

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MEMORY TYPE MATTERS: ENHANCING LONG-TERM MEMORY IN LARGE LANGUAGE MODELS WITH HY- BRID STRATEGIES

Anonymous authors

Paper under double-blind review

ABSTRACT

The memory capabilities of Large Language Models (LLMs) have garnered increasing attention recently. Many approaches adopt Retrieval-Augmented Generation (RAG) techniques to alleviate the “Forgetting” problem in LLMs. Despite great success achieved, existing RAG-based memory approaches typically overlook the differences between memories and employ a unified strategy to process all memories, leading to suboptimal performance. Thus, an intuitive question arises: can we categorize memory into different types and select appropriate strategies? However, given the topic-rich, scenario-complex, and boundary-blurred nature of memory scenarios, achieving precise classification of memories is not easy. To address this challenge, we propose a memory multi-class benchmark in this paper, termed TriMEM. TriMEM comprises 6,000 dialogue samples, providing precise annotations for memory types across diverse topics and scenarios. Building upon this foundation, we propose a novel memory framework, named MemoType. MemoType can adaptively identify the category of each memory and design tailored storage and retrieval strategies, thereby achieving satisfactory performance. Extensive experiments on retrieval and generation tasks demonstrate the effectiveness of the proposed approach ¹.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable abilities in natural language understanding and multi-turn dialogue fields, garnering increasing attention. However, with the growing frequency of User-LLM interactions, the limited context window length of LLMs fails to meet the demand for scalable conversational interactions (Liu et al., 2023). When presented with retrospective queries, LLMs cannot effectively utilize conversation memories to achieve personalized responses, resulting in the “Forgetting” problem. To address this issue, Retrieval-Augmented Generation (RAG)-based memory techniques have emerged as a practical solution. Instead of concatenating all conversations, RAG-based approaches store conversations in an external bank for selective retrieval, which enables the LLM to recall critical memories and achieve personalized responses.

RAG-based memory strategies can be broadly classified into unstructured and structured types, based on whether to construct additional memory associative information. Unstructured memory augmentation approaches typically store dialogue fragments or summaries, retrieved through similarity matching with the given query. An early and influential effort is the MemoryBank (Zhong et al., 2024), which maintains a user-specific memory and retrieves facts with relevance scoring to produce appropriate responses. On this basis, SeCom (Pan et al., 2025) employs adaptive memory segmentation techniques to achieve superior performance. Structural memory augmentation strategies organize memories into meaningful relationships, thereby achieving stronger sense-making and richer associations. For instance, HippoRAG (Gutiérrez et al.) builds a knowledge graph and uses personalized pageRank to surface associative passages. Mem0 (Chhikara et al., 2025) further advances the graph view by maintaining a dynamic memory graph that incrementally extracts entities and relations, consolidates them across dialogues. Structural memory augmentation strategies deepen memory connections while inevitably introducing additional overhead.

¹<https://anonymous.4open.science/r/MemoType-5578/README.md>

Figure 1: Three Memory Types in TriMEM (Left) and the proposed MemoType Framework (Right).

Despite great success, the above methods still suffer certain drawbacks: i) In the retrieval phase, most approaches overlook the structural and content differences between memories and employ a unified strategy to process all memories, leading to suboptimal performance. For instance, event-related memories often contain fragmented information such as persons, time, and location, preventing regular embedding-based similarity from achieving precise retrieval. Conversely, when memories pertain only to basic concepts, introducing details like time or persons may introduce noise into the retrieval process. Thus, an intuitive question arises: *can we categorize memory into different types and select appropriate strategies?* However, given the topic-rich, scenario-complex, and boundary-blurred nature of memory scenarios, achieving precise classification of memories is not easy. Although some attempts have been conducted, most research (Wang & Chen, 2025; Zhang et al., 2025) relies on basic prompt-based methods to determine memory types, making it difficult to adapt to complex memory scenarios to achieve accurate classification, thus failing to acquire optimal results. ii) In the generation phase, most work employs retrieved memory segments directly as input to enhance LLM outputs. However, these memory segments often contain information unrelated to the query and inevitably introduce noise to the final output, resulting in performance decline.

To address these issues, we propose a memory multi-class benchmark, termed TriMEM. Inspired by cognitive psychology theory (Eysenck & Keane, 2020), three memory types are defined in TriMEM: Episodic Memory (EM), Personal Semantic Memory (PM), and General Semantic Memory (GM). Specifically, EM typically refers to a specific event, PM usually involves user information or preferences, while GM includes general knowledge and objective descriptions. TriMEM comprises 6,000 samples, providing precise annotations for memory types across diverse topics and scenarios. With the help of TriMEM, we propose a novel memory framework, MemoType, **which can adaptively recognize each memory and query type with the learned router model. With the memory and query routing, MemoType can retrieve the memory with corresponding query types rather than retrieving the whole memory corpus, thereby enhancing the retrieval efficiency. Moreover, MemoType designs tailored storage and retrieval strategies for each memory type to enhance performance.** Furthermore, we design a memory pruning module that adaptively prunes retrieved memories based on queries, reducing irrelevant information. Our contributions are as follows:

- Inspired by cognitive psychology theory, we propose a memory multi-class benchmark, TriMEM, which categorizes memories into three types: EM, PM, and GM, annotated across multiple topics. To the best of our knowledge, this is the first benchmark for memory type classification.
- We propose a novel memory augmentation framework, termed MemoType, which can adaptively recognize each memory and query's type and design tailored storage and retrieval strategies to enhance performance. Besides, the designed memory pruning module can adaptively prune retrieved memories based on queries, reducing interference caused by irrelevant information.
- **To the best of our knowledge, MemoType is the first memory framework that adaptively classes memory and designs distinct retrieval and storage mechanisms for different memory types.**
- Extensive experiments on retrieval and generation tasks show the effectiveness of MemoType.

108
109

2 MEMOTYPE

110
111
112
113
114
115
116
117
118
119
As emphasized in the Introduction, existing methods face challenges in both the retrieval and generation phases. In the retrieval phase, most approaches employ a uniform strategy for all memories, overlooking structural and content differences between them, leading to suboptimal performance. Besides, in the generation phase, most methods directly utilize retrieved memory segments to augment the large language models' output. However, these segments usually contain irrelevant information and introduce noise into the results, leading to performance decline. To address these issues, we propose MemoType, which consists of three modules: a memory type router module that flexibly categorises memory and query types, a hybrid strategy module that enhances performance by applying adaptive retrieval strategies to different memory types, and a memory pruning module that adaptively prunes retrieved memories based on queries to avoid noise interference.120
121

2.1 PRELIMINARY

122
123
124
125
126
127
128
129
130
131
Denote $\mathcal{M} = \{\mathcal{S}_i\}_{i=1}^S$ as the stored conversation history between two participants, where the dialogue may occur between users or between a user and an assistant. S indicates the number of sessions, $\mathcal{S}_i = \{d_l\}_{l=1}^{S_i}$ denotes the i -th session, comprising S_i sequential dialogue. Denote the retrieval function as f_R and the response generation function as f_G . Following the setting of SeCom (Pan et al., 2025), the pair $t_i = (d_{2i}, d_{2i+1})$ is referred to as a turn. The research framework process can be described as follows: (1) *Memory Construction*: Build a memory repository \mathcal{B} from \mathcal{M} . (2) *Memory Retrieval*: Given a user query q and a retrieval repository \mathcal{B} , retrieve n memory turns $\{t_i\}_{i=1}^n \subseteq \mathcal{B}$ relevant to q using the function $f_R(q, \mathcal{B}, n)$. (3) *Response Generation*: Employ the retrieved memory turns $\{t_i\}_{i=1}^n$ and user query q to generate the output r using $f_G(q, \{t_i\}_{i=1}^n)$.132
133

2.2 MEMORY TYPE ROUTER

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
As mentioned in the previous sections, different types of memories require tailored strategies to optimize performance. A natural idea is to categorize memories into distinct types and apply appropriate strategies accordingly. However, due to the topic-rich, scenario-complex, and boundary-blurred nature of memory scenarios, achieving precise classification is a challenging task. While some preliminary (Wang & Chen, 2025; Zhang et al., 2025) efforts have been made in memory categorization, most existing approaches rely on basic prompt-based methods to determine memory types, which struggle to adapt to complex memory scenarios to achieve accurate classification. Experiments of Table 9 in the Appendix further demonstrate that existing Prompt-based classification methods often fail to achieve accurate categorization, limiting their effectiveness in real-world memory scenarios.149
150
151
152
153
154
155
156
157
As a pioneering work in memory classification, PerLTQA (Du et al., 2024) has laid a foundation for this field. However, PerLTQA suffers from several limitations, making it less applicable to memory scenarios. First, it generates memories with single labels, failing to address conversations involving multiple topics. Second, its memory classification is incomplete: semantic memory excludes general knowledge, while episodic memory overlooks future planning. Lastly, PerLTQA adopts a coarse-grained approach, treating all dialogues as episodic memory, which lacks practicality given dialogues' significance in retrieval tasks.158
159
160
161
To tackle these challenges, we introduce a memory multi-class benchmark called TriMEM. Drawing inspiration from cognitive psychology theories (Eysenck & Keane, 2020; Du et al., 2024), thisFigure 2: The Statistical Information of TriMEM². “U-U” denotes the user-to-user conversation, “U-A” denotes the user-to-assistant conversation.

²The percentage of the memory types is a relative ratio, as there is overlap between different memory types.

162 Table 1: The Memory Classification Criterion in the TriMEM Benchmark.
163

164 Memory Type	165 Content Type	166 Example
165 EM	Event Occurred	“Sarah and John had dinner at a sushi restaurant downtown.”
	Events Planned to Occur	“Next Month, my colleagues are planning to see a beautiful sunset.”
167 PM	User Information	“Jack’s degree is in Mathematics.”
	User Preferences and Habits	“I love Italian food, especially pasta and pizza.”
	User Intent	“I want to buy a pair of running shoes”
170 GM	General Knowledge	“Water boils at 100 degrees Celsius at sea level.”
	Broadly Applicable Suggestions	“Getting up early is a good habit for maintaining good health.”
	Objective Descriptions of Entities	“The desks in the school are made of wood.”
173 None	Question without Information	“Do you have any tips on how to organize a shoe rack?”
	Sentence without Information	“Good Morning, Peter”; “See you next time”

175
176 dataset categorizes memories into three distinct types: Episodic Memory (EM), Personalized Semantic Memory (PM), and General Semantic Memory (GM). The memory classification criterion
177 for this dataset is outlined in Table 1. Specifically, EM denotes specific events, including past events
178 and planned events; PM covers personalized information, preferences, habits, and intentions; GM
179 contains general knowledge facts, broadly applicable suggestions, and objective descriptions.
180

181 TriMEM comprises 6,000 dialogue instances (3,550 user-agent dialogues, 2,450 user-user dialogues). TriMEM provides memory type annotations across diverse scenarios (user-user, user-agent)
182 and topics (life, personal information, social status, etc.). Figure 2 presents its statistical information.
183 Further details about TriMEM and experimental results can be found in Appendix A.4.
184

185 **Memory Type Router.** With the assistance of the TriMEM benchmark, achieving precise memory
186 classification has become significantly simplified. We utilized a basic BERT model with a
187 three-class classifier, treating the task as a multi-label classification problem and employing binary
188 cross-entropy with logits loss for training, requiring approximately ONLY five iterations to produce
189 a highly accurate classifier. The classification experiment can be found in Table 9 in Appendix
190 A.5. Compared to traditional prompt-based classification approaches, our BERT-based classification
191 router not only achieves superior classification accuracy but also delivers lower latency and
192 computational overhead. The training loss is shown below:
193

$$194 \mathcal{L} = -\frac{1}{N} \sum_{i=1}^N \sum_{c=1}^C [y_{i,c} \cdot \log \sigma(z_{i,c}) + (1 - y_{i,c}) \cdot \log(1 - \sigma(z_{i,c}))], \quad (1)$$

195 where N is the number of samples, C is the classes number. $y_{i,c}$ represents the ground truth label
196 for sample i and class c , where $y_{i,c} \in \{0, 1\}$. $\sigma(\cdot)$ is the sigmoid activation function.
197

198 **Query Type Router.** After memory classification, another challenge is to achieve precise query
199 routing. Using prompt-based methods for query classification also faces the issue of low accuracy.
200 Inspired by HyDE (Gao et al., 2023)’s method of using hypothetical document generation to reduce
201 semantic gaps between query and corpus, we instead require the LLM to generate fake memories
202 based on the query, and then we classify these fake memories using the BERT classifier trained.
203

$$204 \{m_i\}_{i=1}^K = \text{LLM}_{\text{fake}}(q), \quad i = 1, \dots, K, \quad (2)$$

205 where q is the query. The fake memory generation prompt is shown in Figure 16 in the Appendix.
206

207 During the retrieval phase, we only retrieve memories from the corpus that share the same type
208 as the query, thereby reducing the retrieval space. Across various datasets, this strategy eliminates
209 approximately 20% of irrelevant memory retrieval operations and reduces retrieval time. To enhance
210 robustness, we select $K = 5$ fake memory entries and determine the core query type through a
211 majority voting mechanism, thereby guiding the subsequent execution of the retrieval strategy. Types
212 appearing in false memories will be identified as the retrieval scope for the query. **In summary, the**
213 **nature of query categories and memory categories is fundamentally different. Specifically, the query**
214 **type is single, but the memory type may be multiple types or none at all, and the retrieved memory**
215 **could have multiple types since nonetype memory is not in the retrieved scope of the query.**

216 2.3 HYBRID RETRIEVAL STRATEGY
217

218 As previously mentioned, most existing approaches employ a single strategy to process all mem-
219 ories, resulting in suboptimal performance. Therefore, in this subsection, we will adopt different
220 strategies for different memory types to enhance the final performance.

221 **Episodic Memory.** Episodic memory usually involves events composed of multiple elements, such
222 as time (T), participants (P), location (L), and event context (E). To address the issue of excessive
223 coupling of key elements in traditional methods, we employ LLMs to extract event elements from
224 both the query and memory sides. Let $\mathcal{N} = \{T, P, L, E\}$ denote the set of event element types. For
225 a given query, the LLM extracts a subset $\mathcal{N}_{\text{query}} \subseteq \mathcal{N}$, which represents the element types in the
226 query. The similarity score between query q and the i -th memory is computed as:
227

$$228 s_{\text{total}}^i = \text{sim}(q, m^i) + \alpha \sum_{t \in \mathcal{N}_{\text{query}}} \text{sim}(e_t, m_t^i), \quad e^t \in \mathcal{E}_{\text{query}}, m_t^i \in \mathcal{E}_{\text{memory}}^i,$$

230 where $\mathcal{E}_{\text{query}}$ and $\mathcal{E}_{\text{memory}}^i$ are the event element from query and the i -th memory, respectively. The
231 extract prompt is shown in Figure 18. $\text{sim}(\cdot)$ is the similarity score, α is the parameter.
232

233 Episodic memory usually involves multi-hop retrieval and temporal reasoning, making it the most
234 challenging among the three memory types. Although our retrieval method incurs additional over-
235 head, the adaptive routing policy ensures that only queries involving episodic memory employ this
236 strategy. This avoids the overhead of structure expansion for all memories seen in similar ap-
237 proaches, such as HippoRAG, thereby effectively reducing the latency of our method.

238 **Personal Semantic Memory.** The challenge of PM lies in the greater semantic gap between queries
239 and the corpus. Queries involving personal information often result in reduced accuracy of false
240 memories. For instance, when the query is “What is your occupation?”, there are many possible
241 answers, e.g., teacher, doctor, student, painter, which may not be exactly matched through fake
242 memories. To mitigate this issue, we address it from the query side by utilizing LLM to generate
243 multiple query-related keywords and concatenating them with the original query. This enhances
244 performance without introducing additional retrieval times. The process can be formalized as:
245

$$q' = \text{concat}(q, \text{LLM}(q)),$$

246 where q is the original query, $\text{LLM}(q)$ is the keywords generated by the LLM based on q , concat is
247 the concatenation operation, q' is the enhanced query used for retrieval.
248

249 **General Semantic Memory.** For general semantic memory, which typically involves general world
250 knowledge and widely accepted suggestions, LLMs usually can generate high-quality responses.
251 Therefore, no additional strategies are employed to enhance its performance. We utilize the fake
252 memory strategy adopted for other memory types to improve overall performance. Finally, the
253 reciprocal rank fusion (RRF) (Rackauckas, 2024) strategy is adopted to obtain the final ranking.
254

$$r_{\text{final}} = \text{RRF}(r, r_{\text{fake}}), \quad (3)$$

255 where r is the rank obtained from the original query-corpus ranking or after applying the memory
256 enhancement strategy, r_{fake} is the ranking derived from the fake memory combined with the corpus.
257

258 2.4 MEMORY PRUNING MODULE
259

260 As mentioned before, most work employs retrieved memory segments directly as input to enhance
261 LLM outputs. However, these memory segments often contain information unrelated to the query
262 and inevitably introduce noise to the final output, resulting in performance decline. To address this
263 issue, we propose a memory pruning module that adaptively prunes retrieved memory based on
264 the query, ensuring that only relevant information is retained for subsequent tasks. This module
265 leverages the capabilities of LLMs to reason over the retrieved memory and eliminate irrelevant or
266 noisy elements. The process can be formulated as:
267

$$m^p = \text{LLM}_{\text{prune}}(m^q, q), \quad (4)$$

268 where m^q is the retrieved memory of query q , and the pruned memory m^p would be utilized as input
269 for the generation process. The memory pruning prompt is shown in Figure 21 in the Appendix.

270 3 EXPERIMENT
271272 3.1 EXPERIMENTAL SETTINGS
273274 **Dataset.** In the experiment part, we evaluate our model performance on three long-term memory
275 datasets: LongMemEval-S (Wu et al., 2025), LoCoMo (Maharana et al., 2024), LongMemEval-M
276 (Wu et al., 2025), [PerLTQA \(Du et al., 2024\)](#). These datasets are designed to assess the capabilities
277 of models in both retrieval and generation tasks. Detailed dataset statistics and descriptions are
278 provided in the Appendix B.279 **Metrics.** We evaluate two types of tasks: retrieval tasks and generation tasks, using metrics tai-
280 lored to each. For retrieval tasks, we use Recall@k and NDCG@k, where Recall@k measures
281 the proportion of relevant documents retrieved in the top-k results, and NDCG@k assesses rank-
282 ing quality based on relevance and position. For generation tasks, we employ BLEU, BERTScore,
283 and GPT4Judge (Zheng et al., 2023). BLEU evaluates n-gram overlap with reference answers,
284 BERTScore measures semantic similarity via embeddings, and GPT4Judge leverages GPT-4o to
285 assess response alignment with reference answers. The GPT evaluation prompts are provided in
286 Figure 23 in the Appendix.287 **Baselines.** We evaluate the proposed method with various baselines. **Strong Retrieval methods:**
288 (1) *Contriever* Izacard et al. (2021). **Three Query Expansion methods:** (2) *HyDE* (Gao et al.,
289 2023); (3) *Mill* (Jia et al., 2023); (4) *Query2Doc* (Wang et al., 2023). **Two Memory Enhancement**
290 **methods** (5) *SeCom* (Pan et al., 2025); (6) *A-Mem* (Xu et al., 2025). **Two Structural RAG methods**
291 (7) *HippoRAG 2* (Gutiérrez et al.); and (8) *RAPOTR* Sarthi et al. (2024). Detailed descriptions of
292 baselines provided in the Appendix C.293 **Implement Details.** For all methods, we adopted a consistent strategy to ensure a fair compari-
294 son. In both retrieval and generation tasks, our method and the baselines utilized Contriever as
295 the embedding model. For generation performance, we evaluated using the top 3 retrieved turns
296 on the LongMemEval-S and LongMemEval-M datasets, while for LoCoMo, we selected the top
297 10 retrieved turns for performance assessment. In our experiments, we utilize 'gpt-4o-mini' as the
298 backbone for all tasks and baselines, including memory information processing and question-answer
299 generation. To ensure fair comparisons, all baselines are implemented with uniform generation
300 prompts. The temperature of the LLMs is fixed at 0 to ensure reproducibility.301 3.2 OVERALL RESULTS
302303 In this paper, we evaluate two types of tasks, retrieval and generation tasks, with their respective
304 results presented in Table 2 and Table 3. Notably, RAPTOR and Mem0 involve generating a new
305 text process, making it impossible to assess their retrieval performance. Additionally, for A-Mem,
306 Mem0, HippoRAG2, and RAPTOR, the memory construction latency on LongMemEval-m exceeds
307 one week, and thus, we do not report their performance in this study.308 **Retrieval Results.** To evaluate the effectiveness of MemoType, we conducted retrieval perfor-
309 mance comparison experiments, as presented in Table 2. For query expansion methods, MemoType
310 achieves a Recall@1 of 55.74% on the LongMemEval-S dataset, outperforming Mill's by 17.02%.
311 This highlights the limitations of traditional query expansion techniques, which struggle with per-
312 sonalized queries involving user-specific information. In memory enhancement, MemoType sur-
313 passes SeCom with a Recall@1 of 46.17% on the LongMemEval-M dataset, exceeding SeCom's by
314 14.26%. This shows that MemoType's ability to leverage memory diversity leads to superior per-
315 formance compared to SeCom's simplistic segmentation. For structural RAG techniques, MemoType
316 outperforms HippoRAG2 on the LongMemEval-S dataset, achieving a Recall@1 of 55.74% ver-
317 sus 50.64%, a 5.1% improvement. This suggests that structural RAG methods may overcomplicate
318 tasks, while MemoType's approach better balances simplicity and effectiveness, adapting to query
319 complexity and memory characteristics.320 **Question Answer Results.** To validate the question answer performance of the proposed method,
321 we conduct the QA experiment in Table 3. For query expansion methods, our approach demon-
322 strated strong results, particularly on BLEU and BERTScore. On the LongMemEval-S dataset, it
323 achieved a BLEU score of 4.52, far surpassing Query2Doc and Mill, highlighting the limitations of
traditional methods in generating high-quality, contextually relevant answers. For memory enhance-

Table 2: Retrieval Performance. All methods are based on Contriever as the retriever.

Method	Recall@1	NDCG@1	Recall@3	NDCG@3	Recall@5	NDCG@5	Recall@10	NDCG@10
LongMemEval-S								
Contriever	43.40	43.40	73.62	54.00	83.83	60.33	94.26	65.79
HyDE	27.23	27.23	53.19	37.82	65.32	42.84	82.34	49.83
Mill	38.72	38.72	67.66	50.17	78.94	56.10	90.64	61.34
Query2Doc	25.96	25.96	50.64	36.43	64.89	41.66	81.06	48.38
SeCom	45.32	45.32	74.04	53.42	83.19	59.42	91.28	64.66
A-Mem	27.02	27.02	44.89	29.54	52.98	33.17	67.02	37.64
HippoRAG2	<u>50.64</u>	<u>50.64</u>	<u>80.85</u>	<u>60.59</u>	<u>88.51</u>	<u>66.48</u>	<u>93.53</u>	<u>71.05</u>
Ours	55.74	55.74	81.06	63.40	88.72	68.64	93.62	72.54
LoCoMo								
Contriever	20.75	20.75	36.56	30.86	44.06	34.16	53.93	37.31
HyDE	25.33	25.33	42.55	36.24	50.45	39.60	59.82	42.65
Mill	19.84	19.84	35.60	30.16	42.75	33.10	53.12	36.57
Query2Doc	23.11	23.11	39.78	33.94	<u>47.48</u>	37.15	59.37	41.11
SeCom	23.77	23.77	39.38	<u>34.06</u>	<u>45.57</u>	36.60	<u>55.44</u>	<u>39.76</u>
A-Mem	11.03	11.03	17.93	14.96	21.85	16.47	28.50	18.42
HippoRAG2	<u>24.97</u>	<u>24.97</u>	<u>39.98</u>	33.84	45.87	<u>36.28</u>	53.17	38.64
Ours	26.54	26.54	43.15	36.77	50.60	39.79	61.48	43.56
LongMemEval-M								
Contriever	33.19	33.19	57.87	41.04	68.09	46.46	82.98	51.77
HyDE	21.70	21.70	40.43	27.90	50.64	31.99	63.62	36.71
Mill	28.51	28.51	52.77	37.48	63.40	<u>42.73</u>	<u>76.81</u>	<u>48.04</u>
Query2Doc	19.15	19.15	37.02	25.66	44.68	28.96	61.49	34.03
SeCom	<u>31.91</u>	<u>31.91</u>	<u>55.11</u>	<u>38.16</u>	<u>64.47</u>	42.38	75.96	47.06
Ours	46.17	46.17	71.91	52.95	80.21	58.35	87.45	62.29
PerLTQA								
HyDE	17.09	17.09	56.06	53.16	66.42	58.01	79.49	62.52
Mill	<u>51.87</u>	<u>51.87</u>	<u>77.66</u>	<u>75.29</u>	84.36	<u>78.47</u>	<u>91.40</u>	<u>80.92</u>
Query2Doc	26.15	26.15	62.26	59.34	72.90	64.36	83.47	68.04
A-Mem	25.11	25.11	30.47	39.57	45.50	41.91	59.77	56.67
HippoRAG2	41.47	41.47	72.23	70.02	78.37	72.91	85.80	75.50
Ours	59.48	59.48	80.39	78.69	86.39	81.05	92.47	82.83

Figure 3: The ablation study of the proposed classification strategy on three datasets. “w/ Classify” represents adopting the classification strategy to filter memory, “w/o Classify” denotes the opposite.

ment techniques, our method excelled on LoCoMo, achieving the highest GPT4Judge score of 40.38 and a BERTScore of 85.43, outperforming approaches like SeCom that fail to utilize memory diversity effectively. For structural RAG methods, our approach showed clear advantages by avoiding the inefficiencies of overcomplicated structural enhancements, demonstrating that selectively applying techniques based on query complexity is critical for optimal performance. These results underscore the robustness of our method.

378 Table 3: Question Answer Performance. All methods are based on Contriever as the retriever.
379
380

Method	GPT4Judge	F1	BLEU	Rouge1	Rouge2	RougeL	RougeLsum	BERTScore
LongMemEval-S								
Contriever	44.40	10.40	1.60	11.05	4.89	9.79	10.07	83.06
HyDE	42.60	9.96	1.44	10.58	4.67	9.31	9.57	83.02
Mill	42.20	9.91	1.55	10.57	4.54	9.20	9.45	82.96
Query2Doc	43.00	9.80	1.47	10.44	4.46	9.21	9.43	82.97
SeCom	44.80	11.01	1.65	11.66	5.14	10.36	10.58	83.26
A-Mem	27.80	8.51	1.27	9.15	3.57	7.74	7.99	82.52
HippoRAG2	45.40	10.55	1.65	11.15	5.17	9.98	10.17	83.12
Raptor	32.20	12.08	1.90	12.73	5.82	11.25	11.35	83.50
Ours	50.00	20.27	4.52	21.13	10.49	19.54	19.71	85.32
LoCoMo								
Contriever	37.97	14.54	2.44	14.97	7.21	13.98	13.97	84.38
HyDE	40.18	14.86	2.60	15.25	7.35	14.14	14.15	84.48
Mill	37.41	14.50	2.49	14.88	7.13	13.84	13.83	84.38
Query2Doc	39.83	14.57	2.50	14.95	7.16	13.88	13.87	84.44
SeCom	38.57	14.85	2.41	15.30	7.37	14.25	14.25	84.44
A-Mem	25.03	11.14	1.63	11.75	5.12	10.93	10.90	83.73
HippoRAG2	37.81	14.61	2.56	15.03	7.33	14.03	14.04	84.42
Raptor	31.72	14.55	2.88	15.09	7.49	14.18	14.17	84.48
Ours	40.38	19.69	4.53	20.10	10.08	18.91	18.94	85.43
LongMemEval-M								
Contriever	35.40	9.20	1.34	9.87	4.15	8.59	8.85	82.79
HyDE	34.60	9.01	1.26	9.71	3.99	8.46	8.67	82.70
Mill	35.40	8.79	1.29	9.47	3.89	8.14	8.39	82.58
Query2Doc	34.80	8.66	1.20	9.34	3.88	7.99	8.23	82.61
SeCom	34.40	10.13	1.37	10.83	4.65	9.51	9.69	83.07
Ours	41.60	17.79	3.78	18.73	8.72	17.14	17.29	85.02
PerLTQA								
HyDE	39.39	30.80	7.21	32.59	16.41	26.82	26.90	88.86
Mill	51.37	36.65	10.61	38.41	21.40	32.44	32.50	89.85
Query2Doc	42.32	31.95	7.82	33.72	17.46	27.95	28.01	89.06
A-Mem	32.12	34.96	5.20	29.95	19.64	31.94	22.01	87.74
HippoRAG2	49.26	34.44	8.89	36.24	20.01	30.48	30.57	89.42
Ours	52.85	42.49	17.17	44.32	26.49	38.69	38.66	90.92

416 3.3 ABLATION STUDY
417418 In this section, we conduct an ablation study to analyze the effectiveness of our proposed method
419 from four key perspectives: classification strategy, hybrid retrieval strategy, memory pruning stra-
420 tegy, and the design of the retriever. The following subsections detail the experimental settings and
421 results for each aspect, offering a thorough examination of the robustness of our method.
422423 **Classification Strategy.** As shown in Figure 3, the proposed classification strategy effectively im-
424 proves retrieval accuracy. In the experiment, “w/Classify” indicates filtering the memory corpus
425 using our query labels; “w/o Classify” indicates retrieving all memories without category filtering.
426 No retrieval enhancement techniques were employed in this experiment to eliminate interference
427 from other strategies. As shown in Table 3, after introducing memory-type routing, retrieval per-
428 formance across all metrics consistently improved, indicating that queries were correctly routed to
429 their corresponding memories. For instance, on LongMemEval-S, Recall@5 exceeds 90%, and on
430 LoCoMo and LongMemEval-M, recall improves significantly. Moreover, for the more challenging
431 recall@1 and recall@3 metrics, the improvement in retrieval precision is most significant, indicating
432 that the router effectively filters out some interfering memories through type-based filtering. More
433 detailed experiment results can be shown in Appendix D.

432 Table 4: The ablation study of the proposed hybrid strategy on three datasets. “Key” and “Fake
 433 Memory” denote the enhancement of retrieval using keywords and fake memory, respectively.

Strategy	LongMemEval-S			LoCoMo			LongMemEval-M		
	Recall@1	Recall@3	Recall@5	Recall@1	Recall@3	Recall@5	Recall@1	Recall@3	Recall@5
Native	43.40	73.62	83.83	20.75	36.56	44.06	33.19	57.87	68.09
Key	43.82	75.10	84.25	20.90	37.06	44.61	33.19	60.63	66.59
Fake Memory	51.06	78.72	87.44	23.23	42.40	49.48	41.48	69.36	78.72
Our Strategy	55.74	81.06	88.72	26.54	43.15	50.60	46.17	71.91	80.21

440 Table 5: The ablation study of memory pruning strategy on three datasets. “w/ Prun” denotes
 441 adopting the proposed memory pruning strategy, and “w/o Prun” denotes the contrary.

Strategy	LongMemEval-S			LoCoMo			LongMemEval-M		
	GPT4Judge	BLEU	BERTScore	GPT4Judge	BLEU	BERTScore	GPT4Judge	BLEU	BERTScore
w/o Prun	49.00	3.15	82.88	39.88	4.18	85.19	42.00	2.80	84.44
w/ Prun	50.00	4.52	85.32	40.38	4.53	85.43	41.60	3.78	85.02

442
 443 **Hybrid Retrieval Strategy.** To validate the hybrid retrieval strategy in improving retrieval performance,
 444 we conducted experiments as shown in Table 4. We compared this hybrid strategy with a single strategy (all memory types employ the same retrieval-enhancing strategy) and investigated
 445 its impact on retrieval performance. “Key” indicates the enhancement of retrieval using keywords,
 446 while “Fake Memory” represents the use of fake memory for improvement. On the LongMemEval-
 447 S dataset, our strategy achieved a Recall@1 of 55.74, surpassing the “Fake Memory” approach by
 448 4.68 points. Similarly, on LoCoMo and LongMemEval-M datasets, our strategy outperformed oth-
 449 ers in Recall@3 and Recall@5. These results confirm that the hybrid retrieval strategy effectively
 450 leverages the unique advantages of different memory types to further boost performance.

451 **Memory Pruning Strategy.** As shown in Table 5, our method significantly improves QA perfor-
 452 mance across all datasets. In the experiments, “w/o Prun” represents no use of the memory pruning
 453 strategy, while “w/ Prun” indicates its application. On the LongMemEval-S dataset, our method
 454 achieves higher BLEU (4.52) and BERTScore (85.32) compared to “w/o Prun.” Similar improve-
 455 ments are observed on LoCoMo and LongMemEval-M. These results demonstrate that our memory
 456 pruning strategy effectively filters irrelevant information, enhancing retrieval and QA accuracy.

457 **Different Retriever.** As shown in Table 6, the ablation study evaluates different retrievers combined
 458 with our method across three datasets. For all base retrievers (MPNet, MiniLM, and QAMiniLM),
 459 our approach consistently achieves the highest recall scores at ranks 1, 3, and 5. For instance, with
 460 MPNet on LongMemEval-S, our method achieves 38.72 (Recall@1) and 77.45 (Recall@5), signif-
 461 icantly outperforming other methods. Similar trends are observed with MiniLM and QAMiniLM
 462 across all datasets. These results demonstrate that our method effectively enhances retrieval perfor-
 463 mance by leveraging base retrievers and optimizing memory utilization for improved recall accuracy.

4 RELATED WORK

471 **Cognitive Psychology.** In cognitive psychology (Eysenck & Keane, 2020), memory is commonly
 472 divided into different types, with episodic and semantic memory being key components of declarative
 473 memory. Episodic memory involves recalling specific events (Anokhin et al., 2024), including
 474 details like time, people, places, and emotions tied to the experience. In contrast, semantic memory
 475 encompasses general knowledge about the world, such as facts, concepts, and meanings, which are
 476 not tied to specific events. Episodic memory retrieval benefits from contextual cues, but irrelevant
 477 temporal or spatial information can hinder retrieval for non-episodic queries. Unlike generalized
 478 semantic memory, personalized semantic memories often involve a larger gap between the query and
 479 corpus, requiring tailored retrieval strategies. Categorizing memory types is crucial for advancing
 480 memory research and improving retrieval performance.

481 **RAG based Memory technology** RAG-based memory strategies can be broadly classified into un-
 482 structured and structured types. Unstructured RAG (Lu et al., 2023; Zhang et al., 2025; Yang et al.,
 483 2025b; Zhong et al., 2024; Chhikara et al., 2025) stores history as dense chunks or LLM summaries

Table 6: The ablation study of different retrievers.

Method	LongMemEval-S			LoCoMo			LongMemEval-M		
	Recall@1	Recall@3	Recall@5	Recall@1	Recall@3	Recall@5	Recall@1	Recall@3	Recall@5
Base Retriever: MPNet									
MPNet	26.38	50.85	63.62	19.13	34.24	41.89	18.51	36.17	44.04
HyDE	25.11	53.19	66.60	27.29	44.76	53.52	17.87	38.09	46.81
Mill	27.45	53.19	64.89	21.00	36.81	44.51	19.15	39.36	48.30
Query2Doc	27.45	54.68	68.72	26.38	46.12	54.03	19.36	40.43	49.36
SeCom	37.66	62.13	73.19	21.45	34.24	41.49	26.81	40.64	48.72
Ours	38.72	66.17	77.45	29.36	48.49	56.80	27.45	49.36	60.64
Base Retriever: MiniLM									
MiniLM	35.74	63.40	74.04	14.20	28.50	35.60	27.45	47.23	57.87
HyDE	32.34	61.70	72.55	22.00	37.92	45.87	22.34	44.89	54.47
Mill	36.81	63.62	75.11	16.26	31.27	38.97	26.81	47.45	57.45
Query2Doc	29.79	61.49	72.34	22.91	38.32	46.78	21.28	41.70	51.70
SeCom	37.02	64.04	77.45	16.11	28.54	34.74	28.94	47.45	57.23
Ours	45.32	74.04	82.98	26.03	43.05	51.01	35.11	60.21	68.51
Base Retriever: QAMiniLM									
QAMiniLM	35.32	61.70	73.62	11.83	22.00	27.59	27.02	46.38	58.09
HyDE	31.91	61.06	73.19	17.27	30.56	37.61	21.70	43.40	54.68
Mill	35.32	63.19	74.04	9.42	18.98	26.13	25.53	48.51	57.02
Query2Doc	33.62	61.06	75.11	19.08	32.63	40.94	24.47	47.02	56.60
SeCom	41.06	71.06	81.28	15.56	28.80	36.60	32.77	53.40	61.91
Ours	42.34	74.04	82.97	23.51	40.79	48.34	31.49	58.30	66.38

and retrieves by similarity; representative systems include TiM’s post-think memories (Liu et al., 2023), and SeCom’s segment-level denoising (Pan et al., 2025). Structured RAG (Gutiérrez et al.; Edge et al., 2024; He et al., 2024; Jin et al., 2024; Guo et al., 2024) introduces relations via graphs or trees; Zep’s (Rasmussen et al., 2025) Graphiti integrates conversations and business data into a temporal KG, MemTree (Rezazadeh et al., 2024) organizes a dynamic tree, and H-MEM (Sun & Zeng, 2025). Structural information augmentation can improve performance on complex reasoning tasks, but it often incurs inevitable computational overhead. For simpler problems, such enhancements may introduce noise and degrade performance. Our proposed Memotype addresses this issue effectively by categorizing memory into different types and adopting tailored strategies for each.

Agent Memory Beyond RAG, agents learn or structure memory with richer mechanisms (Wang et al., 2024; Wang et al.; Wang & Chen, 2025; Kang et al., 2025). MemoryLLM (Wang et al., 2024) updates parameters with a latent memory pool. Memory-R1 (Yan et al., 2025) trains a memory manager and answer agent with RL to add/update/delete entries. Learn-to-Memorize models memory cycles with MoE-gated retrieval, aggregation, and reflection; Mem^P (Fang et al., 2025) distills procedural traces into lifelong skills. Through methods such as reinforcement learning, these approaches often achieve superior performance compared to traditional RAG systems. However, they typically incur higher memory construction latency. Balancing performance and latency in real-world scenarios remains an area worthy of further exploration for these methodologies. **Moreover, considering that non-declarative memory (Eysenck & Keane, 2020) corresponds to the agent memory. Thus, exploring valuable classifications of non-declarative memory, alongside designing appropriate strategies for each type, is still a promising direction for advancing agent memory systems.**

5 CONCLUSION

In this paper, we propose TriMEM, a multi-class memory benchmark inspired by cognitive psychology, categorizing memory into Episodic Memory, Personalized Semantic Memory, and General Semantic Memory. Built on this foundation, we introduce MemoType, a novel memory framework that adaptively identifies memory types and designs tailored storage and retrieval strategies, significantly enhancing performance. Extensive experiments demonstrate the effectiveness of this approach. This research explored distinctions between different memory types from the perspective of query expansion. Whether different memory types at the index and corpus levels can benefit from further optimisation strategies remains a highly promising direction for future research.

540
541
ETHICS STATEMENT542
543
544
545
546
547
548
This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal
experimentation were involved. All datasets used, including LongMemEval-S, LoCoMo, and
LongMemEval-M, were sourced in compliance with relevant usage guidelines, ensuring no vio-
lation of privacy. We have taken care to avoid any biases or discriminatory outcomes in our research
process. No personally identifiable information was used, and no experiments were conducted that
could raise privacy or security concerns. We are committed to maintaining transparency and integrity
throughout the research process.550
551
REPRODUCIBILITY STATEMENT552
553
554
555
We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets have been made publicly available in an anonymous repository³ to facilitate repli-
cation and verification. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper.556
557
558
Additionally, all data used in this paper, including LongMemEval-S, LoCoMo, and LongMemEval-
M, are publicly available, ensuring consistent and reproducible evaluation results.559
560
We believe these measures will enable other researchers to reproduce our work and further advance
the field.561
562
REFERENCES563
564
Petr Anokhin, Nikita Semenov, Artyom Sorokin, Dmitry Evseev, Andrey Kravchenko, Mikhail Burt-
sev, and Evgeny Burnaev. Arigraph: Learning knowledge graph world models with episodic
memory for llm agents. *arXiv preprint arXiv:2407.04363*, 2024.565
566
Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building
production-ready ai agents with scalable long-term memory. *arXiv preprint arXiv:2504.19413*,
2025.567
568
Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. *arXiv preprint arXiv:2507.06261*, 2025.570
571
Yiming Du, Hongru Wang, Zhengyi Zhao, Bin Liang, Baojun Wang, Wanjun Zhong, Zezhong Wang,
and Kam-Fai Wong. Perltqa: A personal long-term memory dataset for memory classification,
retrieval, and fusion in question answering. In *Proceedings of the 10th SIGHAN Workshop on
Chinese Language Processing (SIGHAN-10)*, pp. 152–164, 2024.572
573
Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to global: A
graph rag approach to query-focused summarization. *arXiv preprint arXiv:2404.16130*, 2024.574
575
Michael W Eysenck and Mark T Keane. *Cognitive psychology: A student's handbook*. Psychology
press, 2020.576
577
Runnan Fang, Yuan Liang, Xiaobin Wang, Jialong Wu, Shuofei Qiao, Pengjun Xie, Fei Huang,
Huajun Chen, and Ningyu Zhang. Memp: Exploring agent procedural memory. *arXiv preprint
arXiv:2508.06433*, 2025.578
579
Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. Precise zero-shot dense retrieval without
relevance labels. In *Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers)*, pp. 1762–1777, 2023.580
581
582
583
584
585
586
587
588
589
590
591
592
593
³<https://anonymous.4open.science/r/MemoType-5578/README.md>

594 Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-
 595 augmented generation. 2024.

596

597 Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: Neuro-
 598 biologically inspired long-term memory for large language models. In *The Thirty-eighth Annual
 599 Conference on Neural Information Processing Systems*.

600 Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh Chawla, Thomas Laurent, Yann LeCun, Xavier Bresson,
 601 and Bryan Hooi. G-retriever: Retrieval-augmented generation for textual graph understanding and
 602 question answering. *Advances in Neural Information Processing Systems*, 37:132876–132907,
 603 2024.

604

605 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 606 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
 607 arXiv:2410.21276*, 2024.

608

609 Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
 610 Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning.
 611 *arXiv preprint arXiv:2112.09118*, 2021.

612 Pengyue Jia, Yiding Liu, Xiangyu Zhao, Xiaopeng Li, Changying Hao, Shuaiqiang Wang, and
 613 Dawei Yin. Mill: Mutual verification with large language models for zero-shot query expansion.
 614 *arXiv preprint arXiv:2310.19056*, 2023.

615 Bowen Jiang, Zhuoqun Hao, Young-Min Cho, Bryan Li, Yuan Yuan, Sião Chen, Lyle Ungar,
 616 Camillo J Taylor, and Dan Roth. Know me, respond to me: Benchmarking llms for dynamic
 617 user profiling and personalized responses at scale. *arXiv preprint arXiv:2504.14225*, 2025.

618

619 Bowen Jin, Chulin Xie, Jiawei Zhang, Kashob Kumar Roy, Yu Zhang, Zheng Li, Ruirui Li, Xianfeng
 620 Tang, Suhang Wang, Yu Meng, et al. Graph chain-of-thought: Augmenting large language models
 621 by reasoning on graphs. *arXiv preprint arXiv:2404.07103*, 2024.

622

623 Jiazheng Kang, Mingming Ji, Zhe Zhao, and Ting Bai. Memory os of ai agent. *arXiv preprint
 624 arXiv:2506.06326*, 2025.

625

626 Lei Liu, Xiaoyan Yang, Yue Shen, Binbin Hu, Zhiqiang Zhang, Jinjie Gu, and Guannan Zhang.
 627 Think-in-memory: Recalling and post-thinking enable llms with long-term memory. *arXiv
 628 preprint arXiv:2311.08719*, 2023.

629

630 Junru Lu, Siyu An, Mingbao Lin, Gabriele Pergola, Yulan He, Di Yin, Xing Sun, and Yunsheng
 631 Wu. Memochat: Tuning llms to use memos for consistent long-range open-domain conversation.
 632 *arXiv preprint arXiv:2308.08239*, 2023.

633

634 Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, and Yuwei
 635 Fang. Evaluating very long-term conversational memory of llm agents. In *Proceedings of the
 636 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 637 pp. 13851–13870, 2024.

638

639 Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Xufang Luo, Hao Cheng, Dongsheng Li, Yuqing Yang,
 640 Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, and Jianfeng Gao. Secom: On memory construction
 641 and retrieval for personalized conversational agents. In *The Thirteenth International Confer-
 642 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=xKDZAW0He3>.

643

644 Zackary Rackauckas. Rag-fusion: a new take on retrieval-augmented generation. *arXiv preprint
 645 arXiv:2402.03367*, 2024.

646

647 Preston Rasmussen, Pavlo Paliychuk, Travis Beauvais, Jack Ryan, and Daniel Chalef. Zep: a tem-
 648 poral knowledge graph architecture for agent memory. *arXiv preprint arXiv:2501.13956*, 2025.

649

650 Alireza Rezazadeh, Zichao Li, Wei Wei, and Yujia Bao. From isolated conversations to hierarchical
 651 schemas: Dynamic tree memory representation for llms. *arXiv preprint arXiv:2410.14052*, 2024.

648 Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D Man-
 649 ning. RAPTOR: Recursive abstractive processing for tree-organized retrieval. In *The Twelfth*
 650 *International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=GN921JHCRw>.

651

652 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted pre-
 653 training for language understanding. *Advances in neural information processing systems*, 33:
 654 16857–16867, 2020.

655

656 Haoran Sun and Shaoning Zeng. Hierarchical memory for high-efficiency long-term reasoning in
 657 llm agents. *arXiv preprint arXiv:2507.22925*, 2025.

658

659 Liang Wang, Nan Yang, and Furu Wei. Query2doc: Query expansion with large language models.
 660 In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*,
 661 pp. 9414–9423, 2023.

662

663 Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
 664 attention distillation for task-agnostic compression of pre-trained transformers. *Advances in neu-
 665 ral information processing systems*, 33:5776–5788, 2020.

666

667 Yu Wang and Xi Chen. Mirix: Multi-agent memory system for llm-based agents. *arXiv preprint
 668 arXiv:2507.07957*, 2025.

669

670 Yu Wang, Dmitry Krotov, Yuanzhe Hu, Yifan Gao, Wangchunshu Zhou, Julian McAuley, Dan Gut-
 671 freund, Rogerio Feris, and Zexue He. M+: Extending memoryllm with scalable long-term mem-
 672 ory. In *Forty-second International Conference on Machine Learning*.

673

674 Yu Wang, Yifan Gao, Xiusi Chen, Haoming Jiang, Shiyang Li, Jingfeng Yang, Qingyu Yin, Zheng
 675 Li, Xian Li, Bing Yin, et al. Memoryllm: Towards self-updatable large language models. In
 676 *International Conference on Machine Learning*, pp. 50453–50466. PMLR, 2024.

677

678 Di Wu, Hongwei Wang, Wenhao Yu, Yuwei Zhang, Kai-Wei Chang, and Dong Yu. Longmemeval:
 679 Benchmarking chat assistants on long-term interactive memory. In *The Thirteenth International
 680 Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=pZiyCaVuti>.

681

682 Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic
 683 memory for llm agents. *arXiv preprint arXiv:2502.12110*, 2025.

684

685 Sikuan Yan, Xiufeng Yang, Zuchao Huang, Ercong Nie, Zifeng Ding, Zonggen Li, Xiaowen
 686 Ma, Hinrich Schütze, Volker Tresp, and Yunpu Ma. Memory-r1: Enhancing large language
 687 model agents to manage and utilize memories via reinforcement learning. *arXiv preprint
 688 arXiv:2508.19828*, 2025.

689

690 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 691 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 692 arXiv:2505.09388*, 2025a.

693

694 Wei Yang, Jinwei Xiao, Hongming Zhang, Qingyang Zhang, Yanna Wang, and Bo Xu. Coarse-to-
 695 fine grounded memory for llm agent planning. *arXiv preprint arXiv:2508.15305*, 2025b.

696

697 Gaoke Zhang, Bo Wang, Yunlong Ma, Dongming Zhao, and Zifei Yu. Multiple memory systems
 698 for enhancing the long-term memory of agent. *arXiv preprint arXiv:2508.15294*, 2025.

699

700 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 701 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
 702 Judging LLM-as-a-judge with MT-bench and chatbot arena. In *Thirty-seventh Conference on
 703 Neural Information Processing Systems Datasets and Benchmarks Track*, 2023. URL <https://openreview.net/forum?id=uccHPGDlao>.

704

705 Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
 706 language models with long-term memory. In *Proceedings of the AAAI Conference on Artificial
 707 Intelligence*, volume 38, pp. 19724–19731, 2024.

708

A BENCHMARK

A.1 CLASSIFICATION BASIS

In this paper, we will focus on text classification in the form of dialogue. Because dialogues are crucial retrieval objects in existing memory scenarios. For instance, in the two common memory benchmarks LoCoMo (Maharana et al., 2024) and LongMemEval (Wu et al., 2025), dialogues are the primary and exclusive retrieval objects. Moreover, in real-world scenarios, accessible data typically exists in dialogue form. We propose three memory types: Episodic Memory, Personal Semantic Memory, and General Semantic Memory. This classification is rooted in cognitive psychology research on declarative memory (Eysenck & Keane, 2020), which encompasses memory for facts and events that can be consciously recalled and linguistically described. In this subsection, we will explain the basis for our classification from the perspectives of completeness and necessity. Specifically, we will demonstrate that the three categories of memory encompass all conversational memory and justify the necessity of this classification.

Completeness. Our classification is based on well-established research in cognitive psychology (Eysenck & Keane, 2020) on declarative memory. Declarative memory inherently includes both semantic memory and episodic memory, which collectively cover all forms of dialogue memory that can be expressed through language. Nondeclarative memory, such as procedural memory or priming memory, cannot be articulated linguistically and thus lies beyond the scope of this framework. Therefore, the three proposed categories comprehensively encompass all dialogue memory types without requiring additional classifications.

Necessity. The necessity of categorizing semantic memory into Personal Semantic Memory and General Semantic Memory is grounded in two critical considerations. First, the division addresses the category imbalance problem, as semantic memory accounts for a disproportionately large proportion (87.64%) of dialogue memory compared to episodic memory (12.35%). Subdividing semantic memory ensures a more balanced classification, mitigating the dominance of one category during model optimization and evaluation. Second, the semantic gap between Personal and General Semantic Memory is empirically validated through TSNE visualization and word cloud analysis. As shown in the Figure 4, both categories exhibit distinct clustering patterns, indicating significant semantic differences between personal and general semantic memory. Additionally, we GM Word Cloud Visualizations as shown in Figure 5, Memory emphasizes common terms like "assistant", focuses on user-specific terminology such as "permissions", and distinguishes between the two memory types. This clearly demonstrates the benefit of separating semantic memory into these two subtypes.

A.2 CLASSIFICATION INDUCTION

In this subsection, we offer a more comprehensive explanation of the three types of memory.

- **Episodic Memory.** Episodic memory refers to memories of specific events or occurrences tied to contextual details such as time, location, participants, and activities. These memories can include both past experiences and plans for the future. For example: "Last summer, I attended a three-day conference in Paris where I presented my research on renewable energy." "Next Friday, I'm scheduled to meet my supervisor at 10 a.m. to review the final draft of my thesis."
- **Personal Semantic Memory.** Personal Semantic Memory refers to long-term knowledge related to an individual's identity, preferences, habits, or intentions. Unlike Episodic Memory, it focuses

Figure 4: The t-SNE Distribution Visualization of LongMemEval-S.

supplemented PM Word Cloud Visualizations and Figure 5 and Figure 6, revealing that General Semantic Memory contains “agent” and “offer,” while Personal Semantic Memory contains “planning” and “user.” This further highlights the dis-
clear semantic distinction underscores the necessity of bcategories.

Figure 5: The Word Cloud Figure of Personal Semantic Memory on LongMemEval-S Dataset.

Figure 6: The Word Cloud Figure of General Semantic Memory on LongMemEval-S Dataset.

772 on general personal information rather than specific events. For instance: "I have been working as
773 a data scientist for a long time, and I specialize in natural language processing." "I usually prefer
774 hiking in the mountains over beach vacations because I enjoy the tranquility of nature."

- **General Semantic Memory.** General Semantic Memory encompasses universally applicable knowledge, objective descriptions, or facts about the world. It is not tied to any specific individual or event. Examples include: "The Great Wall of China is over 13,000 miles long and was constructed to protect against invasions." "Photosynthesis is the process by which green plants convert sunlight into chemical energy stored in glucose."

A.3 BENCHMARK CONSTRUCTION

TriMEM is a carefully curated dataset comprising 6,000 dialogue samples, designed to evaluate long-term memory capabilities in dialogue models. The dataset is constructed with diversity and quality in mind, and its creation involves multiple steps including sampling, rewriting, and labeling, all of which are detailed below.

Data Sampling. TriMEM is composed of dialogue samples sourced from multiple datasets and manually constructed dialogues to ensure a balanced and realistic testbed. *LongMemEval-S* (Wu et al., 2025): 1,000 dialogue pairs were sampled from this dataset, which contains approximately 20,000 dialogue records. To prevent over-representation, the sampling proportion was kept low at only 10%. *LoCoMo* (Maharana et al., 2024): 750 dialogue pairs were sampled to add variety. *PersonaMem* (Jiang et al., 2025): 750 dialogue pairs were also sampled to further diversify the dataset. *Manually-constructed dialogues*: 500 dialogue pairs were created by human annotators to introduce additional variability and ensure coverage of edge cases not captured in the sampled datasets.

Benchmark Selection. We aimed to annotate memory categories in real-world dialogue scenarios rather than generating memory-related dialogues from predefined categories, which would risk introducing bias by over-focusing on single categories. We chose LoCoMo (Maharana et al., 2024) and LongMemEval (Wu et al., 2025) as they are widely recognized memory datasets frequently referenced in works such as A-Mem (Xu et al., 2025), mem0 (Chhikara et al., 2025), MIXIR (Wang & Chen, 2025), and Secom (Pan et al., 2025). This highlights their significance and credibility. LongMemEval emphasizes user-assistant interactions, while LoCoMo focuses on user-user dialogues, aligning with our goal of covering diverse memory scenarios and topics. To further enhance the generalizability of our annotated dataset beyond evaluation-specific categories, we included Person-aMem (Jiang et al., 2025), a personalized memory benchmark that introduces varied user profiles. This addition strengthens the dataset's applicability across broader dialogue classification tasks.

Rewriting to Prevent Overfitting. Since both LongMemEval-S and LoCoMo are also used in the evaluation datasets of this study, special care was taken to avoid the risk of the model directly memorizing specific dialogue samples. Such memorization could compromise the evaluation of classification performance.

810
811

Transfer Prompt for User-Assistant Conversation

812
813

You are an advanced text transformation AI. Your task is to process a given conversation between a user and an assistant. Follow these rules:

814
815

- Replace specific nouns (e.g., occupations, professional fields, locations, dates, names, times, and objects) with alternative but relevant ones, ensuring the topic of the conversation remain unchanged.
- Summarize both the user's and assistant's messages.
- Limit user's responses to 40 words.
- Limit assistant's responses to 80 words.
- You can rearrange the order of the sentences to maintain better coherence between them.

816
817

Output Format: Output the revised conversation in this format:

818
819

[user]: [content]
[assistant]: [content]

820
821

Input: {text}

822
823824
825826
827

828

829
830

Figure 7: Transfer Prompt for User-Assistant Conversation

831
832

Transfer Prompt for User-User Conversation

833
834

You are an advanced text transformation AI. Your task is to process a given conversation between users. Follow these rules:

835
836

- Replace specific nouns (e.g., names, occupations, professional fields, locations, dates, times, and objects) with alternative but relevant ones, ensuring the topic of the conversation remain unchanged.
- You may try rearranging the order of the sentences to maintain better coherence between them.

837
838

Output Format: Output the revised conversation in this format:

839
840

[user name 1]: [content]
[user name 2]: [content]

841
842

Input: {text}

843
844845
846

Figure 8: Transfer Prompt for User-User Conversation

847
848

849

850

To address this, the sampled dialogues from these datasets were rewritten using transfer prompt, which is shown in Figure 7 and Figure 8. The rewriting process involved modifying the necessary entity names, rephrasing relevant topic statements, and substituting key details while preserving the original semantic structure. This ensured that the dialogues remained contextually meaningful but sufficiently distinct from their original forms, mitigating the risks of data leakage and overfitting.

851
852

Labeling Process. The labeling of dialogue samples was conducted through a combination of automated and manual processes to ensure high accuracy and consistency. *Initial Labeling:* The GPT-4o-2024-11-20 model was used to generate initial labels for the dialogue samples. These prompts were meticulously crafted and validated on a subset of the data to ensure their effectiveness for the classification task. Notably, we opted for separate prompts for each category, as this approach achieved higher classification accuracy compared to using specific prompts for all categories (Episodic Memory Classification Prompt in Figure 9, Personal Semantic Memory Classification Prompt in Figure 10, and General Semantic Memory Classification Prompt in Figure 11). These prompts were tailored to the unique characteristics of each memory category, ensuring precise and context-aware labeling. *Manual Validation and Refinement:* Recognizing the potential for errors in automated labeling, all

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
Table 7: The Statistic Information of TriMEM.

Statistic	Value	Ratio (%)
# Dialogue (User-Assistant)	3,550	59.17
# Dialogue (User-User)	2,450	40.83
# Total Dialogue	6,000	100.00
Average tokens per text	88.26	N/A

initial labels were thoroughly reviewed and corrected by human annotators. This combination of automated and manual processes guaranteed the reliability and accuracy of the annotations.

By integrating diverse data sources, robust rewriting, and automated/manual labeling, TriMEM ensures a high-quality, diverse, and practical dataset. This makes it a reliable benchmark for evaluating long-term memory in dialogue models, minimizing risks of overfitting and data leakage biases.

A.4 BENCHMARK STATISTIC INFORMATION

The TriMEM dataset comprises 6,000 dialogues, with a nearly 60:40 split between User-Assistant (59.17%) and User-User (40.83%) interactions, as shown in Table 7. Each text contains an average of 88.26 tokens, highlighting its moderate linguistic complexity.

As can be seen in Table 8, class-wise, the dataset demonstrates diverse distribution across four categories: Episodic Memory (26.07%), Personal Semantic Memory (43.18%), General Semantic Memory (30.75%), and None (22.03%). Notably, user-assistant dialogues dominate the General Semantic Memory class (92.73%), while user-user dialogues contribute significantly to the None class (73.68%). Meanwhile, the Episodic and Personal Semantic Memory classes show a more balanced distribution across interaction types, with slight variations favoring user-assistant dialogues.

This distribution reflects the dataset’s richness and its potential to model different memory types in varied conversational contexts. By capturing both assistant-guided and peer-to-peer interactions, TriMEM offers a comprehensive resource for advancing memory-based dialogue systems, supporting tasks like memory reasoning and personalized conversation.

A.5 BENCHMARK EVALUATION

In this study, we evaluated the classification performance of four large language models (LLMs) on the TriMEM dataset: Qwen3-8b (Yang et al., 2025a), Gemini-2.5-Flash (Comanici et al., 2025), GPT-4o-Mini (Hurst et al., 2024), and Qwen3-32b with multi-class prompt in Figure 12. Additionally, our model was included for comparison. The evaluation metrics used were accuracy (ACC) and F1 score, which respectively measure the overall classification correctness and the balance between precision and recall. Performance was analyzed across three memory dimensions in TriMEM: Episodic Memory (EM), Personal Semantic Memory (PM), and General Semantic Memory (GM).

Experimental results indicate that our model outperformed all other LLMs in every category. For overall accuracy and F1 score, our model achieved 92.10% and 91.75%, respectively, significantly surpassing GPT-4o-Mini, the second-best model, which scored 83.55% (ACC) and 76.94% (F1). In the EM dimension, our model achieved an outstanding 98.80% (ACC) and 97.81% (F1), outperforming GPT-4o-Mini, which achieved 85.05% (ACC) and 76.10% (F1). For PM, our model reached 82.65% (ACC) and 85.64% (F1), while GPT-4o-Mini achieved slightly higher accuracy (87.18%) but lower F1 (85.59%). Finally, in GM, our model achieved 94.85% (ACC) and 92.39% (F1), outperforming others by a clear margin.

Despite our model’s superior performance, the results highlight that existing LLMs struggle to achieve precise classification on TriMEM, requiring further advancements in memory modeling for improved accuracy and generalization.

B DATASET DETAILS

We evaluate our model with the following datasets:

918
919

Episodic Memory Classification Prompt

920
921
922
923

Goal: You are an advanced AI tasked with determining whether a specific piece of dialogue contains Episodic Memory. Use the following definition, guidelines, and examples to identify whether the provided dialogue qualifies as Episodic Memory.

924

Definition:925
926
927

Episodic Memory refers to specific episodes or events that occurred (are planned to occur, or the thoughts on future plans) at a particular place and time. For the dialogue to qualify as Episodic Memory, it often include details:

928
929

- When: A time, date, time frame, or vague contextual time expressions (e.g., "yesterday," "next month," "when I was driving").
- Where: A location or context (e.g., "at the park," "in Paris," "at the office").
- Who: Participants (e.g., "with my classmates," "Peter").
- What: Actions, or objects involved in the event (e.g., "attending a party," "have lunch").

930
931
932
933
934**Additional Guidelines:**935
936
937
938

- The time and location information does not always need to be precise. Vague or contextual expressions such as "when I was driving," "during lunch", or "while I was in school," can also qualify as time-related or location-related details if they provide sufficient information for the event.
- Questions that reveal or imply specific episodes or events information, should also be classified as Episodic Memory.
- Missing one types of detail does not disqualify the dialogue from being Episodic Memory if the other details are sufficiently explicit to describe a instance.
- If the memory only describes general habits, vague knowledge, or patterns, it does not qualify as Episodic Memory.
- If the dialogue contains at least one instance of Episodic Memory, the output must be "Episodic Memory", regardless of whether other parts of the dialogue do not contain Episodic Memory.

939
940
941
942
943
944
945
946
947
948**Output Requirements:**949
950
951
952
953
954

- If the dialogue contains Episodic Memory, output: "Episodic Memory"
- If the dialogue does not contain Episodic Memory, output: "None"
- Do not include additional context, comments, symbols, or explanations in your output

Input: *{text_to_be_classified}*

955
956
957

Output: Now, based on the above instructions, determine whether the input data contains Episodic Memory.

958

959
960

Figure 9: Episodic Memory Classification Prompt

961

Table 8: The Class Distribution of TriMEM.

962
963
964
965
966
967

Class	Percentage (%)	User-Assistant (%)	User-User (%)
Episodic Memory	26.07	45.83	54.17
Personal Semantic Memory	43.18	50.66	49.34
General Semantic Memory	30.75	92.73	7.27
None	22.03	26.32	73.68

968
969

- **LongMemEval-S** (Wu et al., 2025) is a dataset designed to evaluate long-term memory in conversational AI systems. It includes 50 question sessions, each with an average of 115,000 tokens, providing a compact yet challenging benchmark. This dataset tests core memory abili-

972
973

Personal Semantic Memory Classification Prompt

974
975
976
977

Goal: You are an advanced AI tasked with determining whether a segment of dialogue contains Personal Semantic Memory. Use the following definition, guidelines, and examples to identify whether the provided dialogue qualifies as Personal Semantic Memory.

978
979
980
981
982
983**Definition:**

Personal Semantic Memory is a form of long-term memory consisting of knowledge specifically related to the person (user or another individual mentioned in the dialogue), such as descriptions of their information, preferences, habits, thoughts, background, emotions, education or work career-related information, and any other knowledge that reflects the individual's identity.

984
985
986
987
988
989
990
991
992**Additional Guidelines:**993
994
995
996
997
998
999
1000

- Content that reveals personal information, preferences, habits, plans, background information, emotions, personal history, education or work career-related information, or any other knowledge that related to the individual's identity must be classified as Personal Semantic Memory.
- Statements that express the individual's intentions, work arrangements, or preliminary plans (not include details), even if they are inferred, belong to the category of Personal Semantic Memory.
- General knowledge unrelated to personal information, preferences, or emotions do not qualify as Personal Semantic Memory.
- Questions that reveal or imply personal details, preferences, or habits (user or another individual), should also be classified as Personal Semantic Memory.
- If the dialogue contains at least one instance of Personal Semantic Memory, the output must be "Personal Semantic Memory", regardless of whether other parts of the dialogue do not contain Personal Semantic Memory. The unanswered questions or requests in the conversation should not affect the final classification result.

1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011**Output Requirements:**

- If the dialogue contains Personal Semantic Memory, output: "Personal Semantic Memory"
- If the dialogue does not contain Personal Semantic Memory, output: "None"
- Do not include additional context, comments, symbols, or explanations in your output

Input: *{text_to_be_classified}*

Output: Now, based on the above instructions, determine whether the input data contains Personal Semantic Memory.

1012
1013
1014
1015

Figure 10: Personal Semantic Memory Classification Prompt

1016
1017
1018
1019
1020
1021

ties such as information extraction, multi-session reasoning, temporal reasoning, and abstention. LongMemEval-s requires chat assistants to process user-AI dialogues effectively, retain pertinent information over extended conversation histories, and maintain consistency across sessions. By focusing on shorter yet complex contexts, LongMemEval-s serves as a foundational benchmark for assessing memory performance.

1022
1023
1024
1025

- LoCoMo** (Maharana et al., 2024) is a long-context memory benchmark, evaluates AI systems' ability to handle lengthy dialogues and long-range dependencies. It features conversations with an average of 300 turns, 9,000 tokens, and up to 35 sessions, with a publicly available subset, LoCoMo-10, comprising ten high-quality conversations. The dataset is well-suited for testing long-context language models (LLMs) and retrieval-augmented generation (RAG) systems. De-

1026
 1027
 1028 General Semantic Memory Classification Prompt
 1029
 1030 **Goal:** You are an advanced AI tasked with determining whether a given text contains
 1031 General Semantic Memory based on the following definition, criteria, and examples.
 1032
Definition:
 1033 General Semantic Memory is a form of long-term memory consisting of non-personalized
 1034 knowledge about the world, including facts, concepts, language, universally applicable
 1035 methods, and objective descriptions of locations or objects. This includes information that
 1036 is not tied to any specific individual or event.
 1037 For information to qualify as General Semantic Memory, it must meet at least one of the
 1038 following criteria:
 1039
 1040

- 1041 Non-Personalized Knowledge or Broadly Applicable Suggestions: It could include gen-
 1042 eral knowledge, factual information, or widely applicable suggestions and methods. Ex-
 1043 amples: Scientific facts, historical events, cultural concepts, general knowledges, or gen-
 1044 eral advice on common activities.
- 1042 Objective Descriptions of Locations, Objects, or Concepts: Information that provides ob-
 1043 jective, factual details about locations, objects, or entities. Examples: Descriptions of
 1044 landmarks, places, or any items.

 1045 **Additional Guidelines:**
 1046
 1047

- 1048 Focus on analyzing sentences that provide valid information. Dialogue that consists solely
 1049 of questions without answers should not be used as a basis for General Semantic Memory
 1050 classification.
- 1051 The information about a specific event or personalized to the user (e.g., user preferences,
 1052 personal habits, or individual-specific details) does not qualify as General Semantic Mem-
 1053 ory.
- 1054 If the dialogue contains at least one instance of General Semantic Memory, the output
 1055 must be "General Semantic Memory", regardless of whether other parts of the dialogue
 1056 do not contain General Semantic Memory.

 1057 **Output Requirements:**
 1058
 1059

- 1060 If the dialogue contains General Semantic Memory, output: "General Semantic Memory"
- 1061 If the dialogue does not contain General Semantic Memory, output: "None"
- 1062 Do not include additional context, comments, symbols, or explanations in your output

 1063 **Input:** {text_to_be_classified}
 1064
 1065 **Output:** Now, based on the above instructions, determine whether the input data contains
 1066 General Semantic Memory.

Figure 11: General Semantic Memory Classification Prompt

1066
 1067
 1068
 1069
 1070 spite advances, systems still struggle with temporal reasoning and maintaining coherence in ex-
 1071 tended interactions, highlighting the challenge of replicating human-like memory performance.
 1072
 1073
 1074 **LongMemEval-M** (Wu et al., 2025) builds on LongMemEval-S with a more extensive evalua-
 1075 tion setting, encompassing 500 sessions per question and an average of 1.5 million tokens per
 1076 conversation. This dataset is designed for rigorous testing of long-term memory and scalability.
 1077 It challenges systems to handle dynamic user-AI interactions across an even greater number of
 1078 sessions, requiring robust memory mechanisms for historical consistency and information recall.
 1079 The dataset underscores the substantial performance gap between state-of-the-art AI systems and
 human capabilities in long-term memory retention and reasoning over extended contexts.

Table 9: The classification Performance on TriMEM with four LLM models. “EM” denotes Episodic Memory, “PM” denotes the Personal Semantic Memory, “GM” denotes the General Semantic Memory.

Model	Overall		EM		PM		GM	
	ACC	F1	ACC	F1	ACC	F1	ACC	F1
Qwen3-8b	71.90	55.26	81.65	49.05	71.37	55.58	62.68	61.15
Gemini-2.5-Flash	77.84	72.75	82.47	73.47	76.72	74.55	74.33	70.22
GPT-4o-Mini	83.55	76.94	85.05	76.10	87.18	85.59	78.42	69.14
Qwen3-32b	77.75	72.03	87.82	76.80	80.88	75.67	64.55	63.61
Ours	92.10	91.75	98.80	97.81	<u>82.65</u>	85.64	94.85	92.39

C BASELINE DETAILS

We evaluate our model with the following baselines:

- **Contriever** (Izacard et al., 2021) is a retrieval model that serves as a strong baseline by efficiently retrieving and ranking relevant documents based on dense representations.
- **MPNet** (Song et al., 2020) is a pre-trained transformer model that combines masked language modeling and permuted language modeling to better capture dependencies between tokens for improved natural language understanding.
- **MiniLM** (Wang et al., 2020) is a lightweight and efficient transformer-based model designed for natural language understanding tasks, offering competitive performance with significantly fewer parameters compared to larger models.
- **QAMiniLM** (Wang et al., 2020) is an extension of MiniLM, designed specifically for Question Answering tasks, leveraging MiniLM’s lightweight architecture while fine-tuning it to optimize performance for extracting precise answers from text.
- **HyDE** (Gao et al., 2023) generates a "hypothetical" document using a language model and retrieves similar real documents via dense embeddings to improve zero-shot dense retrieval without needing labeled relevance data. The prompt of HyDE could be found in Figure 13.
- **Mill** (Jia et al., 2023) utilizes large language models to generate diverse sub-queries and documents, followed by a mutual verification process to synergize generated and retrieved data for effective zero-shot query expansion. The prompt of Mill could be found in Figure 14.
- **Query2Doc** (Wang et al., 2023) improves sparse and dense retrieval systems by generating pseudo-documents through few-shot prompting of large language models (LLMs) and using them for query expansion, achieving significant performance boosts without fine-tuning. The prompt of QueryDoc could be found in Figure 15.
- **Secom** (Pan et al., 2025) enhances memory retrieval in long-term conversations by segmenting them into topically coherent units and applying compression-based denoising for improved retrieval accuracy and semantic quality.
- **A-Mem** (Xu et al., 2025) introduces an agentic memory system for LLMs that dynamically organizes and evolves memories by leveraging Zettelkasten principles, enabling adaptive and context-aware knowledge management through dynamic linking and indexing.
- **HippoRAG2** (Gutiérrez et al.) is a framework that enhances retrieval-augmented generation (RAG) by integrating deeper passage connections and effective LLM use, achieving superior performance on factual, sense-making, and associative memory tasks, thereby advancing non-parametric continual learning for LLMs.
- **Raptor** (Sarthi et al., 2024) improves retrieval-augmented language models by recursively embedding, clustering, and summarizing text into a hierarchical tree, enabling multi-level abstraction retrieval and achieving state-of-the-art performance in complex reasoning tasks.

1134
 1135 **Memory Multi-Classification Prompt**

1136 **Goal:** You are an advanced AI tasked with classifying a dialogue between a user and a
 1137 chatbot into one or more of the following memory types: "Episodic Memory," "Personal
 1138 Semantic Memory," or "General Semantic Memory." Use the following definitions to guide
 1139 your classification:

1140 • **Episodic Memory:** General Semantic Memory is a form of long-term memory consist-
 1141 ing of non-personalized knowledge about the world, including facts, concepts, language,
 1142 universally applicable methods, and objective descriptions of locations or objects. This
 1143 includes information that is not tied to any specific individual or event.

1144 • **Personal Semantic Memory:** Personal Semantic Memory is a form of long-term mem-
 1145 ory consisting of knowledge specifically related to the person (user or another individual
 1146 mentioned in the dialogue), such as descriptions of their information, preferences, habits,
 1147 thoughts, background, emotions, education or work career-related information, and any
 1148 other knowledge that reflects the individual's identity.

1149 • **General Semantic Memory:** A form of long-term memory consisting of general knowl-
 1150 edge about the world, including facts, concepts, language, universally applicable methods,
 1151 and objective description. This includes information that is broadly relevant, commonly
 1152 recognized, or widely recommended.

1153
 1154 **Output Requirements:**

1155 Your output must strictly adhere to one or more of the following memory types, separated
 1156 by commas if multiple apply:

1157 • "Episodic Memory"
 1158 • "Personal Semantic Memory"
 1159 • "General Semantic Memory"

1160 If none of the above types apply, the output must be:

1161 • "None"

1162 Do not include any additional words, or context beyond the specified output format.
 1163 Carefully analyze the dialogue and determine the appropriate memory type(s) based on the
 1164 content and context provided.

1165
 1166 **Input:** *{text_to_be_classified}*

1167 **Output:** Now, classify the memory type(s) of the input data based on the instructions above.

Figure 12: Memory Multi-Classification Prompt

1171
 1172 **HyDE Prompt**

1173
 1174 Please write a paragraph that answers the question.

1175 **Question:** *{query}*

1176 **Output:**

Figure 13: HyDE Prompt

D ADDITIONAL EXPERIMENTS

D.1 STRATEGY CONTRIBUTIONS OF EACH TYPE

1185 To investigate the independent contribution of each memory strategy , we supplemented the study
 1186 with ablation experiments for each strategy category, as shown in Table 10. Each row of data repre-

1188
 1189
 1190 **MILL Prompt**
 1191 What sub-queries should be searched to answer the following query?
 1192 Please generate 5 sub-queries with their related passages.
 1193 **Question:** {query}
 1194 Only present the subquestion. without any other words and explanation.
 1195
 1196
 1197

Figure 14: MILL Prompt

1198
 1199
 1200 **Query2Doc Prompt**
 1201 Write a passage that answers the given query:
 1202 **Question:** {query}
 1203 **Output:**
 1204
 1205
 1206
 1207

Figure 15: Query2Doc Prompt

1208 sents the effect of applying only one strategy (GM, PM, or EM) of one specific memory type. The
 1209 results in Table 10 show that each memory type strategy independently contributes to performance
 1210 improvement, with the EM strategy yielding the most significant gains .

D.2 THE ABLATION STUDY OF BERT ENCODER

In this section, we performed ablation studies to evaluate the impact of using alternative encoders, such as RoBERTa and DeBERTa. As evidenced in Table 11, both RoBERTa and DeBERTa achieved competitive results after fine-tuning on the TriMEM dataset, indicating that our dataset is not restricted to a specific model architecture. Notably, RoBERTa delivered better classification performance compared to the baseline BERT model, highlighting its superior modeling capacity.

D.3 CLASSIFICATION STRATEGY ABLATION STUDY.

To verify the effectiveness of our proposed classification strategy in improving memory filtering, we conducted experiments on three datasets, as shown in Table 12. Here, "w/ Classify" represents using the classification strategy, while "w/o Classify" indicates its absence. Notably, in the LongMemEval-S dataset, "w/ Classify" achieved a Recall@1 of 46.17%, surpassing "w/o Classify" by 2.77 percentage points. Similarly, in the LoCoMo dataset, Recall@3 improved by 1.55 points. In LongMemEval-M, "w/ Classify" consistently outperformed in metrics like NDCG@10. These results demonstrate that the classification strategy significantly enhances performance across multiple datasets.

D.4 OOD CLASSIFICATION

In this subsection, we will discuss scenarios where memory and queries are assigned to nonetype in our classification scenario and its implications.

"NoneType" memories typically correspond to questions with no information, such as "What is your name?" or generic statements like "Hello," "Good morning," or "Nice to meet you." These kinds of texts not only increase retrieval latency but may also interfere with correctly retrieving relevant content from the corpus. Therefore, when constructing the TriMEM dataset, we intentionally included NoneType type to filter out such meaningless inputs and improve retrieval performance.

Regarding NoneType queries, as previously stated, the query type is conditional on the type that occurs most frequently among the generated fake memories. Since queries in practical applications are often meaningful, such as "What is John's major?" and fake memories should contain information to answer the given query, it is rare for LLMs to generate fake memories containing meaningless

1242
1243

Answer Generation Prompt for User-Assistant Conversation

1244
1245
1246
1247
1248

Goal: Suppose a user has recent conversation records with assistant. Use your imagination to generate conversation records. The generated conversation records must contain information related to the given query. The conversation must be logically clear and structurally reasonable, representing a discussion on a specific topic rather than a direct recollection of the query.

1249

Conversation record should be generated from one of the following perspectives:

1250
1251
1252

- When the query is not an advice-seeking type of question, a sentence can be output that directly provides an answer matching the query, avoiding expressions other than stating the answer.
- Instead of providing a direct answer, it can describe the user’s preferences, habits, events, or background related to the topic of the query. This is not a direct answer to the query, but should be an additional statement from the user, especially for advice-seeking type queries.

1253
1254
1255
1256

Input Data: The input is a natural language query posed by the user, typically related to the previous conversations information.

1257

Output Requirements:1260
1261
1262
1263
1264

- The output must not exceed one sentence. You should determine whether the query-related information is mentioned by the user or the assistant.
- Ensure that the response contains only the dialogue content of one speaker.

1265
1266

Input: $\{query_to_be_answered\}$

1267
1268

Output: Generate a hypothetical dialogue record.

1269

1270
1271

Figure 16: Answer Generation Prompt for User-Assistant Conversation

1272
1273

Table 10: Strategy Contribution of each type on three datasets.

1274
1275

Method	Recall@1	NDCG@1	Recall@3	NDCG@3	Recall@5	NDCG@5	Recall@10	NDCG@10
LongMemEval-S								
Native	46.17	46.17	77.23	57.51	85.53	63.43	94.04	68.46
with GM Strategy	47.45 (+1.28)	47.45 (+1.28)	77.87 (+0.64)	58.16 (+0.65)	85.53 (+0.00)	63.81 (+0.38)	93.92 (-0.12)	68.68 (+0.22)
with PM Strategy	47.87 (+1.70)	47.87 (+1.70)	77.28 (+0.05)	58.26 (+0.75)	86.81 (+1.28)	64.71 (+1.28)	94.17 (+0.13)	69.49 (+1.03)
with EM Strategy	52.77 (+6.60)	52.77 (+6.60)	80.28 (+3.05)	62.02 (+4.51)	87.45 (+1.92)	66.98 (+3.55)	93.92 (-0.12)	71.30 (+2.84)
LoCoMo								
Native	21.9	21.9	38.11	32.17	45.06	35.11	54.83	38.24
with GM Strategy	22.00 (+0.10)	22.00 (+0.10)	38.12 (+0.01)	32.22 (+0.05)	45.12 (+0.06)	35.15 (+0.04)	54.88 (+0.05)	38.30 (+0.06)
with PM Strategy	23.51 (+1.61)	23.51 (+1.61)	40.68 (+2.57)	34.33 (+2.16)	47.89 (+2.83)	37.22 (+2.11)	57.00 (+2.17)	40.39 (+2.15)
with EM Strategy	24.82 (+2.92)	24.82 (+2.92)	40.58 (+2.47)	34.57 (+2.40)	47.73 (+2.67)	37.64 (+2.53)	59.26 (+4.43)	41.37 (+3.13)
LongMemEval-M								
Native	35.53	35.53	62.17	44.47	70.21	49.14	82.98	54.48
with GM Strategy	36.81 (+1.28)	36.81 (+1.28)	62.55 (+0.38)	44.75 (+0.28)	71.06 (+0.85)	49.66 (+0.52)	83.19 (+0.21)	54.80 (+0.32)
with PM Strategy	37.02 (+1.49)	37.02 (+1.49)	64.47 (+2.30)	46.47 (+2.00)	73.40 (+3.19)	51.94 (+2.80)	84.26 (+1.28)	56.55 (+2.07)
with EM Strategy	43.40 (+7.87)	43.40 (+7.87)	69.15 (+6.98)	50.67 (+6.20)	76.17 (+5.96)	55.04 (+5.90)	85.96 (+2.98)	59.91 (+5.43)

1276

1277

responses like “Hello” or counter-questions like “What is your name?”, which is why NoneType queries did not occur in our experiments.

1278

1279

E LLM USAGE DISCLOSURE

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript. Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring

1296
1297

Answer Generation Prompt for User-User Conversation

1298
1299
1300
1301

Goal: Suppose there is a conversation between users. Imagine you are the user mentioned in the query and generate a dialogue in the first person. The generated dialogue record must contain relevant information that answers the given query. The memory must be logical, well-structured, and tailored to the type of question provided.

1302
1303

Input Data: The input is a query in natural language that asks a specific question or seeks information.

1304

Output Requirements:1305
1306
1307
1308
1309
1310
1311

- Completeness: Ensure that each dialogue memory provides sufficient information to address the query comprehensively.
- Length: The output must not exceed one to two sentences. Ensure brevity while maintaining clarity and relevance.
- Perspective: The response should be written from the perspective of the user mentioned in the query, as a single speaker.

1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324**Output Format:**

[user name in query]: [response content]

Input: *{query_to_be_answered}*

Output: Generate a hypothetical dialogue record.

Figure 17: Answer Generation Prompt for User-User Conversation

1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Query Event Extract Prompt

Instruction: Identify and extract the elements of events mentioned in the query.

Output Requirements:

Use the following structured format for output:

- Time: [Time or 'N/A']
- Person(s): [Person(s) involved or 'N/A']
- Location: [Location or 'N/A']
- Event: [Event description]

Additional guidance

When processing the query, always treat the subject "I" as a person and include it under the "Person(s)" field in the output.

Input: *{text_to_be_processed}*

Figure 18: Query Event Extract Prompt

clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing, grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or experimental design. All research concepts, ideas, and analyses were developed and conducted by the authors. The contributions of the LLM were solely focused on improving the linguistic quality of the paper, with no involvement in the scientific content or data analysis.

1350 Conversation Event Extract Prompt
 1351
 1352 **Instruction:** Identify and extract the elements of events mentioned in the conversation.
 1353 **Output Requirements:**
 1354 Use the following structured format for output:
 1355 • [Event n]
 1356 • Time: [Time or 'N/A']
 1357 • Person(s): [Person(s) involved or 'N/A']
 1358 • Location: [Location or 'N/A']
 1359
 1360 **Additional guidance**
 1361
 1362 • replace all occurrences of "User" in the Person(s) field with "I".
 1363 • If multiple events are mentioned, repeat the structure above, separating each event block
 1364 with a blank line.
 1365
 1366 **Input:** {*text_to_be_processed*}
 1367
 1368

Figure 19: Conversation Event Extract Prompt

1369 Conversation Keywords Expansion Prompt
 1370
 1371 **Instruction:** Please provide additional search keywords for each of the key aspects of the
 1372 following queries that make it easier to find the relevant documents. Do not include irrelevant
 1373 text and separate the search topics with commas.
 1374 **Input:** Query is: {*query*}
 1375
 1376
 1377
 1378

Figure 20: Conversation Keywords Expansion Prompt

1379
 1380
 1381 The authors take full responsibility for the content of the manuscript, including any text generated
 1382 or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
 1383 and does not contribute to plagiarism or scientific misconduct.
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403

1404
1405
1406
1407

1408 Memory Pruning Prompt

1409

Role: You are a memory extractor.

1410

Goal: Given a Query and a Memory block, output the exact substrings from Memory that are relevant to the Query. Do not rewrite, paraphrase, translate, summarize, comment, or add any characters that are not present in Content.

1411

Strict rules:

1412

- Output only characters that literally appear in Content. Preserve original order, casing, punctuation, whitespace, speaker, and line breaks.
- Include ALL relevant substrings. Do not omit any relevant line even if other lines also seem sufficient.
- If an image caption contains information relevant to the query, it should be included in the final output.
- Speaker tags: Preserve the exact leading speaker label format “[xx]：“, unchanged. Keep timestamps that appear in the same corpus if present, unchanged.

1413

Silence rule:

1414

- If no substring is relevant to the Query, output nothing (empty response).
- If multiple relevant substrings are disjoint, output them concatenated in their original order with no extra characters inserted.

1415

Input format:

1416

Query: {*question*}

1417

Memory: {*context*}

1418

Procedure:

1419

- Scan the entire Content line by line.

1420

- Speaker/Caption tags: Preserve the exact leading speaker label format “[speaker name]：“.

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

Response Prompt

1446

You are an intelligent dialogue bot. You will be shown Related Evidences supporting for User Input, and Recent Dialogs between user and you. Please read, memorize, and understand given materials, then generate one concise, coherent and helpful response. Provide the answer itself directly, without including any other statements.

1447

{*context*}

1448

Question: {*question*}

1449

1450

1451

1452

1453

1454

1455

1456

1457

Figure 21: Memory Pruning Prompt

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

GPT Judge Prompt

I will give you a question, a reference answer, and a response from a model. Please answer [[yes]] if the response contains the reference answer. Otherwise, answer [[no]]. If the response is equivalent to the correct answer or contains all the intermediate steps to get the reference answer, you should also answer [[yes]]. If the response only contains a subset of the information required by the answer, answer [[no]].

[User Question] {question}

[The Start of Reference Answer] {answer} [The End of Reference Answer]

[The Start of Model’s Response] {response} [The End of Model’s Response]

Is the model response correct? Answer [[yes]] or [[no]] only.

Figure 23: GPT Judge Prompt, which follows (Wu et al., 2025; Zheng et al., 2023)

Table 11: The Ablation Study of BERT Encoder.

Method	Recall@1	NDCG@1	Recall@3	NDCG@3	Recall@5	NDCG@5	Recall@10	NDCG@10
LongMemEval-S								
BERT	55.74	55.74	81.06	63.40	88.72	68.64	93.62	72.54
DeBERTa	55.32	55.32	81.91	63.19	89.36	68.90	95.74	72.62
RoBERTa	58.09	58.09	83.83	65.27	90.21	70.70	95.53	74.41
LoCoMo								
BERT	26.54	26.54	43.15	36.77	50.60	39.79	61.48	43.56
DeBERTa	26.74	26.74	44.16	38.08	51.71	41.15	62.08	44.56
RoBERTa	27.49	27.49	43.96	37.46	51.31	40.52	62.13	44.27
LongMemEval-M								
BERT	46.17	46.17	71.91	52.95	80.21	58.35	87.45	62.29
DeBERTa	46.38	46.38	68.94	49.73	77.66	55.55	86.81	59.91
RoBERTa	49.15	49.15	69.57	51.96	79.79	57.52	88.51	62.12

Table 12: The ablation study of the proposed classification strategy on three datasets. “w/ Classify” represents adopting the classification strategy to filter memory, “w/o Classify” denotes the opposite.

Method	Recall@1	NDCG@1	Recall@3	NDCG@3	Recall@5	NDCG@5	Recall@10	NDCG@10
LongMemEval-S								
w/o Classify	43.40	43.40	73.62	54.00	83.83	60.33	94.26	65.79
w/ Classify	46.17	46.17	77.23	57.51	85.53	63.43	94.04	68.46
LoCoMo								
w/o Classify	20.75	20.75	36.56	30.86	44.06	34.16	53.93	37.31
w/ Classify	21.9	21.9	38.11	32.17	45.06	35.11	54.83	38.24
LongMemEval-M								
w/o Classify	33.19	33.19	57.87	41.04	68.09	46.46	82.98	51.77
w/ Classify	35.53	35.53	62.17	44.47	70.21	49.14	82.98	54.48