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Abstract

A fundamental challenge in machine learning is training models that generalize well to dis-
tributions different from the training distribution. Empirical Risk Minimization (ERM),
which is the predominant learning principle, is known to under-perform in minority sub-
populations and fail to generalize well in unseen test domains. In this work, we propose a
novel learning principle called Uniform Risk Minimization (URM) to alleviate these issues.
We first show theoretically that uniform training data distributions and feature represen-
tations support robustness to unknown distribution shifts. Motivated by this result, we
propose an empirical method that trains deep neural networks to learn a uniformly dis-
tributed feature representation in their final activation layer for improved robustness. Our
experiments on multiple datasets for sub-population shifts and domain generalization show
that URM improves the generalization of deep neural networks without requiring knowl-
edge of groups or domains during training. URM is competitive with the best existing
methods designed for these tasks and can also be easily combined with them for improved
performance. Our work sheds light on the importance of the distribution of learned feature
representations for downstream robustness and fairness.

1 Introduction

ERM has been the predominant approach to train machine learning models. Consistently achieving high
accuracy on test distributions identical to the training data distribution was a challenge until the resurgent
success of deep learning. However, machine learning practitioners today realize that a major challenge is
robustness in test distributions different from the training data distribution. Hence, the common assumption
that training and test data distributions are identical no longer fully capture the challenges of modern machine
learning.

In this work, we consider the challenging problem of training models that perform well in distributions
different from the training distribution without assuming knowledge of the test distribution during the
learning process. Specifically, we explore the question of what is the best data distribution to train classifiers
on for improved downstream generalization. We consider two downstream generalization tasks in our work,
i.e., sub-population shifts and domain generalization. In the sub-population or group shift problem setup,
we have input x ∈ X and labels y ∈ Y, with the objective to learn a function f : X → Y. Moreover,
there exist attributes of the data a1, ..., ai, ..., am, ai ∈ Ai, which may not be available during training.
Hence, distinct sub-populations or groups of the data can be defined using combinations of the attribute
and label, for example h : A × Y → G. The training distribution over (x, y) is a mixture of group-specific
distributions pg i.e. ptr =

∑
g∈G γgpg, where γ ∈ ∆|G|. The test distribution, which is not observed

during training, is: pte =
∑

g∈G βgpg, where β ∈ ∆|G| and γ ̸= β. The objective for f is to perform
accurately in the unobserved pte. Generally, models perform most poorly when the test distribution only
comprises minority sub-populations of the training distribution (Hashimoto et al., 2018; Zhang et al., 2020).
In sensitive applications of machine learning such as healthcare, this leads to fairness issues when models
perform better for some groups of people than others. Multiple methods have been proposed to tackle this
problem of robustness to sub-population shifts. A common approach so far has been identifying the samples
where models performs poorly and up-weighting these samples during training. This identify-and-emphasise
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paradigm has been proposed in multiple works (Liu et al., 2021; Zhang & Sabuncu, 2018; Yaghoobzadeh
et al., 2021; Sanh et al., 2021; Utama et al., 2020). Many proposed methods also rely on the knowledge
of minority sub-population attributes for training or validation to achieve good performance (Gowda et al.,
2021; Izmailov et al., 2022; Menon et al., 2021; Nam et al., 2022; Yao et al., 2022). However, knowledge of
relevant sub-populations may not always be known, especially in novel settings, so this assumption may be
impractical.

In domain generalization (DG), models are provided a set of training domains, each containing examples
about the same task, with the goal that they must perform well on unseen target domains (Blanchard
et al., 2011; Muandet et al., 2013). While challenging, DG captures real-world scenarios where unforeseen
distribution shifts between training and test distributions can be encountered by models. Both scenarios,
sub-population shifts and domain generalization, require novel solutions that enable generalization while
requiring limited privileged information such as access to minority group annotations or access to samples
from the test domains.

In this work, we present a novel learning principle called Uniform Risk Minimization (URM) to alleviate
these issues. We first propose a novel risk measure, uniform risk, to define the expected risk of the model
when the test distribution is not equal to the training distribution. Specifically, uniform risk is equal to the
expected risk of a model over all possible test distributions under a uniform prior. Our main theoretical result
is as follows: training classifiers on uniformly distributed training data or learned feature representations is
an optimal choice to lower uniform risk and supports robustness and fairness. Motivated by this result, we
propose an empirical method to encourage deep neural networks to learn uniformly distributed feature rep-
resentations using an adversarial training objective. We show using experiments that encouraging models to
have uniformly distributed feature representations significantly improves their robustness to sub-population
shifts and domain generalization, without requiring knowledge of groups or domains during training.

The major contributions of our work are as follows:

1. We propose Uniform Risk Minimization (URM), a novel learning principle for out of distribution
(ood) robustness and fairness (Section 2.3).

2. We theoretically show that training classifiers on uniformly distributed data and feature represen-
tation spaces in deep neural networks are optimal for lowering uniform risk and support robustness
(Propositions 2.2, 2.3).

3. Motivated by our findings, we propose a method to learn uniformly distributed feature representa-
tions in the final activation layer of deep neural networks using an adversarial objective (Section 2.6).
We empirically demonstrate the efficacy of this method for sub-population shifts and domain gen-
eralization, without requiring knowledge of task-specific knowledge such as group or domain labels
(Section 3).

2 Uniform Risk Minimization

In this section, we present a novel learning principle called Uniform Risk Minimization (URM) for robustness
under distribution shifts. Motivated by real-world scenarios where we do not have knowledge of the environ-
ments models will be tested on, we propose a novel risk measure called uniform risk that is the expected test
risk over all possible test distributions under a uniform prior (Section 2.3). We then show theoretically that
uniformly distributed training data (Proposition 2.2) or feature distributions (Proposition 2.3) are optimal
in lowering uniform risk. We then present a practical method for deep learning models that encourages their
feature representations to be uniformly distributed using adversarial distribution matching to improve their
robustness in various distribution shift scenarios (Section 2.6).

2.1 Notation and Problem Setup

We describe the general setting of distribution shifts between the training and test distributions for the
classification problem. We denote the joint training distribution as ptr(x, y) and the test distribution as
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pte(x, y), where x denotes the input and y denotes the label. We assume these two distributions have
the same support sets X , Y. We denote a labeled training dataset of size Ntr sampled from the training
distribution (x(i)

tr , y
(i)
tr )Ntr

i=1, where (x(i)
tr , y

(i)
tr ) ∼ ptr(x, y), and a dataset of size Nte from the test distribution

(x(i)
te , y

(i)
te )Nte

i=1, where (x(i)
te , y

(i)
te ) ∼ pte(x).

2.2 A Generalization Bound for Distribution Shifts

We first define the test loss under distribution shift. The negative log-loss on the test distribution is:

ltest = Epte(x,y)[− log p̂(y|x)] (1)

Next, we propose a bound of the test loss using the training loss and the Kullback-Leibler (KL) divergence
between train and test distributions by extending Proposition 1 in Nguyen et al. (2022).
Proposition 2.1. If the loss − log p̂(y|x) is bounded by M1 and the labeling mechanism, p(y|x), is unchanged
between train and test distributions (covariate-shift assumption), we have:

ltest ≤ ltrain + M√
2

[KL[pte(x)|ptr(x)] + M

4
√

2
(2)

Proof. Proof in Appendix A.

An alternate proposition based on the label or target-shift assumption is discussed in Appendix E.1.

2.3 Uniform Risk

In real-world deployments of machine learning, we cannot know in advance which distributions a model will
encounter. Hence, we propose a novel risk measure that incorporates the expected risk over all possible test
distributions. As we do not assume any prior knowledge on the test distribution our model may encounter in
the wild, the expected risk is defined using an uninformative uniform prior over all possible test distributions.
A key fact enabling the definition of such a uniform prior is that all computer systems represent data using
finite-precision floating points, making all data representations discrete in practice. This enables us to define
the uniform prior over all test distributions using the Dirichlet distribution. Let N be the size of the support
set of the data distribution i.e. the total number of possible inputs. For N -dimensional distributions, the
uniform prior can be represented using the Dirichlet distribution, such that pte(x) ∼ Dir(α = 1). Note that

Dir(α = 1) is the uniform prior with parameters αi = 1, ∀i ∈ {1, . . . , N}, and α0 =
N∑

i=1
αi = N . In Eq. 3,

we define uniform risk, RU , as the expectation of the test loss under a uniform prior over all possible test
distributions. We assume that training and test distributions have the same support.

RU := Epte(x)∼Dir(α=1)[ltest] (3)

We now upper bound uniform risk using Eq. 2:

Epte(x)∼Dir(α=1)[ltest] ≤ ltrain + M√
2
Epte(x)∼Dir(α=1)[KL[pte(x)|ptr(x)]] + M

4
√

2
(4)

1As suggested by (Nguyen et al., 2022), in a classification problem, this can be enforced easily by augmenting the output
softmax of the classifier such that each class probability is always at least exp (−M). For example, if we choose M = 3 ⇒
exp (−M) ≈ 0.05, and if the output softmax is (p1, p2, ..., pC), we can augment it as (p1 ·K +0.05, p2 ·K +0.05, ..., pC ·K +0.05),
where K = 1 − 0.05 · C and C is the number of classes. This ensures the bound for the loss on a sample, while leaving the
output prediction class unchanged.
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Note that the bound depends on the training loss, the expected KL-divergence between training and test
distributions, and a constant (Equation 4). Modern deep learning systems can minimize the training loss
nearly to zero as long as the task is well-defined and realizable by modern architectures. Hence, the main
component of Eq. 4 to minimize would be the expected KL-divergence between training and test distributions.
This leads us to our first key result:
Proposition 2.2. The expected KL-divergence between train and test distributions in Eq. 4 is minimized
when the training data distribution ptr(x) is uniform:

arg min
ptr(x)

Epte(x)∼Dir(α=1)[KL[pte(x)|ptr(x)]] = u∗
tr(x)

where u∗
tr(xi) = 1

N
, ∀i ∈ {1, . . . , N}

Proof. Proof in Appendix B.

Proposition 2.2 states that the training data distribution that minimises the upper bound on uniform risk
is the uniform distribution, u∗

tr(x). This means that training on uniform data distributions may improve
robustness to distribution shifts. However, most practical training datasets may not be uniformly distributed.
While uniformity could in principle be achieved by re-weighting the data distribution i.e. by down-weighting
high-density regions and up-weighting low-density regions of the distribution, this would require knowledge
of the data distribution or an accurate estimation of it, which is non-trivial in practice. Modern deep learning
systems are usually trained on high-dimensional image or audio datasets whose distributions are not known
and are difficult to estimate. Hence, we will consider a similar proposition in the learned feature space of
deep neural networks, which can be trained to be uniformly distributed (Section 2.5).

2.4 Revisiting Group-balanced and Class-balanced Training via URM

Rather than considering the data distribution over the input space, we can also consider sub-group and class
distribution shifts i.e., shifts in p(g) and p(y), respectively. Similar to Proposition 2.2, we can show that
training with uniform sub-group or class distributions—equivalent to group-balanced and class-balanced
training—reduces uniform risk as defined in these scenarios (discussion and proof in Appendix E). Addition-
ally, in these scenarios, uniform risk can be shown to be equivalent to the balanced risk across sub-groups or
classes, respectively (proof in Appendix E). Thus, minimizing uniform risk in these scenarios directly corre-
sponds to minimizing the balanced risk across sub-groups or classes. In fact, prior work (Idrissi et al., 2022)
has shown that group-balanced training is an effective approach for robustness to sub-population shifts when
group-attributes of the training samples are known. Prior work (Buda et al., 2018) has also demonstrated the
efficacy of class-balanced training. We provide further evidence below that class-balanced training is effective
for label-shifts below in Section 3.3. Hence, URM provides a unified perspective on various algorithms that
perform group or class balanced training.

2.5 Lowering Uniform Risk in Learned Feature Representation Spaces

We have above defined uniform risk using the input space (Eq. 3) and shown that uniform training data
distributions lower uniform risk (Proposition 2.2). To implement this in practice would require training our
models on uniformly distributed training data distributions. However, most practical training datasets are
not uniformly distributed and it is difficult to modify their distribution to match a uniform distribution.
Hence, we re-define the bound on uniform risk using the learned feature representation space of a deep model
instead. As in Proposition 2.2, we will similarly show that uniformly distributed feature representations
also lower uniform risk. This allows us to implement URM by training deep neural networks to learn a
uniformly distributed feature representations rather than training on an input data distribution that is
already uniformly distributed.

Let G be a model parameterized by a deep neural network that outputs a latent variable z i.e. z = G(x),
which has dimensionality Z and is used by a downstream task head such as linear classifier. In order to
extend the propositions to the latent space, z, we make additional assumptions about the input data x, y
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and the latent variable, z, following Nguyen et al. (2022). The key assumption is that Itr(z, y) = Itr(x, y)
where I(·, ·) is mutual information. This is a reasonable assumption that the latent variable z is sufficient
to solve the task and contains the same information about the output variable y as does the input variable
x. As the latent representation z is learned while optimizing the downstream task objective, it must learn
to retain information about the label. The remaining assumptions are weak assumptions about the data
distribution and the standard covariate-shift assumption (all assumptions are detailed in Appendix D). Using
these assumptions, Proposition 1 of Nguyen et al. (2022) can be re-written as follows:

ltest ≤ ltrain + M√
2

[KL[pte(z)|ptr(z)] + M

4
√

2
(5)

We have thus replaced x (input space) with z (latent space). The rest of our claims in Propositions 2.1 and
2.2 can then straightforwardly applied to the latent space rather than the input space. Uniform risk can be
bounded using the latent feature representation space as follows,

Epte∼Dir(α=1)[ltest] ≤ ltrain + M√
2
Epte(z)∼Dir(α=1)[KL[pte(z)|ptr(z)]] + M

4
√

2
(6)

As above, we aim to minimize the expected divergence between the training and test feature distributions in
Eq. 6. This leads us to our second key result: uniform feature distributions minimize the expected divergence
between training and test feature distributions (Proposition 2.3).
Proposition 2.3. The expected KL-divergence between train and test distributions in Eq. 6 is minimized
when the training feature distribution ptr(z) is uniform:

arg min
ptr(z)

Epte(z)∼Dir(α=1)[KL[pte(z)|ptr(z)]] = u∗
tr(z)

where u∗
tr(zi) = 1

Z
, ∀i ∈ {1, . . . , Z}

Proof. Follows proof of Proposition 2.2.

Hence, we have shown that uniformly distributed feature representations also lower uniform risk. This
motivates our proposed method below that encourages deep neural networks to learn a feature representation
space that is uniformly distributed for improved robustness (Section 2.6).

2.6 Encouraging Feature Representation Uniformity using Adversarial Distribution Matching

G / Encoder

U[α,β] ∼ 

Task head

Discriminator

T

D

uniform 
noise

input 𝑥 ∼ 𝑝 𝑥
𝑧 ∼ 𝑝𝑧

      𝑧 ∼ 𝑝𝑧

Figure 1: Overview of adversarial distribution
matching to encourage the encoder to output uni-
formly distributed representations.

Motivated by Proposition 2.3, we perform URM by learn-
ing deep models with uniformly distributed feature rep-
resentations. In order to encourage the distribution of
deep feature vectors to match a uniform distribution, we
use an adversarial training approach. Adversarial train-
ing is a useful approach to match distributions as it does
not require significant modifications to the output of the
encoder. Alternate approaches such as minimizing KL-
divergence would require limiting the expressivity of the
model to output a parametric distribution to analytically
compute its divergence from a prior. Therefore, we train
an additional domain classifier (discriminator) that is
trained to differentiate between deep feature vectors and
samples from a uniform noise distribution. The feature
extractor or encoder is trained to fool this domain classi-
fier by learning to produce feature vectors that are uni-
formly distributed. We use adversarial training to encour-
age the feature representation of deep neural networks to
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be uniformly distributed by additionally training a domain discriminator, D, to differentiate between en-
coded feature vectors and uniformly distributed random noise vectors. A deep encoder model, G, is trained
to both fool D to classify encoded feature vectors, z = G(x), as belonging to a uniform distribution while
learning representations useful for the downstream task head T , typically a linear classifier (see Figure 1 for
an overview). Our approach is similar to Adversarial Autoencoders (Makhzani et al., 2016) whose aim is to
match the latent distribution of autoencoders to arbitrary prior distributions using adversarial training.

On the one hand, we want the discriminator D’s predictions over real uniform noise to be accurate by
maximizing Ez̄∼pu

[log D(z̄)]. On the other hand, given an encoded feature vector G(x) the discriminator must
output a probability, D(G(x)), close to zero by maximizing Ex∼px

[log(1 − D(G(x)))]. The encoder must be
trained to fool D to produce a high probability for feature vectors by minimizing Ex∼px [log(1−D(G(x)))] or
maximising Ex∼px [log D(G(x))]. The combined objective function to update D and G represents a minimax
game with the following loss function:

min
G

max
D

L(D, G) = Ez̄∼pu
[log D(z̄)] + Ez∼pz

[log(1 − D(z)]

where Ez̄∼pu
[log D(z̄)] is not used to update G. Generative adversarial networks (GAN) (Goodfellow et al.,

2014) theory shows that the above objective minimizes the Jensen–Shannon Divergence between the encoded
feature distribution and the uniform distribution when the discriminator is optimal. Let the θ be the
parameters of the task model, which includes the encoder G as its backbone and a task head T such as a
linear classifier i.e. θ = {G, T}. LT is the task-specific loss function. We can summarize the overall URM
training objective for θ and D as follows:

min
θ

max
D

L(θ, D) = E(x,y)∼ptr
[LT (T (G(x)), y)] + λEx∼ptr [log(1 − D(G(x))] + Ez̄∼pu [log D(z̄)]

The hyper-parameter λ determines the weight for training the encoder and discriminator to classify the
feature outputs z = G(x). A higher λ increases the strength of regularization at the expense of feature
learning for the downstream task and lower λ weaken regularization but allow the encoder to pay more
attention to the downstream task. The same λ is applied to both update the discriminator and encoder
so that one does not overpower the other. The choice of activation function applied to the output of the
encoder G can be changed for each task. We choose from either the hyperbolic Tangent (TanH) or ReLU
activations. In case of TanH activations, the uniform noise distribution is z̄ ∼ U(−1, 1) and in case of ReLU
it is z̄ ∼ U(0, 1). We use Leaky ReLUs in the discriminator to improve gradient flow to the generator. We
train the encoder G and discriminator D alternately.

3 Experiments

3.1 Experimental Settings and Datasets

For group robustness, our experimental setup followed Yang et al. (2023). Specifically, we used the evaluation
setting where group attributes are unknown in the training set. The worst-class accuracy is used to perform
model selection, i.e., choice of the best checkpoint from each training run, as it was found to be an effective
alternative in the absence of group-attributes by Yang et al. (2023). For all methods, group attributes in
the validation set were used to select hyper-parameters as well as to fine-tune methods that require a group-
balanced dataset e.g. DFR (Izmailov et al., 2022). We report worst-group and balanced (across classes)
accuracies. All results were averaged across three random seeds. For domain generalization experiments, our
experimental setup followed Gulrajani & Lopez-Paz (2021) using the leave-one-domain-out cross-validation
scheme. We report the average accuracy across all test domains. For both tasks, we searched over sixteen
random hyper-parameter combinations and applied adversarial distribution matching to the penultimate
layer before the linear classification head. Hyper-parameter search ranges for URM are included in the
Appendix (Table 4). For group robustness, we evaluate on Waterbirds (Wah et al., 2011), CelebA (Liu
et al., 2015), CivilComments (Borkan et al., 2019) and MultiNLI (Williams et al., 2018). For Waterbirds
and CelebA, we use the ResNet50 (He et al., 2016) architecture pretrained on ImageNet1k (Russakovsky
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et al., 2015). For MultiNLI and CivilComments, we use BERT (Devlin et al., 2019) pretrained on Book
Corpus and English Wikipedia data. For domain generalization (DG), we benchmark on ColoredMNIST
(Arjovsky et al., 2020), RotatedMNIST (Ghifary et al., 2015), PACS (Li et al., 2017), VLCS (Fang et al.,
2013), OfficeHome (Venkateswara et al., 2017) and TerraIncognita (Beery et al., 2018). For DG benchmarks,
all methods used the ResNet50 (He et al., 2016) architecture pretrained on ImageNet1k (Russakovsky et al.,
2015). Other training and dataset parameters are based on (Gulrajani & Lopez-Paz, 2021). We further
describe all benchmark datasets in Appendix F. All experiments were run on a computer with 8 A100
GPUs.

3.2 Baselines

We consider baselines including ERM and various methods proposed for sub-population shifts and domain
generalization. For sub-population shifts, we consider GroupDRO, LfF, JTT, LISA, DFR, Mixup, IRM,
CORAL, MMD, DANN, C-DANN, ReSample, ReWeight, Focal Loss, CBLoss (Class-balanced loss), LDAM,
Balanced Softmax (BSoftmax), CRT and ReWeightCRT. We follow Yang et al. (2023) for implementation of
these baselines. For domain generalization, we consider Inter-domain Mixup (Mixup), MLDF, MTL, ARM,
SagNet, RSC, and VREx. We follow Gulrajani & Lopez-Paz (2021) for implementation of these baselines.
For a description of these baselines, please refer to our Appendix G. We note that URM is a generic robust
representation learning method that does not require any knowledge of training domains or groups for both
sub-population shifts and domain generalization.

3.3 URM Supports Class-balanced Training for Robustness under Label-shifts

Table 1: Balanced accuracies (%) after training with dif-
ferent class distributions. Results are averaged across three
random seeds.

Training Waterbirds ColoredMNIST

p = 0.1 85.7 55.3
p = 0.2 86.0 68.0
p = 0.3 85.3 76.5
p = 0.4 86.1 76.9
p = 0.5 (URM) 86.8 76.9
p = 0.6 85.7 76.5
p = 0.7 86.2 76.3
p = 0.8 86.4 75.7
p = 0.9 85.7 66.6

As discussed in Section 2.4, when consider-
ing shifts in the class-distribution (label-shifts)
alone, we demonstrate that URM, which cor-
responds to class-balancing, produces the best
balanced accuracy. We consider the binary
classification tasks in the Waterbirds and Col-
oredMNIST datasets. We trained models with
different class-distributions and compute each
model’s balanced accuracy, which is the av-
erage of the class-specific accuracies on the
test set. Balanced accuracy is a commonly
used metric in imbalanced classification tasks.
We train models with different values of p
(p ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}),
where p corresponds to the binary class distri-
bution parameter (Table 1). Note that p = 0.5
corresponds to class-balanced training, which
corresponds to URM for label shift scenarios. The URM model (p = 0.5) achieves the highest balanced
accuracy on the test set (Table 1). Balanced accuracy deteriorates when the the training class distribution
is highly imbalanced e.g. p = 0.9 or 0.1. As discussed in Section 2.4, uniform risk corresponds to bal-
anced accuracy across classes in the label-shift scenario, hence URM (class-balancing) is a useful strategy in
dealing with unexpected label shifts. Our results further support and provide a unified perspective on the
common-practice of class-balanced training.

3.4 Uniformly Distributed Feature Representations Improve Sub-group Robustness

URM learns more group-robust representations compared to ERM on multiple datasets (Table 2). URM
can also be easily combined with other methods as it is a generic representation learning method. Notably,
URM, when combined with Deep Feature Reweighting (DFR), achieved the best worst-group accuracy on the
Waterbirds and MultiNLI datasets (URM (DFR), Table 2). On MultiNLI, URM (DFR) achieved 4% higher
worst-group accuracy than the existing best methods. URM also achieved the highest balanced accuracy on
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Table 2: Worst-group and balanced accuracies on group robustness benchmarks. Results for other methods
are from Yang et al. (2023).

Algorithm Waterbirds CelebA CivilComments MultiNLI
worst (%) balanced (%) worst (%) balanced (%) worst (%) balanced (%) worst (%) balanced (%)

ERM 69.1 ±4.7 83.1 ±2.0 57.6 ±0.8 93.0 ±0.0 63.2 ±1.2 79.4 ±0.2 66.4 ±2.3 81.0 ±0.3
Mixup 77.5 ±0.7 88.9 ±0.2 57.8 ±0.8 93.1 ±0.1 65.8 ±1.5 79.7 ±0.0 66.8 ±0.3 81.7 ±0.1
GroupDRO 73.1 ±0.4 86.3 ±0.5 68.3 ±0.9 93.9 ±0.1 61.5 ±1.8 81.3 ±0.1 64.1 ±0.8 81.1 ±0.2
CVaRDRO 75.5 ±2.2 88.5 ±0.3 60.2 ±3.0 93.1 ±0.1 62.9 ±3.8 80.8 ±0.1 48.2 ±3.4 75.4 ±0.2
JTT 71.2 ±0.5 86.8 ±0.2 48.3 ±1.5 92.4 ±0.2 51.0 ±4.2 77.7 ±0.8 65.1 ±1.6 81.4 ±0.0
LfF 75.0 ±0.7 86.3 ±0.3 53.0 ±4.3 85.3 ±2.9 42.2 ±7.2 69.7 ±4.7 57.3 ±5.7 71.4 ±1.6
LISA 77.5 ±0.7 88.9 ±0.2 57.8 ±0.8 93.1 ±0.1 65.8 ±1.5 79.7 ±0.0 66.8 ±0.3 81.7 ±0.1
ReSample 70.0 ±1.0 85.0 ±0.2 74.1 ±2.2 93.8 ±0.1 61.0 ±0.6 80.7 ±0.1 66.8 ±0.5 81.5 ±0.0
ReWeight 71.9 ±0.6 86.2 ±0.1 69.6 ±0.2 94.0 ±0.1 59.3 ±1.1 81.3 ±0.0 64.2 ±1.9 79.4 ±0.2
SqrtReWeight 71.0 ±1.4 87.2 ±0.6 66.9 ±2.2 93.9 ±0.1 68.6 ±1.1 80.6 ±0.2 63.8 ±2.4 80.6 ±0.2
CBLoss 74.4 ±1.2 86.2 ±0.6 65.4 ±1.4 93.8 ±0.1 67.3 ±0.2 80.3 ±0.3 63.6 ±2.4 80.6 ±0.3
Focal 71.6 ±0.8 87.1 ±0.3 56.9 ±3.4 92.6 ±0.3 61.9 ±1.1 78.7 ±0.3 62.4 ±2.0 80.9 ±0.2
LDAM 70.9 ±1.7 86.0 ±0.2 57.0 ±4.1 93.2 ±0.2 28.4 ±7.7 69.5 ±3.2 65.5 ±0.8 80.9 ±0.1
BSoftmax 74.1 ±0.9 87.0 ±1.0 69.6 ±1.2 94.2 ±0.1 58.3 ±1.1 81.1 ±0.1 63.6 ±2.4 80.6 ±0.2
DFR 89.0 ±0.2 91.2 ±0.1 73.7 ±0.8 93.2 ±0.0 64.4 ±0.1 79.0 ±0.0 63.8 ±0.0 80.2 ±0.0
CRT 76.3 ±0.8 87.9 ±0.1 69.6 ±0.7 93.6 ±0.0 67.8 ±0.3 80.7 ±0.0 65.4 ±0.2 80.2 ±0.0
ReWeightCRT 76.3 ±0.2 88.0 ±0.2 70.7 ±0.6 93.6 ±0.0 64.7 ±0.2 80.7 ±0.0 65.2 ±0.2 80.2 ±0.0

URM 76.9 ±1.9 87.3 ±0.7 65.6 ±1.2 93.4 ±0.3 66.2 ±0.5 80.1 ±0.4 67.7 ±0.7 81.8 ±0.1
URM (DFR) 89.7 ±0.2 91.7 ±0.1 67.4 ±0.8 93.5 ±0.1 61.3 ±1.0 81.5 ±0.0 70.7 ±0.9 80.8 ±0.1

MultiNLI. The better worst-group accuracy achieved by URM (DFR) reflects the improved representation
learned by URM in the absence of any group attribute information. We emphasise that URM is a generic
robust representation learning method and is not specific to sub-group robustness like many of the other
baseline methods.

3.5 Uniformly Distributed Feature Representations Improve Domain Generalization

URM improves the generalization performance of models in novel domains. URM outperformed competing
methods in the RotatedMNIST and VLCS and PACS benchmarks (Table 3). Moreover, when combined
with Inter-domain Mixup, URM achieved the best accuracy on the PACS dataset achieving 3.5% better
accuracy than the best competing method, as well as the OfficeHome and Terraincognita benchmarks (Table
3). Notably, URM does not use any knowledge of the DG task and yet achieves competitive accuracy with
methods that do. As URM is performed by learning a feature representation that is uniformly distributed
over a bounded range e.g. [−1, 1]Z , where Z is the dimensionality of the feature space, feature representations
of test domain samples fall within the familiar feature space of the URM model, reducing the likelihood of
unexpected outputs. The URM model sees the entire range of feature representations equally during training,
helping generalization.

3.6 Visualizing Uniformity of Learned Feature Representations

Data distributions often have multiple peaks and troughs, and models trained on such distributions tend
to be biased towards high-density regions (majority groups) since they contribute more to gradient updates
during training. Consequently, the learned parameters are more optimized for these high-density regions,
resulting in poorer performance on low-density regions (the troughs). URM addresses this by learning a
feature space that is more uniformly distributed, effectively flattening the training feature distribution and
reducing bias. This approach encourages the model to learn features that are more evenly distributed across
both high- and low-density regions. To demonstrate this, we visualized the feature representations learned
by URM compared to those learned by ERM using UMAP (McInnes et al., 2018) (Figure 2). We extracted
feature vectors for test samples in the Waterbirds dataset using ERM and URM trained models. While
UMAP does not provide a complete picture of the data due to significant dimensionality reduction, we
observed that URM’s features were significantly more uniformly distributed than ERM’s. This suggests that
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Table 3: Domain generalization accuracies using leave-one-domain-out validation. Results were averaged
over three random seeds. Results for other methods are from Gulrajani & Lopez-Paz (2021).

Algorithm ColoredMNIST RotatedMNIST VLCS PACS OfficeHome TerraIncognita
ERM 36.7 ± 0.1 97.7 ± 0.0 77.2 ± 0.4 83.0 ± 0.7 65.7 ± 0.5 41.4 ± 1.4
IRM 40.3 ± 4.2 97.0 ± 0.2 76.3 ± 0.6 81.5 ± 0.8 64.3 ± 1.5 41.2 ± 3.6
GroupDRO 36.8 ± 0.1 97.6 ± 0.1 77.9 ± 0.5 83.5 ± 0.2 65.2 ± 0.2 44.9 ± 1.4
Mixup 33.4 ± 4.7 97.8 ± 0.0 77.7 ± 0.6 83.2 ± 0.4 67.0 ± 0.2 48.7 ± 0.4
MLDG 36.7 ± 0.2 97.6 ± 0.0 77.2 ± 0.9 82.9 ± 1.7 66.1 ± 0.5 46.2 ± 0.9
CORAL 39.7 ± 2.8 97.8 ± 0.1 78.7 ± 0.4 82.6 ± 0.5 68.5 ± 0.2 46.3 ± 1.7
MMD 36.8 ± 0.1 97.8 ± 0.1 77.3 ± 0.5 83.2 ± 0.2 60.2 ± 5.2 46.5 ± 1.5
DANN 40.7 ± 2.3 97.6 ± 0.2 76.9 ± 0.4 81.0 ± 1.1 64.9 ± 1.2 44.4 ± 1.1
CDANN 39.1 ± 4.4 97.5 ± 0.2 77.5 ± 0.2 78.8 ± 2.2 64.3 ± 1.7 39.9 ± 3.2
MTL 35.0 ± 1.7 97.8 ± 0.1 76.6 ± 0.5 83.7 ± 0.4 65.7 ± 0.5 44.9 ± 1.2
SagNet 36.5 ± 0.1 94.0 ± 3.0 77.5 ± 0.3 82.3 ± 0.1 67.6 ± 0.3 47.2 ± 0.9
ARM 36.8 ± 0.0 98.1 ± 0.1 76.6 ± 0.5 81.7 ± 0.2 64.4 ± 0.2 42.6 ± 2.7
VREx 36.9 ± 0.3 93.6 ± 3.4 76.7 ± 1.0 81.3 ± 0.9 64.9 ± 1.3 37.3 ± 3.0
RSC 36.5 ± 0.2 97.6 ± 0.1 77.5 ± 0.5 82.6 ± 0.7 65.8 ± 0.7 40.0 ± 0.8
URM 36.9 ± 0.2 98.1 ± 0.2 84.3 ± 4.8 84.0 ± 0.2 67.5 ± 0.5 48.3 ± 1.4
URM (Mixup) 32.4 ± 3.6 96.7 ± 0.4 77.1 ± 0.2 87.2 ± 3.4 68.9 ± 0.6 49.3 ± 0.9

URM achieves the training objective for the feature representations to be more uniformly distributed and
contributes to the robustness of the model.

Figure 2: UMAP (McInnes et al., 2018) visualization of feature vectors generated by ERM and URM on
Waterbirds dataset. URM generates a more uniformly distributed feature representation space compared to
ERM.

4 Related Work

Group robustness: The topic of robustness to sub-population shifts has been increasingly studied in
recent years as machine learning models are being deployed in real-world applications where we wish to
avoid downstream performance biases. Many such methods involve training on a group balanced dataset
with improved performance. As shown above, URM in fact supports this approach of training on uniform
group distributions. For example, one of the existing best methods, DFR, retrains the linear classifier head on
a group balanced dataset. However, group-attributes may not available if many practical scenarios. Hence,
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a method such as URM that does not require group annotations would be useful. Moreover, as shown above,
URM can also be combined with methods such as DFR for improved performance (Section 3.4).

Uniform priors: We note that our work is closely related to the ideas presented in uniform priors for
data-efficient learning (Sinha et al., 2022). Compared to (Sinha et al., 2022), we proposed a novel learning
principle and framework to motivate the use of uniform priors for robustness. In fact, our results may
explain the empirical results of (Sinha et al., 2022). In other work, uniform priors have also been employed
in self-supervised representation learning, both explicitly and implicitly (Assran et al., 2023).

Robust Representation Learning: URM is also related to the idea of state reification (Lamb et al.,
2019), which aims to project out-of-distribution hidden states back on to the manifold of familiar hidden
states from the training distribution. Rather than training additional networks to map out-of-distribution
hidden states back on to the training data manifold, URM learns bounded feature spaces that are uniformly
distributed. Hence, even out-of-distribution samples will fall in the familiar feature space of the model and
is less likely to provide unexpected outputs. Other work has introduced input-space transformations that
mitigate the effect of irrelevant input features to improve representation learning (Taghanaki et al., 2021).

5 Conclusion

We presented a novel learning principle called Uniform Risk Minimization (URM) and showed theoretically
that uniform training data distributions are an optimal choice to lower uniform risk, a novel risk measure for
ood robustness. Our results also provide a unified perspective on various existing algorithms that perform
class-balanced or group-balanced training from the perspective of distribution shift. Finally, we proposed
an empirical method to learn uniformly distributed feature representations in deep neural networks using
adversarial distribution matching. We empirically demonstrated the effectiveness of our method to improve
robustness to sub-population shifts as well as domain generalization, without knowledge of any privileged
group or domain attribute information during training. Our work sheds light on the importance of the
distribution of learned feature representations for downstream robustness and fairness. We hope our work
encourages further research into uniform data distributions and priors for robust and fair representation
learning.
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A Proof of Proposition 2.1

Proof.

ltest ≤ ltrain + M√
2

√
KL[pte(x, y)|ptr(x, y)] (using Proposition 1 of (Nguyen et al., 2022))

≤ ltrain + M√
2

[KL[pte(x, y)|ptr(x, y)] + 1
4 ] (square the square root2)

= ltrain + M√
2

KL[pte(x, y)|ptr(x, y)] + M

4
√

2
(7)

= ltrain + M√
2
Epte(x,y)[log pte(x) + log pte(y|x) − log ptr(x) − log ptr(y|x)] + M

4
√

2
(8)

= ltrain + M√
2
Epte(x,y)[log pte(x) − log ptr(x)

+ Epte(x,y)[log pte(y|x) − log ptr(y|x)]] + M

4
√

2
(9)

= ltrain + M√
2
Epte(x)[log pte(x) − log ptr(x)]

+ M√
2
Epte(x)

[
Epte(y|x)[log pte(y|x) − log ptr(y|x)]

]
+ M

4
√

2
(10)

= ltrain + M√
2

[KL[pte(x)|ptr(x)] + Epte(x) [KL[pte(y|x)|ptr(y|x)]]] + M

4
√

2
(11)

= ltrain + M√
2

[KL[pte(x)|ptr(x)] + M

4
√

2
{covariate-shift} (12)

Using the covariate-shift assumption, the second KL divergence term in Eq. 11 involving the conditional
probabilities p(y|x) equals 0 and can be dropped. This is a reasonable assumption as generalization to
distributions different from the training distribution is challenging if the labeling mechanism changes (Ben-
David et al., 2010). Hence, we can make the common assumption that KL[pte(y|x)|ptr(y|x)] = 0. We can
then focus on the divergence between the marginal distributions i.e. KL[pte(x)|ptr(x)].

B Proof of Proposition of 2.2

Proof.

arg min
ptr(x)

EDir(α=1)[KL[pte(x)|ptr(x)]] (13)

= arg min
ptr(x)

EDir(α=1)[
N∑

i=1
pte(xi)ln(pte(xi)

ptr(xi)
)] (14)

= arg min
ptr(x)

EDir(α=1)[
N∑

i=1
pte(xi)ln(pte(xi)) − pte(xi)ln(ptr(xi))] (15)

= arg min
ptr(x)

EDir(α=1)[
N∑

i=1
pte(xi)ln(pte(xi)) −

N∑
i=1

pte(xi)ln(ptr(xi))] (16)

= arg min
ptr(x)

EDir(α=1)[
N∑

i=1
pte(xi)ln(pte(xi))] − EDir(α=1)[

N∑
i=1

pte(xi)ln(ptr(xi))] (17)

2Note that KL-divergence is non-negative. 1
4 is added as a buffer in case the KL-divergence is less than 1, as ∀x >= 0, x+ 1

4 ≥√
x.
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= arg min
ptr(x)

N∑
i=1

EDir(α=1)[pte(xi)ln(pte(xi))] −
N∑

i=1
EDir(α=1)[pte(xi)ln(ptr(xi))] (18)

= arg min
ptr(x)

−
N∑

i=1
EDir(α=1)[pte(xi)ln(ptr(xi))] (remove terms independent of ptr(xi))

= arg min
ptr(x)

−
N∑

i=1
ln(ptr(xi))EDir(α=1)[pte(xi)] (expectation of Dirichlet dist. is αi

α0
)

= arg min
ptr(x)

−
N∑

i=1
ln(ptr(xi))[

αi

α0
] (αi = 1, α0 = N)

= arg min
ptr(x)

− 1
N

N∑
i=1

ln(ptr(xi)) (19)

∴ arg min
ptr(x)

EDir(α=1)[KL[pte(x)|ptr(x)]] = arg min
ptr(x)

− 1
N

N∑
i=1

ln(ptr(xi)) (20)

subject to
N∑

i=1
ptr(xi) = 1

The Lagrangian for this constrained optimization problem is:

L[ptr(x1), . . . , ptr(xN ), λ] = − 1
N

N∑
i=1

ln(ptr(xi)) + λ(
N∑

i=1
ptr(xi) − 1) (21)

solve ∇ptr(x1),...,ptr(xN ),λL[ptr(x1), . . . , ptr(xN ), λ] = 0

⇒ ptr(xi) = 1
Nλ

, ∀i ∈ {1, . . . , N}

⇒ λ = 1,∵
N∑

i=1
ptr(xi) = 1 (constraint) (22)

⇒ ptr(xi) = 1
N

, ∀i ∈ {1, . . . , N} (i.e. uniform distribution) (23)

∴ arg min
ptr(x)

Epte∼Dir(α=1)[KL[pte(x)|ptr(x)]] = u∗
tr(x) (24)

where u∗
tr(xi) = 1

N
, ∀i ∈ {1, . . . , N}.

C Proof of Proposition of E.1

Proof.

ltest ≤ ltrain + M√
2

√
KL[pte(x, y)|ptr(x, y)] (using Proposition 1 of (Nguyen et al., 2022))

≤ ltrain + M√
2

[KL[pte(x, y)|ptr(x, y)] + 1
4 ] (square the square root3)

= ltrain + M√
2

KL[pte(x, y)|ptr(x, y)] + M

4
√

2
(25)

= ltrain + M√
2
Epte(x,y)[log pte(y) + log pte(x|y) − log ptr(y) − log ptr(x|y)] + M

4
√

2
(26)
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= ltrain + M√
2
Epte(x,y)[log pte(y) − log ptr(y)

+ Epte(x,y)[log pte(x|y) − log ptr(x|y)]] + M

4
√

2
(27)

= ltrain + M√
2
Epte(y)[log pte(y) − log ptr(y)]

+ M√
2
Epte(y)

[
Epte(x|y)[log pte(x|y) − log ptr(x|y)]

]
+ M

4
√

2
(28)

= ltrain + M√
2

[KL[pte(y)|ptr(y)] + Epte(y) [KL[pte(x|y)|ptr(x|y)]]] + M

4
√

2
(29)

= ltrain + M√
2

[KL[pte(y)|ptr(y)] + M

4
√

2
{target-shift} (30)

In Eq. 29, we assume that the conditional distribution of p(x|y) does not change and that only the label
distribution p(y) has shifted. This assumes that the generative process p(x|y) has not changed at test time.
This is referred to target shift in the domain adaptation literature (Zhang et al., 2013). Hence, we can drop
the second term involving the conditional misalignment is zero and focus on the target shift in Eq. 30. Based
on Eq. 30, we can similarly show that the expected test loss under target shift is minimized by the uniform
training class-distribution.

D Extending Propositions 2.1 and 2.2 to Deep Feature Layers

Here we extend Propositions 2.1 and 2.2 to feature spaces such as those learned by a deep neural network.
This will be useful below when we wish to apply the above results to a method that modifies the feature
space to be uniformly distributed in order to improve robustness. Let G be a model parameterized by a deep
neural network that outputs a latent variable z i.e. z = G(x), which can then be used for a downstream task
such as classification. To extend the propositions to the latent space, z, we make additional assumptions
about the input data x, y and the latent variable, z:
Assumption D.1. Itr(z, y) = Itr(x, y), where I(·, ·) is mutual information, defined as:

Itr(z, y) = Eptr(z,y)

[
log ptr(z, y)

ptr(z)ptr(y)

]
; Itr(x, y) = Eptr(x,y)

[
log ptr(x, y)

ptr(x)ptr(y)

]
(31)

This is a reasonable assumption that the latent variable z is sufficient to solve the task and contains the
same information about the output variable y as does the input variable x. As the latent representation z is
learned while optimizing the task objective, it must learn to retain information about the label.
Assumption D.2. ptr(y|x) = Ep(z|x)[ptr(y|z)], ∀x, y ∈ X , Y
This assumption simply allows us to re-write the true predictive distribution ptr(y|x) as a conditional ex-
pectation over the latent variable z. When this assumption holds, the predictive distribution, p̂(y|x) =
Ep(z|x)[p̂(y|z)], will approximate ptr(y|x) when p̂(y|z) = ptr(y|z), which is a goal of training.

Assumption D.3. pte(x,y)
ptr(x,y) < ∞, ∀x, y ∈ X , Y

This assumption is satisfied when train and test distributions have the same support set X , Y. This is a
reasonable assumption for sub-population shift scenarios when the test distribution is assumed to comprise
the same groups as the training distribution but in different proportions.
Assumption D.4. KL[pte(y|x)|ptr(y|x)] = 0
This is the covariate-shift assumption.

3Note that KL-divergence is non-negative. 1
4 is added as a buffer in case the KL-divergence is less than 1, as ∀x >= 0, x+ 1

4 ≥√
x.
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Using these four assumptions, Proposition 1 of (Nguyen et al., 2022) can be re-written as follows (see (Nguyen
et al., 2022) for proofs):

ltest ≤ ltrain + M√
2

[KL[pte(z)|ptr(z)] + M

4
√

2
(32)

We have thus replaced x (input space) with z (latent space). The rest of our claims in Propositions 2.1 and
2.2 can then straightforwardly applied to the latent space rather than the input space.

E Uniform Risk for Label Shifts and Sub-population Shifts

In the context of sub-population and label shifts, uniform risk can be shown to be the balanced risk across
groups or classes, respectively.

Let Rg be the group-conditional risk computed over each group-specific distribution pg := p(x, y|g) i.e.
Rg := Epg

[l(x, y)]. In the case of label-shift, the group can be treated as a class instead. Assume that the
distribution shift is strictly over the group or class distribution.

RU := Epte∼Dir(α=1)[ltest]
= Epte∼Dir(α=1)[Epg

[Rg]]

= Epte∼Dir(α=1)[
∑
g∈G

βgRg], where β ∈ ∆|G|

=
∑
g∈G

RgEpte∼Dir(α=1)[βg]

= 1
|G|

∑
g∈G

Rg (balanced risk)

Thus, uniform risk is the balanced risk of a model over groups or classes (Eq. balanced risk) in the context
of sub-population or label shifts. However, in the sub-population shift literature, authors generally focus on
the worst-group performance. The limitations of over-emphasis on the worst-group accuracy metric has been
reported in prior work (Section 5.5 of Yang et al. (2023)). In contrast, uniform risk provides a balanced risk
measure that equally weighs all groups or classes.

E.1 Class Balancing Lowers Uniform Risk

Here we discuss the common practice of class-balancing datasets from the perspective of uniform risk and
robustness to label shifts at test time. In Eq. 7 of the Proof of Proposition 2.1, we can alternatively
decompose the KL-divergence between the joint training and test distributions p(x, y) using the marginal
misalignment in p(y) and the conditional misalignment in p(x|y). We can then similarly show that training
on data with a uniform class or label distribution minimizes the upper bound on uniform risk, as pertaining
to the label-shift problem.
Proposition E.1. If the loss − log p̂(y|x) is bounded by M and the generative process, p(x|y), is the same
between train and test distributions4, we have:

ltest ≤ ltrain + M√
2

KL[pte(y)|ptr(y)] + M

4
√

2
(33)

Proof. Proof in Appendix C.
4This is known as the label or target shift assumption in the distribution-shift literature.
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The expectation of Eq. 33 with respect to a uniform prior distribution over test class-distributions is:

Epte∼Dir(α=1)[ltest] ≤ ltrain + M√
2
Epte(y)∼Dir(α=1)[KL[pte(y)|ptr(y)]] + M

4
√

2
(34)

We can now aim to minimize the upper bound on the expectation of test-loss under label-shift i.e. uniform
risk for label-shifts, by minimizing the expected KL-divergence between train and test class distributions.
Let C be the number of classes in the classification task. The proof follows the same steps as the proof of
Proposition 2.2 but for the class-distribution p(y) instead of p(x).
Proposition E.2. The expected KL-divergence between train and test class distributions in Eq. 4 is mini-
mized when the training class distribution ptr(y) is uniform:

arg min
ptr(y)

Epte(y)∼Dir(α=1)[KL[pte(y)|ptr(y)]] = u∗
tr(y) (35)

where u∗
tr(yi) = 1

C
, ∀i ∈ {1, . . . , C}.

Proof. Same as proof of Proposition 2.2.

Therefore our results support the common practice of class-balancing from the perspective of robustness
under label shifts. Indeed, prior work has demonstrated the efficacy of balancing classes during training
(Buda et al., 2018). We further experimentally demonstrate this below (Section 3.3).

F Datasets

We describe each dataset used in our group robustness benchmarks below.

• Waterbirds (Wah et al., 2011). Waterbirds is a binary classification image dataset containing
spurious correlations, constructed by placing images from the Caltech-UCSD Birds-200-2011 (CUB)
dataset (Wah et al., 2011) over backgrounds from the Places dataset (Zhou et al., 2018). The task is
to classify landbirds from waterbirds and the spurious attribute is the background (water or land).
As most images of waterbirds have a water background and most images of landbirds have a land
background, models may latch on to the spurious correlation between the background and the type
of bird.

• CelebA (Liu et al., 2015). CelebA is a binary classification image dataset. The task is to predict
hair color from images of celebrity faces (blond vs. non-blond), where the spurious correlation is
gender. As most blond haired people in this dataset are female and most non-blond haired people
are male, this creates a spurious correlation between gender and hair color.

• CivilComments (Borkan et al., 2019). CivilComments is a binary classification text dataset
where models must predict whether an internet comment contains toxic language. The spurious
attribute is the presence of references to eight demographic identities (male, female, LGBTQ, Chris-
tian, Muslim, other religions, Black, and White).

• MultiNLI (Williams et al., 2018). MultiNLI is a text classification dataset with 3 classes and
the target is the natural language inference relationship between the premise and the hypothesis
(neutral, contradiction, or entailment). The spurious attribute is the presence of negation in the
text, as negation is highly correlated with the contradiction label.

Domain Generalization Datasets: We benchmarked on multiple challenging DG datasets. ColoredM-
NIST (Arjovsky et al., 2020) is a variant of the MNIST digit recognition dataset where each domain contains
a disjoint set of digits colored either red or blue. The binary label is a noisy function of digit and color, such
that color is correlated with the label to varying degree in each domain and the digit bears correlation 0.75
with the label. RotatedMNIST (Ghifary et al., 2015) is also a variant of MNIST where each domain contains
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digits rotated to different degrees (0, 15, 30, 45, 60, 75 and contains 10 classes. PACS (Li et al., 2017) contains
four diverse domains (art, cartoons, photos, sketches) and 7 classes. VLCS (Fang et al., 2013) contains four
photographic domains (Caltech101, LabelMe, SUN09, VOC2007) and 5 classes. OfficeHome (Venkateswara
et al., 2017) also includes four domains (art, clipart, product, real) and 65 classes. TerraIncognita (Beery
et al., 2018) comprises photographs of animals taken by camera traps at four different locations.

G Baselines

Vanilla Training: Empirical Risk Minimization (ERM, (Vapnik, 1998)), minimizes the errors across all
training samples. Subgroup Robust Methods: Group distributionally robust optimization (GroupDRO)
(Sagawa et al., 2020) performs ERM while emphasising sub-populations or domains with high losses during
training. CVaRDRO (John C. Duchi & Hongseok Namkoong, 2021) is a variant of GroupDRO that up-
weights training samples with the highest losses. LfF (Nam et al., 2020) trains two models where the
first model is biased and the second one is debiased using a re-weighted objective. Just train twice (JTT)
(Liu et al., 2021) first trains a standard ERM model to identify minority sub-populations in the dataset
and then trains another ERM model while up-weighting minority samples. LISA (Yao et al., 2022) trains
invariant predictors using data interpolation within and across attributes. Deep feature re-weighting (DFR)
(Izmailov et al., 2022) first trains an ERM model and then retrains only the last layer of the model using a
dataset balanced among different sub-populations. Data Augmentation Method: Mixup (Zhang et al.,
2018) trains on linear interpolations of randomly sampled training data points and their labels. Domain-
Invariant Representation Learning Methods: Invariant risk minimization (IRM) (Arjovsky et al., 2020)
learns a feature space such that the optimal linear classifier is the same across domains. Deep correlation
alignment (CORAL) (Sun & Saenko, 2016) matches the second order moments of the feature distributions.
Maximum mean discrepancy (MMD) (Li et al., 2018b) matches the MMD (Gretton et al., 2012) of feature
distributions across domains. Domain Adversarial Neural Networks (DANN, (Ganin et al., 2016)) employs
adversarial training to match feature distributions across domains. Class-conditional DANN (C-DANN, (Li
et al., 2018b)) is similar to DANN as it matches the class-conditional feature distribution across domains.
Imbalanced Learning Methods: ReSample (Japkowicz, 2000) and ReWeight (Japkowicz, 2000) simply
re-sample or re-weight the inputs according to the number of samples per class. Focal loss (Focal) (Lin
et al., 2020) reduces the relative loss for well-classified samples and focuses on difficult samples. Class-
balanced loss (CBLoss) (Cui et al., 2019) proposes re-weighting by the inverse effective number of samples.
The LDAM loss (LDAM) (Cao et al., 2019) employs a modified marginal loss that favors minority samples
more. Balanced-Softmax (BSoftmax) (Ren et al., 2020) extends Softmax to an unbiased estimation that
considers the number of samples in each class. Classifier re-training (CRT) (Kang et al., 2020) decomposes
the representation and classifier learning into two stages, where it fine-tunes the classifier using class-balanced
sampling with representation fixed in the second stage. ReWeightCRT (Kang et al., 2020) is a re-weighting
variant of CRT.

Domain Generalization Baselines: Inter-domain Mixup (Mixup, (Zhang et al., 2018; Wang et al.,
2020)) trains on linear iterpolations between samples from different domains. Meta-Learning for Domain
Generalization (MLDG, (Li et al., 2018a)) uses MAML to meta-learn generalizing across domains. Marginal
Transfer Learning (MTL, (Blanchard et al., 2011; 2021)) estimates a mean embedding for each domain
that is passed as a second argument to the model. Adaptive Risk Minimization (ARM, (Zhang et al.,
2021)) extends MTL using a separate embedding model. Style-Agnostic Networks (SagNet, (Nam et al.,
2021)) trains models by keeping image content and randomizing style. Representation Self Challenging
(RSC, (Huang et al., 2020)) learns robust models by iteratively pruning the most activated features. Risk
Extrapolation (VREx, (Krueger et al., 2021)) approximates IRM using a variance penalty.

H Training Hyper-parameters
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Table 4: Search ranges for URM-specific hyper-parameters. Other training parameters ranges are based on
(Yang et al., 2023).

Method Parameter Random Distribution

URM

lambda λ Uniform(0, 0.2)
generator output RandomChoice([T anH, ReLU ])
number of layers in discriminator RandomChoice([1, 2, 3])
learning rate (for image or tabular datasets) 10Uniform(−5,−3)

optimizer (for image or tabular datasets) RandomChoice([SGD])
learning rate (text datasets) 10Uniform(−6,−5)

optimizer (text datasets) RandomChoice([AdamW ])
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