for supercomputers, 2018.

Yikang Shen, Zheyu Zhang, Tianyou Cao, Shawn Tan, Zhenfang Chen, and Chuang Gan. Module-
former: Modularity emerges from mixture-of-experts. arXiv e-prints, pp. arXiv–2306, 2023.

Catriona Silvey. Speaking our minds: Why human communication is different, and how language
evolved to make it special, by thom scott-phillips, 2016.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan Dey.
SlimPajama: A 627B token cleaned and deduplicated version of RedPajama, June 2023. URL
https://huggingface.co/datasets/cerebras/SlimPajama-627B.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in nlp, 2019. URL https://arxiv.org/abs/1906.02243.

Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma, Hu Xu, Xi Victoria Lin, Baptiste Rozière,
Jacob Kahn, Daniel Li, Wen-tau Yih, Jason Weston, et al. Branch-train-mix: Mixing expert llms
into a mixture-of-experts llm. arXiv preprint arXiv:2403.07816, 2024.

15

https://proceedings.mlr.press/v162/rajbhandari22a.html
https://proceedings.mlr.press/v162/rajbhandari22a.html
https://aclanthology.org/D16-1264
https://aclanthology.org/D16-1264
https://arxiv.org/abs/1904.09728
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://arxiv.org/abs/1906.02243


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question
answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4149–4158, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1421. URL https:
//aclanthology.org/N19-1421.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023.

Marcos Treviso, Ji-Ung Lee, Tianchu Ji, Betty van Aken, Qingqing Cao, Manuel R. Ciosici, Michael
Hassid, Kenneth Heafield, Sara Hooker, Colin Raffel, Pedro H. Martins, André F. T. Martins,
Jessica Zosa Forde, Peter Milder, Edwin Simpson, Noam Slonim, Jesse Dodge, Emma Strubell,
Niranjan Balasubramanian, Leon Derczynski, Iryna Gurevych, and Roy Schwartz. Efficient
Methods for Natural Language Processing: A Survey. Transactions of the Association for Compu-
tational Linguistics, 11:826–860, 07 2023. ISSN 2307-387X. doi: 10.1162/tacl_a_00577. URL
https://doi.org/10.1162/tacl_a_00577.

Ahmet Üstün, Arianna Bisazza, Gosse Bouma, Gertjan van Noord, and Sebastian Ruder. Hyper-X: A
unified hypernetwork for multi-task multilingual transfer. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pp. 7934–7949, Abu Dhabi, United Arab
Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
emnlp-main.541. URL https://aclanthology.org/2022.emnlp-main.541.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Ben Wang. Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language
Model with JAX. https://github.com/kingoflolz/mesh-transformer-jax,
May 2021.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209, 2017.

Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Ermiş, Acyr Locatelli, and Sara Hooker. Pushing
mixture of experts to the limit: Extremely parameter efficient moe for instruction tuning, 2023.
URL https://arxiv.org/abs/2309.05444.

Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Ermis, Acyr Locatelli, and Sara Hooker.
Pushing mixture of experts to the limit: Extremely parameter efficient moe for instruction tuning.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=EvDeiLv7qc.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence?, 2019.

Qizhen Zhang, Nikolas Gritsch, Dwaraknath Gnaneshwar, Simon Guo, David Cairuz, Bharat
Venkitesh, Jakob Foerster, Phil Blunsom, Sebastian Ruder, Ahmet Ustun, and Acyr Locatelli.
Bam! just like that: Simple and efficient parameter upcycling for mixture of experts, 2024. URL
https://arxiv.org/abs/2408.08274.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew Dai, Zhifeng
Chen, Quoc Le, and James Laudon. Mixture-of-experts with expert choice routing, 2022.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. St-moe: Designing stable and transferable sparse expert models, 2022.

Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim, Hany Hassan, Ruofei Zhang, Tuo Zhao, and
Jianfeng Gao. Taming sparsely activated transformer with stochastic experts, 2022.

16

https://aclanthology.org/N19-1421
https://aclanthology.org/N19-1421
https://doi.org/10.1162/tacl_a_00577
https://aclanthology.org/2022.emnlp-main.541
https://github.com/kingoflolz/mesh-transformer-jax
https://arxiv.org/abs/2309.05444
https://openreview.net/forum?id=EvDeiLv7qc
https://openreview.net/forum?id=EvDeiLv7qc
https://arxiv.org/abs/2408.08274


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A NEXUS ROUTING ALGORITHM

Figure 7 outlines the code for the Nexus router, which consists of (1) a 2-layer MLP network
(domain_to_expert_ffn) to project domain embeddings to expert embeddings, (2) shared and
routed expert FFNs, and (3) sparse Top-k gating. Note that the expert embeddings are independent
of the input and could be precomputed once and stored as long as the weights of the model do not
change. This means that the routing layer during inference closely resembles a vanilla MoE router,
with the difference being that the router matrix in Nexus is not learnt during training but computed
using the domain embeddings as an informative prior.

1 def router(self, inputs, domain_embeddings):
2 # domain_to_expert_ffn learns projection domain to expert embeddings
3 # domain_embeddings: [e_dim x n_experts]
4 # expert_embeddings: [h_dim x n_experts]
5 expert_embeddings = self.domain_to_expert_ffn(self.domain_embeddings)
6

7 # router probs: [batch, seq, n_experts]
8 router_probs = nn.softmax(inputs @ expert_embeddings)
9

10 # Top-1 gate for routed experts
11 index, gate = nn.topk(1, router_probs)
12

13 # routed_experts_ffns: An MoE layer with FFN experts
14 # routed_expert_out: [batch, seq, h_dim]
15 # shared_expert_out: [batch, seq, h_dim]
16 routed_expert_out = self.routed_expert_ffns[index](input)
17 shared_expert_out = self.shared_expert_ffn(input)
18

19 return shared_expert_out + gate * routed_expert_out

Figure 7: Router layer in Nexus: PyTorch-like pseudo-code illustrating the routing mechanism,
situated before the expertized MLP layer in each transformer block.

B COMPARISON OF EXISTING APPROACHES WITH NEXUS

Table 2 compares Nexus with previous approaches in the field of efficient MoE training. Unlike the
vanilla MoE architecture (Shazeer et al., 2017; Fedus et al., 2022), the Branch-Train-Merge (BTM;
Li et al., 2022) and the Branch-Train-Mix (BTX; Sukhbaatar et al., 2024) approaches train experts
separately in different domains, reducing training cost and improving specialization. However, they
either merge the experts during inference (BTM) or learn an MoE router layer from scratch, where
prior domain information is not used (BTX). Our approach trains the MoE router based on domain
information, maintaining the specialization and enabling efficient extension of the MoE with a new
expert after training.

MOE BTM BTX NEXUS
(Vanilla) (Merge) (Linear router) (Ours)

Dense experts are trained independently (upcycling) ✗ ✔ ✔ ✔

Experts are specialized in different domains ✗ ✔ ✔ ✔

Experts are chosen by a learned router per input token ✔ ✗ ✔ ✔

Router is adaptive via learned projection for new domains ✗ ✗ ✗ ✔

Table 2: A comparison of existing approaches with Nexus: We choose the vanilla MoE architecture (Shazeer
et al., 2017; Fedus et al., 2022), Branch-Train-Merge (BTM; Li et al., 2022), and Branch-Train-Mix (BTX;
Sukhbaatar et al., 2024) for comparison. Nexus combines the advantages of the existing MoE extensions while
also allowing easy adaptation to new domains.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Furthermore, Table 3 shows parameter counts during training and inference of Nexus vs. the baselines.
From this, we can infer that Nexus has the same memory and compute complexity as a vanilla MoE
model during inference, and a slight overhead of 1̃% additional trainable parameters during training.

Total Parameters Active Parameters
(Training)

Active Parameters
(Inference)

470M Models
SEED MODEL (470M) 467,682,304 467,682,304 467,682,304
MOE (LINEAR ROUTING) 1,298,252,800 606,110,720 606,110,720
NEXUS 1,312,834,560 620,692,480 606,110,720

2.8B Models
SEED MODEL 2,752,565,760 2,752,565,760 2,752,565,760
MOE (LINEAR ROUTING) 9,044,226,560 4,325,429,760 4,325,429,760
NEXUS 9,129,218,560 4,410,421,760 4,325,429,760

Table 3: Total and active parameter counts. Comparison of the seed model, linear MoE, and Nexus
architectures for both 470M and 2.8B parameter models. During inference, the router weights of
Nexus can be precomputed once by the learned MLP hypernetworks, making it exactly equal to
the vanilla MoE in terms of memory and compute complexity. During training, we also observe
exactly the same step time for the vanilla MoE and Nexus, as the overhead of the additional MLP
is negligible. In the 470M category, the MoE/Nexus models use 6 routed and 1 shared expert. In
the 2.8B category, the MoE/Nexus models use 4 routed and 1 shared expert. In both categories, the
models activate the shared expert and the top-1 of the routed experts during inference.

C EVALUATION DETAILS

For the downstream evaluation, we measure the performance of each model on 15 tasks4 from five
evaluation categories that reflect different capabilities based on the tasks and the datasets used in the
benchmarks:

• Knowledge: To measure question-answering capabilities based on world knowledge and
web documents such as Wikipedia, we report the performance on OpenBookQA (Mihaylov
et al., 2018), Natural Questions (Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017),
QUAC (Choi et al., 2018) (all 0-shot) and SQuAD (4-shot) (Rajpurkar et al., 2016).

• Science: For measuring knowledge in science-oriented academic benchmarks, we use
ARC-Easy, ARC-Challenge (Clark et al., 2018), SciQ (Welbl et al., 2017) (all 0-shot).

• Reasoning: For reasoning abilities, we use CommonSenseQA (Talmor et al., 2019), SIQA
(Sap et al., 2019), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2019), and
HellaSwag (Zellers et al., 2019) (all 0-shot).

• General Language Understanding: We use MMLU (5-shot) (Hendrycks et al., 2021) to
test general language understanding.

• Code: For code generation, we evaluate models on MBPP (Austin et al., 2021), LBPP (Mat-
ton et al., 2024), and HumanEval-Pack (Chen et al., 2021) which includes Cpp, Javascript,
Java, Go, Python, and Rust (all 0-shot).

D RESULTS FOR THE 470M PARAMETER MODEL

Table 4 shows the downstream task results for Nexus with a 470M parameter seed model. Our
approach outperforms the baselines in all downstream benchmarks. Dense merging corresponds
a dense model with 470M parameters, while both Nexus and MoE (linear router) consist
of 605M active and 1.3B total parameters.

4We did not include ARC-Challenge and Natural Questions in 470M experiments as some model variants
were unable to achieve non-random performance.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Know. Science Reason. MMLU Avg.

SEED MODEL (470M) 14.0 51.4 50.5 29.8 36.4

Upcycled Models
DENSE MERGING 10.9 52.0 50.3 27.8 35.5
MOE (LINEAR ROUTER) 13.4 55.0 51.3 29.6 37.3
NEXUS 16.7 55.0 52.3 29.8 38.5

Table 4: Downstream task results for Nexus with a 470M parameter seed model. Dense merging
merges all separately pretrained experts, while both Nexus and MoE (linear router) upcycle
them and are evaluated with top-2 routing.

E RESULTS FOR INDIVIDUAL EXPERTS

To further contextualize the performance of the Nexus models, we report the performance of each
individual expert in Table 5. The experts initialized from the 470M seed model are trained for 20B
tokens on their domains, while the experts initialized from the 2.8B seed model are trained for 40B
tokens.

Know. Science Reason. MMLU Avg.

470M Experts
ARXIV 9.5 47.8 44.3 31.2 33.2
BOOKS 9.0 51.8 51.4 32.0 36.1
C4 3.9 52.6 51.5 27.6 33.9
GITHUB 11.3 44.8 45.2 30.2 32.9
STACKEXCHANGE 9.9 45.4 44.9 29.2 32.4
WIKIPEDIA 15.3 46.4 44.1 25.4 32.8

2.8B Experts
ARXIV 13.4 57.3 51.3 36.2 39.5
BOOKS 19.4 62.5 60.0 39.6 45.4
C4 11.0 64.5 61.9 37.8 43.8
WIKIPEDIA 22.6 60.3 55.3 37.2 43.9
CODE 13.4 59.9 52.4 37.8 40.9

Upcycled Models
NEXUS (470M) 16.7 55.0 52.3 29.8 38.5
NEXUS (2.8B) 33.2 67.3 62.6 39.4 50.6

Table 5: Downstream task performance of individual experts. We report the separate performance
of all experts used during the upcycling and extension stages. Note that the Nexus models beat every
individual expert used for their upcycling, with one exception.

F RESULTS FOR CONTINUAL TRAINING OF THE SEED MODEL

To compare Nexus to another dense baseline, for Table 6 we continually train the 470M and 2.8B seed
models in a data matched setting. This means the 470M model has seen a total of 750B pretraining
tokens (general pretraining data mix), 120B tokens from SlimPajama domains (the shuffled training
tokens of all 6 experts), and 25B tokens from SlimPajama to match the Nexus finetuning phase. The
2.8B model has seen a total of 750B pretraining tokens, 160B tokens from SlimPajama (the shuffled
training tokens of all 4 experts), and 40B additional tokens from SlimPajama to match the Nexus
finetuning phase.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Know. Science Reason. MMLU Avg.

470M Models
SEED MODEL 14.0 51.4 50.5 29.8 36.4
SEED MODEL + 145B TOKENS 19.9 53.8 50.8 29.6 38.5
NEXUS 16.7 55.0 52.3 29.8 38.5

2.8B Models
SEED MODEL 27.1 62.0 63.8 35.4 47.1
SEED MODEL + 200B TOKENS 28.8 66.4 62.7 41.4 49.8
NEXUS 33.2 67.3 62.6 39.4 50.6

Table 6: Downstream task results for data-matched continued pretraining of the 470M and 2.8B seed
models. Both seed models are data matched to the Nexus/Linear MoE variants, including all
expert training and finetuning. For the 2.8B parameter models, we also train for 1B tokens on
instruction-style datasets from the original pretraining data before measuring the performance on
downstream tasks (see Section 4.2). Note that the seed model training takes a lot more wallclock-time
compared to our method, as the Nexus experts can all be trained in parallel, which is not possible
with a single model.

G COMPARISON OF DOMAIN EMBEDDINGS AND EXPERT EMBEDDINGS

Nexus maps the domain embeddings which are computed from each domain’s training dataset to
expert embeddings which represent experts. Figure 8 shows that trends in the similarity matrix are
preserved after the mapping, but the embeddings are pushed away from each other a bit (lower
similarity).

Figure 8: Domain and the projected expert embeddings for Nexus: We visualize cosine similarities
between domains and the projected expert embeddings from the last Transformer block. The
similarities are obtained from the 470M experiments. Our projected router maintains the relative
similarity between the original domains (e.g. Books & C4, Github & StackExchange) after the
router’s projection.

H ROUTING PROBABILITIES FOR THE LINEAR MOE MODEL

To investigate how specialized individual experts are in the Nexus approach vs. the vanilla MoE
baseline, we also compute the routing distributions for the MoE (Linear Router) baseline with
2.8B parameters. Figure 9 shows the router distribution of this model with 4 experts. Figure 10 shows
the router distribution for code data after adding the new code expert to the baseline. Although the
specialization of the linear MoE model (Figure 9) matches that of Nexus for pretraining (Figure 4), it
adapts much worse to the new expert, as fewer tokens from the code domain actually get routed to
the code expert (Figure 10) than with Nexus (Figure 5).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 9: Average routing probabilities for each expert per domain in the MoE (Linear
router) baseline: We compute the average routing probabilities across Transformer blocks for
512 samples per domain (from the 2.8B experiment). The x-axis denotes the samples’ domain and
the colored bars show the routing probabilities for the corresponding expert. We show the domains
that are used to train specialized experts.

Figure 10: Average routing probabilities per expert for the new domain in the extended MoE
(Linear router) baseline: We show the routing probabilities for code tokens after extending
the MoE with a new expert and finetuning for 1B tokens.

I ROUTING PROBABILITIES FOR UPCYCLING ABLATIONS

Figure 11 shows the expert routing probabilities for Nexus for all three settings described in Section
5.4.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Fi
gu

re
11

:A
ve

ra
ge

ro
ut

in
g

pr
ob

ab
ili

tie
sf

or
ea

ch
ex

pe
rt

pe
r

do
m

ai
n

in
di

ff
er

en
tu

pc
yc

lin
g

se
tt

in
g:

W
e

sh
ow

ex
pe

rt
ro

ut
in

g
pr

ob
ab

ili
tie

s
fo

rN
ex

us
fo

ra
ll

th
re

e
se

tti
ng

s
de

sc
ri

be
d

in
Se

ct
io

n
5.

4.

22


	Introduction
	Background
	Adaptive Router for Upcycling Specialized Experts as MoE
	Experiments
	Experimental setting
	Baselines
	Evaluation

	Results and Discussion
	Main Results for Upcycled Models
	Extending the Upcycled MoE model with a New Expert
	Expert Specialization
	Ablations

	Related Work
	Conclusion
	Limitations
	Nexus routing algorithm
	Comparison of existing approaches with Nexus
	Evaluation details
	Results for the 470M parameter model
	Results for individual experts
	Results for continual training of the seed model
	Comparison of domain embeddings and expert embeddings
	Routing Probabilities for the linear MoE model
	Routing Probabilities for Upcycling Ablations

