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Abstract

Rectal cancer remains a critical global health challenge, significantly contributing to mor-
bidity and mortality worldwide. Magnetic resonance imaging (MRI) in a sagittal plane
offers distinct advantages for rectal cancer diagnosis by providing detailed visualization
of the rectum and its surrounding anatomy. However, automated segmentation of the
rectum and associated tumors remains difficult due to tumor heterogeneity and complex
anatomical structure, which necessitate multi-scale feature extraction. This study proposes
RCSegNeXt, a novel non-uniform pure-convolutional rectal cancer segmentation architec-
ture that combines shallow anisotropic stages with deep isotropic stages. The anisotropic
stages leverage AniNeXt blocks, designed with customized convolutional kernels and pool-
ing operations to address the uneven spatial resolution inherent in MRI data. In the
isotropic stages, an IsoNeXt block with a Scale-Aware Integration Module (SAIM) enables
efficient multi-scale feature fusion by directing information flow through constrained path-
ways. This design enhances computational efficiency while achieving superior segmenta-
tion accuracy. Experiments on two in-house rectal cancer datasets and a publicly-available
prostate dataset demonstrate the proposed method’s state-of-the-art performances. Code
is available at GitHub.
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1. Introduction

Colorectal cancer, a highly aggressive digestive system malignancy, ranks as the third most
commonly diagnosed cancer and the second leading cause of cancer-related deaths worldwide
(Sung et al., 2021). Notably, a significant proportion of these cases are localized to the rectal
region, with this proportion reaching nearly 50% in China (Qu et al., 2022). Among the
three orthogonal planes used in magnetic resonance imaging (MRI) for rectal cancer, the
sagittal plane offers distinct diagnostic advantages, enabling comprehensive visualization of
the rectum, tumor, and anus in a single image (Shen et al., 2023). It also provides a detailed
depiction of the rectum’s relationship with the peritoneum and adjacent organs, making it
indispensable for accurate tumor T staging. Despite its critical role, precise segmentation
of the rectum and tumor in sagittal MRI remains underexplored. This study aims to fill
this gap by developing 3D segmentation methods for the rectum and tumor in sagittal MRI.

The automatic segmentation of the rectum and tumor poses unique challenges, primar-
ily due to the need for incorporating multi-scale information. These challenges arise from
two main factors: (1) the diverse tumor sizes caused by tumor heterogeneity and indi-
vidual variations, as demonstrated in the first two cases of Fig. 1, and (2) the necessity
of multi-scale information to accurately identify tumors, as demonstrated in the last two
cases of Fig. 1. In the MRI XY plane, tumor diagnosis relies not only on the immediate
vicinity of the tumor but also on the surrounding intestinal wall. In the Z plane, precise tu-
mor delineation necessitates the analysis of multiple adjacent slices. Therefore, integrating
multi-scale features is essential for accurate segmentation. While various approaches aim
to improve multi-scale representation (Ronneberger et al., 2015; Lin et al., 2017; Bo et al.,
2022), their layer-wise operations remain relatively coarse, treating features at different res-
olutions as separate scales. Res2Net (Gao et al., 2019) enhances multi-scale representation
by partitioning convolutions into smaller groups, enabling finer-grained processing of fea-
tures with diverse receptive fields. However, Res2Net has two primary limitations: firstly,
it is less efficient compared to transformer-inspired architectures such as ConvNeXt (Liu
et al., 2022), and secondly, although multi-scale features are captured, they are processed
in an unstructured flow across scales, resulting in suboptimal multi-scale fusion.

Figure 1: Slices from different patients. Green regions indicate tumors, green curves mark
areas adjacent to tumors, red boxes highlight regions critical for tumor diagnosis.

In this paper, we propose a novel approach named RCSegNeXt for segmenting the rec-
tum and tumor in sagittal MRI by employing a non-uniform architecture composed of two
components. The first component utilizes anisotropic stages with AniNeXt blocks, which
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incorporate anisotropic convolutions and max-pooling operations to mitigate the challenge
of excessive slice thickness in MRI. The second component enhances multi-scale feature
representation through the proposed IsoNeXt block, which introduces two key innovations:
(1) a ConvNeXt-like transformer structure for enhanced efficiency, and (2) a Scale-Aware
Integration Module (SAIM) to regulate the direction of information flow. The SAIM effec-
tively integrates multi-scale features both intra- and inter-scale, providing a more effective
feature fusion than unconstrained methods. Our main contributions are as follows:

• To the best of our knowledge, we are the first to achieve automatic end-to-end 3D
segmentation of the rectum and tumor in sagittal plane MRI scans for rectal cancer.

• We introduce a non-uniform architecture that addresses the challenge of thick MRI
slices, incorporating the IsoNeXt block in isotropic stages to leverage multi-scale fea-
tures effectively. The SAIM within the IsoNeXt block specifically imposes constraints
on the direction of information flow.

• Extensive experiments on two in-house rectal cancer datasets and a publicly-available
prostate dataset demonstrate the effectiveness of our approach.

2. Related Work

Medical image segmentation has made substantial progress, largely driven by innovations in
deep learning (Liu et al., 2022). Initially, convolutional neural networks (CNNs) dominated,
with UNet’s symmetric encoder-decoder architecture setting the standard. Subsequent de-
velopments extended UNet with variants like VNet (Milletari et al., 2016), UNet++ (Zhou
et al., 2018). Notably, nnUNet (Isensee et al., 2021) marked a significant leap through self-
configuring workflow optimization. The advent of vision transformers (ViTs) (Dosovitskiy
et al., 2020) catalyzed a paradigm shift, yielding hybrid architectures like TransUNet (Chen
et al., 2021), CoTr (Xie et al., 2021) that explicitly integrate CNN-Transformer interactions,
along with transformer-dominant frameworks like UNETR (Hatamizadeh et al., 2022), Swi-
nUNETR (Hatamizadeh et al., 2021), which retain CNN-based decoders for feature recon-
struction. Transformer-only approaches like SwinUNet (Cao et al., 2022) further showcased
the power of transformers. More recently, state-space models (SSMs) have emerged as
computationally efficient alternatives, with SegMamba (Xing et al., 2024) replacing self-
attention with Mamba blocks for enhanced efficiency. Concurrently, foundation models like
SAM (Kirillov et al., 2023), SAM2 (Ravi et al., 2024) and MedSAM (Ma et al., 2024) have
shown impressive generalization capabilities in segmentation via prompt engineering. De-
spite these advances, rectal cancer segmentation in MRI still demands further refinement
beyond current architectures.

3. Method

3.1. Overview

The architecture of the proposed method is depicted in Fig. 2. As illustrated, the de-
sign incorporates a non-uniform structure consisting of two main components: the shallow
anisotropic stages and the deep isotropic stages.
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Anisotropic stages. In the anisotropic stages, Ani(sotropic)NeXt blocks with aniso-
tropic convolutions of kernel size 1×3×3 are employed. Max-pooling operations are also
anisotropic, with a kernel size of 1×2×2. This design is specifically tailored to address the
characteristics of rectal cancer MRI scans, which often feature substantially thick slices.
For instance, the median spacing in the in-house Dataset A is [4.000, 0.875, 0.875], while
Dataset B exhibits [3.300, 0.234, 0.234]. Applying conventional convolutions uniformly
across all three axes would disproportionately emphasize features on the high-resolution
plane while inadequately capturing axial-direction features due to the uneven spatial res-
olution. Anisotropic kernels are repeated until the spacing among the three axes becomes
approximately uniform, with the stopping criterion defined as spacingz/spacingx(y) < 2.

Isotropic stages. In the isotropic stages, features are processed uniformly across all
dimensions. To enhance feature extraction, multi-scale Iso(tropic)NeXt blocks are employed
at this stage. The IsoNeXt block utilizes 3×3×3 convolutions, and max-pooling operations
have a kernel size of 2×2×2. It is important to note that the IsoNeXt blocks are exclusively
used during the isotropic stages and not in the shallow anisotropic stages. This decision is
based on how multi-scale features are constructed in an IsoNeXt block by stacking small
groups of convolutions to achieve varying receptive fields. In the anisotropic stages, the
convolution kernel size along the axial direction is fixed at 1. Consequently, stacking several
1× convolutions does not expand the receptive field, rendering IsoNeXt blocks ineffective
in these stages. Detailed specifications of the AniNeXt and IsoNeXt blocks are provided in
the subsequent sections.
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Max-pooling, k=[1,2,2]
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Figure 2: Overview of the proposed architecture, where k denotes kernel size, d-conv de-
notes depth-wise convolution, r is the expand ratio, s is the number of scales.

3.2. AniNeXt Block

Inspired by the design principles of vision transformers (Dosovitskiy et al., 2020; Liu et al.,
2021), ConvNeXt integrates transformer-inspired elements into convolutional networks,
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achieving superior performance compared to traditional ResNet (He et al., 2016) architec-
tures. Extending the ConvNeXt framework, we propose the AniNeXt block for anisotropic
stages, as illustrated in Fig. 3(a). The AniNeXt block comprises two main components: (1)
Depthwise Convolution Layer: This layer employs depthwise convolution with a kernel size
of 1×3×3. We opt for a relatively conservative kernel size of 3 instead of larger kernels to
avoid exacerbating information imbalances across different dimensions. Instance Normal-
ization (IN) replaces Layer Normalization (LN) from ConvNeXt to accommodate the high
variability in medical images, particularly in tumor characteristics. (2) Inverted Bottleneck:
The inverted bottleneck structure includes two 1×1×1 convolutional layers with a GELU
activation function between them. The first layer expands the channel dimension from C
to r × C, where r is the expansion rate, while the second compresses it back to C.

3.3. IsoNeXt Block

In this section, we introduce the design of the IsoNeXt block, which extends the Res2Net
block by modernizing it with a transformer-style architecture and incorporating a Scale-
Aware Integration Module (SAIM) to enhance its ability to learn multi-scale features.
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Figure 3: Comparison of different architectures, bot is short for bottleneck.

Revisiting the Res2Net block. The structure of the Res2Net block, illustrated in
Fig. 3(b), adopts a ResNet-like bottleneck design. Following the initial 1×1×1 convolution,
the input feature x is divided into s groups {x1,x2, . . . ,xs}, where s represents the scale.
All groups except x1 are processed using smaller convolutional operations, progressively
capturing more fine-grained patterns. Importantly, a residual connection links each yi (the
convolutional output of xi) to xi+1. This architecture allows higher-index groups to capture
larger receptive fields, thus facilitating the learning of multi-scale features, as indicated by
the varying colors in Fig. 3(b), which represent features at different scales.
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Modernizing the Res2Net block. To incorporate modern design principles from
ConvNeXt with the multi-scale capabilities of Res2Net, we propose a redesigned Res2Net
block, termed Res2NeXt, as illustrated in Fig. 3(c). The key modifications include: (1)
replacing all 3×3×3 convolutions with depthwise 3×3×3 convolutions; (2) transforming
the bottleneck pipeline from a 1×1×1 convolution-group convolution-1×1×1 convolution
structure to a depthwise group convolution-inverted bottleneck architecture; and (3) re-
moving redundant normalization and activation layers, retaining only an IN layer after
the depthwise group convolution and a GELU activation following the expansion 1×1×1
layer in the inverted bottleneck. These updates result in a more efficient and streamlined
implementation, while maintaining the multi-scale feature extraction capabilities.

Scale-Aware Integration Module. While Res2Net and Res2NeXt blocks can ef-
fectively capture multi-scale features, they do not fully exploit them. After split-group
convolution-concatenation operations, the features are sequentially organized by scale, as
depicted in Fig. 3(d), with distinct colors representing different scales. However, applying a
directionless 1×1×1 convolution disrupts this organization due to the absence of constraints
on the information flow. Inspired by SMT (Lin et al., 2023), we introduce the Scale-Aware
Integration Module (SAIM) in IsoNeXt block as a replacement for the inverted bottleneck.
In the first expansion 1×1×1 convolution layer, the convolution is divided into s groups,
consistent with the scale of the preceding group convolution. This structure ensures intra-
scale feature fusion and learning. Subsequently, the features are reshaped, integrating one
channel from each original group into new groups organized by scale. A grouped 1×1×1
convolution with C/s groups is then applied, where each group contains features from dif-
ferent scales, thus enforcing inter-scale feature fusion. This sequential intra-scale and
inter-scale operation enables an effective multi-scale feature fusion and better learning of
scale-aware information.

4. Experiments and Results

4.1. Experiment Settings

Datasets. This study uses two in-house datasets, both annotated for rectum and tumor
regions, with all sensitive patient information de-identified. Dataset A, from Guangdong
Provincial People’s Hospital, China, contains 80 sagittal T2 MRI volumes of varying dimen-
sions [18, 320, 320] to [24, 512, 512], with a median voxel spacing of [4.000, 0.875, 0.875]. It
is randomly split into five folds for cross-validation, with results reported individually for
each fold, as well as the mean and standard deviation across all folds. Dataset B, from the
Second Affiliated Hospital of Navy Medical University, China, includes 77 sagittal T2 MRI
volumes of fixed dimensions [21, 1024, 1024] and voxel spacing of [3.300, 0.234, 0.234]. It
is used to evaluate models trained on Dataset A, assessing generalization to unseen data.
During testing, images from Dataset B are resized to [21, 512, 512]. We further use a public
dataset Prostate158 (Adams et al., 2022) for evaluation, which contains 158 biparamet-
ric 3T prostate MRI scans with expert annotations for two anatomical zones and tumor,
officially divided into 119/20/19 for training/validation/testing.

Metrics. The Dice Coefficient serves as the primary evaluation metric. Statistical signif-
icance is assessed using a two-tailed t-test, with the p-value reported. For comparisons
with state-of-the-art methods, the p-value is derived by comparing the proposed method’s
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performance with that of existing approaches. In ablation studies, the p-value is calculated
by comparing baseline results to those obtained from modified configurations. We also use
Hausdorff distance and Average surface distance as metrics for Prostate158.

Implementation details. The model is implemented in PyTorch and built on the framework
of nnUNet, trained on a single NVIDIA RTX 3090 GPU. Images in Dataset A are resampled
to a uniform voxel spacing of [4.000, 0.875, 0.875], then cropped into patches of [16, 320,
320] for 3D networks and [320, 320] for the 2D nnUNet. Training utilizes the SGD optimizer
with a momentum of 0.99 for 100 epochs, starting with a learning rate of 0.01 and adjusted
dynamically using a ‘poly’ decay strategy. The batch size is set to 2 for 3D networks and to
8 for the 2D nnUNet, while the scale factor for the Res2Net, Res2NeXt, and IsoNeXt blocks
is set to 4. The model employs nnUNet’s default data augmentation strategies and adopts
the framework’s standard composite loss function combining Cross Entropy and Dice losses.

4.2. Comparison with state-of-the-art Architectures.

In this section, we evaluate the performance of our proposed method against several state-
of-the-art approaches across two datasets, as summarized in Table 1 and Table 2. The
comparison includes convolution-based methods such as nnU-Net, 3D U-Net(Çiçek et al.,
2016), Res-UNet(Zhang et al., 2018), and MedNeXt(Roy et al., 2023), as well as transformer-
based methods like UNETR, SwinUNETR and nnFormer(Zhou et al., 2023). Additionally,
we compare with a state-space model SegMamba, and MNet(Dong et al., 2022), specifically
designed for anisotropic medical image segmentation. Except for 3D U-Net, all methods
are implemented using their official code. Res-UNet is implemented via the MONAI frame-
work(Cardoso et al., 2022).

Table 1: Evaluation on Dataset A (Dice (%)). The best and second best are highlighted.

Model #Para(M)
Fold0 Fold1 Fold2 Fold3 Fold4 Avg

Rect Tumor Rect Tumor Rect Tumor Rect Tumor Rect Tumor Rectum Tumor

2D nnUNet 47.63 68.65 49.81 67.76 52.10 72.06 45.20 67.66 45.70 70.55 54.08 69.34± 1.91(p<0.05) 49.38± 3.90(p<0.01)

3D nnUNet 64.01 71.13 57.55 68.62 60.55 73.70 53.98 69.45 59.78 69.96 63.91 70.57± 1.97(p=0.05) 59.15± 3.38(p=0.07)

3D-UNet 25.89 69.09 45.52 60.66 59.04 69.31 55.62 66.10 47.87 65.53 58.45 66.14± 3.51(p<0.01) 53.30± 6.22(p=0.01)

Res-UNet 19.22 67.11 55.50 62.46 50.96 70.59 48.15 67.50 50.21 67.94 58.66 67.12± 2.94(p=0.01) 52.70± 4.28(p<0.01)

MNet 8.78 69.44 57.62 61.15 50.00 68.64 48.78 65.97 52.44 68.02 59.08 66.64± 3.33(p=0.01) 53.58± 4.58(p<0.01)

MedNeXt-B 10.53 71.11 56.76 65.76 62.94 72.59 52.75 68.69 58.76 68.95 64.33 69.42± 2.60(p<0.05) 59.11± 4.69(p=0.12)

UNETR 137.21 64.88 42.39 57.95 46.52 63.77 35.52 64.90 44.92 60.83 42.69 62.47± 3.02(p<0.01) 42.41± 4.21(p<0.01)

SwinUNETR 38.30 68.43 55.59 61.95 57.91 69.36 53.91 66.34 50.58 61.80 52.41 65.58± 3.55(p<0.01) 54.08± 2.83(p<0.01)

nnFormer 149.17 69.00 52.42 65.78 57.42 73.63 54.28 67.54 49.41 67.67 61.07 68.73± 2.97(p<0.01) 54.92± 4.51(p<0.01)

SegMamba 67.36 68.93 54.48 61.81 52.46 71.08 48.20 65.91 48.92 64.84 52.77 66.51± 3.60(p<0.01) 51.37± 2.69(p<0.01)

Ours 2.76 72.64 62.35 69.70 61.52 76.01 64.49 69.88 61.23 70.03 67.51 71.65± 2.72 63.42± 2.62

The experimental results demonstrate that our method achieves state-of-the-art perfor-
mance with a significantly lower model complexity. On Dataset A, our model outperforms
all baselines, achieving the highest average Dice scores for rectum (71.65 ± 2.72) and tumor
(63.42 ± 2.62), surpassing nnUNet 3D by 1.74% and 4.27%, respectively, with only 2.76
million parameters. This efficiency, along with robust performance across folds, highlights
its effectiveness. On Dataset B, the model trained on Dataset A without retraining achieves
competitive results, with Dice scores of 68.29 ± 1.24 for rectum and 45.45 ± 4.75 for tumor,
outperforming 3D nnUNet by 0.50% and 4.92%, respectively. These results emphasize the
model’s strong generalization and computational efficiency. As for Prostate158, our method
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achieved the highest Dice scores in both anatomical (including the Central Gland and Pe-
ripheral Zone) and tumor regions, while also demonstrating notable advantages in terms of
Hausdorff distance and average surface distance.

Table 2: Comparison with state-of-the-art methods on Dataset B.

Model #Para(M)
Fold0 Fold1 Fold2 Fold3 Fold4 Avg

Rect Tumor Rect Tumor Rect Tumor Rect Tumor Rect Tumor Rectum Tumor

2D nnUNet 47.63 62.07 35.28 61.93 31.26 63.48 39.02 61.48 30.07 60.64 35.14 61.92± 1.04(p<0.01) 34.15± 3.57(p<0.01)

3D nnUNet 64.01 68.71 42.00 66.58 36.62 68.56 41.90 68.26 37.26 66.86 44.87 67.79± 1.00(p=0.10) 40.53± 3.50(p<0.01)

3D-UNet 25.89 61.13 15.89 55.21 13.59 60.17 20.52 63.05 19.90 55.76 29.35 59.06± 3.43(p<0.01) 19.85± 6.03(p<0.01)

Res-UNet 19.22 62.08 38.43 59.11 31.93 57.69 37.77 62.71 31.61 57.39 39.30 59.80± 2.47(p<0.01) 35.81± 3.73(p<0.01)

MNet 8.78 58.61 36.97 59.27 37.62 59.16 39.80 60.09 34.98 59.63 37.96 59.35± 0.55(p<0.01) 37.47± 1.74(p<0.01)

MedNeXt-B 10.53 66.46 40.94 64.12 34.76 65.92 44.00 66.15 37.43 64.63 43.49 65.46± 1.02(p<0.01) 40.12± 3.97(p=0.01)

UNETR 137.21 58.57 20.31 56.85 16.88 59.05 21.66 58.97 21.28 56.26 20.66 57.94± 1.29(p<0.01) 20.16± 1.91(p<0.01)

SwinUNETR 38.30 61.90 37.45 58.54 27.62 60.50 33.38 59.68 32.24 57.48 26.67 59.62± 1.71(p<0.01) 31.48± 4.41(p<0.01)

nnFormer 149.17 63.59 28.53 63.31 20.09 64.79 29.84 64.11 22.65 63.74 25.11 63.91± 0.57(p<0.01) 25.24± 4.04(p<0.01)

SegMamba 67.36 61.23 37.49 56.90 29.68 57.95 37.44 61.65 32.30 51.79 34.14 57.90± 3.98(p<0.01) 34.21± 3.37(p<0.01)

Ours 2.76 69.59 48.08 67.57 43.04 69.06 48.57 68.72 38.19 66.51 49.36 68.29± 1.24 45.45± 4.75

Table 3: Evaluation on Prostate158,HD-Hausdorff distance,ASD-average surface distance

Model #Para(M)
Central gland Peripheral zone Prostate tumor

Dice HD ASD Dice HD ASD Dice HD ASD

2D nnUNet 47.63 86.88 13.37 0.98 75.59 15.01 0.99 35.88 26.42 6.55
3D nnUNet 64.01 88.58 10.41 1.06 78.00 14.69 1.06 50.92 21.79 7.38
3D-UNet 25.89 84.65 15.29 1.45 73.58 17.50 1.26 46.36 42.11 5.98
Res-UNet 19.22 85.90 11.81 1.28 73.23 17.51 1.31 47.47 32.58 4.29
MNet 8.78 87.73 11.52 0.99 75.56 13.99 1.01 52.58 29.88 7.61
MedNeXt-B 10.53 87.52 11.14 1.19 75.40 15.06 1.20 50.07 39.08 5.71
UNETR 137.21 86.18 17.77 1.32 70.07 18.77 1.60 40.25 52.00 4.92
SwinUNETR 38.30 84.82 18.81 1.28 70.67 18.17 1.39 48.57 37.78 3.69
nnFormer 149.17 86.58 13.85 1.18 74.68 17.46 1.25 48.06 44.61 3.38
SegMamba 67.36 86.84 11.96 1.16 73.68 19.05 1.26 49.80 40.30 4.34
Ours 2.76 88.96 10.50 1.02 79.43 13.02 0.90 53.00 20.70 3.97

4.3. Ablation Study

We compare the proposed architecture with several alternatives on Dataset A, as sum-
marized in Table 4. The baseline model (first row) modifies the 3D-UNet architecture by
integrating anisotropic kernels in the anisotropic stages and replacing BN with IN. The com-
parative analysis in the first two rows validates the effectiveness of the proposed AniNeXt
block. In subsequent experiments, the anisotropic stages are fixed to employ the AniNeXt
block, while the impact of various blocks in the isotropic stages is systematically evaluated.
As shown in Table 4, all tested blocks improve performance on tumor segmentation, with
transformer-inspired designs delivering particularly notable gains. In contrast, Res2Net
demonstrates limited efficiency and performance, including a notable drop in accuracy
for rectum segmentation, highlighting its limitations compared to the transformer-inspired
pipeline. The best performance is achieved using AniNeXt with the IsoNeXt backbone,
which outperforms other configurations, achieving segmentation accuracies of 71.65% for
tumors and 67.51% for rectum, both statistically significant improvements. The comparison
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between IsoNeXt and Res2NeXt in the last two rows further underscores the effectiveness
of the proposed SAIM module, as the inclusion of SAIM is the distinction between the two.

Table 4: Ablation study on the use of different blocks.
Aniso stage Iso stage #P(M) Fold0 Fold1 Fold2 Fold3 Fold4 Avg

Rect Tumor Rect Tumor Rect Tumor Rect Tumor Rect Tumor Rect Tumor

Conv Conv 22.14 69.68 60.67 64.12 58.36 73.11 52.77 68.67 55.97 66.74 62.33 68.46± 3.35 58.02± 3.79
AniNeXt Conv 22.07 71.51 61.55 66.57 58.96 74.80 56.98 67.88 57.77 69.53 63.83 70.06± 3.232(p=0.06) 59.82± 2.83(p<0.05)

AniNeXt ConvNeXt 5.54 72.64 61.40 66.85 61.60 75.14 61.23 69.65 58.68 68.52 64.75 70.56± 3.32(p<0.01) 61.53± 2.16(p=0.05)

AniNeXt Res2Net 8.11 70.24 58.95 64.18 59.50 72.83 56.41 68.46 60.88 67.06 65.50 68.55± 3.26(p=0.60) 60.25± 3.35(p=0.13)

AniNeXt Res2NeXt 5.52 71.08 62.67 68.33 60.04 75.35 61.87 69.77 61.33 70.25 64.31 70.96± 2.65(p=0.01) 62.04± 1.59(p<0.05)

AniNeXt IsoNeXt 2.76 72.64 62.35 69.70 61.52 76.01 64.49 69.88 61.23 70.03 67.51 71.65± 2.72(p=0.01) 63.42± 2.62(p<0.05)

4.4. Visualization

We present qualitative comparisons between our method and other techniques on Dataset
A, as shown in Fig. 4. In the first row, our method accurately predicts both the rectum and
tumor, while other methods exhibit false positives in the tumor or incomplete rectum seg-
mentation. In the second row, our method precisely predicts the tumor without displaying
false positive discontinuities, unlike other methods. Overall, the visualizations demonstrate
the superior tumor prediction performance of our method, with the performance on adjacent
areas highlighting the effectiveness of our multi-scale design.

(a) GT (b) Ours (c) nnUNet (d) MedNeXt (e) MNet (f ) nnFormer

Figure 4: Qualitative comparison. Red region denotes rectum and green denotes tumor.

5. Conclusion and Discussion

This study introduces RCSegNeXt, a novel framework for rectal cancer segmentation in
sagittal MRI scans. By integrating anisotropic and isotropic processing through the AniNeXt
and IsoNeXt blocks with a Scale-Aware Integration Module (SAIM), the method enhances
multi-scale feature representation effectively. Experimental results on two in-house datasets
demonstrate significant improvements in tumor and rectum segmentation. Evaluation on
public prostate dataset further verify the effectiveness. Future work will aim to enhance
generalization across diverse datasets and explore applications in downstream tasks.
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Appendix A. Selection of Kernels and Stride

The termination criterion for using anisotropic kernels is determined by the original spac-
ing of the MRI scans. We limit the use of max-pooling operations to four, resulting in
five stages (including the saddle layer). Given the original spacings [sz, sx, sy], the ker-
nel sizes for convolutional stages and the strides for max-pooling operations in the en-
coder layers, as well as the saddle layer, are computed using Algorithm 1. The ker-
nel sizes and strides for the decoder are designed as the mirror counterparts of the en-
coder. For example, when processing the spacing [4.000,0.875,0.875] from Dataset A, the
computed strides are [[1,2,2],[1,2,2],[2,2,2],[2,2,2]], and the corresponding kernel sizes are
[[1,3,3],[1,3,3],[3,3,3],[3,3,3],[3,3,3]]. These configurations align with the architecture de-
picted in Fig. 2.

Algorithm 1: Stride and Kernel Computation for Spacing Ratios

Input: spacings = [sz, sx, sy] (initial spacing values)
Output: strides, kernels (lists of computed strides and kernels)
strides← ∅, kernels← ∅;
for i← 1 to 4 do

Compute spacing ratio← [sp/min(spacings) for sp ∈ spacings];
Compute stride← [2 if ratio ≤ 2 else 1 for ratio ∈ spacing ratio];
Compute kernel← [3 if ratio ≤ 2 else 1 for ratio ∈ spacing ratio];
Update spacings← [sp · st for sp, st ∈ zip(spacings, stride)];
Append stride to strides;
Append kernel to kernels;

end
Compute spacing ratio← [sp/min(spacings) for sp ∈ spacings];
Compute kernel← [3 if ratio ≤ 2 else 1 for ratio ∈ spacing ratio];
Append kernel to kernels;
return strides, kernels;

Appendix B. Other Analysis

B.1. Built of Baseline

The baseline used in the ablation study, as presented in Table 4, incorporates several modifi-
cations to the standard 3D-UNet architecture. In this section, we analyze the effects of these
modifications in detail, with the results summarized in Table 5. From the table, it is evi-
dent that implementing the anisotropic-isotropic design consistently improves performance
across both the rectum and tumor segmentation tasks. However, when Batch Normaliza-
tion (BN) is replaced with Instance Normalization (IN), performance improves for tumor
segmentation but decreases for rectum segmentation. This discrepancy can be attributed
to the significant heterogeneity in tumor characteristics and inter-individual variations, as
opposed to the relatively consistent morphology and anatomical positioning of the rectum
across different individuals.The baseline in Table 4 outperforms several sota methods in Ta-
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ble 1 mainly stems from the two design strategies described above while they don’t adopt
these.

Table 5: Built of baseline for ablation study.

Model
Fold0 Fold1 Fold2 Fold3 Fold4 Avg

Rect Tumor Rect Tumor Rect Tumor Rect Tumor Rect Tumor Rectum Tumor

3D-UNet 69.09 45.52 60.66 59.04 69.31 55.62 66.10 47.87 65.53 58.45 66.14± 3.51 53.30± 6.22
→Aniso-iso design 69.98 55.43 64.31 59.31 75.21 54.06 68.24 50.31 68.24 56.95 69.20± 3.95 55.21± 3.36
BN→IN 69.68 60.67 64.12 58.36 73.11 52.77 68.67 55.97 66.74 62.33 68.46± 3.35 58.02± 3.79

B.2. Comparison with Variants of state-of-the-art Methods

In this study, we compare several variants of state-of-the-art methods, as presented in Ta-
ble 6 and Table 7. The variants include MedNeXt models with different sizes and kernel con-
figurations, as well as UNETR models with varying patch sizes for tokenization. As shown in
Table 6 and Table 7, increasing the convolutional kernel size does not lead to improved per-
formance. This can be attributed to the fact that the identification of rectal cancer-related
anatomy, particularly tumors, demands finer details. Therefore, merely enlarging the re-
ceptive field is insufficient for this task. Instead, multi-scale feature extraction is required,
which further supports the effectiveness of our proposed method. For the transformer-based
architecture UNETR, reducing the patch size along the Z-axis improves the recognition of
relevant structures, particularly tumors. However, its performance remains inferior to other
convolution-based methods. This is primarily due to the limited number of tokens along
the Z-axis—4 for a patch size of 4×16×16 and only 1 for 16×16×16—which significantly
restricts the model’s ability to learn fine details.

Table 6: Comparison with variants of state-of-the-art methods on Dataset A.

Model #Para(M)
Fold0 Fold1 Fold2 Fold3 Fold4 Avg

Rect Tumor Rect Tumor Rect Tumor Rect Tumor Rect Tumor Rectum Tumor

MedNeXt-B(k=3) 10.53 71.11 56.76 65.76 62.94 72.59 52.75 68.69 58.76 68.95 64.33 69.42± 2.60(p<0.05) 59.11± 4.69(p=0.12)

MedNeXt-B(k=5) 10.96 68.51 55.64 65.48 60.00 72.48 56.84 67.76 55.87 67.57 60.17 68.36± 2.56(p<0.01) 57.70± 2.22(p<0.01)

MedNeXt-L(k=3) 61.78 70.16 56.02 67.11 64.24 72.21 57.24 67.83 58.26 70.26 63.05 69.51± 2.05(p<0.05) 59.76± 3.66(p=0.11)

MedNeXt-L(k=5) 62.99 71.06 57.78 67.42 61.19 70.37 54.14 68.38 55.09 68.60 65.39 69.17± 1.50(p<0.05) 58.72± 4.63(p=0.05)

UNETR(16×16×16) 146.51 67.12 35.18 58.24 49.03 63.53 32.80 63.18 36.63 61.28 34.90 62.67± 3.25(p<0.01) 37.71± 6.48(p<0.01)

UNETR(4×16×16) 137.21 64.88 42.39 57.95 46.52 63.77 35.52 64.90 44.92 60.83 42.69 62.47± 3.02(p<0.01) 42.41± 4.21(p<0.01)

Ours 2.76 72.64 62.35 69.70 61.52 76.01 64.49 69.88 61.23 70.03 67.51 71.65± 2.72 63.42± 2.62

Table 7: Comparison with variants of state-of-the-art methods on Dataset B.

Model #Para(M)
Fold0 Fold1 Fold2 Fold3 Fold4 Avg

Rect Tumor Rect Tumor Rect Tumor Rect Tumor Rect Tumor Rectum Tumor

MedNeXt-B(k=3) 10.53 66.46 40.94 64.12 34.76 65.92 44.00 66.15 37.43 64.63 43.49 65.46± 1.02(p<0.01) 40.12± 3.97(p<0.05)

MedNeXt-B(k=5) 10.96 65.30 39.16 61.54 32.25 63.73 44.98 65.32 37.31 61.32 39.46 63.44± 1.95(p<0.01) 38.63± 4.58(p<0.05)

MedNeXt-L(k=3) 61.78 68.20 42.68 65.40 38.37 69.24 49.75 66.77 43.25 67.72 49.16 67.47± 1.46(p=0.28) 44.64± 4.79(p=0.70)

MedNeXt-L(k=5) 62.99 67.18 40.26 63.55 33.98 65.25 43.19 66.76 35.56 62.29 37.33 65.01± 2.08(p<0.01) 38.06± 3.69(p<0.01)

UNETR(16×16×16) 146.51 56.66 16.43 52.54 16.14 57.71 19.53 56.76 19.35 52.04 17.18 55.14± 2.64(p<0.01) 17.73± 1.61(p<0.01)

UNETR(4×16×16) 137.21 58.57 20.31 56.85 16.88 59.05 21.66 58.97 21.28 56.26 20.66 57.94± 1.29(p<0.01) 20.16± 1.91(p<0.01)

Ours 2.76 69.59 48.08 67.57 43.04 69.06 48.57 68.72 38.19 66.51 49.36 68.29± 1.24 45.45± 4.75
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B.3. Effect of Model Scaling

This section investigates the impact of scaling the model and examines whether increasing
model size leads to improved performance. To explore this hypothesis, we scale up the
model and compare the results across different configurations. As depicted in Fig. 2, the
model architecture comprises four downsampling operations, resulting in five stages. The
resolution transitions from the finest, corresponding to the input scans, to the coarsest at
the saddle layer, labeled as Stage 1 to Stage 5. The baseline model, denoted as RCSegNeXt-
B (where ”B” stands for the base model), consists of two repeated AniNeXt/IsoNeXt blocks
per stage. To assess the impact of scaling, we increase the number of block repetitions from
[2,2,2,2,2] (used in RCSegNeXt-B) to [2,2,2,8,4], yielding the RCSegNeXt-L model, where
”L” represents the large-scale variant. This modification substantially increases the number
of model parameters from 2.76M to 10.77M.

A comparative analysis of these models is presented in Table 8. On Dataset A, the Dice
coefficient for the rectum exhibits a marginal improvement from 71.65 ± 2.72 to 71.78 ±
3.00, while for the tumor, it slightly decreases from 63.42 ± 2.62 to 62.46 ± 2.99. However,
when directly evaluated on Dataset B, the Dice score consistently improves for both the
rectum and the tumor. Specifically, the Dice score for the rectum increases from 68.29
± 1.24 to 68.40 ± 1.22, and for the tumor, from 45.45 ± 4.75 to 47.39 ± 3.38. These
trends align with the performance of the MedNeXt-B and MedNeXt-L models, as shown in
Table 6 and Table 7. Notably, while the scaled-up models do not demonstrate consistent
improvements in cross-validation on Dataset A, they achieve substantial performance gains
in direct testing on Dataset B. We hypothesize that this discrepancy may stem from the
relatively small sample size of Dataset A (N = 80). The smaller model may better capture
the specific characteristics of this limited dataset, resulting in strong cross-validation per-
formance. However, due to the domain gap between Dataset A and Dataset B, the smaller
model may fail to generalize when tested on Dataset B, as its learned features might not
be representative of the broader distribution. In contrast, the larger model, though poten-
tially undertrained on the smaller dataset, possesses a greater capacity to learn complex
and abstract features. This enables it to generalize more effectively, leading to superior
performance on Dataset B, even if it does not significantly outperform the smaller model
on Dataset A. These findings highlight the advantage of larger models in capturing more
generalized feature representations, particularly when sufficient training data is available.
Moving forward, we plan to collect additional retrospective data to further enhance the
performance of the scaled-up architecture.

Table 8: Experiments on the impact of model scaling on Dataset A and B.
Dattset

Model #Para(M)
Fold0 Fold1 Fold2 Fold3 Fold4 Avg

Rect Tumor Rect Tumor Rect Tumor Rect Tumor Rect Tumor Rectum Tumor

A
RCSegNeXt-B 2.76 72.64 62.35 69.70 61.52 76.01 64.49 69.88 61.23 70.03 67.51 71.65± 2.72 63.42± 2.62
RCSegNeXt-L 10.77 71.63 60.43 69.71 60.36 76.99 65.79 70.25 60.04 70.30 65.67 71.78± 3.00 62.46± 2.99

B
RCSegNeXt-B 2.76 69.59 48.08 67.57 43.04 69.06 48.57 68.72 38.19 66.51 49.36 68.29± 1.24 45.45± 4.75
RCSegNeXt-L 10.77 69.88 47.82 68.01 44.94 69.26 49.41 68.15 43.17 66.72 51.60 68.40± 1.22 47.39± 3.38
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B.4. Analysis of Failure Cases

Herein, we present several representative failure cases of our our RCSegNeXt model in
Fig. 5. The first row displays ground-truth, while the second row shows the corresponding
predictions from our RCSegNeXt. Each column represents a distinct failure case. Cases 1-2
illustrate suboptimal segmentation performance at the superior rectal margin, highlighted
by the yellow bounding boxes in Fig. 5(a) and Fig. 5(b), which can also be observed in the
second row of Fig. 4. This issue arises from the indistinct anatomical boundary between
the rectum and sigmoid colon, further exacerbated by inter-slice discontinuities that hinder
precise segmentation of these contiguous structures. Cases 3–5 share a common character-
istic: they correspond to tumor emergence or disappearance slices located at the sagittal
boundary of the tumor. Our model exhibited performance degradation in these regions,
a phenomenon also observed in the rectum. This phenomenon primarily also stems from
relatively thick slice thickness, causing actual tumor/rectal boundaries to potentially lie
between adjacent slices, thus making it difficult to definitively assign these boundaries to
specific slices. To mitigate these issues, we intend to design two complementary strate-
gies: (1) Two-Stage Architecture: The first stage segments the rectal region using merged
rectum-tumor labels, while the second stage refines segmentation within a region of interest
(ROI) cropped from the first-stage output. (2) Multi-Axial MRI Integration: Incorporat-
ing auxiliary inputs from orthogonal MRI planes provides high-resolution details between
sagittal slices, offering ”free lunch” information to enhance boundary definition.

(a) Case1 (b) Case2 (c) Case3 (d) Case4 (e) Case5

Figure 5: Illustration of failure cases. Red region denotes rectum and green denotes tumor.
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