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ABSTRACT

In real-world applications, deep learning models must continually adapt to se-
quentially arriving tasks without access to previous data. Although pre-trained
foundation models show generalisation and zero-shot abilities, fine tuning them
in a continual learning setting often leads to representation degradation. In this
study, we firstly systematically evaluate several recent feature-preserving fine-
tuning methods (L2-SP, FTP, WiseFT and ImpReg) in continual learning scenario
using a large scale pre-trained foundation model. We further explore the effective-
ness of full fine-tuning (FullFT) versus parameter-efficient fine tuning (PEFT) and
propose a novel two-stage fine-tuning strategy, PEFT+Cons, designed to balance
stability and plasticity by combining PEFT with task-specific knowledge consol-
idation. Extensive experiments on the CIFAR-100 and ImageNet-R benchmark
datasets demonstrate that our proposed PEFT+Cons approach effectively prevents
representation forgetting while enhancing task-specific knowledge retention.

1 INTRODUCTION

Traditional deep learning models are typically trained in static, offline settings where the entire
training dataset is assumed to be available in advance. This assumption diverges from real-world
scenarios where data arrives in a non-stationary, sequential, or evolving manner, limiting their appli-
cations in dynamic environments. Continual learning (Parisi et al., 2019) addresses this limitation
by enabling models to learn from a stream of tasks over time without revisiting the entire dataset.
However, it faces the challenge of catastrophic forgetting. (Nguyen et al., 2019; De Lange et al.,
2021), where models tend to lose previously acquired knowledge while adapting to new data.

Deep learning models operate across three conceptual spaces: input, representation and output. As
high-level abstractions are difficult to infer directly from raw input data, models learn intermedi-
ate representations that capture semantically rich, task-relevant features for downstream predictions.
Traditional continual learning research has focused on maintaining output performance (e.g. clas-
sification accuracy across tasks), yet preserving the quality of learned representations is equally
critical, especially with the advances of pre-trained foundation models in recent years. Models such
as CLIP (Radford et al., 2021), DINO (Caron et al., 2021), and MAE (He et al., 2022) are trained
on massive, diverse datasets and aim to produce generalisable features that transfer effectively to
downstream tasks. While they demonstrate strong zero-shot generalisation (Thengane et al., 2022),
fine-tuning is required to optimise performance for specific domains. Fine-tuning strategies can be
divided into two categories: Full Fine-Tuning (FullFT), where all parameters are updated (Then-
gane et al., 2022; Xuhong et al., 2018; Tian et al., 2023; Wortsman et al., 2022; Li et al., 2024), and
Parameter-Efficient Fine-Tuning (PEFT), where only a small task-specific subset of parameters is
adapted (e.g. adapters, prompt and final layers) while the backbone is frozen (Wang et al., 2022a;b;
Smith et al., 2023b; Huang et al., 2025; Smith et al., 2023a).

Although FullFT has been found to offer greater flexibility and often achieve higher performance, it
can degrade the generalisation ability of pre-trained representations (Kumar et al., 2022), especially
in continual learning where sequential adaptation is required. This representation forgetting (Davari
et al., 2022) is highly undesirable, as the model may progressively lose its pretrained generalisation
capacity learned during pre-training and become unusable for future tasks. To address this, recent
work has proposed feature-preserving methods that balance plasticity (adaptation) and stability (re-
tention) by constraining updates to remain close to the original pretrained weights, typically via
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parameter-space regularisation. By limiting the degree to which the pre-trained weights are altered,
the model keeps the generalisable representation that were acquired during pre-training.

Motivated by this, we study recent feature-preserving approaches that aim to retain the robustness
and generalisation of pre-trained models while incorporating new knowledge. Namely, we examine
four methods: L2-SP (Xuhong et al., 2018), FTP (Tian et al., 2023), WiseFT (Wortsman et al.,
2022) and ImpReg (Li et al., 2024). Although they have shown promise in offline, single-task
fine-tuning, their effectiveness in continual learning scenarios remains largely unexplored. The se-
quential and non-stationary nature of continual learning introduces additional challenges, such as
representation forgetting, task interference, and unseen-task generalisation, which are not present
in offline fine-tuning. As a result, it remains unclear whether feature-preserving techniques can
adequately maintain the representation quality across multiple tasks in continual learning setting.

In this paper, we investigate feature-preserving methods in continual learning using a CLIP ResNet-
50 model pre-trained on ImageNet-1K. We evaluate their effectiveness under class-incremental
learning for image classification across two benchmarks, CIFAR-100 (Krizhevsky & Hinton, 2009)
and ImageNet-R (Hendrycks et al., 2021), where each dataset is split into 10 disjoint tasks. To assess
robustness and generalisability, we employ representation-level metrics such as linear probe accu-
racy, representational forgetting, and unseen-task generalisation. Our contributions are as follows:

1. We evaluate four recent feature-preserving fine-tuning methods: L2-SP, FTP, WiseFT and
ImpReg, in a continual learning setting with pre-trained foundational models, highlighting
their strengths and limitations when applied to pre-trained models.

2. We investigate how these methods affect representation robustness under two fine-tuning
strategies: FullFT and PEFT, focusing on the role of the attention pooling block. We as-
sess representational forgetting, linear probe performance and unseen tasks generalisation.

3. We propose PEFT+Cons, a novel two-stage fine tuning strategy that combines PEFT with
task-specific knowledge consolidation, and provide insights into its effectiveness in miti-
gating representational forgetting.

2 RELATED WORK

Continual learning refers to methods aiming to address the challenge of catastrophic forgetting in
machine learning models, enabling them to learn tasks sequentially. Existing approaches are often
grouped into three categories: architectural expansion, rehearsal-based, and rehearsal-free.

Architectural expansion methods (Rusu et al., 2016; Yoon et al., 2018; Mallya & Lazebnik, 2018)
dynamically expand the model’s architecture as new tasks arrive. While this can be effective in
avoiding interference between tasks, the drawback is that the model size and computational cost
grows as the number of tasks increases. We focus on approaches that update the existing model
parameters without architectural expansion as they offer more scalability in constrained settings.

Rehearsal-based methods (Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017; Hayes et al., 2019;
Harun et al., 2023; Rolnick et al., 2019) address forgetting by storing and replaying a subset of past
data, which has proven highly effective in continual learning settings. Several works have explored
different heuristics for selecting and maintaining replay buffers in a resource-efficient manner or
even use generative models to synthesize past examples (Shin et al., 2017). While highly effective,
these approaches raise storage and privacy concerns (e.g. private data that cannot be stored long
term) (Wang et al., 2024), especially in the context of foundation models such as CLIP (Radford
et al., 2021), where the original training data is closed-source and unavailable for replay. This
motivates us to explore rehearsal-free approaches that do not depend on sample storage.

Rehearsal-free methods avoid explicit storage by relying on regularisation (Kirkpatrick et al., 2017;
Aljundi et al., 2018; Zenke et al., 2017) or knowledge distillation (Li & Hoiem, 2017) to preserve
past knowledge. Their appeal lies in eliminating the need for replay buffers, making them suitable
for privacy-sensitive or memory-constrained settings. However, they often underperformed com-
pared to rehearsal-based methods in complex or long-tailed scenarios (Smith et al., 2023a).

To address this gap, recent work has begun utilising pre-trained foundational models within
rehearsal-free frameworks. Several works leverage pre-trained models by freezing their parame-
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ters during continual learning (Prabhu et al., 2023; Ostapenko et al., 2022), preventing forgetting by
keeping representations fixed. This approach is resistant to forgetting as the frozen parameters re-
main unchanged. However, this assumes that the pre-trained representations generalise well across
all tasks in continual learning. This assumption often doesn’t hold in practical applications. As
such, there is a need for fine-tuned approaches that can continually learn new knowledge as well as
retaining the pre-trained knowledge. Other works have explored prompt tuning techniques for con-
tinual learning (Wang et al., 2022a;b; Smith et al., 2023b; Huang et al., 2025).While these methods
have shown to be highly effective in continual learning settings, they keep the pre-trained model
frozen and only tune the learnable parameters of the added prompts. In this paper, we investigate
whether updating the existing parameters of a pre-trained model can better balance retention of prior
knowledge while adapting to new tasks.

3 METHODOLOGY

Our overall goal is to develop a deeper understanding of how feature-preserving methods behave
under different fine-tuning strategies in continual learning settings. In this section, we formally in-
troduce the problem and the performance measures, and describe the four feature preserving meth-
ods that we compare (L2-SP, FTP, WiseFT and ImpReg) under two different fine-tuning strategies
(FullFT and PEFT). The results are presented and discussed in Sec. 4.

3.1 CONTINUAL LEARNING AND CLASS-INCREMENTAL LEARNING

In continual learning, a model encounters a sequence of tasks T = {T1, T2, . . . , TN}, where each
task Ti is associated with a training dataset Dtrain

i = {(xj , yj)}ni
j=1, as well as a respective test

dataset Dtest
i . A key constraint in continual learning is that once a task is completed, its data is no

longer accessible, prohibiting joint training across tasks.

We focus on class-incremental learning, where each task introduces a disjoint subset of classes from
the overall class set C =

⋃N
i=1 Ci, with Ci ∩ Cj = ∅ for i ̸= j. In our setting, we use a single shared

classification head throughout sequential training, which is a commonly used in class-incremental
learning settings. The shared head is incrementally expanded as new classes are introduced.

Following prior work, we apply the ”labels trick” (Zeno et al., 2021) during training to minimise
task bias, ensuring fairness across early and later tasks without violating the class-incremental pro-
tocol at test time, which has shown to significantly improve the task accuracy. Note that this method
is applied during training, using access to the known task identity. At test time, the task identity
becomes unavailable, thus not breaking the class-incremental learning protocol.

3.2 EVALUATING REPRESENTATION

To assess how well the model maintains its representation quality throughout continual learning, we
decompose it into an encoder fθ : X → Z and a classifier gϕ : Z → Y . Rather than focusing only
on classifier accuracy, we examine changes in the representation space by training a linear probe
(LP) classifier at each task. We propose the following metrics:

• Final Task Accuracy (FTA): the average LP accuracy across all tasks after the final update,
providing a holistic measure of how well the final encoder retains information across the
entire sequence:

FTA =
1

T

T−1∑
i=0

AT−1,i (1)

• Representational Forgetting (RF): measures the drop in LP accuracy for each task from
when it was first learned to the end of training. Formally, for each task Ti, forgetting is
defined as Ai,i −AT−1,i, and the total representational forgetting is:

RF =

T−1∑
i=0

(
Ai,i −AT−1,i

)
(2)

RF quantifies the degradation of representations as the model sequentially learns new tasks.
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• Unseen Tasks Accuracy (AvgUTA): measures how well the current model produces rep-
resentations that generalise to tasks it has not yet been trained on:

UTA(b) =
1

|Ub|
∑
i∈Ub

Ab,i, (3)

where Ub = {Ti | i > b} denotes the set of unseen tasks, aggregated over all frozen
encoders at each task boundary,

AvgUTA =
1

T − 1

T−2∑
b=0

UTA(b) (4)

AvgUTA assesses how well the encoder generalises to future tasks it has not yet been
trained on, thereby capturing the generalisation ability of the current representation.

• Global LP Accuracy (FinalGLP): measures the LP accuracy when it is trained on the
entire dataset at frozen encoder fθb

. Specifically, we train a linear probe hδb
(fθb

(x)) :
Z → Y , which produces the test accuracy GLPb at task boundary b.

FinalGLP = GLPT−1 (5)

FinalGLP reflects the overall linear separability of the representation space learned by the
end of the entire task sequence. This is crucial for understanding how well the learned
representations have retained information once all task boundaries are removed.

3.3 FEATURE-PRESERVING METHODS

We study four notable methods designed to prevent representation degradation during fine-tuning:

• L2-SP (Xuhong et al., 2018): introduces an L2 penalty that anchors the fine-tuned weights
to the pre-trained parameters. Unlike standard weight decay, L2-SP directly regularises
distance from the initial model.

• FTP (Tian et al., 2023): a projection-based method that first applies unconstrained gradient
updates and then projects the weights back relative to the pre-trained parameters.

• WiseFT (Wortsman et al., 2022): interpolates between pre-trained and fine-tuned weights.

• ImpReg (Li et al., 2024): regularises updates based on neuron importance estimated from
the gradients. Parameters associated with critical neurons are constrained more heavily.

In our continual learning setting, we adapt these methods to preserve the representation quality
across task sequence by treating the model parameters from the previous task θt−1 as a new refer-
ence point, replacing the original pre-trained weights θ0 at the beginning of each new task Ti.

3.4 FINE-TUNING STRATEGIES

We evaluate feature-preserving methods under two different fine-tuning strategies: full fine-tuning
and parameter-efficient fine tuning. These strategies are summarized in Fig.1 and detailed below:

• Full Fine-Tuning (FullFT): Under this strategy, all parameters of the encoder fθ are up-
dated during training. The model is optimised using the standard training objective, plus
the additional feature-preserving constraints.

• Parameter-Efficient Fine-Tuning (PEFT): Under this strategy, only the attention pooling
block of the encoder fθ is updated, while the rest of the network is frozen. The feature-
preserving methods are applied only to the parameters being updated.
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Figure 1: Fine-tuning strategies applied to the
CLIP-ResNet-50. FullFT (green) updates all lay-
ers of the encoder, while PEFT (red) restricts up-
dates to only the attention pooling block, leaving
the rest of the encoder frozen.

Figure 2: CLIP-ResNet-50 architecture. The
stem and residual blocks act as the Feature Ex-
tractor, the AttentionPool2D as the Attention
Pooling Block and the final fully connected layer
as the Classification Head. LP uses the pooling
block output to assess representation quality.

4 COMPARISON OF FEATURE-PRESERVING METHODS

Experiment Setup. We evaluate four feature-preserving methods: L2-SP, FTP, WiSE-FT and Im-
pReg, on two class-incremental datasets: SplitCIFAR-100 and SplitImageNet-R, each divided into
10 sequential tasks with disjoint class subsets. For each task, the model is trained on the task’s
training split and evaluated on its test split to measure representation quality.

Our encoder is CLIP-ResNet-50 (Fig. 2), pre-trained on ImageNet-1K. A shared classification head
is incrementally expanded as new classes appear. The model is trained using the cross-entropy loss
with Adam (learning rate 1×10−5), batch size 128, and 10 epochs for SplitCIFAR-100 and 20 for
ImageNet-R.Default hyperparameters from the original implementations are used for all methods.

At each task boundary, we evaluate representation quality with LP metrics capturing forgetting,
generalisation, and degradation. LPs are trained with cross-entropy and Adam for 100 epochs,
selecting the top-1 model. All experiments run on a single NVIDIA A100 GPU.

Datasets. We use two benchmark datasets: CIFAR-100 (Krizhevsky & Hinton, 2009): 60K images
across 100 classes (50K train/10K test) and ImageNet-R (Hendrycks et al., 2021): 100K images
across 200 ImageNet-1K classes, featuring non-natural renditions (e.g. art, sketches). For continual
learning, each dataset is divided into 10 sequential tasks of disjoint class subsets (10 classes per task
for CIFAR-100, 20 per task for ImageNet-R), referred to as SplitCIFAR-100 and SplitImageNet-R.

Baseline. To compare the results, we train a baseline model (Naı̈ve fine-tuning) where all model
parameters are updated without any constraints.

4.1 RESULTS FOR FEATURE-PRESERVING METHODS UNDER FULLFT STRATEGY

To understand the effect of feature-preserving methods in continual learning, we first examine their
performance under the FullFT strategy (Table 1 FullFT, Fig. 3). Naı̈ve fine-tuning leads to severe
representational forgetting (high RF) and rapid degradation in representation quality. When applying
feature-preserving methods,representational forgetting is reduced, and unseen-tasks generalisation
(AvgUTA, Table 1) increases relative to Naı̈ve fine-tuning. Among them, WiSE-FT and ImpReg con-
sistently deliver the best results across both datasets, achieving higher FTA, lower RF, and stronger
overall representation quality (FinalGLP). FTP shows moderate improvements, while L2-SP pro-
vides only marginal gains and in some cases underperforms relative to naı̈ve fine-tuning. However,
the issue of representation degradation persisted across all methods, suggesting that FullFT even
when constrained remains vulnerable to representational drift over time.

To gain deeper insights, we examined intermediate results across the continual fine-tuning process.
In Fig. 4, we observed a general trend that the model suffers catastrophic representational forget-
ting within a single task once it is trained, and this persists even under stronger feature-preserving
methods. While certain methods (Wise-FT, ImpReg) show partial improvements at later stages,
these gains are insufficient to offset the severe forgetting that continues to drive overall degradation.
These findings raise a question: can representational forgetting be effectively prevented throughout
continual learning? Motivated by this, we next investigate fine-tuning under PEFT strategy.
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Table 1: Results on SplitCIFAR-100 and SplitImageNet-R for different feature-preserving methods
under FullFT and PEFT strategy.

Method SplitCIFAR-100 SplitImageNet-R
FTA RF AvgUTA FinalGLP FTA RF AvgUTA FinalGLP

FullFT
Naı̈ve 77.6 154.3 78.4 40.6 51.5 338.3 46.2 32.9
L2-SP 76.8 159.5 80.0 38.0 48.4 440.1 45.6 30.6
FTP 80.0 135.3 81.9 44.2 51.6 356.8 50.1 34.2
WiSE-FT 82.4 112.8 84.2 46.6 57.7 373.6 55.1 40.7
ImpReg 81.9 108.2 79.7 46.7 53.0 376.3 49.9 34.5
PEFT
Naı̈ve 88.2 17.9 90.7 59.1 80.1 38.7 76.7 67.2
L2-SP 88.3 19.0 90.5 58.6 80.3 39.2 76.4 67.3
FTP 88.6 26.1 92.0 59.7 80.3 10.8 80.5 68.0
WiSE-FT 88.0 22.5 90.5 59.3 80.3 39.3 77.0 67.3
ImpReg 86.2 16.5 89.8 56.3 77.4 27.0 77.2 64.4

(a) SplitCIFAR-100. (b) SplitImageNet-R

Figure 3: Final task accuracies across 10 tasks for CLIP-ResNet-50 under FullFT. (a) We compare
the final task (LP) accuracies AT−1,i for i = 0, . . . , 9 when CLIP-ResNet-50 is fully fine-tuned.
Naı̈ve fine-tuning and L2-SP exhibit representational forgetting, while FTP, ImpReg, and WiSE-FT
reduce forgetting and are the best models. (b) We observed a similar trend in SplitImageNet-R where
WiSE-FT and ImpReg are the best performing methods.

Figure 4: 10-Task SplitCIFAR-100. Forgetting
observed for task T3 after the T4 boundary, in-
dicating rapid degradation.

Figure 5: SplitImageNet-R. Minimal forgetting
for task T0 across the sequence under Naı̈ve
PEFT fine-tuning.

4.2 RESULTS FOR FEATURE-PRESERVING METHODS UNDER PEFT STRATEGY

In the previous section, we showed that FullFT, even with feature-preserving methods, leads to
representational forgetting. Here we investigate preventing representational forgetting under the
PEFT strategy, where the ResNet-50 feature extractor is frozen and only the attention pooling block
is updated. This design is motivated by prior work (Smith et al., 2023a) and prompting approaches
such as L2P (Wang et al., 2022a) and DualPrompt (Wang et al., 2022b), which have shown reduced
forgetting by updating a small subset of parameters. Specifically, we apply L2-SP, FTP, WiSE-FT,
and ImpReg to the trainable parameters of the attention pooling block and evaluate performance.
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(a) SplitCIFAR-100. (b) SplitImageNet-R.

Figure 6: UTA across task boundaries, showing PEFT consistently outperforming FullFT.

Our results in Table 1 (PEFT) show that PEFT leads to a significant reduction in representational
forgetting (RF) and improved generalisation to unseen tasks (AvgUTA), resulting in higher final
task accuracy (FTA) across both SplitCIFAR-100 and SplitImageNet-R compared to their FullFT
counterparts. Overall, FTP emerges as the most effective feature-preserving methods when applied
to the attention-based pooling block across both benchmarks, with all methods performing reason-
ably well. Interestingly, we found that the performance gain from adding the feature-preserving
constraint is almost the same when compared to Naı̈ve fine-tuning. This suggests that the attention
pooling block may be inherently resistant to representational forgetting when it is being fine-tuned.

To further validate this, we performed an extensional experiment – we train the first task T0 using
Naı̈ve FullFT, then we freeze the ResNet-50 Feature Extractor and perform PEFT for all subsequent
tasks. To our surprise, the results (Fig. 5) showed that the model displayed almost zero representa-
tional forgetting for task T0, even in the absence of feature-preserving constraint. This is consistent
with our results in Table 1, where RF is substantially reduced in PEFT when compared to FullFT.

Although PEFT largely prevents representational forgetting and substantially improves unseen-task
generalisation, it introduces a clear trade-off in plasticity. The immediate LP accuracy following
each task update is lower than under FullFT, reflecting the limited capacity of the model to encode
new features when only a small subset of parameters is updated. This behaviour aligns with existing
literature: while freezing most of the encoder preserves stability, it constrains the extraction of
discriminative information to the attention pooling mechanism, which may be insufficient for certain
tasks. These observations motivate us to explore whether it is possible to enhance the plasticity of the
pre-trained model under PEFT while maintaining its resistance to forgetting. In the next section, we
introduce a novel strategy that addresses this by combining PEFT with feature-preserving FullFT.

5 PROPOSED METHOD: PEFT+CONS FOR FEATURE PRESERVING IN
CONTINUAL LEARNING

We propose PEFT+Cons, a novel two-stage fine-tuning strategy, shown in Fig. 7 which combines
PEFT with consolidation of task specific knowledge (PEFT+Knowledge-Consolidation). In the
first stage, it fine-tunes the model with PEFT to reduce representational forgetting and enhance
generalisation. In the second stage, it uses FullFT constrained by feature-preserving techniques to
consolidate task-specific knowledge. The intuition behind PEFT+Cons is the following:

• Stage 1: The attention pooling block is updated under PEFT, which our experiments
(Sec. 4.2, Table 1, Fig. 6a–b) show leads to representations that are more robust to for-
getting while maintaining strong generalisation. By freezing the feature extractor, PEFT
stabilises previously learned features at the cost of reduced per task accuracy.

• Stage 2: FullFT is then applied with feature-preserving methods, enhancing features not
covered in Stage 1 and capturing more task-relevant information. As shown in Sec. 4.1,
these methods achieve high within-task accuracy, matching or exceeding Naı̈ve fine-tuning,
while remaining more robust to forgetting, making Stage 2 a consolidation phase that re-
stores plasticity without destabilising the representation space.

The PEFT+Cons results are presented in Table 2 and compared with the best methods from Table
1 for the FullFT and PEFT strategies. They show that the proposed PEFT+Cons strategy, when

7
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Table 2: Comparison of the proposed PEFT+Cons method with the best FullFT and PEFT
methods from Table 1 on SplitCIFAR-100 and SplitImageNet-R.

Method SplitCIFAR-100 SplitImageNet-R
FTA RF AvgUTA FinalGLP FTA RF AvgUTA FinalGLP

Comparison methods
FullFT WiSE-FT 82.4 112.8 84.2 46.6 57.7 373.6 55.1 40.7
PEFT FTP 88.6 26.1 92.0 59.7 80.3 10.8 80.5 68.0
PEFT+Cons (Ours)
Naı̈ve 86.0 66.0 87.1 51.4 70.7 197.2 61.9 54.0
L2-SP 86.0 70.7 87.3 52.4 69.8 206.3 62.4 53.0
FTP 91.1 22.8 92.0 63.7 82.2 47.7 77.4 69.2
WiSE-FT 89.3 43.7 91.4 59.7 80.0 96.4 70.6 65.8
ImpReg 85.7 73.6 87.1 52.6 70.4 198.3 62.6 53.6

Figure 7: PEFT+Cons: a two-stage fine-tuning strategy designed to balance the stability/plasticity
trade-offs by combining 1) PEFT and 2) FullFT with feature preserving constraints. Linear Probe
shows where the task-wise representation quality is evaluated.

used with either FTP or WiSE-FT feature-preserving, leads to substantial improvements in FTA
across both benchmark datasets. In particular, the combination of PEFT+Cons with FTP achieves
the strongest overall performance, outperforming the other feature-preserving methods across all
evaluation metrics. The PEFT+Cons methods tend to exhibit higher RF and slightly lower unseen-
task generalisation (AvgUTA) compared to PEFT FTP. However, this is offset by improvements in
FTA and FinalGLP, suggesting that the model is able to encode more information from each task
and enhance the final representation quality.

(a) SplitCIFAR-100. (b) SplitImageNet-R.

Figure 8: ID Probe accuracy across tasks. PEFT+Cons/FTP and PEFT+Cons/WiSE-FT demon-
strates high effectiveness at maintaining the stability/plasticity trade-offs.

To further verify this claim, we introduce another evaluation metric similar to GLP. Specifically, we
introduce In-Distribution (ID) Probe, where we evaluate the LP accuracy restricted to in-distribution
classes observed up to each task boundary. ID Probe measures both the model’s plasticity and
its robustness to representational forgetting over time. Using ID Probe (Fig. 8), we can see that
applying PEFT+Cons with FTP achieves the highest ID Probe accuracy, particularly for early tasks,
while WiSE-FT also shows strong performance.
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In summary, the proposed PEFT+Cons method provides a balanced and effective strategy to incor-
porate feature-preserving methods into continual learning settings. By decoupling fine-tuning into
two stages, it reduces the curse of representational forgetting while enabling efficient task learning.

6 DISCUSSION

Our findings offer insights into the underlying mechanisms of foundation models in continual learn-
ing. We attribute the effectiveness of PEFT+Cons to two factors: (i) the resistance to forgetting
in the attention pooling block under PEFT, and (ii) the feature-preserving effect of FullFT, which
reduces forgetting.

To address (i): Why does adapting only the attention pooling block resist forgetting? We argue that
this robustness comes from the fact that features near the output of the encoder are more linearly
separable. Fine-tuning the pooling block therefore re-weights an embedding that is already discrim-
inative, allowing linear probes to maintain separability across old and new tasks. This interpretation
is supported by Alain & Bengio (2016), who showed that deeper layers of neural networks exhibit
higher linear separability. Specifically, the AttentionPool2D layer computes a pooled representation
z =

∑
j αjhj , where hj are the frozen encoder outputs and αj are attention weights. Because

fθ remains fixed under PEFT, hj is stable. Modifying only αj changes their contributions without
changing the directions of hj . This preserves linear separability across tasks, whereas FullFT mod-
ifies fθ directly and risks collapsing or rotating the feature space, leading to high representational
forgetting. With this perspective, our results also help explain why FTP performs well: by projecting
encoder weights back toward their original directions after each update, FTP constrains representa-
tional drift in a way that is similar to how PEFT preserves the directions of encoder features.

To address (ii): Why does feature-preserving constraints during FullFT reduce forgetting? We argue
that its effectiveness comes from controlled plasticity through regularisation once stability has been
established in Stage 1. Because the attention pooling block has already adapted to the current task,
the encoder requires fewer adjustments to existing parameters. Feature-preserving constraints guide
these updates to be close to the original weight space, ensuring that new information is consolidated
without eroding prior representations. This is supported by our results in Table 2, where forgetting
is consistently lower when FullFT is combined with feature-preserving methods, particularly FTP.

Our findings point to several directions for further investigation. First, the robustness of the atten-
tion pooling block suggests that high-level aggregation modules play a special role in stabilising
representations. A deeper theoretical and empirical analysis of why such modules resist forget-
ting, and how their structural properties contribute to generalisation across tasks is an interesting
line for future research. Second, our results suggest that because fine-tuning the encoder leads to
high representational forgetting, the encoder may be where pre-trained generalisation is stored. Pro-
jection methods such as FTP help protect this ability during adaptation. Understanding how these
mechanisms constrain representational drift, and whether they can be extended or combined with
other regularisers, is an important direction for future work. Finally, our results highlight the value
of viewing continual learning in pre-trained architectures as the interaction between high-level re-
weighting components and deeper, more volatile feature extractors. Understanding this may inform
the design of more robust strategies for adapting foundation models in dynamic environments.

7 CONCLUSION

In this paper, we explored the challenges of representation degradation in continual learning settings
using pre-trained foundation models. We found that FullFT, even when constrained by feature-
preserving methods, is insufficient for preventing significant representational forgetting, while PEFT
do not provide high per-task performance. Our proposed PEFT+Cons strategy successfully balances
stability and plasticity, preserving generalisable pre-trained features while allowing accurate per-
task performance. Particularly, we found that the combination PEFT+Cons with FTP, produces
the strongest overall performance, shows minimal representation forgetting and superior per-task
accuracy. These findings underscore the importance of developing fine-tuning strategies to harness
the full potential of foundation models in dynamic continual learning environments.
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