
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

EXTENDING MYERSON’S OPTIMAL AUCTIONS TO
CORRELATED BIDDERS VIA NEURAL NETWORK IN-
TERPOLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We aim to design revenue-maximizing single-item auctions that are determinis-
tic, strategy-proof and ex post individually rational. Myerson’s seminal work
on optimal auction design solved this problem for independent bidders. Myer-
son introduced the novel concept of virtual valuation and showed that revenue
maximization is equivalent to virtual valuation maximization. Coincidentally, by
greedily allocating the item to the bidder with the highest (ironed) virtual val-
uation, the resulting allocation is guaranteed to be monotone – a necessary and
sufficient condition for strategy-proofness.
For correlated bidders, Myerson’s greedy allocation no longer guarantees
monotonicity/strategy-proofness. We propose a simple yet empirically effective
approach for designing near-optimal auctions for correlated bidders. We train a
neural network to interpolate the greedy allocation, while enforcing that the inter-
polation must be verifiably monotone.
Empirically, our method consistently achieves near-optimal revenue across a wide
range of distributions, including adversarially generated cases. Compared to ex-
isting baselines, our approach shows substantial improvement, often reducing the
gap to the (unattainable) greedy upper bound by an order of magnitude.
Furthermore, we demonstrate the generality of our approach by extending it to
multi-unit auctions with unit demand, where we achieve similarly strong perfor-
mance. Additionally, our verification techniques can be integrated into the Regret-
Net framework to design fully strategy-proof auctions.

1 INTRODUCTION

Myerson’s landmark work on optimal auctions (Myerson, 1981) laid the foundation for the field of
mechanism design, for which Myerson was awarded the 2017 Nobel Memorial Prize in Economic
Sciences. Myerson (1981) solved the problem of revenue-maximizing single-item auction design
for independent bidders. The derived optimal auction is deterministic, strategy-proof and ex post
individually rational. Myerson’s results on optimal auctions can be summarized as follows: 1) The
allocation rule uniquely characterizes the payment rule. Given an allocation rule, there is only one
way to charge the payments without violating either strategy-proofness or individual rationality. As
a result, the mechanism design task comes down to designing only the allocation. 2) An allocation
rule, or in other words, the “complete” mechanism it corresponds to, is strategy-proof if and only if a
monotonicity condition holds. In the context of deterministic auctions, monotonicity means that the
winner must still win if she raises her own bid while the other bids stay the same. Eventually, mono-
tonicity is the only mechanism design constraint. 3) Myerson proposed the novel concept of virtual
valuation and also a fairly intricate mathematical maneuver called ironing. Myerson showed that the
actual bids can be converted to (ironed) virtual valuations and the expected revenue is mathematically
identical to the expected virtual valuation. This leads to a simple greedy approach for maximizing
revenue – just allocate the item to the bidder with the highest virtual valuation.1 Coincidentally (in
the sense that the mathematics underlying the model allows for such a simple characterization), My-

1The item is not allocated when all virtual valuations are below 0.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

erson proved that the greedy allocation guarantees monotonicity with the independence assumption,
implying that the greedy allocation is optimal for independent bidders.

For correlated bidders, a natural way to extend Myerson’s optimal auction is to greedily allocate
based on the conditional virtual valuations (i.e., virtual valuations calculated using conditional
distributions). Unfortunately, such extension often results in non-monotonic allocations (i.e., not
strategy-proof). We therefore need to design alternative allocation rules. Optimal allocation design
for correlated bidders is actually hard – Papadimitriou & Pierrakos (2011) gave a reduction from
3CatSat, which is NP-hard to approximate better than 103/104, and Caragiannis et al. (2016) gave a
reduction from MAX-NM 3SAT, leading to a bound of 63/64.

Unlike the above theoretical works, our paper focuses on the computational task of designing a near-
optimal allocation rule given a specific correlated distribution. Our proposed approach is simple, yet
empirically effective. We argue that having a simple (and effective!) solution is not a disadvantage,
but rather an advantage. We summarize our contributions and main techniques as follows.

Contribution 1: Neural network interpolation as a verification tool for strategy-proofness.

Given a specific correlated distribution, a natural first step is to check whether Myerson’s greedy
allocation remains monotone despite the correlation. Note that it is infeasible to enumerate all bid
profiles (i.e., use “for loops”) to verify monotonicity/strategy-proofness, which can only prove a
negative and is not scalable. Under our approach, we supervise a neural network to mimic Myer-
son’s greedy allocation, and then apply neural network verification techniques to check whether the
neural network interpolation version of the greedy allocation remains monotone (strategy-proof)
under the given correlated distribution.2 Specifically, we use a multilayer perceptron (MLP) with
ReLU activation to model the allocation function. This architecture allows us to exactly verify the
monotonicity of a trained allocation using mixed-integer programming (MIP). In terms of training,
for every training sample, which is a bid profile drawn from the given correlated distribution, we
calculate the bidders’ conditional virtual valuations and instruct the network to allocate to whoever
has the highest virtual valuation (if the highest virtual valuation is at least 0).

It is worth noting that we encountered a somewhat surprising observation in experiments. For many
correlated distributions, Myerson’s greedy allocation is not monotone, but the supervision result is
a verifiably monotone interpolation.3 This can be explained by our tiny network size, limited by the
MIP verification step. Tiny networks are not capable of learning the fine details of the greedy alloca-
tion, which turns out to be a silver lining, as the tiny networks are “glossing over” the monotonicity
violations of the greedy allocation and only interpolate the macro trend. For the greedy allocation
illustrated in Figure 1b, which contains monotonicity violations (i.e., the blue points enclosed by red
and the red points enclosed by blue, of which we will provide proper definitions in Section 2), the
learned allocation becomes Figure 1a at the very end, with the violations glossed over.4

We propose that neural network interpolation can serve as a general tool for verifying mechanism
properties, including but not limited to strategy-proofness. The mechanism may be expressed mathe-
matically or in code. By applying supervision to train a neural network to interpolate the mechanism,
we can then apply neural network verification techniques to verify the mechanism properties.

Contribution 2: A suite of monotonicity-seeking techniques, including counterexample-guided
training and post-processing monotonicity fix, both enabled by the MLP+ReLU architecture.

2Although there are neural network architectures that ensure “monotonicity”, such as the min-max net-
works (Sill, 1997), it is important to note that the notion of “monotonicity” represented by min-max networks
is different from “allocation monotonicity” in mechanism design. It is not clear how to use min-max networks to
represent the full space of strategy-proof allocations. We defer the detailed discussion on this difference to Ap-
pendix A.9, where we also provide an example showing that the min-max network based MyersonNet (Dütting
et al., 2019), when extended to correlated bidders via the Lopomo assumptions (Roughgarden & Talgam-Cohen,
2013), cannot express the optimal auction and leads to significant revenue loss.

3In our experiments, we found that while the greedy allocation is rarely monotone, the deviations are mini-
mal. For 2-bidder cases where it is scalable to run the classical mixed-integer-programming approach to auto-
mated mechanism design (AMD) (Conitzer & Sandholm, 2002), we observe that greedy and AMD’s allocation
(monotone) generally coincide, differing in only a small percentage of bid profiles, more in A.6.1.

4We defer the full story behind Figure 1 to later sections. The learned allocation is actually Figure 1c, which
needs to go through another revenue fix process (Section 3) before arriving at the allocation in Figure 1a.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Besides verification, the MLP+ReLU architecture enables two monotonicity-seeking techniques.
First, when verification fails, the “by-products” of the verification MIP are bid profiles that vio-
late monotonicity, which can be used in counterexample-guided training (Sivaraman et al., 2020).
The idea is to punish the violation in follow-up training until the violation disappears. Second,
if counterexample-guided training still fails to reach monotonicity, then we can implement a post-
processing monotonicity fix to ensure strategy-proofness.5 We construct another MIP based on the
network parameters, which decides how much to push up the winner’s offer while fixing the other
bids. The new offer ensures that the winner remains the winner regardless of any bid increment.

As mentioned earlier, limited by the MIP-based verification step, we are restricted to tiny networks.
As described by the Lottery Ticket Hypothesis (Frankle & Carbin, 2019), for tiny networks, having
a “lucky” initialization is important. Motivated by this, the last monotonicity-seeking technique is
simply repeated trials, which turns out to be effective for most distributions that we experimented on.
That is, when we encounter either a poorly performing allocation or when monotonicity verification
fails, we simply train again from scratch with a fresh initialization, until a near-optimal and verifiably
monotone interpolation appears. In one case study on a specific distribution (Figure 3), we show that
counterexample-guided training and the post-processing monotonicity fix only bring statistically in-
significant revenue improvement compared to repeated trials. That is, for this distribution, repeated
trials are all we need. On the other hand, there are indeed distributions under which repeated trials
do not work, and we do need the full suite of techniques, including counterexample-guided training
and the post-processing monotonicity fix, to achieve near-optimal revenue. In A.6.2, we generate 2
adversarial distributions with the help of a separate mixed-integer-programming heuristic. In A.7,
we conducted 100 training trials for each of these distributions, corresponding to hundreds of hours
of computation (mostly on solving MIPs). While we do manage to get verifiably monotone allo-
cations via (now a lot more) repeated trials, the achieved revenue is much worse than the revenue
obtained using the full suite of techniques, which is near-optimal. That is, for the two adversarial
distributions, even by trying for hundreds of hours, we still cannot reach a near-optimal auction.
This demonstrates the need for counterexample-guided training and the monotonicity fix at least in
some cases. Lastly, the monotonicity fix offers the peace of mind that regardless of the distribution,
our approach can always deliver strategy-proofness.

Contribution 3: Extensive experiments demonstrating near-optimal revenue across all distri-
butions tested, with substantial improvements over baselines.

We performed an extensive suite of experiments on 59 correlated distributions, including 40 ran-
domly generated, 7 hand-crafted and 12 adversarially generated correlated distributions. The rev-
enue gap between the achieved revenue using our approach and the (unattainable) greedy upper
bound is maximally 1.3% over all non-adversarial distributions, and the gap goes up to 2.1% under
an evolutionary-computation generated adversarial distribution (A.6.1). Our performance is even
more impressive in terms of the average revenue gap from the upper bound. For instance, in Table 1,
the best baseline – the fully strategy-proof variant of RegretNet (Dütting et al., 2019), which is also
based on our techniques – has an average revenue gap of 2.7%, while our neural network interpola-
tion method achieves an average revenue gap of only 0.26%, representing a tenfold improvement!

Optimal auction for correlated bidders represents one of the most fundamental models in mechanism
design. Based on our experiments, we can reasonably claim to have empirically solved this model.

Contribution 4: Two examples demonstrating the generalisation capabilities of our techniques.

In A.10, we extend our techniques to multi-unit auctions with unit demand, showing similarly strong
performance. Myerson’s greedy allocation is extended by assigning one item to each bidder with
the highest non-negative virtual valuations. The extended monotonicity condition requires that any
winner i, who is in the original winner set, must remains in the winner set when i increases her bid
while the other bids stay the same. We train a neural network to interpolate the extended greedy
allocation and then verify whether the extended monotonicity condition holds.

In A.8, we show that it is convenient to integrate our techniques into RegretNet (Dütting et al., 2019)
to design fully strategy-proof auctions, while the original RegretNet is only approximately strategy-

5Our monotonicity fix post-processes the allocation network to ensure strategy-proofness. GemNet (Wang
et al., 2024) proposed a similar approach that post-processes the payment network to ensure menu compatibility
(i.e., preventing two bidders from winning the same item). Their method discretizes the bids and then extend
to general bids via Lipschitz smoothness. In contrast, our technique operates directly on continuous values.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

proof. RegretNet involves both the allocation and the payment networks. We require the allocation
network be a tiny MLP with ReLU activation, so that we can apply our MIP-based techniques,
including verification and post-processing monotonicity fix, to ensure that the final allocation is
monotone. There is no restriction on the size or architecture of the payment network, as the payment
network only serves as a surrogate, which will be thrown away when training ends. As long as the
allocation is monotone, the “correct” payments can be reverse engineered from the allocation.

2 MODEL DESCRIPTION

We aim to design revenue-maximizing single-item auctions that are deterministic, strategy-proof and
ex post individually rational. There are n bidders. Bidder i’s valuation for the single item is denoted
as bi. Without loss of generality, we assume 0 ≤ bi ≤ 1. Since we focus on strategy-proof auctions,
we do not differentiate between reported bids and private valuations. We use b⃗ = (b1, b2, . . . , bn)
to denote the bid profile, which is drawn from a correlated distribution with the joint probability
density function ϕ(⃗b). We assume ϕ is continuous, everywhere positive, and bounded above by a
constant. Our goal is to design an auction that maximizes expected revenue under ϕ.

Following both Myerson (1981) and Papadimitriou & Pierrakos (2011)’s characterization, all de-
terministic, strategy-proof, and ex post individually rational mechanisms for our setting can be in-
terpreted as price-oriented rationing-free mechanisms (Yokoo, 2003). That is, every bidder faces a
deterministic take-it-or-leave-it offer, which potentially depends on the other bids. The offers must
be structured so that for each bid profile, at most one bidder is willing to accept her offer.6

An allocation function a maps each bid profile b⃗ to a binary vector (a1, a2, . . . , an+1), where ai
being 1 means bidder i wins. The last dimension an+1 represents an auxiliary bidder, whose win
results in the item not allocated. We require

∑
i ai = 1. We use a(⃗b)i to denote the i-th dimen-

sion of the allocation vector. Allocation monotonicity requires that ∀i, b−i, bi, b
′
i with bi < b′i,

a(bi, b−i)i ≤ a(b′i, b−i)i. Myerson’s characterization says that the allocation rule uniquely deter-
mines the payment rule. Using the take-it-or-leave-it offer interpretation, if bidder i wins under
profile (bi, b−i), then her payment must be exactly inf{b′i|a(b′i, b−i)i = 1}. Losing bidders pay
nothing.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

A

B

(a) monotone allocation
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) greedy allocation
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

A+C

B+D

(c) interpolation
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

A

B

C

D

(d) revenue fix

Figure 1: (a) example monotone allocation; (b) example greedy allocation that is not monotone; (c)
example monotone interpolation of (b), where the details are “glossed over” due to limited

expressive capability of tiny networks; (d) final allocation after revenue fix on (c) (Section 3)

Figure 1a illustrates an example monotone allocation for 2 bidders. Every bid profile (b1, b2) =
(x, y) corresponds to a point in the unit square. Region A, i.e., the blue points, is where bidder 1
wins. Region B, i.e., the red points, is where bidder 2 wins. The white region is where the item
is not allocated. Allocation monotonicity can be interpreted as follows: the blue region must be
rightward-closed: for every blue point, all points on its right must also be blue. Similarly, the
red region must be upward-closed: for every red point, all points above it must be red. The region
boundaries characterize the payments. If (x, y) is white, then the item is not allocated and no bidders
pay. If (x, y) is blue, then bidder 1 wins and her payment is the minimum x′ value so that (x′, y) is

6Considering that our objective is revenue in expectation and we assume a continuous probability density
function bounded above by a constant, we can ignore all tie-breaking issues in this paper.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

on the blue boundary. If (x, y) is red, then bidder 2 wins and his payment is the minimum y′ value
so that (x, y′) is on the red boundary.

3 VIRTUAL VALUATION, IRONED VIRTUAL VALUATION, AND MARGINAL
PROFIT

0.000 0.235 0.400 0.800 1.000
5

4

3

2

1

0

1

(a) Virtual valuation
0.000 0.235 0.800 1.000
5

4

3

2

1

0

1

(b) Ironed virtual valuation
0.000 0.235 0.364 0.800 1.000
5

4

3

2

1

0

1

(c) Marginal profit

Figure 2: Plots for grid distribution [0.2, 3.58, 0.32, 0.05, 0.85]. The grid distribution family will be
formally defined in Section 5. The example grid distribution here describes a random variable with

range [0, 1], which is divided into 5 equally-sized sub-intervals. In [0, 1
5], the probability density

value is uniformly 0.2. In [15 ,
2
5], the probability density value is uniformly 3.58 – etc.

Myerson (1981) introduced the virtual valuation and also a mathematical maneuver called ironing,
leading to the ironed virtual valuation. Papadimitriou & Pierrakos (2011) introduced another variant
called marginal profit, which comes with a technical change that is helpful for our neural interpola-
tion approach. While we can define the greedy allocation based on any of these three variants, the
marginal profit version consistently comes out on top in experiments described in Section 5. Due
to space constraint, in this section, we only provide the bare minimum coverage of these concepts.
More relevant details are deferred to A.2. Exposition of the virtual valuations, including alternative
interpretations, can be found in Bulow & Roberts (1989); Fu (2017); Hartline (2013).

Virtual valuation: The virtual valuation is defined for independent bidders. Bidder i’s virtual
valuation only depends on her own distribution and her own bid. We use fi and Fi to denote the
probability density function and the cumulative distribution function of bidder i’s valuation. As
mentioned in Section 2, in our mechanism design context, all auctions can be interpreted as price-
oriented rationing-free mechanisms (Yokoo, 2003), where every bidder faces a deterministic take-
it-or-leave-it offer, which depends on the other bids. We use o to denote the take-it-or-leave-it offer
bidder i faces, with the understanding that o depends on the other bids b−i (but this turns out to be
irrelevant in the mathematical analysis). Since it is a take-it-or-leave-it auction from the perspective
of bidder i, the expected revenue we can extract from i is o(1−Fi(o)). The derivative of o(1−Fi(o))

with respect to o equals 1− Fi(o)− ofi(o) = −(o− 1−Fi(o)
fi(o)

)fi(o). Since Fi(1) = 1, we can show

o(1− Fi(o)) =

∫ 1

o

(
x− 1− Fi(x)

fi(x)

)
fi(x)dx (1)

The left side of the formula is the expected revenue we can extract from i. The right side can be
interpreted as follows: Consider bidder i who bids x. When i wins, which is when x ≥ o, her
contribution to the revenue is vi(x) = x − 1−Fi(x)

fi(x)
, which is called i’s virtual valuation.7 When i

loses, which is when x ≤ o, her contribution to the revenue is 0 as x is below the integration lower
limit. Bidder i’s expected contribution in terms of virtual valuation equals the expected revenue
from i. This interpretation leads to Myerson’s greedy allocation. That is, we simply convert the
bidders’ original bids to their virtual valuations according to the above function vi, and allocate the
item to whoever has the highest virtual valuation. If the highest virtual valuation is negative, then
we do not allocate. Being greedy, this allocation goes for the maximum revenue. The caveat is that
it may not be monotone. Myerson calls a distribution regular if under it, vi is nondecreasing. If all
bidders’ distributions are regular and independent, then it is easy to show that the greedy allocation is
monotone. If the winner increases her bid while the other bids stay the same, then due to distribution
regularity, the winner’s virtual valuation never decreases. The other bidders’ virtual valuations do

7Figure 2a shows a sample plot, where the bid x (x-axis) is mapped to the virtual valuation vi(x) (y-axis).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

not change due to the independence assumption, so the winner still wins when she raises her bid
while the other bids stay the same.

The virtual valuation can be extended to correlated distributions by switching to conditional proba-
bility functions. We use vi(bi|b−i) to represent i’s virtual valuation when i’s bid is bi and the other
bids are b−i. The correlated version of virtual valuation is then vi(bi|b−i) = bi − 1−Fi(bi|b−i)

fi(bi|b−i)
.

Ironed virtual valuation: The greedy allocation based on the virtual valuation guarantees mono-
tonicity when the distribution is both regular and independent. Actually, the regularity assumption
can be relaxed as long as independence holds. Myerson proposed an ironing technique that converts
a not necessarily nondecreasing virtual valuation function (i.e., Figure 2a) to a nondecreasing ver-
sion (i.e., Figure 2b). The effect of ironing is that the decreasing regions (and some of their nearby
regions) become “flat”, and within a flat region, the original virtual valuation is replaced by the av-
erage (weighted according to the probability density). Unfortunately, this averaging process is only
mathematically sound with the independence assumption. While we can still iron in the presence
of correlation, and base the greedy allocation on the ironed virtual valuations, the resulting auctions
are suboptimal, as confirmed by Table 1. This is expected, as the averaging process is not meant
to be optimal when there is correlation and replacing actual virtual valuations by averages causes
“information loss”. Considering that ironing does not align well with the correlated setting, we defer
the details of the ironing process and its limitation in the presence of correlation to A.2.

Marginal profit: The final variant of the virtual valuation is the marginal profit (Papadimitriou
& Pierrakos, 2011). Our presentation of the marginal profit is slightly modified from the original
version, both for simplifying the presentation and for easier comparison against the virtual valuation.
We present the original definition in A.2. We first present the marginal profit for independent bidders.
Similar to virtual valuations, the correlated version can be obtained by switching to conditional
distributions. We still use fi and Fi to denote the probability density function and the cumulative
distribution function of bidder i. The key difference between the marginal profit and the virtual
valuation lies in the following revenue fix process.

Revenue fix: Given a monotone allocation, for any bidder i and any set of other bids b−i, i faces
a take-it-or-leave-it offer o, which depends on b−i. We can raise the value of o arbitrarily and this
would never break monotonicity or cause over-allocation. Therefore, suppose we have an allocation
that offers o to bidder i when the other bids are b−i, instead of offering o directly and achieve a
revenue of o(1− Fi(o)), we should optimally raise the offer to argmaxx≥o x(1− Fi(x)),8 leading
to a revenue of maxx≥o x(1− Fi(x)).

The following equation defines the marginal profit, which is similar to Equation 1 for virtual valua-
tion. In Equation 1, the left-hand side is the expected revenue extracted from bidder i. In Equation 2
below, the left-hand side is the expected revenue extracted from bidder i, after the revenue fix.

max
x≥o

x(1− Fi(x)) =

∫ 1

o

(
−∂(maxx′≥x x

′(1− Fi(x
′)))

∂x
/fi(x)

)
fi(x)dx (2)

We define mi(x) = −∂(maxx′≥x x′(1−Fi(x
′)))

∂x /fi(x) to be the marginal profit of bidder i when
her bid is x. The message of Equation 1 is that the expected revenue is equal to the expected
virtual valuation. Equation 2 conveys a similar message, which is that the expected revenue after
the revenue fix is equal to the expected marginal profit.

Virtual valuation versus marginal profit: If the distribution is regular, then the derivative of x(1−
Fi(x)) with respect to x, i.e., the original virtual valuation, is nondecreasing, which means that there
is a cutoff value x0, so that x(1 − Fi(x)) is nonincreasing when x ≤ x0 and it is nondecreasing
when x ≥ x0. This implies mi(x) = 0 if x ≤ x0 and mi(x) = vi(x) if x ≥ x0. That is, for regular
distributions, mi(x) = max{vi(x), 0}. The only difference is the additional “max”. For general
distributions, the difference is more notable, but it remains based on the same underlying principle.

Although the two concepts are minor variations of each other, interpolating based on marginal profit
offers certain advantages, as confirmed by experiments in Table 1. Below, we provide an example to
illustrate the benefits of marginal profit over virtual valuation. We take the uniform distribution over
[0, 1] as an example, which is regular. Suppose we only have one bidder. The optimal offer should

8argmaxx≥o x(1− Fi(x)) may be exactly o, in which case we keep the original offer.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

be 0.5, which can be interpreted as an optimal reserve price. Myerson’s virtual valuation function is
vi(x) = x− 1−Fi(x)

fi(x)
= 2x−1. The marginal profit function is mi(x) = max{2x−1, 0}. According

to the virtual valuation, when the bid x is below 0.5, the virtual valuation is negative, which means
we should allocate the item only if the bid is at least 0.5, therefore explaining the optimal reserve at
0.5. On the other hand, the marginal profit is 0 when the bid x is below 0.5. Therefore, when the
bid is lower than 0.5, allocating is neither helpful nor detrimental by this measure. When the bid
is higher than 0.5, the marginal profit is positive, so allocating is helpful. So according to marginal
profit, every offer in [0, 0.5] is optimal, including offering 0. Actually offering o < 0.5 is certainly
not optimal, but such a suboptimal offer can be easily fixed by raising it to the best revenue point, i.e.,
to argmaxx≥o x(1 − Fi(x)) = 0.5. Another way to put it is that the suboptimal offer can be fixed
by pushing it up until the marginal profit becomes positive, i.e., to inf{x|mi(x) > 0, x ≥ o} = 0.5.
The above example illustrates an advantage of marginal profit – it cuts more slack to our learning
procedure. If we learn the allocation for this example by mimicking the greedy allocation based
on either the virtual valuation or the marginal profit, then if we go with the virtual valuation, the
learned reserve must be exactly 0.5. Any more or less is considered not optimal. On the other hand,
according to the marginal profit, 0.43 is optimal, and so is 0.37. The exact optimal reserve can
always be recovered by pushing up the offer via the revenue fix process. It should be noted that we
must go through the trouble of performing the revenue fix process if the learning target is based on
the marginal profit. Otherwise, we run the risk of using a reserve of 0, which is far from optimal.

We conclude this section with an example illustrating the revenue fix process.

Revenue fix example: We refer to Figure 1b, which shows an example greedy allocation that is not
monotone. Blue points are when bidder 1’s marginal profits are strictly higher. Red points are when
bidder 2’s marginal profits are strictly higher. White points are when both bidders’ marginal profits
are zero. We train a neural network to fit the greedy allocation, resulting in a monotone allocation
depicted in Figure 1c. Since our network size is tiny, it glosses over the fine details, thereby avoiding
the minor monotonicity violations by the greedy allocation (i.e., the blue points enclosed by the red
region and the red points enclosed by the blue region). We note that when a point’s marginal profit is
0, it does not matter which bidder wins. In Figure 1c, the network simply allocates the white points
arbitrarily. That is, the focus of interpolation is on regions that actually matter (i.e., the limited
expressive power of our tiny network focuses on creating a separation between A and B). Figure 1d
shows the aftermath of the revenue fix. The learned allocation allocates A+C to bidder 1 and B+D
to bidder 2. After the fix, C and D become unallocated. The final allocation is the one in Figure 1a.

4 TECHNICAL DESCRIPTION OF THE PROPOSED APPROACH

We train a neural network to mimic the greedy allocation, which has three versions, depending on
whether we greedily allocate according to the vanilla virtual valuation, the ironed virtual valuation,
or the marginal profit. When there is no ambiguity, greedy allocation refers to the version based on
marginal profit. Even though we are maximizing revenue, we do not need to reference any payment
function in our training. Training is solely carried out on the allocation function.

We represent the allocation rule as an MLP with ReLU activation. The inputs are the bids (n dimen-
sions). The output dimension is n+ 1. If the i-th (i = 1, 2, . . . , n) output coordinate is the highest,
then bidder i wins. If the (n+ 1)-th coordinate is the highest, then the item is not allocated.

In Myerson’s original approach, during the derivation of the optimal auction, randomization is al-
lowed, which simplifies the mathematical analysis. Similarly, we allow randomization to facilitate
the training. We apply softmax to the network’s outputs, ensuring that the coordinate with the highest
value corresponds to the highest proportion of the item won in the context of randomized auctions.
During training, we sample a batch of bid profiles. For each profile b⃗, we calculate the marginal
profits of each bidder. The marginal profit of the auxiliary bidder (n+ 1) is always 0. We use m(⃗b)
to represent the vector of marginal profits. We use NN to represent the network. The training loss
is simply the batched sum of −m(⃗b) · softmax(NN (⃗b)) over all training samples in the batch. This
mimics greedy allocation because in the case of perfect fit, if the marginal profit of bidder i is the
highest, then the i-th coordinate of softmax(NN (⃗b)) should be 1 and the other coordinates should be
0’s. During evaluation, we revert back to the deterministic version. That is, we do not apply softmax
and simply pick the highest output coordinate as the winner.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Our techniques also include the use of two mixed-integer programs. The first is for verifying whether
the trained allocation is monotone. For a trained network, its weights and biases are viewed as
constants. Since our network is based on MLP+ReLU, for any node in the network, its value before
activation can be written as a linear expression involving the activated versions of the node values
from the previous layer. The ReLU activation step can be modelled using the big-M trick with
the introduction of an auxiliary binary variable. When presenting the mixed-integer programs, we
simply use (a1, a2, . . . , an+1) = NN (⃗b) to represent that the ai’s are the outputs of the network
when the input is b⃗, with the understanding that the ai can be written as linear expressions of b⃗ with
the help of auxiliary binary variables. The MIP for monotonicity verification finds the largest gap
between bi and b′i so that i wins when bidding bi, but after increasing her bid to b′i while keeping the
other bids fixed, a different bidder j wins (j can be n + 1). The gap is the maximum over ∀b−i. In
order to verify monotonicity, we need to run n2 MIPs (for every i from 1 to n and for every j ̸= i
from 1 to n+ 1). All MIPs’ objectives must be 0’s (or infeasible) to conclude monotonicity.

MIP for monotonicity verification

Constants 1 ≤ i ≤ n; j ̸= i; 1 ≤ j ≤ n+ 1

Variables 0 ≤ b1, b2, . . . , bn, b
′
i ≤ 1; bi ≤ b′i

Maximize b′i − bi

subject to (a1, a2, . . . , an+1) = NN (bi, b−i)

ai = max
t

at

(a′
1, a

′
2, . . . , a

′
n+1) = NN (b′i, b−i)

a′
j = max

t
a′
t

MIP for monotonicity fix

Constants 1 ≤ i ≤ n; j ̸= i; 1 ≤ j ≤ n+ 1

0 ≤ b1, . . . , bi−1, bi+1, . . . , bn ≤ 1

Variables 0 ≤ b′i ≤ 1

Maximize b′i

subject to (a1, a2, . . . , an+1) = NN (b′i, b−i)

aj = max
t

at

The by-products of the MIP for monotonicity verification are the counterexamples. Given a coun-
terexample, we add a penalty term λ · ReLU(softmax (NN (bi, b−i))i − softmax(NN (b′i, b−i))i),
which aims to ensure that by increasing her bid, bidder i’s proportion of item won must never de-
crease.

With additional training on counterexamples, we sometimes, but not always, end up with verifiably
monotone allocations. When we do not manage to achieve verifiable monotonicity, we can always
apply a post-processing monotonicity fix using the second MIP. This fix is applied after collecting
the bids. When calculating i’s fix, the bids in b−i are treated as constants. For bidder i, the second
MIP finds the maximum bid for i where i loses (according to the trained network) to a different
bidder j (j could be n+ 1). We need to solve n MIPs only for the (tentatively, i.e., according to the
trained network) winning bidder, and the maximum over the n objective values (ignoring infeasible
MIPs) is the monotonicity cutoff price for i. As i’s bid goes from this cutoff price to 1, i always wins,
which implies monotonicity. But if i’s bid was below this, i does not win after all. The monotonicity
fix can be applied together with the revenue fix from Section 3. For example, let the original offer
produced by the network be o. The revenue fix instructs to raise the offer to or and the monotonicity
fix instructs to raise the offer to om. The final offer is then max{o, or, om}.

5 EXPERIMENTS 
11 24 7 20 3
4 12 25 8 16
17 5 13 21 9
10 18 1 14 22
23 6 19 2 15

To facilitate experiments, we introduce the grid distributions, where
we use n-dimensional matrices to represent correlated distributions
for n bidders. The example 2D matrix on the right represents a
correlated distribution for 2 bidders. Here, the matrix size is 5× 5.
We divide the unit square [0, 1] × [0, 1] into 25 sub-squares of side length 1

5 . The bottom left
element is 23, which means that when the bid profile (x, y) falls into sub-square [0, 1

5]× [0, 1
5], the

joint probability density is uniformly 23. The element on the right of 23 is 6, which means that for
the sub-square [15 ,

2
5]× [0, 1

5], the joint probability density is uniformly 6.9

9There is an additional normalization ratio, which will be multiplied with every density value to ensure that
the total probability equals exactly 1. To make the presentation cleaner, we omit this normalization ratio.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

There are multiple reasons for introducing the grid distributions. 1) They allow the systematic gen-
eration of correlated distributions. 2) All relevant numerical operations can be implemented analyt-
ically, including derivative, maximum, and integration. This is important for producing numerically
stable experimental results as the marginal profit is the partial derivative of the maximum of a
term involving the cumulative distribution function, which calls for an integration. 3) Theoretically
speaking, the grid distributions can approximate any correlated distribution if we allow arbitrarily
fine grids. 4) The grid distribution family makes it easy to generate adversarial distributions via
tuning the matrix. For example, in A.6, we report on experiments using evolutionary computation
to evolve an adversarial matrix, as well as generating adversarial matrices using mixed-integer-
programming. 5) We can easily construct hand-crafted grid distributions. For example, we use
magic squares – 2D matrices in which every row and every column sums to the same value – to cre-
ate correlated distributions where each bidder’s marginal distribution is uniform. The matrix shown
above is a magic square. We use magic-square-based distributions to evaluate the effect of correla-
tion on revenue. For such distributions, if we ignore correlation, then the distribution becomes i.i.d.
uniform, where the second price auction with reserve is optimal. As a result, on correlated distri-
butions, the gap between our revenue and the revenue from a second-price auction with a reserve
price based on an i.i.d. distribution represents the additional revenue we can gain by considering
correlation in auction design.

We altogether experimented with 59 different grid distributions, including

• 40 randomly generated grid distributions: For n from 2 to 5, we generate 10 random grid
distributions of size 5× . . .× 5︸ ︷︷ ︸

n

, where every matrix element is drawn from uniform 0 to

1. We use G5s to denote the distribution generated with seed s.
• 7 hand-crafted grid distributions: These are based on magic squares described in A.5.
• 12 adversarially generated distributions: 10 were generated using evolutionary computa-

tion and 2 were generated using mixed-integer-programming. We defer all discussion on
adversarial distributions to A.6. We use them to test the limit of our proposed approach.

As mentioned in Section 3, there are three variants of the virtual valuation, leading to three greedy
allocations that can be used as interpolation targets. For 2 bidders, we compare the revenue achieved
using our approach based on MP (marginal profit), VV (vanilla virtual valuation) and IVV (ironed
virtual valuation). MP consistently comes out on top. For 3 to 5 bidders, we only focus on MP. Our
experiments also involve the following baseline auctions (detailed descriptions are in A.4):

• GREEDY (based on marginal profit): For 56 out of the 59 distributions, the greedy al-
location is proven not monotone via counterexamples. Thus, GREEDY violates the key
constraint and only serves as the revenue upper bound.

• AMD: We round the bids down to the nearest multiple of 0.01 and apply the classical
approach to automated mechanism design (Conitzer & Sandholm, 2002; 2004), which is
a mixed-integer-programming-based approach producing the optimal auction when we re-
strict to discrete bids. We use AMD as an alternative implementation to the FPTAS for 2
correlated bidders from Papadimitriou & Pierrakos (2011), which is also based on discrete
bids. Both AMD and FPTAS are for 2 bidders only: AMD does not scale beyond 2 bidders
for our setting and the FPTAS only applies to 2 bidders (the underlying model becomes
NP-hard to approximate for 3 bidders).

• MYERSON: Myerson’s optimal auction when ignoring correlation. The bidders’ ironed
virtual valuations are based on the marginal distributions (instead of the conditional distri-
butions).

• 2ND: Second price auction with the optimal reserve.
• RNET: Integration of verification to RegretNet (Dütting et al., 2019), details in A.8. We

model the allocation network via a tiny MLP with ReLU activation, so that we can apply
our MIP-based verification to ensure that the final allocation is monotone, which makes
our resulting auctions fully strategy-proof. (The original RegretNet approximates strategy-
proofness.) The payment network, without any architectural restrictions, only serves as a
surrogate, which is thrown away when training ends. The “correct” payments are reverse
engineered from the verifiably monotone allocation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

In the following tables, we present the summary results for n ∈ {2, 3, 5}. The full result tables
including standard errors, results for n = 4, and results for adversarial distributions are deferred
to Appendix A.11. A value is bold if it is the best among the scalable approaches (AMD is not in
the comparison). MP consistently achieves the best revenue among the scalable approaches. When
MP also outperforms AMD, we mark the result with a ‘*’. Sometimes MP’s value appears to be
higher than the upper bound GREEDY. This is because the numbers shown are based on Monte
Carlo simulation (see the full tables with standard errors in A.11 and the evaluation details in A.3).

GREEDY’s revenue is an unattainable upper bound. We use GAP(METHOD) to denote the average
revenue gap between METHOD and GREEDY, formally defined as

GAP(METHOD) =
Average revenue of GREEDY − Average revenue of METHOD

Average revenue of GREEDY

In Table 1, the best baseline RNET – the fully strategy-proof variant of RegretNet (Dütting et al.,
2019), which is also based on our techniques – has an average revenue gap of 2.7%, while our
method MP achieves an average revenue gap of only 0.26%, representing a tenfold improvement!

Table 1: 2 bidders
GAP(MP) = 0.26%,GAP(RNET) = 2.7%,GAP(2ND) = 4.2%,GAP(MYER) = 4.3%

DISTRIB. GREEDY AMD MYER. 2ND RNET MP VV IVV

G50 0.4353 0.4368 0.4191 0.4197 0.4307 0.4368 0.4355 0.4329
G51 0.4047 0.4041 0.3939 0.3929 0.4021 0.4037 0.4032 0.4032
G52 0.3979 0.3967 0.3771 0.3823 0.3869 0.3959 0.3946 0.3955
G53 0.4629 0.4625 0.4533 0.4546 0.4522 0.4628∗ 0.4612 0.4616
G54 0.4681 0.4665 0.4476 0.4472 0.4639 0.4674∗ 0.4673 0.4671
G55 0.4204 0.4187 0.4075 0.4057 0.4062 0.4151 0.4148 0.4150
G56 0.3905 0.3912 0.3761 0.3741 0.3798 0.3908 0.3893 0.3886
G57 0.4865 0.4854 0.4494 0.4544 0.4771 0.4850 0.4828 0.4840
G58 0.4298 0.4273 0.3988 0.3981 0.4077 0.4291∗ 0.4281 0.4279
G59 0.4531 0.4512 0.4306 0.4302 0.4379 0.4498 0.4482 0.4497
SATURN 0.4533 0.4545 0.4210 0.4226 0.4372 0.4510 0.4512 0.4515
JUPITER 0.4427 0.4404 0.4238 0.4219 0.4316 0.4418∗ 0.4409 0.4410
MARS 0.4375 0.4377 0.4177 0.4167 0.4194 0.4360 0.4333 0.4359
SOL 0.4429 0.4414 0.4376 0.4364 0.4329 0.4427∗ 0.4404 0.4419
VENUS 0.4381 0.4381 0.4175 0.4171 0.4233 0.4365 0.4319 0.4358
MERCURY 0.4273 0.4274 0.4179 0.4176 0.4150 0.4281∗ 0.4271 0.4279
LUNA 0.4331 0.4335 0.4173 0.4172 0.4212 0.4322 0.4315 0.4318

Table 2: 3 and 5 bidders: M/2 represents the better between MYERSON and 2ND
n = 3: GAP(MP) = 0.36%, GAP(RNET) = 3.6%, GAP(2ND) = 3.9%, GAP(MYER) = 3.8%
n = 5: GAP(MP) = 0.87%, GAP(RNET) = 2.8%, GAP(2ND) = 2.4%, GAP(MYER) = 2.4%

n = 3 n = 5

DISTRIB. GREEDY M/2 RNET MP GREEDY M/2 RNET MP

G50 0.5512 0.5346 0.5346 0.5517 0.6862 0.6700 0.6670 0.6799
G51 0.5647 0.5475 0.5509 0.5651 0.6901 0.6738 0.6713 0.6846
G52 0.5316 0.5137 0.5153 0.5302 0.6838 0.6709 0.6681 0.6783
G53 0.5476 0.5283 0.5290 0.5450 0.6894 0.6724 0.6684 0.6838
G54 0.5485 0.5306 0.5310 0.5471 0.6853 0.6692 0.6664 0.6787
G55 0.5477 0.5237 0.5255 0.5443 0.6850 0.6720 0.6685 0.6809
G56 0.5371 0.5155 0.5158 0.5332 0.6902 0.6725 0.6686 0.6839
G57 0.5723 0.5528 0.5555 0.5710 0.6900 0.6719 0.6682 0.6824
G58 0.5473 0.5193 0.5185 0.5429 0.6868 0.6715 0.6659 0.6807
G59 0.5663 0.5410 0.5396 0.5637 0.6927 0.6768 0.6711 0.6866

In A.10, we extend to multi-unit auctions with unit demand, where we achieved similar strong
performance. In Table 6, the baseline (m + 1)-th price auction with the optimal reserve has an
average revenue gap of 5.1%, while our method MP has an average revenue gap of 0.67%.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REPRODUCIBILITY STATEMENT

Training parameters, evaluation details, and hardware specifications are detailed in A.3. The code is
included as part of the submission.

REFERENCES

Xiaohui Bei, Nick Gravin, Pinyan Lu, and Zhihao Gavin Tang. Correlation-robust analysis of sin-
gle item auction. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 193–208. SIAM, 2019.

Jeremy Bulow and John Roberts. The simple economics of optimal auctions. Journal of political
economy, 97(5):1060–1090, 1989.

Ioannis Caragiannis, Christos Kaklamanis, and Maria Kyropoulou. Limitations of deterministic
auction design for correlated bidders. ACM Transactions on Computation Theory (TOCT), 8(4):
1–18, 2016.

Vincent Conitzer and Tuomas Sandholm. Complexity of mechanism design. In Proceedings of
the Eighteenth Conference on Uncertainty in Artificial Intelligence, UAI’02, pp. 103–110, San
Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc. ISBN 1558608974.

Vincent Conitzer and Tuomas Sandholm. Self-interested automated mechanism design and implica-
tions for optimal combinatorial auctions. In Proceedings of the 5th ACM Conference on Electronic
Commerce, pp. 132–141, 2004.

Jacques Crémer and Richard P McLean. Full extraction of the surplus in bayesian and dominant
strategy auctions. Econometrica: Journal of the Econometric Society, pp. 1247–1257, 1988.

Michael Curry, Ping-Yeh Chiang, Tom Goldstein, and John Dickerson. Certifying strategyproof
auction networks. Advances in Neural Information Processing Systems, 33:4987–4998, 2020.

Shahar Dobzinski, Hu Fu, and Robert D Kleinberg. Optimal auctions with correlated bidders are
easy. In Proceedings of the forty-third annual ACM symposium on Theory of computing, pp.
129–138, 2011.

Zhijian Duan, Haoran Sun, Yichong Xia, Siqiang Wang, Zhilin Zhang, Chuan Yu, Jian Xu,
Bo Zheng, and Xiaotie Deng. Scalable virtual valuations combinatorial auction design by com-
bining zeroth-order and first-order optimization method. arXiv preprint arXiv:2402.11904, 2024.

Paul Dütting, Zhe Feng, Harikrishna Narasimhan, David Parkes, and Sai Srivatsa Ravindranath.
Optimal auctions through deep learning. In International Conference on Machine Learning, pp.
1706–1715. PMLR, 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neu-
ral networks. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

Hu Fu. Notes on myerson’s revenue optimal mechanisms. 2017.

Mingyu Guo. Worst-case vcg redistribution mechanism design based on the lottery ticket hypothesis.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 9740–9748,
2024.

Jason D Hartline. Mechanism design and approximation. Book draft. October, 122(1), 2013.

Mahdi Milani Fard, Kevin Canini, Andrew Cotter, Jan Pfeifer, and Maya Gupta. Fast and flexi-
ble monotonic functions with ensembles of lattices. Advances in neural information processing
systems, 29, 2016.

Roger B Myerson. Optimal auction design. Mathematics of operations research, 6(1):58–73, 1981.

Christos H Papadimitriou and George Pierrakos. On optimal single-item auctions. In Proceedings
of the forty-third annual ACM symposium on Theory of computing, pp. 119–128, 2011.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Amir Ronen. On approximating optimal auctions. In Proceedings of the 3rd ACM conference on
Electronic Commerce, pp. 11–17, 2001.

Tim Roughgarden and Inbal Talgam-Cohen. Optimal and near-optimal mechanism design with
interdependent values. In Proceedings of the fourteenth ACM conference on Electronic commerce,
pp. 767–784, 2013.

Tuomas Sandholm and Anton Likhodedov. Automated design of revenue-maximizing combinatorial
auctions. Oper. Res., 63(5):1000–1025, oct 2015. ISSN 0030-364X.

Joseph Sill. Monotonic networks. Advances in neural information processing systems, 10, 1997.

Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein, and Guy Van den Broeck.
Counterexample-guided learning of monotonic neural networks. Advances in Neural Informa-
tion Processing Systems, 33:11936–11948, 2020.

Tonghan Wang, Yanchen Jiang, and David C. Parkes. Gemnet: Menu-based, strategy-proof multi-
bidder auctions through deep learning. In Proceedings of the Twenty-Fifth ACM Conference on
Economics and Computation, 2024.

Makoto Yokoo. Characterization of strategy/false-name proof combinatorial auction protocols:
Price-oriented, rationing-free protocol. In IJCAI, pp. 733–742, 2003.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A APPENDIX

A.1 RELATED RESEARCH

Papadimitriou & Pierrakos (2011) proposed the marginal profit, a variant of Myerson’s virtual val-
uation. The detailed comparison between virtual valuation and marginal profit is in Section 3. Pa-
padimitriou & Pierrakos (2011) showed that for two correlated bidders, there exists a FPTAS for
deriving the optimal auction, but for three correlated bidders, the problem becomes NP-hard to ap-
proximate. The FPTAS for two bidders first rounds the bids down to discrete grid points, which
is then solved as a maximum independent set instance. Dobzinski et al. (2011) showed that if we
switch to truthful-in-expectation, then the optimal auction for three or more correlated bidders can
be found in polynomial time. However, the authors’ definition of “polynomial time” is with respect
to the size of the support of the correlated distribution, which is infinite for continuous bids and ex-
ponential (in the number of bidders) for discrete bids. Myerson (1981)’s original work showed that
for independent bidders, there exists an optimal deterministic auction even when randomized auc-
tions are allowed. On the other hand, Caragiannis et al. (2016) showed that, for correlated bidders,
requiring determinism does incur a revenue loss. Roughgarden & Talgam-Cohen (2013) proposed
a theoretical condition that is sufficient for showing that Myerson’s greedy allocation is still mono-
tone for correlated bidders. On the other hand, it is not clear which distributions satisfy the proposed
theoretical condition and given a specific distribution, it is not clear how to computationally validate
whether the theoretical condition holds. For 56 out of 59 distributions we experimented on in this
paper, Myerson’s greedy allocation is not monotone, and for the remaining 3 distributions, mono-
tonicity is inconclusive, i.e., all we can say is that counterexamples have not be found. Ronen (2001)
proposed an approximate auction that guarantees half of the revenue for correlated bidders. Crémer
& McLean (1988) showed that it is possible to extract the full social surplus for correlated bidders,
but the proposed auction is only individually rational in expectation. Bei et al. (2019) studied single-
item auctions for correlated bidders from the lens of worst-case analysis. The authors evaluate an
auction based on its revenue under the worst-case correlation.

This paper follows the line of research on neural network mechanism design initiated by Dütting
et al. (2019). Curry et al. (2020) first applied mixed-integer-programming to evaluate strategy-
proofness of neural-network-based mechanisms. Guo (2024) proposed a suite of techniques on
worst-case mechanism design via neural networks, including worst-case counterexample-guided
training where the worst-case profiles are obtained via mixed-integer-programming and using the
Lottery Ticket Hypothesis (Frankle & Carbin, 2019) to guide the search for tiny networks that are
trainable for worst-case training objectives. Duan et al. (2024) studied the design of virtual valuation
combinatorial auctions originally proposed in Sandholm & Likhodedov (2015) via neural network
training. Despite the name, the “virtual valuation” in virtual valuation combinatorial auctions is a
different concept, which is loosely inspired by Myerson’s original concept of virtual valuation. The
monotonicity fix in our paper post-processes the allocation network to ensure strategy-proofness.
GemNet (Wang et al., 2024) proposed a similar approach that post-processes the payment network
to ensure menu compatibility (i.e., preventing two bidders from winning the same item). Their
method discretizes the bids and then extend to general bids via Lipschitz smoothness. In contrast,
our technique operates directly on continuous values.

While there are works on enforcing monotonicity via special neural network structures (Sill, 1997;
Milani Fard et al., 2016), these monotonicity networks are regarding the monotonicity of the network
outputs, which is different from allocation monotonicity. For all distributions we experimented on,
we manage to achieve verifiable monotonicity using standard MLP with ReLU activation.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A.2 IRONING AND MARGINAL PROFIT

Here, we present a high-level overview of Myerson’s ironing approach, which requires the indepen-
dence assumption. We still use fi and Fi to denote bidder i’s probability density function and cumu-
lative distribution function. Myerson’s ironing approach requires the introduction of new notations.
We use q = 1−Fi(o) to denote bidder i’s demand when faced with offer o. We use Ri(q) to denote
the revenue extracted from bidder i when her demand is q. That is, Ri(q) = qo = qF−1

i (1−q). The
derivative of this revenue with respect to the demand is then dRi(q)

dq = F−1
i (1− q)− q

fi(F
−1
i (1−q))

.

If we rewrite this derivative in terms of o, noting that o = F−1
i (1− q), then the derivative becomes

o − 1−Fi(o)
fi(o)

, which is exactly vi(o), i.e., the virtual valuation at value o. If the virtual valuation
is nondecreasing in o, then it is nonincreasing in q, as higher offers correspond to lower demands.
This implies that for regular distributions, Ri(q) is concave (i.e., its derivative does not increase in
q). For non-regular distributions, Ri(q) is not concave, which means that there exist two demand
values q1 and q2, so that Ri(q1)+Ri(q2)

2 ≥ Ri(
q1+q2

2). During Myerson’s derivation of the optimal
auction, randomized auctions are allowed. It is just that the final optimal auction is proven to be
deterministic. When randomized auctions are allowed, the offer leading to demand q1+q2

2 is never
a good idea, because more revenue can be achieved by replacing this offer by a half/half mixture of
the offers leading to demand q1 and q2. In summary, Myerson showed that we can always resort to
randomization to achieve a concave revenue function Ri(q) on the basis of the original Ri(q), i.e.,
by pushing up Ri(

q1+q2
2) to Ri(q1)+Ri(q2)

2 for the non-concave regions. In terms of implementation,
one option is the Graham scan algorithm, a computational geometry algorithm for generating the
convex hull given a set of points. Recall that the derivative of the original revenue function Ri(q)
is the original virtual valuation. Myerson uses the derivative of Ri(q) to serve as the ironed virtual
valuation, which is guaranteed to be nondecreasing (in the bid) due to the concavity of Ri(q). Note
that Ri and Ri would differ in one or several regions. For example, let [q1, q2] be one region where
Ri and Ri differ. The curve of Ri on [q1, q2] is exactly the straight line connecting (q1, Ri(q1))
and (q2, Ri(q2)), which means that the derivative of Ri, i.e., the ironed virtual valuation, must be a
constant in [q1, q2]. This is how the flat region in Figure 2b is calculated.

Next, we discuss why the above ironing process is no longer valid for correlated distributions and
why it causes “information loss” in training. In Figure 2b, there is a long flat region [0.289, 0.8]. The
virtual valuation in [0.289, 0.8] is replaced by the average 0.109. Suppose that the curve shown in
Figure 2b is for bidder i. For independent bidders, when we apply the greedy allocation, if the other
bidders’ ironed virtual valuations do not exceed 0.109, then bidder i would win if her bid is at least
0.289, which makes it correct to use the average to replace the actual virtual valuations, because
bidder i “wins” for the whole interval [0.289, 0.8]. If the maximum of the other bidders’ ironed
virtual valuations exceeds 0.109, then bidder i does not win with any bid below 0.8, so the virtual
valuation changes in [0.289, 0.8] (due the averaging process) are irrelevant. When we extend to
correlated distributions (by defining ironed virtual valuations in terms of conditional distributions),
the above analysis no longer holds. When bidder i changes her bid within [0.289, 0.8], the other
bidders’ ironed virtual valuations may change due to correlation. For example, it is possible that
when bidder i bids below 0.4, there is another bidder whose virtual valuation is higher than 0.109,
and when bidder i bids above 0.4, all other bidders’ virtual valuations are below 0.109. In this
situation, within the flat region, bidder i would only win in the region [0.4, 0.8]. The ironed virtual
valuation suggests that getting allocated in [0.4, 0.8] is beneficial to the revenue, as this flat region is
positive in Figure 2b. But according to the actual virtual valuation in Figure 2a, getting allocated in
[0.4, 0.8] actually hurts the revenue.

Finally, we present the original definition of marginal profit from Papadimitriou & Pierrakos (2011)
and compare it against the way we present it in Section 3. We use mi(bi|b−i) to denote the marginal
profit of bidder i when her bid is bi and the other bids are b−i. Recall that ϕ is the joint probability
density function. We use φ(b−i) to denote the joint probability density function of the bids except
for i’s bid. The original definition in Papadimitriou & Pierrakos (2011) is

mi(bi|b−i) = −
∂
(
maxx′≥bi x

′ ∫ 1

x′ ϕ(t, b−i)dt
)

∂bi
.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

We can rewrite it as follows:

mi(bi|b−i) = −φ(b−i)
∂
(
maxx′≥bi x

′ ∫ 1

x′ fi(t|b−i)dt
)

∂bi

= −φ(b−i)
∂ (maxx′≥bi x

′(1− Fi(x
′|b−i)))

∂bi

= −fi(bi|b−i)φ(b−i)
∂ (maxx′≥bi x

′(1− Fi(x
′|b−i)))

∂bi

/
fi(bi|b−i)

= −ϕ(⃗b)
∂ (maxx′≥bi x

′(1− Fi(x
′|b−i)))

∂bi

/
fi(bi|b−i).

Our presentation (after switching to conditional distributions) is

mi(bi|b−i) = −∂ (maxx′≥bi x
′(1− Fi(x

′|b−i)))

∂bi

/
fi(bi|b−i).

The only difference is the multiplier ϕ(⃗b). That is, our presentation of the marginal profit is essen-
tially the original marginal profit “per density”. Since what we truly care about is the relative order
of the marginal profits, i.e., which bidder has the highest marginal profit, the two presentations are
equivalent for this purpose. We decide to go with the “per density” version as the original virtual
valuation is “per density”. Our presentation enabled the direct comparison between the marginal
profit and the (ironed) virtual valuation in Figure 2.

A.3 TRAINING PARAMETERS, EVALUATION DETAILS, AND HARDWARE

The description below is for our main approach. For integration with RegretNet, please refer to A.8.

Training: We use an MLP with 2 hidden layers to represent the allocation function. Each layer
contains 20 nodes. We use the Adam optimizer with learning rate 0.001. Unless otherwise specified,
we allow the optimizer to step 20, 000 times. The batch size is 16. For counterexample-guided
training, we use all counterexamples and the penalty term is multiplied by 1, 000.

The following description applies to all distributions except for WORST10 and WORST100 (A.6.2).
For 2 bidders, we only need to train once to achieve a monotone allocation. No counterexample-
guided training or monotonicity fix is needed. This is true even for the 10 adversarial distributions
generated using evolutionary computation (A.6.1). For 3 to 5 bidders, we train 10 times as some
trials failed to achieve monotonicity. 10 trials are more than enough. Even in the worst situa-
tion, at least 6 of the 10 trials ended up monotone without using counterexample-guided training or
monotonicity fix. For WORST10 and WORST100, we do need counterexample-guided training and
monotonicity fix. Otherwise, near-optimal revenue cannot be achieved. The experiments on these
two distributions are presented in A.6.2.

Evaluation: We evaluate an auction’s revenue via Monte Carlo average with sample size 100, 000.
The full result tables in A.11 include the standard errors. When monotonicity fix is needed, the
sample size is reduced to 10, 000, as for each profile, monotonicity fix involves n mixed-integer
programs.

Hardware: The only large-scale experiments are the experiments described in Figure 3, Figure 4
and Figure 5, where for each of the three selected distributions (G56, WORST10, WORST100), we
performed 100 training trails. This is carried out on University of Anonymity’s high-performance
cluster. Our performance bottleneck is the MIPs for monotonicity fix, which needs to be repeated
n× 10, 000 times in evaluation, so our jobs are CPU intensive. (Running the auction once is always
instant.) For each of the 300 trials, we allocate one CPU core, 128 GB memory, and no GPU.
The CPU type is Intel(R) Xeon(R) Platinum 8360Y. Each trial takes from a few minutes (when
monotonicity fix is not needed) to up to six hours. We have to point out that the wall clock time is
highly inaccurate for the cluster we use (i.e., CPUs are shared; jobs may hang or slow down without
notice). We estimate that the total computation time is on the order of 500 hours.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

A.4 DETAILS OF BASELINE AUCTIONS

GREEDY: The greedy allocation simply allocates the item to the bidder with the highest marginal
profit. Based directly on the definition of marginal profit (Papadimitriou & Pierrakos, 2011), the
greedy allocation’s revenue can serve as the revenue upper bound. To calculate this upper bound,
we use Monte Carlo simulation to calculate the expectation of the highest marginal profit. For 56 of
the 59 distributions we use, the greedy allocation is not monotone, and therefore not strategy-proof,
which is proved via counterexamples. For the remaining 3 distributions, monotonicity/strategy-
proofness is inconclusive.

AMD: Papadimitriou & Pierrakos (2011) proposed a FPTAS for deriving the optimal auction for 2
correlated bidders. The proposed algorithm first rounds down the bids to grid points, for example,
to multiples of 0.01. The rest of the algorithm converts the instance to a maximum independent set
instance on a bipartite graph. We use AMD (Automated Mechanism Design (Conitzer & Sandholm,
2002)) as an alternative implementation. We round the bids down to multiples of 0.01. After this
step, there are 1002 possible bid profiles. For each bid profile, we create 2 continuous variables to
represent the payments and 2 binary variables to represent the allocation. We follow the standard
AMD process. The expected revenue can be easily expressed as a linear expression of the variables.
Strategy-proofness and individual rationality can also easily be expressed as linear inequalities in-
volving the variables. The optimal auction for discrete bids is derived via a mixed-integer program.
For 2 bidders, the AMD solution takes only seconds. (This is completely expected. When the under-
lying problem has a polynomial-time solution, state-of-the-art MIP solvers often manage to solve it
fast.) AMD does not scale to 3 or more bidders. The FPTAS is also restricted to 2 bidders. As men-
tioned in Papadimitriou & Pierrakos (2011), optimal auction design for correlated bidders becomes
NP-hard to approximate when n ≥ 3. For the above reasoning, AMD suffices as an alternative
implementation.

MYERSON: We calculate every bidder’s ironed virtual valuations based on their marginal distribu-
tions, instead of their conditional distributions. We then allocate the item to the bidder with the
highest ironed virtual valuation. The item is not allocated if the highest ironed virtual valuation is
below 0. This auction guarantees monotonicity and therefore strategy-proofess, as all it does is to
pretend that correlation does not exist and runs the optimal auction for independent bidders. The
revenue of this auction is expected to be sub-optimal as it ignores correlation completely.

2ND: Second price auction with the optimal reserve price. The optimal reserve is calculated by
simply trying all multiples of 0.001.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

A.5 HAND-CRAFTED GRID DISTRIBUTIONS BASED ON MAGIC SQUARES

One baseline auction described in A.4 is MYERSON, which is Myerson’s original optimal auction
extended to correlated bidders, simply ignoring correlation altogether. This is achieved by pretend-
ing that the distribution is independent and using the marginal distribution of a bidder to calculate
her ironed virtual valuation. To assess the amount of revenue lost by ignoring correlation, we re-
sort to the magic squares. These are 2D matrices whose every row and every column sums up to
the same value. Under grid distributions based on magic squares, every bidder’s marginal distribu-
tion is always U(0, 1). The following listed magic squares are from a 1531 book titled De occulta
philosophia. We experimented on these magic-square-based grid distributions. The revenue gap be-
tween MYERSON (optimal if correlation does not exist) and our auction (proven near-optimal based
on the upper bound) is the amount of revenue lost by ignoring correlation. For i.i.d. distributions,
MYERSON is just the second price auction with a reserve based on the i.i.d. distributions.

SATURN =

[
4 9 2
3 5 7
8 1 6

]

JUPITER =

 4 14 15 1
9 7 6 12
5 11 10 8
16 2 3 13



MARS =


11 24 7 20 3
4 12 25 8 16
17 5 13 21 9
10 18 1 14 22
23 6 19 2 15



SOL =


6 32 3 34 35 1
7 11 27 28 8 30
19 14 16 15 23 24
18 20 22 21 17 13
25 29 10 9 26 12
36 5 33 4 2 31



VENUS =



22 47 16 41 10 35 4
5 23 48 17 42 11 29
30 6 24 49 18 36 12
13 31 7 25 43 19 37
38 14 32 1 26 44 20
21 39 8 33 2 27 45
46 15 40 9 34 3 28



MERCURY =



8 58 59 5 4 62 63 1
49 15 14 52 53 11 10 56
41 23 22 44 45 19 18 48
32 34 35 29 28 38 39 25
40 26 27 37 36 30 31 33
17 47 46 20 21 43 42 24
9 55 54 12 13 51 50 16
64 2 3 61 60 6 7 57



LUNA =



37 78 29 70 21 62 13 54 5
6 38 79 30 71 22 63 14 46
47 7 39 80 31 72 23 55 15
16 48 8 40 81 32 64 24 56
57 17 49 9 41 73 33 65 25
26 58 18 50 1 42 74 34 66
67 27 59 10 51 2 43 75 35
36 68 19 60 11 52 3 44 76
77 28 69 20 61 12 53 4 45


17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

A.6 ADVERSARIAL DISTRIBUTIONS

After experimenting on 47 distributions, including 10 randomly generated grid distributions for n
from 2 to 5, and 7 hand-crafted grid distributions based on the magic squares in A.5, an unexpected
observation is that for all these distributions, a near-optimal verifiably monotone allocation can be
found without incorporating counterexample-guided training. The post-processing monotonicity fix
step is therefore also not needed. For 2 bidders, we always find a verifiably monotone allocation with
one trial. For more bidders, we sometimes do end up with non-monotone allocations, but this can be
resolved by repeated trials. We do not need an excessively large number of trials. We used 10 trials
in experiments. In the worst situation (5 bidders, distribution G56), we ended up with a verifiably
monotone allocation in 6 out of 10 trials. That is, in expectation, we only need less than 2 trials
to obtain a monotone allocation. Furthermore, for all these distributions, we achieve near-optimal
revenue.

While the above observation shows the effectiveness of our approach, a natural question to ask is
whether these results are artifacts caused by our selection of distributions. To test the limit of our
approach, we experimented with two methods for generating adversarial distributions. The first
method is based on evolutionary computation. We managed to generate distributions under which
the greedy allocation is (probably) “wrong” for more bid profiles, in the sense that its decision is
inconsistent with decisions obtained via Automated Mechanism Design. Nevertheless, our approach
still delivers near-optimal results with one trial, without any counterexample-guided training. The
evolutionary computation based adversarial distributions did increase the revenue gap between the
greedy upper bound and the achieved revenue, from maximally 1.3% for non-adversarial distribu-
tions to 2.1%. The second method relies on a mixed-integer program to generate adversarial dis-
tributions under which the greedy allocation maximally “overestimates” the revenue. This method
successfully leads to two adversarial distributions for which we do need counterexample-guided
training and monotonicity fix. That is, simply relying on luck (i.e., train again until we reach a ver-
ifiably monotone allocation with near-optimal revenue) no longer works. We do need the full suite
of techniques (verification, counterexample-guided training and post-processing monotonicity fix)
to achieve near-optimal revenue.

A.6.1 ADVERSARIAL DISTRIBUTIONS VIA EVOLUTIONARY COMPUTATION

Our approach aims to find a monotone interpolation of the greedy allocation. One adversarial situa-
tion is when the learning target, i.e., the greedy allocation, makes allocation mistakes for many bid
profiles. In this section, we apply evolutionary computation to search for a distribution under which
the greedy allocation differs the most from the “correct” allocation (i.e., the optimal allocation).

However, the correct allocation is unknown. We settle for the AMD allocation instead, which we ex-
pect to be mostly correct. In A.4, we described the automated mechanism design (AMD) approach.
The main gist of AMD is that we can round the bids down to multiples of 1/H . Afterwards, the
optimal auction for these discrete bids can be derived via mixed-integer programming. Since AMD
is only scalable for 2 bidders, we focus on 2 bidders. Going through the H2 bid profiles, we count
the number of times greedy and AMD are inconsistent. This counter is used as the fitness function
for evolutionary computation – we want its value to go up. In our experiment, we set H to 20 to
speed up the fitness evaluation.

We apply the simple (1+1)EA algorithm. We start with the grid distribution G5s for s from 0 to 9.
We use d to denote the current distribution. In every evolutionary round, for every density value in
the 2D matrix representing d, we replace the original density value x by 0.9 ·x+u, where u is drawn
from U [0, 1]. After mutation, the density values are normalized to ensure that the total probability
equals 1. We evaluate the fitness of the mutated distribution d′. If it is better (i.e., more adversarial),
then we keep it by replacing d by d′. Otherwise, we throw d′ away and go back to d. We do the
above for 100 rounds. The resulting distribution is recorded as EA(G5s).

Despite the effort, under the most adversarial distribution we found via evolutionary computation,
greedy and AMD only differ under 3.5% of the bid profiles. This empirically suggests that the
greedy allocation is a high quality learning target even for (somewhat) adversarial distributions,
justifying our approach. For the evolved adversarial distributions, our neural network interpolation
approach still produces near-optimal revenue as shown in Table 3. Among all 59 distributions we
experimented on, EA(G52) leads to the worst revenue gap between the greedy upper bound and the

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

achieved revenue, which is 2.1%. (For non-adversarial distributions, the maximum revenue gap is
1.3%.)

Table 3: 2 bidders, evolutionary computation generated adversarial distributions

DISTRIB. GREEDY AMD MYER. 2ND RNET MP

EA(G50) 0.3935 0.3918 0.3857 0.3869 0.3875 0.3905
±0.001 ±0.0007 ±0.0008 ±0.0008 ±0.0008

EA(G51) 0.4143 0.4111 0.4030 0.4010 0.4028 0.4106
±0.001 ±0.0008 ±0.0008 ±0.0008 ±0.0008

EA(G52) 0.4311 0.4279 0.4137 0.4116 0.3836 0.4220
±0.001 ±0.0007 ±0.0007 ±0.001 ±0.0008

EA(G53) 0.4165 0.4140 0.3999 0.3986 0.4033 0.4117
±0.001 ±0.0008 ±0.0008 ±0.0008 ±0.0008

EA(G54) 0.4271 0.4228 0.4152 0.4156 0.4175 0.4260∗

±0.001 ±0.0007 ±0.0008 ±0.0008 ±0.0008
EA(G55) 0.4374 0.4320 0.4277 0.4246 0.4258 0.4320∗

±0.001 ±0.0007 ±0.0008 ±0.0008 ±0.0007
EA(G56) 0.4381 0.4362 0.4256 0.4279 0.4307 0.4336

±0.001 ±0.0008 ±0.0008 ±0.0008 ±0.0008
EA(G57) 0.4025 0.3998 0.3912 0.3934 0.3958 0.4002∗

±0.001 ±0.0007 ±0.0008 ±0.0008 ±0.0008
EA(G58) 0.4355 0.4320 0.4211 0.4224 0.4199 0.4324∗

±0.001 ±0.0008 ±0.0008 ±0.0008 ±0.0008
EA(G59) 0.4141 0.4107 0.4068 0.4076 0.4051 0.4097

±0.001 ±0.0008 ±0.0008 ±0.0008 ±0.0009

A.6.2 ADVERSARIAL DISTRIBUTIONS VIA MIXED-INTEGER-PROGRAMMING

We explore another heuristic direction for finding adversarial distributions. We use RG to denote the
greedy revenue, which is generally not attainable as greedy is often not strategy-proof. RG serves as
the revenue upper bound. We use R∗ to denote the optimal revenue. We aim to find the distribution
that maximizes the ratio RG

R∗ . That is, we are searching for distributions under which the greedy
allocation significantly overestimates the revenue, which would make greedy an unsuitable learning
target.

We still work within the structure of the grid distributions, focusing on 5× 5 matrices as illustrated
below. Our goal is to search for a set of 25 values for the pi,j , so that the corresponding grid
distribution is adversarial based on the metric mentioned above.

WORST(λ) =


p0,4 p1,4 p2,4 p3,4 p4,4
p0,3 p1,3 p2,3 p3,3 p4,3
p0,2 p1,2 p2,2 p3,2 p4,2
p0,1 p1,1 p2,1 p3,1 p4,1
p0,0 p1,0 p2,0 p3,0 p4,0



We construct a mixed-integer program to find these 25 values. There are 25 continuous variables,
i.e., the pi,j , ranging from 1 to λ, where λ is a distribution parameter. We derived two distributions
called WORST10 (setting λ = 10) and WORST100 (setting λ = 100).

We face two challenges when constructing the mixed-integer program:

The first challenge is that the marginal profit is not linear in the probability densities. To make it
linear, we re-interpret the above matrix as a discrete distribution. Every bidder’s bid can only be
from the following 5 values: {0, 0.2, 0.4, 0.6, 0.8}. p0,0 refers to the probability that both bidders
bid 0s. p1,3 refers to the probability that bidder 1 bids 0.2 and bidder 2 bids 0.6. Essentially, for
the original 2D grid distribution, there are 25 uniform sub-squares, we assign all probability mass
to the bottom left corner of the sub-square to make the distribution discrete. By pretending that the
distribution is discrete, the marginal profits become linear in the pi,j with the help of axillary binary
variables. We use rki,j with k ∈ {1, 2} and 0 ≤ i, j ≤ 4 to represent the maximum revenue we can

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

extract from bidder k when bidder 1 bids i/5 and bidder 2 bids j/5. We have

r1i,j = max
i′≥i

 i′

5

∑
i′′≥i′

pi′′,j


r2i,j = max

j′≥j

j′

5

∑
j′′≥j′

pi,j′′


The marginal profit of bidder k when bidder 1 bids i/5 and bidder 2 bids j/5 is denoted as mk

i,j ,
which equals the following. (This is not the “per density” version. Please refer to A.2.)

m1
i,j = max{r1i,j − r1i+1,j , 0}

m2
i,j = max{r2i,j − r2i,j+1, 0}

The greedy revenue RG is then ∑
0≤i,j≤4

max{m1
i,j ,m

2
i,j}

The second challenge is that the optimal revenue is unknown. We settle for an alternative revenue.
We define two auctions for discrete bids. Auction 1 allocates the item to bidder 1 if and only if
b1 ≥ b2. Auction 2 allocates the item to bidder 1 if and only if b1 > b2. The only difference between
these two auctions is the way they perform tie-breaking. Note that tie-breaking is consequential for
discrete distributions. We evaluate the revenue of these two auctions using marginal profit. The
revenue under auction 1 is ∑

0≤j≤i≤4

m1
i,j +

∑
0≤i<j≤4

m2
i,j

The revenue under auction 2 is ∑
0≤j<i≤4

m1
i,j +

∑
0≤i≤j≤4

m2
i,j

The maximum revenue between these two auctions is denoted as RS .

Since the revenue of RS is evaluated in terms of marginal profit, the revenue fix is already automat-
ically included. The revenue fix basically adds a reserve for each bidder and the reserve can depend
on the other bid. The optimal reserve is already reflected in the marginal profits.

So far, all values mentioned above can be expressed as linear expressions of the pi,j (with the help
of many auxiliary binary variables to represent “max”). We finally add a constraint RG ≥ α · RS ,
where α is a constant. We search for the largest constant α that still makes the above inequality
holds, which can be solved via a mixed-integer program (i.e., via feasibility check). The pi,j values
corresponding to the largest α characterize the adversarial distribution. Below are the solutions for
λ ∈ {10, 100}:

WORST10 =


1 1 1 1 1
1 10 9 1 10
1 1 1 1 1
1 1 1 2.59 1
1 1 1 7.77 1



WORST100 =


1 1 1 1 1
1 100 1 1 1
1 1 48.5 24.25 72.75
1 14.25 1 1 3
1 42.75 1 1 1


For WORST10 and WORST100, our approach still manages to produce near-optimal revenue, as
shown in Table 4. However, these two distributions indeed are significantly more challenging to
handle. Unlike other distributions where we can completely skip counterexample-guided training
and monotonicity fix (by resorting to repeated trials), for WORST10 and WORST100, we do need the
full suite of techniques. More detailed case studies on these two distributions are presented in A.7.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Table 4: 2 bidders, mixed-integer-programming generated adversarial distributions

DISTRIB. GREEDY AMD MYER. 2ND RNET MP

WORST10 0.4401 0.4379 0.3733 0.3919 0.4130 0.4441∗

±0.001 ±0.0009 ±0.0006 ±0.0007 ±0.003
WORST100 0.4678 0.4565 0.3885 0.3805 0.4126 0.4632∗

±0.001 ±0.0007 ±0.0004 ±0.0006 ±0.003

A.7 CASE STUDY ON THE BENEFIT OF COUNTEREXAMPLE-GUIDED TRAINING AND
MONOTONICITY FIX

To test the necessity and effectiveness of counterexample-guided training and monotonicity fix, we
run the following experiment. For each selected distribution, we run 100 training trials to reach
statistically meaningful conclusions. Each training trial proceeds as follows:

• Train 20, 000 (optimizer) steps without counterexample-guided training. We call the result
at the end of 20, 000 steps the stage-one result.

• We verify whether the stage-one allocation is monotone and evaluate its revenue. If the
stage-one allocation is already monotone, then we do not need to apply monotonicity fix
when evaluating its revenue. Otherwise, the monotonicity fix is used.

• We continue to train another 10, 000 steps. If the stage-one allocation is not monotone,
then we switch to counterexample-guided training and use the monotonicity violations from
stage-one’s evaluation as counterexamples. If the stage-one allocation is already monotone,
then we do not need to switch to counterexample-guided training (and we do not have
counterexamples anyway). We call the end result the stage-two result.

• We verify whether the stage-two allocation is monotone and evaluate its revenue. Similar
to the situation for stage-one, we apply monotonicity fix when necessary.

The trials were divided into four categories, which are represented using different colours in Fig-
ure 3, Figure 4 and Figure 5:

• Blue: Stage-one and two are both monotone. That is, blue results do not involve
counterexample-guided training or monotonicity fix.

• Red: Stage-one and two are both not monotone. Counterexample-guided training and
monotonicity fix are both used.

• Green: Stage-one is not monotone and stage-two is monotone. That is, counterexample-
guided training managed to guide the allocation to monotonicity. Both counterexample-
guided training and monotonicity fix are used.

• Black: Stage-one is monotone but stage-two is not monotone. That is, with additional
training, the network learned more details and turned not monotone. Monotonicity fix is
used but not counterexample-guided training.

We perform a detailed analysis of the following 3 distributions. As mentioned earlier, in this ex-
periment, we run 100 trails for each distribution. For 3 distributions, we estimate that the total
computation time is on the order of 500 hours, so we cannot afford to test every distribution.

• G56 for 5 bidders: This distribution is selected because it is more difficult to reach mono-
tonicity under G56 compared to the other randomly generated distributions. When con-
structing Table 8, Table 9 and Table 10, for every distribution we tried 10 times and recorded
how many times the result is monotone. For G56, 6 out of 10 times are monotone. 6/10
appears to be a fairly high success rate, but is actually the worst among the randomly gen-
erated distributions.

• WORST10 and WORST100 for 2 bidders: These are adversarial distributions designed to
test the limit of our approach. They are derived in A.6.2.

The experimental results are summarized in Table 5. The individual distribution’s reports are given
in Figure 3, Figure 4 and Figure 5.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Table 5: Summary of best revenue per category, where 100 trials are divided into 4 categories based
on the monotonicity status at the end of stage-one and two: M=Monotonicity;

M=non-monotonicity; M → M means the stage-one result is monotone and the stage-two result is
not monotone

DISTRIB. BLUE RED GREEN BLACK

M → M M → M M → M M → M

G56 (n = 5) 0.6841± 0.0006 0.6551± 0.002 0.6847± 0.002 0.6844± 0.002
WORST10 (n = 2) 0.4347± 0.0009 0.4441± 0.003 0.4410± 0.003 0.4370± 0.003
WORST100 (n = 2) 0.4517± 0.0008 0.4632± 0.003 0.4516± 0.002 0.4544± 0.0008

0 20 40 60 80 100
G56 100 trials

0.60

0.65

0.70

Re
ve

nu
e

Figure 3: While green and black reached slightly higher highs, the gap between blue and
green/black is statistically insignificant considering the standard errors. In conclusion,

counterexample-guided training and monotonicity fix are not needed for this distribution.

0 20 40 60 80 100
worst10 100 trials

0.40

0.45

0.50

Re
ve

nu
e

Figure 4: Red and green reached higher, so counterexample-guided training and monotonicity fix
do help. We do need the whole suite of techniques to reach near-optimal revenue.

0 20 40 60 80 100
worst100 100 trials

0.40

0.45

0.50

Re
ve

nu
e

Figure 5: Red reached higher, so counterexample-guided training and monotonicity fix do help. We
do need the whole suite of techniques to reach near-optimal revenue.

A.8 DETAILS OF REGRETNET IMPLEMENTATION

RegretNet (Dütting et al., 2019) implements two neural networks, one for allocation and one for
payments. In our RegretNet implementation, the two networks have the following properties:

1. Each network takes the n bids as inputs.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

2. Each network is a multilayer perceptron (MLP) with ReLU activation. In our implementa-
tion, both networks have 2 intermediate layers each with width 50. This is larger than the
networks used in the main approach, which is 2 layers with width 20.

3. The allocation network has n + 1 outputs where the first n outputs correspond to the n
bidders and the last output corresponds to no allocation. We take the argmax among the
n+ 1 outputs to decide which bidder wins. In training, we take softmax on the outputs.

4. The payment network has n outputs where the i-th output decides bidder i’s payment if the
item is allocated to bidder i.

RegretNet is unsupervised. The training samples are bid profiles drawn according to the given
correlated distribution. Unlike the main approach, where we need the distribution, as otherwise
we cannot calculate the marginal profits, RegretNet does not need the access to the distribution.
Samples are all it needs.

Following RegretNet’s notation, we define the set of bidders as N , denote the model parameters as
w, denote vi as the true valuation of bidder i. Bidder i’s utility is uw

i (vi; (v
′
i, v−i)) when she has

valuation vi and bids v′i. Bidder i’s payment is denoted as pwi (v).

The aim of RegretNet is to maximize the expected total payment E[
∑

i∈N pwi (v)] while ensuring
strategy-proofness as well as ex post individual rationality. During training, we use a batch of L bid
profiles to get an unbiased estimation 1

L

∑L
l=1

∑
i∈N pw,l

i (v).

The strategy-proofness constraint is given by minimizing the “Regret” defined as the sum of how
profitable the optimal deviation is for every bidder. Formally,

rgti(w) = E
[
max
v′
i∈Vi

uw
i (vi; (v

′
i, v−i))− uw

i (vi; (vi, v−i))

]
.

During training, we use a batch of bid profiles to give an unbiased estimation r̂gti(w).

Individual rationality is ensured by taking the sigmoid of the payment network’s outputs, so that the
range becomes [0, 1], then times the bid. This method can ensure that the payment from each bidder
is nonnegative and no more than the bid itself, thus satisfying individual rationality.

The loss function used in unsupervised training is as follows:

Loss(w;λ) = − 1

L

L∑
l=1

∑
i∈N

pw,l
i (v) +

∑
i∈N

λir̂gti(w).

In the original implementation of RegretNet (Dütting et al., 2019), there is also a second order term,
which we dropped. The factor λi’s are initialized to 50 and updated periodically. We set the update
interval to be 20 backward steps. The original RegretNet uses a gradient descent method to find the
optimal update direction and amount, while in our implementation, we set it higher if r̂gti(w) is
larger than 0.0001, and smaller if it is less than it. 0.0001 is the largest regret that we tolerate.

Since the allocation network is using the same network architecture as the main approach,
i.e., MLP+ReLU, the existing suite of MIP-based techniques still apply, including verification,
counterexample-guided training, and monotonicity fix. After training, the payment network is
thrown away and we only evaluate the allocation network. The existing evaluation process from
the main approach still applies. For all results on RegretNet listed in this paper, the auction is ver-
ified 100% strategy-proof (no counterexample-guided training was needed). For the distributions
in Table 7, our RegretNet implementation is able to outperform MYERSON and 2ND, and achieve
revenue that is reasonably close to our main approach, noting again that our main approach requires
more than just the samples, but also the exact distribution. RegretNet also outperforms MYERSON
and 2ND for 8 out of 12 adversarial distributions (Table 3 and Table 4). On the other hand, for the
distributions in Table 8, Table 9 and Table 10 (i.e., n = 3, 4, 5), the revenue achieved is less ideal.
We set the same training budget for our main approach and RegretNet, which is 20, 000 optimizer
steps. For 3 or more bidders, perhaps RegretNet requires a lot more training resources. After all,
it trains two networks instead of one and the networks are significantly larger. We did not perform
excessive hyper-parameter tuning for the RegretNet approach as RegretNet is not the main focus
of this paper (mostly used as a baseline). Furthermore, given its larger size, it is a lot more time
consuming to work with. For example, for the 10 auctions in Table 10, MIP-based verification takes
21 to 100 minutes.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

A.9 ALTERNATIVE NETWORK ARCHITECTURES

The concept of monotonicity represented by the min-max networks (Sill, 1997) is different from the
concept of allocation monotonicity in our mechanism design context. For example, in our model,
the i-th input of the allocation network is agent i’s bid and the i-th output of the allocation network
represents the priority value of agent i. Whoever has the highest priority value wins. Allocation
monotonicity basically requires the following: if the i-th output is currently the highest, then when
we increase the i-th input, we want the i-th output to still be the highest. The i-th output does not
have to be monotone with respect to the i-th input – it is fine that an agent’s priority value drops
when she increases her bid, as long as she still wins (for example, the other agents’ priority values
may drop more, or the winner’s priority value drop is not big enough to go below another agent). It
is not clear how to reconcile the difference between monotonicity in terms of values between inputs
and outputs and allocation monotonicity. In other words, it is not clear how to use the min-max
networks to represent the whole space of strategy-proof allocations.

There are two ways to use min-max networks to represent allocation functions in our setting. The
first is MyersonNet (Dütting et al., 2019). Under MyersonNet, agent i’s bid bi is mapped to i’s allo-
cation priority value fi(bi), where fi is nondecreasing function represented by a min-max network.
Whoever has the highest priority value wins. This representation is strategy-proof, but the following
example shows that MyersonNet cannot represent the full space of strategy-proof mechanisms and
sometimes it leads to significant revenue loss. In our experiments, we used the fully strategy-proof
variant of RegretNet (Dütting et al., 2019) as a baseline, which is more expressive than MyersonNet.

Example: We have two bidders. Bidder 2’s value is either 0 or ϵ (an infinitesimal value), i.e., almost
all revenue will come from bidder 1. When bidder 2’s value is 0, bidder 1’s conditional distribution
is D0. When bidder 2’s value is ϵ, bidder 1’s conditional distribution is D1. That is, bidder 2 serves
the purpose of sending a signal that tells us whether bidder 1’s distribution is D0 or D1. Since almost
all revenue comes from bidder 1, a near-optimal auction has the following form: When bidder 2’s
value is 0, the auction becomes a take-it-or-leave-it auction for bidder 1 with an optimal reserve price
derived based on D0, which we call RESERVE(D0). When bidder 2’s value is ϵ, the auction becomes
a take-it-or-leave-it auction for bidder 1 with an optimal reserve price derived on D1, which we call
RESERVE(D1). We further assume that RESERVE(D0) > RESERVE(D1). MyersonNet cannot
express the above auction. Under MyersonNet, when bidder 2’s bid increases, bidder 1’s winning
price never drops. Basically, under MyersonNet, bidder 1 must face sub-optimal reserve under either
D0 or D1 (or both), and it is easy to construct distributions where sub-optimal reserves significantly
impact the revenue.

Roughgarden & Talgam-Cohen (2013) mentioned the Lopomo assumption. Using our terminology,
if a bidder’s allocation priority value is increasing in her own bid and decreasing in others’ bids, then
allocation monotonicity is easily satisfied. We can certainly use the min-max networks to model such
kind of allocations, but once again, the auction in the above example cannot be expressed. In the
above example near-optimal auction, bidder 1, without changing her own bid, can go from losing to
winning when bidder 2 increases her bid, which goes against the Lopomo assumption.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

A.10 MULTI-UNIT AUCTIONS WITH UNIT DEMAND

We extend our techniques to multi-unit auctions with unit demand. We use m to denote the number
of items, where m < n. Myerson’s greedy allocation is extended by assigning one item to each
bidder with the m highest marginal profit.

In the single-item setting, our neural network’s output dimension is n+1. If the i-th (i = 1, 2, . . . , n)
output coordinate is the highest, then bidder i wins. If the (n+ 1)-th coordinate is the highest, then
the item is not allocated. For the multi-unit setting, the network’s output dimension remains n+ 1.
Bidder i wins if and only if the i-th output coordinate is among the m highest output coordinates and
the i-th output coordinate is higher than the (n+1)-th output coordinate. This allows us to represent
all possible numbers of items allocated (i.e., from 0 to m).

The extended monotonicity condition requires that any winner i, who is in the original winner set,
must remains in the winner set when i increases her bid while the other bids stay the same. This more
complex version requires us to enumerate all combinations of i, all original winner sets that contain i
and all new winner sets that exclude i. The monotonicity verification MIP for the single-item setting
can be trivially adapted, as any given winner set can be described by a set of inequalities.

Below we present our experimental results. The baseline is the (m + 1)-th price auction with the
optimal reserve price. For each distribution, we run 10 trials, and in every trial, we stop after 5, 000,
10, 000, 15, 000 and 20, 000 optimizer steps to perform monotonicity verification. We record the
best-performing verifiably monotone allocations.

Table 6: Multi-unit auctions with unit demand with 2 items (i.e., m = 2)
M+1 refers to the (m+1)-th price auction with the optimal reserve price

GAP(MP) = 0.67%, GAP(M+1) = 5.1%

n = 3 n = 4 n = 5

DISTRIB. GREEDY M+1 MP GREEDY M+1 MP GREEDY M+1 MP

G50 0.7629 0.7251 0.7624 0.9387 0.8923 0.9360 1.0856 1.0428 1.0757
±0.002 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001

G51 0.7896 0.7413 0.7901 0.9646 0.9172 0.9608 1.0973 1.0477 1.0844
±0.002 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001

G52 0.7311 0.6900 0.7311 0.9380 0.8932 0.9319 1.0868 1.0394 1.0755
±0.002 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001

G53 0.7497 0.7048 0.7500 0.9344 0.8853 0.9293 1.0930 1.0462 1.0799
±0.002 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001

G54 0.7724 0.7280 0.7733 0.9457 0.8959 0.9397 1.0900 1.0456 1.0737
±0.002 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001

G55 0.7511 0.6956 0.7473 0.9329 0.8841 0.9266 1.0938 1.0463 1.0748
±0.002 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001

G56 0.7400 0.6911 0.7401 0.9507 0.8964 0.9449 1.0965 1.0474 1.0852
±0.002 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001

G57 0.8122 0.7734 0.8096 0.9663 0.9201 0.9643 1.0945 1.0498 1.0825
±0.002 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001

G58 0.7531 0.6924 0.7525 0.9390 0.8936 0.9349 1.0925 1.0462 1.0785
±0.002 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001

G59 0.7949 0.7329 0.7934 0.9682 0.9130 0.9604 1.1016 1.0523 1.0894
±0.002 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

A.11 COMPLETE TABLES INCLUDING STANDARD ERRORS

Table 7: 2 bidders (with standard errors)
GAP(MP) = 0.26%,GAP(RNET) = 2.7%,GAP(2ND) = 4.2%,GAP(MYER) = 4.3%

DISTRIB. GREEDY AMD MYER. 2ND RNET MP VV IVV

G50 0.4353 0.4368 0.4191 0.4197 0.4307 0.4368 0.4355 0.4329
±0.001 ±0.0008 ±0.0009 ±0.0009 ±0.0009 ±0.0009 ±0.0009

G51 0.4047 0.4041 0.3939 0.3929 0.4021 0.4037 0.4032 0.4032
±0.001 ±0.0007 ±0.0006 ±0.0007 ±0.0007 ±0.0007 ±0.0007

G52 0.3979 0.3967 0.3771 0.3823 0.3869 0.3959 0.3946 0.3955
±0.001 ±0.0009 ±0.001 ±0.0009 ±0.001 ±0.001 ±0.001

G53 0.4629 0.4625 0.4533 0.4546 0.4522 0.4628∗ 0.4612 0.4616
±0.001 ±0.0006 ±0.0006 ±0.0007 ±0.0006 ±0.0007 ±0.0007

G54 0.4681 0.4665 0.4476 0.4472 0.4639 0.4674∗ 0.4673 0.4671
±0.001 ±0.0009 ±0.0009 ±0.0008 ±0.0008 ±0.0008 ±0.0008

G55 0.4204 0.4187 0.4075 0.4057 0.4062 0.4151 0.4148 0.4150
±0.001 ±0.0008 ±0.0008 ±0.0009 ±0.0009 ±0.001 ±0.001

G56 0.3905 0.3912 0.3761 0.3741 0.3798 0.3908 0.3893 0.3886
±0.001 ±0.0007 ±0.0008 ±0.0008 ±0.0007 ±0.0008 ±0.0008

G57 0.4865 0.4854 0.4494 0.4544 0.4771 0.4850 0.4828 0.4840
±0.001 ±0.0006 ±0.0008 ±0.0007 ±0.0008 ±0.0008 ±0.0008

G58 0.4298 0.4273 0.3988 0.3981 0.4077 0.4291∗ 0.4281 0.4279
±0.001 ±0.001 ±0.0009 ±0.0009 ±0.0008 ±0.0009 ±0.0009

G59 0.4531 0.4512 0.4306 0.4302 0.4379 0.4498 0.4482 0.4497
±0.001 ±0.0009 ±0.0009 ±0.0009 ±0.0009 ±0.001 ±0.0009

SATURN 0.4533 0.4545 0.4210 0.4226 0.4372 0.4510 0.4512 0.4515
±0.001 ±0.0008 ±0.0008 ±0.0008 ±0.0008 ±0.0008 ±0.0008

JUPITER 0.4427 0.4404 0.4238 0.4219 0.4316 0.4418∗ 0.4409 0.4410
±0.001 ±0.0008 ±0.0009 ±0.0008 ±0.0009 ±0.0009 ±0.0009

MARS 0.4375 0.4377 0.4177 0.4167 0.4194 0.4360 0.4333 0.4359
±0.001 ±0.0008 ±0.0008 ±0.0008 ±0.0009 ±0.0009 ±0.0009

SOL 0.4429 0.4414 0.4376 0.4364 0.4329 0.4427∗ 0.4404 0.4419
±0.001 ±0.0008 ±0.0008 ±0.0009 ±0.0008 ±0.0008 ±0.0008

VENUS 0.4381 0.4381 0.4175 0.4171 0.4233 0.4365 0.4319 0.4358
±0.001 ±0.0008 ±0.0008 ±0.0008 ±0.0008 ±0.0009 ±0.0008

MERCURY 0.4273 0.4274 0.4179 0.4176 0.4150 0.4281∗ 0.4271 0.4279
±0.001 ±0.0008 ±0.0008 ±0.0008 ±0.0008 ±0.0008 ±0.0008

LUNA 0.4331 0.4335 0.4173 0.4172 0.4212 0.4322 0.4315 0.4318
±0.001 ±0.0008 ±0.0008 ±0.0008 ±0.0008 ±0.0009 ±0.0009

Table 8: 3 bidders (with standard errors)
GAP(MP) = 0.36%, GAP(RNET) = 3.6%, GAP(2ND) = 3.9%, GAP(MYER) = 3.8%

DISTRIB. GREEDY MYER. 2ND RNET MP

G50 0.5512±0.001 0.5346±0.0007 0.5338±0.0008 0.5346±0.0007 0.5517±0.0007
G51 0.5647±0.0009 0.5467±0.0007 0.5475±0.0007 0.5509±0.0007 0.5651±0.0007
G52 0.5316±0.001 0.5137±0.0007 0.5118±0.0008 0.5153±0.0008 0.5302±0.0008
G53 0.5476±0.001 0.5283±0.0007 0.5282±0.0007 0.5290±0.0007 0.5450±0.0007
G54 0.5485±0.0009 0.5297±0.0007 0.5306±0.0007 0.5310±0.0007 0.5471±0.0007
G55 0.5477±0.001 0.5237±0.0007 0.5231±0.0007 0.5255±0.0007 0.5443±0.0008
G56 0.5371±0.001 0.5155±0.0008 0.5138±0.0008 0.5158±0.0007 0.5332±0.0007
G57 0.5723±0.0009 0.5527±0.0007 0.5528±0.0007 0.5555±0.0006 0.5710±0.0007
G58 0.5473±0.001 0.5186±0.0008 0.5193±0.0007 0.5185±0.0007 0.5429±0.0008
G59 0.5663±0.001 0.5409±0.0007 0.5410±0.0008 0.5396±0.0007 0.5637±0.0008

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Table 9: 4 bidders (with standard errors)
GAP(MP) = 0.78%, GAP(RNET) = 3.5%, GAP(2ND) = 3.2%, GAP(MYER) = 3.2%

DISTRIB. GREEDY MYER. 2ND RNET MP

G50 0.6270±0.0009 0.6086±0.0007 0.6082±0.0007 0.6072±0.0006 0.6242±0.0007
G51 0.6417±0.0009 0.6215±0.0006 0.6205±0.0007 0.6192±0.0006 0.6379±0.0007
G52 0.6250±0.0009 0.6096±0.0007 0.6101±0.0007 0.6072±0.0006 0.6205±0.0007
G53 0.6266±0.0009 0.6054±0.0006 0.6055±0.0006 0.6034±0.0006 0.6220±0.0007
G54 0.6296±0.0009 0.6084±0.0006 0.6077±0.0007 0.6076±0.0006 0.6233±0.0007
G55 0.6213±0.0009 0.6029±0.0007 0.6028±0.0007 0.6020±0.0006 0.6158±0.0007
G56 0.6347±0.0009 0.6099±0.0007 0.6085±0.0007 0.6051±0.0006 0.6287±0.0007
G57 0.6427±0.0009 0.6210±0.0006 0.6234±0.0006 0.6193±0.0006 0.6369±0.0006
G58 0.6286±0.0009 0.6100±0.0007 0.6091±0.0007 0.6085±0.0007 0.6241±0.0007
G59 0.6411±0.0009 0.6199±0.0006 0.6201±0.0006 0.6190±0.0006 0.6357±0.0007

Table 10: 5 bidders (with standard errors)
GAP(MP) = 0.87%, GAP(RNET) = 2.8%, GAP(2ND) = 2.4%, GAP(MYER) = 2.4%

DISTRIB. GREEDY MYER. 2ND RNET MP

G50 0.6862±0.0008 0.6695±0.0006 0.6700±0.0006 0.6670±0.0006 0.6799±0.0006
G51 0.6901±0.0008 0.6737±0.0006 0.6738±0.0006 0.6713±0.0005 0.6846±0.0006
G52 0.6838±0.0008 0.6709±0.0006 0.6691±0.0006 0.6681±0.0005 0.6783±0.0006
G53 0.6894±0.0008 0.6724±0.0006 0.6721±0.0006 0.6684±0.0005 0.6838±0.0006
G54 0.6853±0.0008 0.6692±0.0006 0.6682±0.0006 0.6664±0.0006 0.6787±0.0006
G55 0.6850±0.0008 0.6717±0.0006 0.6720±0.0006 0.6685±0.0006 0.6809±0.0006
G56 0.6902±0.0008 0.6710±0.0006 0.6725±0.0006 0.6686±0.0006 0.6839±0.0006
G57 0.6900±0.0008 0.6719±0.0006 0.6715±0.0006 0.6682±0.0005 0.6824±0.0006
G58 0.6868±0.0008 0.6707±0.0006 0.6715±0.0006 0.6659±0.0006 0.6807±0.0006
G59 0.6927±0.0008 0.6752±0.0006 0.6768±0.0006 0.6711±0.0005 0.6866±0.0006

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

A.12 ADDITIONAL EXPERIMENTS FOR ICLR REBUTTAL

A.12.1 EXPERIMENTS ON MONOTONE NETWORKS

We present experiments on four additional approaches:

• MYERNET (Dütting et al., 2019): Agent i’s bid bi is mapped to fi(bi), where fi is a
nondecreasing function. fi(bi) represents agent i’s allocation priority value. The agent
with the highest priority value wins the item. If all agents’ priority values are below 0,
then the item is thrown away. The monotonicity of the fi guarantees strategy-proofness.
The fi are represented using the monotone min-max networks (Sill, 1997). We train the
fi using the standard RegretNet (Dütting et al., 2019) approach. We simultaneously train
n + 1 networks. Each fi is a min-max network with 5 “max” groups and each group
contains 5 nodes. There is also a shared payment network, which is a MLP with 2 hidden
layers and 20 nodes for each layer. (Despite the tiny networks, in practise, it is already
fairly expensive to train, with more details given below.) The payment network is only
used during training. After training, the payment network is thrown away and the “correct”
payments are derived from the (architecturally guaranteed) monotonic allocation function.
All other implementation details follow our RegretNet implementation described in A.8.

• MINMAX: This is a generalised version of MYERNET. Agent i’s priority value fi(bi, b−i)
now also depends on the others’ bids. fi is nondecreasing in bi and nonincreasing in every
dimension in b−i. This representation also guarantees strategy-proofness. We also use the
min-max networks to represent the fi.10 Same as MYERNET, each fi is a min-max network
with 5 “max” groups and each group contains 5 nodes. The only difference is that the input
dimension of fi is now n instead of 1. All other settings are the same as MYERNET.

On training difficulty: Both MYERNET and MINMAX are fairly expensive to train. For experiments
reported in this subsection, every instance takes about 12 hours on average to train. We conducted
our experiments (20 instances) in parallel on a high-performance cluster with Intel 8360Y CPUs.
As mentioned earlier, in our experiments, every min-max network contains only 5 groups and each
group contains 5 nodes. If we enlarge the network size to 10 groups and 10 nodes each group, then
training becomes too expensive. Based on our estimation, each instance takes 30+ hours even with
an Nvidia A100 GPU. (Unfortunately, at the moment, we do not have access to multiple GPUs.)

Below we present two modified approaches that are significantly more scalable, by adopting the
neural network interpolation idea from our paper.

• MYERNET+: We apply our paper’s main approach to improve MYERNET. That is, we
apply supervised training to train only the allocation function (i.e., the fi). The supervision
goal is to train the fi to replicate exactly Myerson’s greedy allocation – the agent with the
highest (conditional) virtual valuation should win the item and the item is thrown away if
all virtual valuations are below 0.
Each fi is represented using a min-max network with 10 “max” groups and each group
contains 10 nodes. All other implementation details follow our main approach described in
A.3. Each training instance takes around 35 minutes with an Intel 8360Y CPU.
There are several reasons why MYERNET+ is significantly faster: 1) there is no need to
calculate regret, which is the most time consuming step; 2) we switch from unsupervised
training to supervised; 3) we have one less network to train as the payment network is no
longer needed.

• MINMAX+: Same as MYERNET+, we apply our paper’s main approach to improve MIN-
MAX. Same as the case for MYERNET+, the supervision goal is to train the fi to replicate
exactly Myerson’s greedy allocation. Each fi is also represented using a min-max network
with 10 “max” groups and each group contains 10 nodes. Each training instance also takes
around 35 minutes with an Intel 8360Y CPU.

10By flipping the sign of input dimension i, we can change the output from being nondecreasing to nonin-
creasing in dimension i.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

On structural limitation of MYERNET and MINMAX: In A.9, we described an example showing
that MYERNET/MINMAX style allocations may lead to significant revenue loss. Here we further
elaborate on that example using specific numbers.

Admittedly, the following is a fairly contrived example, but it is presented to illustrate the limitation
of MYERNET and MINMAX. We assume that the bid profile is either (1, 0) or (0.5, ϵ), each with
50% chance. That is, with 50% chance, bidder 1’s value is 1 and bidder 2’s value is 0, and with 50%
chance, bidder 1’s value is 0.5 and bidder 2’s value is ϵ, where ϵ is infinitesimal. A near optimal
mechanism works as follows: if bidder 2’s value is 0, then bidder 1 faces a take-it-or-leave-it offer
of 1, and if bidder 2’s value is ϵ, then bidder 1 faces a take-it-or-leave-it offer of 0.5. The expected
revenue is 0.75. Suppose our allocation follows the style of either MYERNET or MINMAX. We use
p0 to represent bidder 1’s critical price for winning when bidder 2 bids 0 and we use pϵ to represent
bidder 1’s critical price for winning when bidder 2 bids ϵ. Since we assume our allocation follows
the style of either MYERNET or MINMAX, we must have p0 ≤ pϵ. For example, suppose the
allocation follows the style of MINMAX, then when bidder 2’s bid increases from 0 to ϵ, bidder 1’s
priority value either stays the same or drops and bidder 2’s priority value either stays the same or
increases. In order for bidder 1 to still beat bidder 2, bidder 1’s minimum winning bid must either
stay the same or increase. If pϵ ≤ 0.5, then the maximum revenue extracted from bidder 1 is then
at most 0.5p0 + 0.5pϵ ≤ 0.5. If pϵ > 0.5, then the maximum revenue extracted from bidder 1 is
then at most 0.5p0 ≤ 0.5. Therefore, the maximum revenue extracted from both bidders is at most
0.5+ϵ. Earlier, we showed that the optimal revenue is at least 0.75. That is, by adopting MYERNET
or MINMAX, for this example, we lose one third of the revenue.

Below we present experimental results on randomly generated grid distributions (G50 to G59) for 5
bidders. We still use the revenue gap (to the unattainable greedy upper bound) as the performance
indicator. Our method MP’s revenue gap is 0.87%. The revenue gaps of MYERNET+ and MIN-
MAX+, both are based on techniques proposed in our paper, are 3.3% and 3.4%, respectively. For
reference, we have also included the revenues of the manual baseline MYER., which is Myerson’s
greedy allocation where virtual valuations are calculated based on the marginal distributions (essen-
tially ignoring correlation altogether). Both MYERNET+ and MINMAX+ do not outperform MYER.
Lastly, MYERNET and MINMAX have much worse performances with gaps at 19% and 18%.

Table 11: Additional experiments for 5 bidders
GAP(MP) = 0.87%,GAP(MYER.) = 2.4%

GAP(MYERNET+) = 3.3%,GAP(MYERNET) = 19%
GAP(MINMAX+) = 3.4%,GAP(MINMAX) = 18%

DISTRIB. GREEDY MYERNET MINMAX MYERNET+ MINMAX+ MYER. MP

G50 0.6862 0.5754 0.5135 0.6630 0.6625 0.6695 0.6799
±0.0008 ±0.0005 ±0.0008 ±0.0006 ±0.0006 ±0.0006 ±0.0006

G51 0.6901 0.5746 0.4503 0.6681 0.6670 0.6737 0.6846
±0.0008 ±0.0005 ±0.0007 ±0.0006 ±0.0006 ±0.0006 ±0.0006

G52 0.6838 0.5216 0.5688 0.6642 0.6635 0.6709 0.6783
±0.0008 ±0.0006 ±0.0006 ±0.0006 ±0.0006 ±0.0006 ±0.0006

G53 0.6894 0.6549 0.4469 0.6665 0.6659 0.6724 0.6838
±0.0008 ±0.0006 ±0.0009 ±0.0006 ±0.0006 ±0.0006 ±0.0006

G54 0.6853 0.5809 0.6270 0.6632 0.6627 0.6692 0.6787
±0.0008 ±0.0006 ±0.0005 ±0.0006 ±0.0006 ±0.0006 ±0.0006

G55 0.6850 0.6051 0.5904 0.6650 0.6642 0.6717 0.6809
±0.0008 ±0.0005 ±0.0006 ±0.0006 ±0.0006 ±0.0006 ±0.0006

G56 0.6902 0.6139 0.6369 0.6661 0.6658 0.6710 0.6839
±0.0008 ±0.0006 ±0.0005 ±0.0006 ±0.0006 ±0.0006 ±0.0006

G57 0.6900 0.6041 0.6161 0.6659 0.6655 0.6719 0.6824
±0.0008 ±0.0006 ±0.0006 ±0.0006 ±0.0006 ±0.0006 ±0.0006

G58 0.6868 0.2196 0.6210 0.6644 0.6638 0.6707 0.6807
±0.0008 ±0.0008 ±0.0006 ±0.0006 ±0.0006 ±0.0006 ±0.0006

G59 0.6927 0.6312 0.5969 0.6688 0.6680 0.6752 0.6866
±0.0008 ±0.0005 ±0.0006 ±0.0006 ±0.0006 ±0.0006 ±0.0006

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

A.12.2 CONTINUOUS DISTRIBUTIONS

Lastly, we present a few additional experiments on continuous distributions. We experimented with
three continuous distributions for 2 bidders. We use f(x, y) to denote the joint probability density
function.11 Our method MP is near optimal. On the other hand, 2ND (second price auction with
optimal reserve) also performs quite well for all three cases.

Table 12: Experiments on three continuous distributions
GAP(MP) = 0.02%,GAP(2ND) = 0.5%

DISTRIB. GREEDY 2ND MP

f(x, y) = 2x+ y 0.5095± 0.001 0.5079± 0.0008 0.5094 ± 0.0008

f(x, y) = 2x− y + 1 0.4518± 0.001 0.4469± 0.0008 0.4517 ± 0.0008

f(x, y) = sin(x) + cos(y) + 2 0.4216± 0.001 0.4211± 0.0008 0.4215 ± 0.0008

11We need to apply a normalisation factor α to ensure that
∫ 1

0

∫ 1

0
αf(x, y)dxdy = 1. We ignore α for

presentation purpose.

30

	Introduction
	Model Description
	Virtual Valuation, Ironed Virtual Valuation, and Marginal Profit
	Technical Description of the Proposed Approach
	Experiments
	Appendix
	Related Research
	Ironing and marginal profit
	Training parameters, evaluation details, and hardware
	Details of baseline auctions
	Hand-crafted grid distributions based on magic squares
	Adversarial distributions
	Adversarial distributions via evolutionary computation
	Adversarial distributions via mixed-integer-programming

	Case study on the benefit of counterexample-guided training and monotonicity fix
	Details of RegretNet Implementation
	Alternative network architectures
	Multi-unit auctions with unit demand
	Complete tables including standard errors
	Additional Experiments for ICLR Rebuttal
	Experiments on monotone networks
	Continuous distributions

