
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LESS IS MORE: EXTREME GRADIENT BOOST RANK-1
ADAPTION FOR EFFICIENT FINETUNING OF LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning Large Language Models (LLMs) has become a crucial technique
for adapting pre-trained models to downstream tasks. However, the enormous
size of LLMs poses significant challenges in terms of computational complexity
and resource requirements. Low-Rank Adaptation (LoRA) has emerged as a
promising solution. However, there exists a gap between the practical performance
of low-rank adaptations and its theoretical optimum. In this work, we propose
eXtreme Gradient Boosting LoRA (XGBLoRA), a novel framework that bridges
this gap by leveraging the power of ensemble learning. Inspired by gradient
boosting, XGBLoRA iteratively learns and merges a sequence of LoRA adaptations
to refine model predictions. It achieves better performance than the standard LoRA,
while enjoying the computational efficiency of rank-1 adaptations. We provide
theoretical analysis to show the convergence and optimality of our approach, and
conduct extensive experiments on a range of natural language processing tasks.
The results demonstrate that XGBLoRA consistently outperforms standard LoRA
and achieves performance comparable to full fine-tuning with significantly fewer
trainable parameters. This work advances parameter-efficient fine-tuning for LLMs,
and offers a promising solution for adapting LLMs to downstream tasks while
optimizing performance and efficiency.

1 INTRODUCTION

10 1 100 101 102 103

#Params(M)

85.0

85.5

86.0

86.5

87.0

87.5

G
LU

E
Av

g.

Fully FT

BitFit

HAdapter

PAdapter

DeltaLoRA
MELoRA

LoRA
AdaLoRA
FLoRA

DoRA

XGBLoRA
 (Ours)

ReLoRA

 High
Performace

 Param.
 Efficient

LoRA XGBLoRA
0.60

0.61

0.62

0.63

0.64

0.65
Speed/batch (Sec.)

Figure 1: Efficiency vs. effectiveness on
the GLUE dataset. Our XGBLoRA enjoys
high average and uses fewer parameters
than competitors. Mini-figure: speed in
seconds per batch.

Large language models (LLMs) have achieved remark-
able success in various natural language processing
tasks, enabling breakthroughs in language understand-
ing, generation, and reasoning (Devlin et al., 2019; Rad-
ford et al., 2019; Brown et al., 2020b). These models are
typically pre-trained on vast amounts of unlabeled text
data, and then fine-tuned on specific downstream tasks
to adapt their knowledge to the target domain (Wang
et al., 2018; Rajpurkar et al., 2016; Williams et al., 2018).
However, the enormous size of LLMs, often reaching
billions of parameters, poses significant challenges in
terms of computational complexity and resource require-
ments during fine-tuning (Kaplan et al., 2020; Brown
et al., 2020b).

To address these challenges, a promising direction called
parameter-efficient fine-tuning (PEFT) (Houlsby et al.,
2019a; Zaken et al., 2021; Hu et al., 2021) adapts LLMs
to downstream tasks while minimizing the number of
trainable parameters, thereby reducing the computa-
tional and memory overhead. Among these methods, Low-Rank Adaptation (LoRA) (Hu et al.,
2021) has gained significant attention due to its effectiveness and simplicity. LoRA freezes the
pre-trained model’s weights and introduces low-rank matrices to adapt the model to new tasks. By
only updating these low-rank matrices during fine-tuning, LoRA significantly reduces the number of
trainable parameters compared to full fine-tuning.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10
1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ex
pr

es
si

ve
ne

ss
 E

rr
or

Rank r/#Iteration of GB T

LoRA (T = 1)
XGBLoRA (r = 1)

0 5 10
0

200

#
pa

ra
m

s(
k)

Memeory Footprint

Figure 2: We prove by the error bound
in Th. 2 that by compensating for low
rank r=1 updates by GB #iterations T ,
XGBLoRA’s err≤ C(1+ 1√

T
) is close

to LoRA’s err≤ C(1r+1). Mini-figure:
XGBLoRA consumes onlyO(1) memory
for updates while LoRA consumesO(r).

Despite its success, LoRA faces a fundamental dilemma
between efficiency and effectiveness. (Hu et al., 2021).
To guarantee the ability to fit any target matrix, the rank
of the adaptation matrices must satisfy the condition of
rank_r ≥ embedding_size/2. However, in prac-
tice, much smaller ranks (e.g., r ∈ [8, 16]) are often used
to achieve a good trade-off between performance and effi-
ciency. This discrepancy between the theoretical optimum
and practical usage leads to a theoretical performance gap.
While increasing the rank to match the theoretical require-
ment helps bridge this gap, it increases the memory usage
and computational complexity, diminishing the benefits of
using LoRA. This raises an important question:

Is there an efficient
way to bridge the performance gap while maintaining the
extreme low-rank structure and low complexity of LoRA?

Thus, we propose eXtreme Gradient Boosting Low Rank
Adaption (XGBLoRA), a novel framework that resolves the
dilemma posed above by leveraging the power of ensemble learning. Inspired by Gradient Boosting
(GB) (Friedman, 2001; 2002), XGBLoRA assembles the final model by combining a sequence of
boosters (LoRA adaptations), progressively refining the model’s predictions. By leveraging the GB
principle of the weak learner (i.e., strong ensemble model from a set of weak predictors), XGBLoRA
lets extreme low-rank adaption overcome the dilemma between efficiency and effectiveness.

Figure 2 illustrates our theoretical analysis: even for rank-1 updates, XGBLoRA can achieve superior
performance when combined through gradient boosting, i.e., the expressiveness errors of XGBLoRA
and LoRA can remain low while LoRA requires r× more update memory. Specifically, in Theorems
1 & 2 we establish convergence guarantees and expressiveness bounds that capture the interplay
between the number of boosting iterations, the LoRA rank, and the approximation quality. The results
reveal that increasing the number of boosting iterations can compensate for lower ranks, letting
XGBLoRA bridge the gap between theoretical optimality and practical efficiency.

Through extensive experiments on a range of natural language processing tasks, we demonstrate
that XGBLoRA consistently outperforms both standard LoRA and full fine-tuning, while using
significantly fewer trainable parameters. For example, in our experiments on LLMs, XGBLoRA runs
comfortably on a single NVIDIA RTX 4090 (24GB) for LLaMA3-8B while LoRA requires an A100
(40GB) GPU. Notably, our results show that XGBLoRA with rank-1 updates can match or exceed the
performance of higher-rank methods, validating our theoretical insights. Our main contributions are
as follows:

i. We introduce XGBLoRA, a novel framework that leverages both ensemble learning and the
principle of weak learners for parameter-efficient fine-tuning of large language models. This
approach bridges the performance gap between practical usage and theoretical optimum.

ii. We establish convergence guarantees and expressiveness bounds of XGBLoRA in Theorems 1
& 2 that highlight the interplay between the number of GB iterations, the LoRA rank, and the
approximation quality. They explain how rank-1 updates achieve superb performance through
GB iterations while maintaining low memory update footprint (rank r times lower than LoRA).

iii. Through extensive experiments across a range of NLP tasks, we demonstrate the effectiveness
of XGBLoRA which on average achieves better performance than both standard LoRA and full
fine-tuning, while using around 10× and 104× fewer trainable parameters respectively.

2 RELATED WORKS

Fine-tuning LLMs has become a prevailing approach for adapting these models to specific down-
stream tasks (Houlsby et al., 2019b; Diao et al., 2021; Hu et al., 2022; Diao et al., 2023). The process
involves training the model on a task-specific dataset, usually with a smaller learning rate compared
to pre-training, to adapt its parameters to the target task. Fine-tuning has been successfully applied to
a wide range of natural language processing tasks, including text classification, question answering,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

and natural language inference (Brown et al., 2020b; Kenton & Toutanova, 2019; Radford et al., 2018;
Touvron et al., 2023a). However, fine-tuning LLMs faces several challenges. A major challenge is
the computational complexity and memory requirements associated with updating billions of model
parameters, which can be prohibitively expensive and time-consuming (Strubell et al., 2019; Brown
et al., 2020a; Raffel et al., 2020b; Zhang et al., 2022; Scao et al., 2022; Almazrouei et al., 2023;
Touvron et al., 2023a;b; Chiang et al., 2023; Biderman et al., 2023; Jiang et al., 2024). Additionally,
the limited availability of labeled data for specific tasks poses challenges in terms of sample efficiency
and generalization ability (Zhang et al., 2020). To address these challenges, various approaches have
been proposed to improve the efficiency and effectiveness of LLM fine-tuning. One notable technique
is LoRA (Hu et al., 2021) which freezes the pre-trained model’s weights and introduces a low-rank
matrix to adapt the model to new tasks. LoRA reduces the number of trainable parameters and reduces
the computational burden of LLM fine-tuning. Recently, (Zeng & Lee, 2024) provided theoretical
results that characterize the expressive power of LoRA for Fully Connected Neural Networks (FCNN)
and Transformer Networks (TFN), which identify the necessary rank of LoRA for adapting a frozen
model to exactly match a target model. For Transformer networks, any model can be adapted to a
target model of the same size with LoRA adapters of rank_r=embedding_size/2.

Gradient Boosting (Friedman, 2001; 2002) is a powerful ensemble learning technique that combines
multiple weak learners to create a strong learner. The theoretical foundations of gradient boosting
have been extensively studied, providing insights into its convergence properties, generalization
ability, and robustness to overfitting. A seminal work on gradient boosting theory by Zhang & Yu
(2005) proved that gradient boosting achieves the optimal convergence rate for a broad class of loss
functions, highlighting its theoretical optimality. Koltchinskii & Panchenko (2002) further investi-
gated theoretical properties of gradient boosting from the perspective of empirical risk minimization.
They derived bounds on the generalization error of gradient boosting and showed that the technique
is resilient to overfitting when the base learners are weak and the step size is appropriately chosen.
They include insights into its convergence behavior, generalization ability, and robustness, which are
relevant to the theoretical analysis of our proposed XGBLoRA framework.

3 GRADIENT BOOSTING LOW-RANK ADAPTION

3.1 PRELIMINARIES

Before delving into the details of XGBLoRA, we first introduce key concepts and techniques that
form the foundation of our approach. Below, we provide an overview of gradient boosting and LoRA,
highlighting their principles, advantages, and relevance to LLM fine-tuning.

Gradient Boosting (GB) (Friedman, 2001; 2002) combines multiple weak learners to create a strong
learner. The key idea is to iteratively train a sequence of models, each of which corrects mistakes of
the preceding model. At each iteration, the model is trained to minimize the residual error between
the current predictions and the target outputs. Formally, let D =

{
(xi, yi)

}N

i=1
be a dataset of N

examples, where xi ∈ Rd is the input feature vector and yi ∈ R is the corresponding target output.
The goal of gradient boosting is to learn a function F (x) that maps the input features to the target
outputs. The function F (x) is expressed as a sum of M weak learners fm(x):

F (x) =

M∑
m=1

fm(x). (1)

The weak learners fm(x) are typically simple models, such as decision trees or linear models, that
are trained to minimize the residual error. At each iteration m, the residual error rim for the i-th
example is computed as:

rim = yi − Fm−1(xi), (2)

where Fm−1(x) is the cumulative model up to the previous iteration. The weak learner fm(x) is
then trained to minimize the loss function Lm defined over the residual errors:

Lm =

N∑
i=1

ℓ
(
fm(xi), rim

)
, (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Train for steps

Train for steps

Merge to Base ModelBase Model

Base Layer

LoRA Adapter

Frozen

Trainable

Figure 3: The pipeline of XGBLoRA: A booster is constructed via randomly choosing Ls = 2 adapter
layers. Then, it is trained for κ steps before merging with the base model. The next booster is then
learnt.

where ℓ(·) is a differentiable loss function, such as squared error or absolute error. After training the
weak learner fm(x), the cumulative model Fm(x) is updated as:

Fm(x) = Fm−1(x) + αmfm(x), (4)

where αm is a learning rate that controls the contribution of the weak learner to the final model. The
gradient boosting algorithm iteratively repeats this process of computing residual errors, training
weak learners, and updating the cumulative model for a fixed number of iterations M or until a
convergence criterion is met.

Low-Rank Adaptation (LoRA) (Hu et al., 2021) is a PEFT technique designed specifically for
adapting large language models to downstream tasks. The key idea behind LoRA is to freeze the
pre-trained model’s weights and inject trainable low-rank matrices into each layer of the model. By
doing so, LoRA significantly reduces the number of trainable parameters while still letting the model
adapt to specific tasks. Formally, let W ∈ Rd×k be the weight matrix of a fully connected layer in a
pre-trained language model, where d is the input dimension and k is the output dimension. LoRA
introduces a low-rank decomposition of the weight matrix:

W = W0 +AB, (5)

where W0 is the original pre-trained weight matrix, A ∈ Rd×r and B ∈ Rr×k are trainable
matrices, and r is the rank of the adaptation. During fine-tuning, only the matrices A and B
are updated, while the original weights W0 remain frozen. This reduces the number of trainable
parameters from dk to (d + k)r, which is significantly smaller when r ≪ min(d, k). Compared
to traditional fine-tuning methods, LoRA offers computational efficiency, memory savings, and
efficient model storage, as it eliminates the need to store separate copies of fine-tuned models.
Remarkably, despite its parameter efficiency, LoRA has been shown to achieve comparable or even
better performance than full fine-tuning on various natural language processing tasks, making it a
promising technique for efficient and effective model adaptation. However, LoRA has a theoretical
limitation (Zeng & Lee, 2024). To fit any target matrix, the rank of the adaptation must satisfy
(r ≥ embedding_size/2). In practice, much smaller ranks (e.g., r ∈ [1, 32]) are often used to
trade-off performance with efficiency. The discrepancy between the theoretical optimum and practical
usage leads to a performance gap. Increasing the rank to satisfy the above theoretical requirement
increases memory usage and computational complexity, negating the benefits of LoRA by making it
as costly as the full fine-tuning strategy.

3.2 WHEN GRADIENT BOOSTING MEETS LORA

Below we present the eXtreme Gradient Boosting LoRA method for Transformers, which combines
the principles of gradient boosting with the parameter-efficient adaptation technique of LoRA. It
iteratively refines a Transformer’s predictions by learning a sequence of booster (LoRA adaptations)
and merging them into the model’s weight matrices. Let D = {(xi, yi)}Ni=1 be a dataset of N
examples, where xi is the input text and yi is the corresponding target output. Our goal is to fine-tune
a pre-trained TransformerM0 on dataset D to optimize its performance on the downstream task.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

In a Transformer, each layer consists of multiple projection matrices (e.g., query, key, value, output
matrices) in the self-attention mechanism, and the weight matrices in the feedforward network. LoRA
adapts these matrices by introducing low-rank updates. Specifically, for a weight matrix W ∈ Rd×k,
LoRA performs the following update:

W ←W +∆W , where ∆W = AB. (6)

Here, A ∈ Rd×r and B ∈ Rr×k are the LoRA matrices, and r is the rank of the adaptation.

The eXtreme Gradient Boosting LoRA for Transformers proceeds in an iterative manner, where
at each iteration t = 1, . . . , T , one learns a set of LoRA matrices for each weight matrix in the
Transformer layers. At each iteration t, the algorithm performs the following steps:

i. Learn LoRA Adaptations: For each weight matrix Wl in layer l of a Transformer, learn the
corresponding LoRA matrices At

l and Bt
l by minimizing the loss function Lt defined over the

current model predictions and the target outputs:

Lt =

N∑
i=1

ℓ
(
Mt−1(xi), yi

)
+ λ

L∑
l=1

(
∥At

l∥2F + ∥Bt
l∥2F

)
, (7)

whereMt−1(xi) denotes the output of the model from the previous iteration for the input xi,
ℓ(·) is a differentiable loss function (e.g., cross-entropy), λ is a regularization coefficient, and L
is the number of Transformer layers.

ii. Merge LoRA Adaptations: Merge the learned LoRA matrices into the corresponding weight
matrices of the Transformer model to obtain the updated modelMt:

W t
l ←W t−1

l + αt(A
t
lB

t
l), for l = 1, . . . , L, (8)

where W t
l represents the adapted weight matrix of layer l at iteration t, W t−1

l is the weight
matrix from the previous iteration, and αt is a learning rate that controls the contribution of the
LoRA. By absorbing the learning rate αt into the LoRA matrices, we simplify the notation and
make it clear that the effective update to the weight matrices is directly determined by the learned
LoRAs. Thus in our case αt = 1.

Figure 3 shows the overall pipeline of XGBLoRA. The algorithm iterates for a fixed number of
iterations T or until a convergence criterion is met. At each iteration t, a new set of LoRA matrices is
learned based on the current state of the Transformer model, and then merged into the corresponding
weight matrices to update the model parameters. This iterative process allows for progressive
refinement of the model’s predictions by repeatedly learning and integrating LoRAs.

GB Iterations and Training Steps. Let K be the total number of training step which is usually fixed
for the fine-tuning. The typical GB set the the number of iteration T to the number of training steps
K. In this case, XGBLoRA booster is trained for only one step (one backpropagation) during each
GB iteration and merge to the base model. However, to maintain the minimal prediction ability of
the booster, each booster is trained for κ steps within one GB iterations (Figure 3). As a result, the
relation between total number of training step K and GB iterations T is described as K = κT .

Relationship to LoRA. It is worth noting that the original LoRA method (Hu et al., 2021) can be
regarded as a variant of XGBLoRA with one iteration (T = 1) where κ = K. In this case, only one
LoRA booster is merged with the base modelM0 at the end of training.

3.3 UNDERSTANDING ENSEMBLE OF WEAK LEARNERS.

The crucial principle of Gradient Boosting is building a strong ensemble model with weak learn-
ers. For instance, a very successful gradient boosting method, i.e., Gradient Boost Decision Tree
(GBDT) (Chen & Guestrin, 2016) artificially limits the tree boosters to a very shallow depth (usually
only 1 split) to ensure that each booster is only slightly better than the random decision. Thus,
boosting algorithms are highly resilient against noisy data and overfitting (Friedman, 2002). Since
the individual booster is too simple to overfit, it is very hard to combine them in a way that the strong
ensemble would overfit to the whole training data. Adhering to this principle, below we design the
following strategies for controlling the the expressiveness of each LoRA boosters.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Comparison of computational costs. By definition, LoRA uses rank r ≜ R and updates all
layers l ≜ L at once. XGBLoRA uses r ≪ R and l ≪ L. Moreover, α: the comp. cost for a LoRA
(r ≜ R) adapter in one transformation layer; β: the comp. cost for a base model; L: the total number
of layers; K = κT : total training steps; T : no. of Gradient Boosters (alg. iterations).

Cost/learner Step/iteration #iterations Total Cost
lαr/R κ T lακT + β

LoRA (r ≜ R, l ≜ L) Lα K 1 LαK + β (Upper Bound)
XGBLoRA (r = R, l = L/3) Lα/3 K/10 10 LαK/3 + β
XGBLoRA (r = 1, l = L/3) Lα/3R K/10 10 LαK/3R+ β

The Rank-1 update. The rank r of the LoRA matrices is a hyperparameter that controls the
expressiveness and efficiency of the adaptation. A smaller rank leads to more parameter-efficient
adaptations but may limit the ability to capture complex patterns in the residual errors. On the
other hand, a larger rank allows for more expressive adaptations but increases the computational
and memory requirements. In light of the gradient boosting theory, rank-1 updates provides the
right balance between approximation power and regularization. They allow for a more fine-grained,
step-by-step approximation of the target function due to a larger number of weaker learners in
ensemble, leading to better generalization.

Random Layer Selection. This strategy resembles the random column selection strategy in GBDT,
which limits complexity but increases diversity among boosters. Instead of modifying all layers of the
language model (LM), we randomly select Ls (Ls ≤ L) layers to add LoRAs for building the booster.
By adapting only a subset of layers in each iteration, the booster’s ability to make drastic changes is
limited. This intentional constraint ensures that each booster remains ‘weak’ in its predictive power
(core principle of GB). Moreover, this strategy injects randomness into the final ensemble model,
creating diversity among the boosters. Each booster focuses on different parts of the model, capturing
distinct aspects of the data. This diversity is crucial for the success of ensemble methods.

XGBLoRA offers several advantages over other fine-tuning approaches and the standard LoRA.
1) Ensemble Learning: By iteratively learning and merging LoRAs, XGBLoRA can efficiently
adapt the pre-trained model to the downstream task. The iterative nature of the algorithm allows
for progressive refinement of model predictions, leading to better generalization performance
without explicitly adding regularization terms to the loss function.
2) The Weak Learner Principle: By rank-1 updates and random layer adaptation XGBLoRA
significantly reduces computational cost, achieving efficient LLM fine-tuning. XGBLoRA enables
rapid, incremental adaptation incurring low memory overhead, making it particularly suitable for
fine-tuning LLMs where full parameter updates are prohibitively costly.

3.4 COMPUTATIONAL COSTS

Table 1 compares the cost of XGBLoRA and LoRA. XGBLoRA’s computational cost is upper-bounded
by the LoRA’s cost, as XGBLoRA selects fewer LoRA layers (random selection) and uses lower ranks
for training (rank-1 updates). The computational costs incurred by these two approaches are equal
only when XGBLoRA selects ALL layers and uses the same rank as LoRA.

3.5 THEORETICAL ANALYSIS OF GRADIENT BOOSTING LORA

In this subsection, we present a theoretical analysis of the eXtreme Gradient Boosting LoRA
(XGBLoRA) framework for Transformer-based language models. Our analysis aims to provide
convergence guarantees and approximation error bounds for the proposed method. We begin by
introducing necessary definitions and then present key lemmas and theorems.

Notation. Consider a neural network with L layers: f(x) = fL ◦ fL−1 ◦ · · · ◦ f2 ◦ f1(x), where
f1(x) = W1x is an embedding layer. Moreover, fi(x) = σ(Wix) for i = 2, . . . , L − 1, where
σ is a Lipschitz continuous activation function. fL(x) = ϕ(WLx), where ϕ is a convex function.
Wi ∈ Rdi×di−1 are weight matrices.

We present three key lemmas that are crucial for our convergence and expressiveness theorems:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Lemma 1 (XGBLoRA Gradient Approximation.) The XGBLoRA update approximates the full gra-
dient update with error:∥∥∇W(t)+A(t)B(t)TL(W(t) +A(t)B(t)T)−A(t)B(t)T

∥∥
F
≤ C1√

r
+

C2√
M

, (9)

where r is the LoRA rank, M is the number of minibatches, and C1, C2 are constants depending on
the properties of L and the gradient variance, respectively. (The complete proof is in the Appendix.)

Lemma 2 (Accumulated Update Bound.) For the XGBLoRA update process:

∥A(t)∥F ≤ ηmMG and ∥B(t)∥F ≤ ηmMG, (10)

where G is an upper bound on ∥∇W(t)+A(t)B(t)TL(W(t) +A(t)B(t)T)∥F . (The complete proof is
in the Appendix.)

Lemma 3 (Gradient Lipschitz Continuity.) For any two weight matrices W1 and W2:

∥∇W1
L(W1)−∇W2

L(W2)∥F ≤ L′∥W1 −W2∥F , (11)

where L′ is the Lipschitz constant of the gradient. (The complete proof can be found in the Appendix.)

We now present our main convergence theorem for XGBLoRA:

Theorem 1 (XGBLoRA Convergence.) Under the XGBLoRA update process, assuming β-
smoothness and µ-strong convexity of L, after T iterations:

E
[
L(W(T))

]
− L∗ ≤ C3√

T
+

C4

M
√
T

+ ϵ(r), (12)

where C3 and C4 are constants depending on β, µ,G, ηm, L′, and ϵ(r) = C5

r for some constant C5.
N is the number of samples. (The complete proof is in the Appendix.)

Remark 1 The error term ϵ(r) = C5

r suggests that while higher ranks can reduce this error,
the benefit diminishes as r increases. However, the theorem implies that increasing the number
of iterations T can compensate for a lower rank r. By using rank-1 updates and increasing
T , we can achieve a similar convergence rate to higher-rank methods while maintaining lower
computational complexity per iteration. It supports that XGBLoRA using multiple simple (rank-1)
weak learners in an ensemble, rather than fewer complex (higher-rank) learners, to efficiently
approximate the target function.

Below we also present a theorem characterizing the expressive power of XGBLoRA:

Theorem 2 (XGBLoRA Expressiveness Error.) Let f∗ be any function in the original function class,
and fT be the function represented by the XGBLoRA-updated network after T iterations. Then:

Ex∼D
[
(fT (x)− f∗(x))2

]
≤ C6

(1
r
+

1

M
√
MT

+
1√
T

)
, (13)

where C6 is a constant depending on the network architecture, the Lipschitz constants of the activation
functions, and L′. (The complete proof can be found in the Appendix.)

Remark 2 The theorem shows that the approximation error can be reduced by either increasing r
or T . Let ϵ∗ = Ex∼D[(fT (x)− f∗(x))2] be the desired approximation that achieves the optimal
generalization. Theorem 2 explicitly reveals that to maintain ϵ∗, one can trade off LoRA rank r
against iterations T . Original LoRA is the case where T = 1 and r ≫ 1. In contrast, XGBLoRA
enjoys the opposite setting r = 1 and T ≫ 1. Thus,XGBLoRA can maintain high expressiveness
and generalization capability while keeping each individual update computationally efficient.
Note that increase T does not mean more total training steps K. As K is usually fixed, T can be
adjusted via booster’s training steps κ where T = K

κ (discussion see section 4.1).

Theorems 1 & 2 justify the use of rank-1 updates and explain the effectiveness of XGBLoRA achieved
by leveraging ensemble learning and iterative refinement while maintaining low memory footprint.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Results on GLUE for natural language understanding tasks. We report the overall (matched
and mismatched) accuracy for MNLI, Matthew’s correlation for CoLA, Pearson correlation for
STS-B, and accuracy for other tasks. Higher is better for all metrics. We also report the number of
trainable parameters (#Params) for each method. * indicates results extracted from (Ren et al., 2024)

Method #Params MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B Avg

Fully FT 1000‰ 87.62 94.84 64.58 91.87 92.80 70.80 90.20 91.23 86.87

BitFit 0.82‰ 85.29 94.61 59.58 88.10 91.20 78.80 88.73 90.32 84.70
HAdapter 2.50‰ 87.45 94.72 63.88 90.29 92.71 83.39 89.22 90.80 86.15
PAdapter 2.43‰ 87.11 94.15 62.74 89.95 92.71 84.48 87.99 90.13 85.62

DyLoRA* 2.65‰ 86.33 94.26 61.12 90.17 92.22 84.47 89.46 91.06 86.14
DeltaLoRA* 2.65‰ 87.50 95.06 63.82 90.87 93.09 87.00 90.19 91.57 87.38
MELoRA* 2.65‰ 87.20 95.41 64.09 90.77 93.17 86.64 90.93 91.93 87.52

LoRA 2.65‰ 87.20 94.38 65.61 89.25 92.07 85.59 87.99 91.01 86.63
TriLoRA 2.65‰ 86.81 94.61 64.47 89.61 91.82 76.53 88.24 90.31 85.30
AdaLoRA 2.65‰ 87.31 94.72 64.33 89.77 92.81 85.95 88.24 90.48 86.70
FLoRA 2.65‰ 87.31 94.38 64.09 89.97 92.77 85.67 87.75 90.77 86.86
DoRA 3.32‰ 86.74 94.50 66.19 90.28 91.95 85.78 88.48 91.01 87.11
ReLoRA 21.2‰ 89.06 95.38 64.72 90.74 93.68 84.72 89.65 90.53 87.30
XGBLoRA 0.21‰ 87.91 95.70 66.28 91.04 93.36 86.10 90.57 91.84 87.85

Table 3: Accuracy comparison of LLaMA 7B/13B, LLaMA2 7B, and LLaMA3 8B with various
PEFT methods on eight commonsense reasoning datasets. Results of baseline methods (*) on LLaMA
7B/13B are extracted from (Hu et al., 2023). Results of LoRA on LLaMA2 7B and LLaMA3 8B are
obtained using the hyperparameters described in Hu et al. (2023)

Method #Params BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg

LLaMA-7B
Prefix∗ 1.10‰ 64.3 76.8 73.9 42.1 72.1 72.9 54.0 60.6 64.6
Series∗ 9.90‰ 63.0 79.2 76.3 67.9 75.7 74.5 57.1 72.4 70.8
Parallel∗ 35.4‰ 67.9 76.4 78.8 69.8 78.9 73.7 57.3 75.2 72.3
LoRA∗ 8.30‰ 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7
XGBLoRA 0.34‰ 69.1 82.6 77.3 86.1 80.2 80.5 65.3 78.5 77.40

LLaMA-13B

Prefix∗ 0.30‰ 65.3 75.4 72.1 55.2 68.6 79.5 62.9 68.0 68.4
Series∗ 8.00‰ 71.8 83.0 79.2 88.1 82.4 82.5 67.3 81.8 79.5
Parallel∗ 28.0‰ 72.5 84.8 79.8 92.1 84.7 84.2 71.2 82.4 81.5
LoRA∗ 6.70‰ 72.1 83.5 80.5 90.5 83.7 82.8 68.3 82.4 80.5
XGBLoRA 0.27‰ 72.7 85.1 81.8 92.7 84.5 84.5 69.9 83.1 81.8

LLaMA3-8B LoRA 7.00‰ 72.1 83.5 80.5 90.5 83.7 82.8 68.3 82.4 80.5
XGBLoRA 0.30‰ 72.5 85.8 78.3 93.5 83.9 88.1 75.1 84.2 83.0

4 EXPERIMENTAL EVALUATION

Experiment Settings. We set the rank of XGBLoRA to r = 1 and rank of LoRA to r = 8 as default.
The number of sampled layers for XGBLoRA is Ls = 8. To ensure a fair comparison, we initially
fine-tuned models with XGBLoRA following the LoRA configuration, e.g., weight initialization,
learning rate, etc. (Hu et al., 2021), and maintained the same training steps K for both XGBLoRA
and LoRA when fine-tuning on the same datasets. Since K is fixed, the number of iterations T for
gradient boosting is calculated as T = K

κ . The training steps for each booster is set to κ = 8 to
maintain minimal prediction power. We conduct experiment on three tasks including the GLUE
benchmark, commonsense reasoning, and MMLU. The codebases for baselines implementation and
evaluation are sourced from their official GitHub repositories/library (i.e., Commonsense Reasoning,
GLUE, and MMLU are from Hu et al. (2023), Si et al. (2024), Zheng et al. (2024), respectively).

GLUE Benchmark. In GLUE experiments, we employed one small scales of transformer, RoBERTa-
base (Liu, 2019), as the base model. We used the General Language Understanding Evaluation
(GLUE) (Raffel et al., 2020a) benchmark as our dataset, which comprises two single-sentence
classification tasks, three similarity and paraphrase tasks, and four natural language inference tasks.
Details of the GLUE dataset are provided in Table 7 (Appendix). There are two prominent series of
extension-based methods within parameter-efficient tuning. The first series, the Adapter derivatives,
comprises methods such as those introduced by Houlsby et al. (2019a), Houlsby et al. (2019a), and
introduced by Pfeiffer et al. (2020); Zaken et al. (2021), which incorporate small-scale neural modules,
or adapters, into existing architectures. The second series, known as LoRA derivatives, includes
developments such as LoRA (Hu et al., 2021), AdaLoRA (Zhang et al., 2023), TriLoRA (Feng et al.,
2024), FLoRA (Hao et al., 2024), DoRA (Liu et al., 2024), and DyLoRA (Valipour et al., 2023),
AdaLoRA (Zhang et al., 2023), Delta-LoRA (Zi et al., 2023), MeLoRA (Ren et al., 2024), and
ReLoRA (Lialin et al., 2023).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: MMLU scores for XGBLoRA and other PEFT methods, showcasing XGBLoRA’s ability
to achieve high performance while maintaining parameter efficiency across base models. Best
performance is indicated by the bold face numbers.

FT-Method # Params STEM Social Human Other Average

LLaMA3-8B
FT 1000‰ 52.93 73.40 59.06 69.34 63.26
LoRA 7.00‰ 54.45 74.82 58.96 70.23 64.10
XGBLoRA 0.30‰ 54.93 75.40 61.06 71.34 65.37

Mistral-7B
FT 1000‰ 50.00 68.07 53.12 65.01 58.09
LoRA 8.30‰ 50.60 68.87 53.62 65.21 58.99
XGBLoRA 0.34‰ 50.40 69.04 54.28 65.46 59.26

LLaMA2-13B
FT 1000‰ 46.23 64.47 49.34 61.23 55.31
LoRA 6.70‰ 46.56 64.77 49.67 61.76 55.69
XGBLoRA 0.27‰ 46.70 65.64 50.56 62.46 56.34

Table 5: Performance comparison of XGBLoRA in LlaMA3-8B with different rank values (r) and
other fine-tuning methods on the MMLU and Commonsense Reasoning benchmark.

(a) MMLU benchmark.
Method #Params. STEM Social. Human. Other Average
FT 1000‰ 54.35 74.62 58.86 70.03 63.82
LoRA (r = 8) 7.00‰ 54.45 74.82 58.96 70.23 64.10
XGBLoRA (r = 16) 4.80‰ 55.00 75.30 60.68 70.94 65.03
XGBLoRA (r = 8) 2.40‰ 54.93 75.33 61.06 71.25 65.23
XGBLoRA (r = 4) 1.20‰ 55.10 75.56 60.98 71.44 65.33
XGBLoRA (r = 1) 0.30‰ 55.20 75.43 61.19 71.31 65.36

(b) Commonsense Reasoning benchmark.
Method #Params BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg

LoRA 7.00‰ 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
XGBLoRA (r = 16) 4.80‰ 72.5 84.3 80.9 90.1 82.9 82.7 69.7 83.6 80.8
XGBLoRA (r = 4) 1.20‰ 72.4 84.9 81.5 92.4 84.2 84.2 69.6 82.8 81.5
XGBLoRA (r = 1) 0.30‰ 72.5 85.8 78.3 93.5 83.7 88.1 75.1 84.2 83.0

Commonsense Reasoning. The commonsense reasoning tasks comprise 8 sub-tasks, each with a
predefined training and testing set. We follow the setting of Hu et al. (2023) and amalgamate the
training datasets from all 8 tasks to create the final training dataset and conduct evaluations on the
individual testing dataset for each task. We evaluate XGBLoRA against LoRA and baselines: Prompt
learning (Prefix) (Li & Liang, 2021), Series adapter (Series) (Houlsby et al., 2019b), and Parallel
adapter (Parallel) (He et al., 2021) on LLaMA7B/13B and LLaMA3-8B (Touvron et al., 2023a).

MMLU. We evaluate the downstream task performance of XGBLoRA on 3 language models LLaMA3-
8B (inc, 2024), Mistral-7B (Jiang et al., 2023), and LLaMA2-13B (Touvron et al., 2023a). We employ
the instruction-following finetuning task with Alpaca GPT-4(en) dataset, which consists instances
generated by GPT-4 (OpenAI, 2023) based on inputs from Alpaca (Taori et al., 2023). We adopt the
The Massive Multitask Language Understanding benchmark (MMLU) (Hendrycks et al., 2020)
to test our model. It consists of multiple-choice questions in humanities, social sciences, and STEM.

Tables 2, 3 & 4 compare various fine-tuning methods, including full fine-tuning (Fully FT), different
LoRA variants, and the proposed XGBLoRA method. XGBLoRA demonstrates strong performance
across various tasks. It consistently achieves the highest or near-highest scores among the PEFT
methods across all base models and subject domains. This suggests that XGBLoRA is generally an
effective approach for different base models, making it a robust choice for PEFT. It is worth noting
that benefiting from the principle of weak learners, XGBLoRA achieves strong performance with
significantly fewer parameters than other methods, including standard LoRA. These findings strongly
support our claims about XGBLoRA’s ability to bridge the performance gap and maintain efficiency.

4.1 INVESTIGATING THE WEAK LEARNER OF GRADIENT BOOSTING

Number of Weak Learners (Iteration). The number of weak learners in XGBLoRA is equal to the
number of the iterations in gradient boosting. Since the total train step K is fixed per dataset. the
number of iteration T is controlled by the merged/training interval κ for each booster. Thus, T = K

κ .
Large/small κ indicates fewer/more weak learners (iteration). The results of varying κ are presented
in Figure 4: having more weak learners in the Gradient Boosting LoRA (XGBLoRA) framework leads
to better performance. This reinforces the following points for XGBLoRA:
i. Iterative refinement: With more weak learners, XGBLoRA can perform more iterations of

refinement, allowing the model to progressively improve its predictions and capture more complex

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

50 30 10 3
63.5

64.0

64.5

65.0

65.5

66.0

M
M

LU
 (

Av
g.

)

LLaMA3-8BXGBLoRA
LoRA

50 30 10 3

58.50

58.75

59.00

59.25

M
M

LU
 (

Av
g.

)

Mistral-7B

GBLoRA
LoRA

50 30 10 3
53

54

55

56

M
M

LU
 (

Av
g.

)

LLaMA2-13BXGBLoRA
LoRA

Figure 4: Performance of XGBLoRAwith varying κ = K
T for LLaMA3-8B, Mistral-7B, and LLaMA2-

13B base models. Perfomance of LoRA is marked as red dash line

LoRA GBLoRA
0.60

0.62

0.64

Speed per Batch (Sec.)

LoRA GBLoRA

20.0

25.0

Peak GPU Memory (GB)

LoRA GBLoRA
63.0
64.0
65.0
66.0

MMLU (Avg.)

Figure 5: Memory and Computation Efficient Fine-tuning with Small Weak Learners (LLaMA3-8B).

Table 6: Impact of the number of adapted layers (Ls) on the performance of XGBLoRA(r = 8) in
LlaMA3-8B compared to full fine-tuning (FT) and LoRA (r = 8) on the MMLU benchmark.

FT-Method # Param. STEM Social. Human. Other Average
LoRA(r = 8) 7.00‰ 54.45 74.82 58.96 70.23 64.10
XGBLoRA (Ls = 2) 0.42‰ 54.80 75.13 61.07 70.87 65.07
XGBLoRA (Ls = 4) 0.84‰ 54.90 75.50 61.04 71.07 65.21
XGBLoRA (Ls = 11) 2.33‰ 54.93 75.50 61.32 71.41 65.38
XGBLoRA (Ls = 16) 3.50‰ 55.13 75.56 61.02 71.53 65.37
XGBLoRA (Ls = 33) 7.00‰ 55.13 75.53 61.04 71.38 65.33

patterns in the data. Each additional weak learner focuses on the residual errors from the previous
iterations, enabling the model to make finer-grained adjustments.

ii. Ensemble effect: As XGBLoRA combines multiple weak learners learned across different itera-
tions, having more weak learners leads to a more diverse and robust ensemble. This helps reduce
the bias and improves the overall performance of the adapted model.

Note that with a large number of weak learners, there is a risk of performance degradation. As the
number of iterations T increases, the training interval κ for each booster decreases. This aligns with
the principle of weak learners in traditional GB methods. While we want each booster to be ‘weak’
to prevent overfitting, they have to possess enough predictive power to contribute to the ensemble.

Complexity of Weak Learners. Table 5 shows the role of rank r in XGBLoRA’s weak learners.
XGBLoRA with smaller ranks outperforms LoRA (r = 8) and XGBLoRA with larger ranks (r = 16),
corroborating our discussion on weak learner complexity. The strong performance of XGBLoRA with
low-rank adaptations suggests that combining multiple simple weak learners can effectively capture
complex patterns and improve generalization. This highlights the ensemble effect in XGBLoRA,
leading to strong performance while maintaining parameter efficiency.

Table 6 further showcases the effect of random layer selection. XGBLoRA outperforms full fine-tuning
(FT) and LoRA (r = 8), while adapting parts of the layers. With just 4 adapted layers (Ls = 4),
XGBLoRA surpasses LoRA and performs comparably to FT using significantly fewer trainable
parameters (2.3‰). This demonstrates its ability to leverage gradient boosting and the ensemble
effect of weak learners to achieve a strong performance with minimal computational overhead.

Memory and Computational Efficiency with Weak Learners. Figure 5 illustrates the superior
performance of XGBLoRA compared to standard LoRA in terms of the MMLU average score, while
simultaneously consuming less memory and requiring less time per batch. This empirical evidence
not only underscores the advantages of XGBLoRA, but also suggests its potential for scaling to
fine-tune larger language models for which GPU memory constraints are often significant bottlenecks.

5 CONCLUSIONS
We have proposed XGBLoRA for fine-tuning LLMs in a parameter-efficient manner by posing fine-
tuning as a gradient boosting where LoRA matrices are used as weak learners to be iteratively
combined to form a strong ensemble model. We provide theoretical analysis establishing the
convergence and approximation error of XGBLoRA, highlighting the interplay between the LoRA
rank, expressiveness, and the number of boosting iterations. Extensive experiments demonstrate the
effectiveness of XGBLoRA, which consistently outperforms the standard LoRA while maintaining
parameter/computational efficiency. Broader Impact & Limitations are in Appendices D & E.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Co-
jocaru, Maitha Alhammadi, Mazzotta Daniele, Daniel Heslow, Julien Launay, Quentin Malartic,
Badreddine Noune, Baptiste Pannier, and Guilherme Penedo. The falcon series of language models:
Towards open frontier models. 2023.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel
Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020a. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, T. J. Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. ArXiv, abs/2005.14165, 2020b.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Shizhe Diao, Ruijia Xu, Hongjin Su, Yilei Jiang, Yan Song, and Tong Zhang. Taming pre-trained
language models with n-gram representations for low-resource domain adaptation. In Proceed-
ings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp.
3336–3349, 2021.

Shizhe Diao, Tianyang Xu, Ruijia Xu, Jiawei Wang, and Tong Zhang. Mixture-of-domain-adapters:
Decoupling and injecting domain knowledge to pre-trained language models memories. arXiv
preprint arXiv:2306.05406, 2023.

Chengcheng Feng, Mu He, Qiuyu Tian, Haojie Yin, Xiaofang Zhao, Hongwei Tang, and Xingqiang
Wei. Trilora: Integrating svd for advanced style personalization in text-to-image generation. arXiv
preprint arXiv:2405.11236, 2024.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pp. 1189–1232, 2001.

Jerome H Friedman. Stochastic gradient boosting. Computational statistics & data analysis, 38(4):
367–378, 2002.

11

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors. arXiv preprint arXiv:2402.03293, 2024.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019a.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019b.

Edward Hu, Yelong Shen, Phil Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models. arXiv preprint arXiv:2304.01933, 2023.

Meta inc. The official meta llama 3 github site. https://github.com/meta-llama/
llama3, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of naacL-HLT, volume 1,
pp. 2, 2019.

Vladimir Koltchinskii and Dmitry Panchenko. Empirical margin distributions and bounding the
generalization error of combined classifiers. The Annals of Statistics, 30(1):1–50, 2002.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Relora: High-rank
training through low-rank updates, 2023.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353, 2024.

12

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://github.com/meta-llama/llama3
https://github.com/meta-llama/llama3

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

R OpenAI. Gpt-4 technical report. ArXiv, 2303, 2023.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
fusion: Non-destructive task composition for transfer learning. arXiv preprint arXiv:2005.00247,
2020.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020a.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(1), jan 2020b. ISSN 1532-4435.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 2383–2392, 2016.

Pengjie Ren, Chengshun Shi, Shiguang Wu, Mengqi Zhang, Zhaochun Ren, Maarten Rijke, Zhumin
Chen, and Jiahuan Pei. Melora: Mini-ensemble low-rank adapters for parameter-efficient fine-
tuning. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pp. 3052–3064, 2024.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, et al. Bloom: A 176b-parameter open-access
multilingual language model. arXiv preprint arXiv:2211.05100, 2022.

Chongjie Si, Xiaokang Yang, and Wei Shen. See further for parameter efficient fine-tuning by
standing on the shoulders of decomposition. arXiv preprint arXiv:2407.05417, 2024.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in nlp. arXiv preprint arXiv:1906.02243, 2019.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. DyLoRA: Parameter-
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. In Andreas
Vlachos and Isabelle Augenstein (eds.), Proceedings of the 17th Conference of the European
Chapter of the Association for Computational Linguistics, pp. 3274–3287, Dubrovnik, Croatia,
May 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.eacl-main.239.
URL https://aclanthology.org/2023.eacl-main.239.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pp. 353–355, 2018.

13

https://github.com/tatsu-lab/stanford_alpaca
https://aclanthology.org/2023.eacl-main.239

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pp. 1112–1122, 2018.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Yuchen Zeng and Kangwook Lee. The expressive power of low-rank adaptation. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=likXVjmh3E.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-efficient fine-
tuning. arXiv preprint arXiv:2303.10512, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Weinberger, and Yoav Artzi. Revisiting few-sample
bert fine-tuning. arXiv preprint arXiv:2006.05987, 2020.

Tong Zhang and Bin Yu. Boosting with early stopping: Convergence and consistency. The Annals of
Statistics, 33(4):1538, 2005.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguistics.
URL http://arxiv.org/abs/2403.13372.

Bojia Zi, Xianbiao Qi, Lingzhi Wang, Jianan Wang, Kam-Fai Wong, and Lei Zhang. Delta-lora: Fine-
tuning high-rank parameters with the delta of low-rank matrices. arXiv preprint arXiv:2309.02411,
2023.

14

https://openreview.net/forum?id=likXVjmh3E
https://openreview.net/forum?id=likXVjmh3E
http://arxiv.org/abs/2403.13372

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A DETAILED PROOFS FOR XGBLoRA LEMMAS

Lemma 4 (XGBLoRA Gradient Approximation) The XGBLoRA update approximates the full gra-
dient update with error:

∥∇W(t)+A(t)B(t)TL(W(t) +A(t)B(t)T)−A(t)B(t)T ∥F ≤
C1√
r
+

C2√
M

where r is the LoRA rank, M is the number of minibatches, and C1, C2 are constants.

Proof 1 1) Let G = ∇W(t)+A(t)B(t)TL(W(t) +A(t)B(t)T) be the true gradient.

2) The XGBLoRA update A(t)B(t)T can be seen as an approximation of G.

3) Let Gr be the best rank-r approximation of G. By the Eckart-Young-Mirsky theorem:

∥G−Gr∥F ≤
∥G∥∗√

r
≤ C1√

r

where ∥ · ∥∗ is the nuclear norm and C1 is a constant depending on the properties of L.

4) The XGBLoRA update A(t)B(t)T is computed using M minibatches. Let Gj be the gradient
estimate from the j-th minibatch. Then:

A(t)B(t)T ≈ 1

M

M∑
j=1

Gj

5) By the law of large numbers and assuming bounded variance of gradient estimates:

∥ 1

M

M∑
j=1

Gj −G∥F ≤
C2√
M

where C2 is a constant related to the gradient variance.

6) Combining these bounds using the triangle inequality:

∥G−A(t)B(t)T ∥F ≤ ∥G−Gr∥F + ∥Gr −A(t)B(t)T ∥F ≤
C1√
r
+

C2√
M

This completes the proof.

Lemma 5 (Accumulated Update Bound) For the XGBLoRA update process:

∥A(t)∥F ≤ ηmMG and ∥B(t)∥F ≤ ηmMG

where G is an upper bound on ∥∇W(t)+A(t)B(t)TL(W(t) +A(t)B(t)T)∥F .

Proof 2 1) Recall the update rule for A(t):

A(t) ← A(t) − ηm∇W(t)+A(t)B(t)TL(W(t) +A(t)B(t)T)B(t)

2) Taking the Frobenius norm and applying the triangle inequality:

∥A(t)∥F ≤ ∥A(t−1)∥F + ηm∥∇W(t)+A(t)B(t)TL(W(t) +A(t)B(t)T)∥F ∥B(t)∥F

3) Using the gradient bound ∥∇W(t)+A(t)B(t)TL(W(t) +A(t)B(t)T)∥F ≤ G:

∥A(t)∥F ≤ ∥A(t−1)∥F + ηmG∥B(t)∥F

4) Applying this inequality recursively for all M minibatches, and noting that A(t) is initialized to 0:

∥A(t)∥F ≤ ηmMG∥B(t)∥F

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

5) Similarly for B(t), we can derive:

∥B(t)∥F ≤ ηmMG∥A(t)∥F

6) Combining these inequalities:

∥A(t)∥F ≤ ηmMG and ∥B(t)∥F ≤ ηmMG

This completes the proof.

Lemma 6 (Gradient Lipschitz Continuity) For any two weight matrices W1 and W2:

∥∇W1L(W1)−∇W2L(W2)∥F ≤ L′∥W1 −W2∥F
where L is the Lipschitz constant of the gradient.

Proof 3 1) This lemma is a standard assumption in optimization theory, often referred to as the
smoothness condition.

2) It can be derived from the assumption that the Hessian of L is bounded:

∥∇2L(W)∥2 ≤ L ∀W
where ∥ · ∥2 denotes the spectral norm.

3) By the mean value theorem, there exists a Wt = tW1 + (1− t)W2 for some t ∈ [0, 1] such that:

∇W1
L(W1)−∇W2

L(W2) = ∇2L(Wt)(W1 −W2)

4) Taking the Frobenius norm of both sides:

∥∇W1L(W1)−∇W2L(W2)∥F = ∥∇2L(Wt)(W1 −W2)∥F

5) Using the property that ∥AB∥F ≤ ∥A∥2∥B∥F :

∥∇2L(Wt)(W1 −W2)∥F ≤ ∥∇2L(Wt)∥2∥W1 −W2∥F

6) Applying the bound on the Hessian:

∥∇2L(Wt)∥2∥W1 −W2∥F ≤ L∥W1 −W2∥F

This completes the proof.

B DETAILED PROOF OF XGBLoRA CONVERGENCE THEOREM

Theorem 3 (XGBLoRA Convergence) Under the XGBLoRA update process, assuming β-
smoothness and µ-strong convexity of L, after T iterations:

E[L(W(T))]− L∗ ≤ C3√
T

+
C4

NT
+ ϵ(r)

where C3 and C4 are constants depending on β, µ,G, ηm, L, and ϵ(r) = C5

r for some constant C5.

Proof 4 1) Let W(t+1) = W(t) +A(t)B(t)T be the update at iteration t.

2) By the β-smoothness of L:

L(W(t+1)) ≤ L(W(t)) + ⟨∇L(W(t)),A(t)B(t)T ⟩+ β

2
∥A(t)B(t)T ∥2F

≤ L(W(t)) + ⟨∇L(W(t)),A(t)B(t)T ⟩+ β

2
∥A(t)∥2F ∥B(t)∥2F

3) Using the XGBLoRA Gradient Approximation Lemma:

A(t)B(t)T = ∇W(t)+A(t)B(t)TL(W(t) +A(t)B(t)T) +E(t)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where ∥E(t)∥F ≤ C1√
r
+ C2√

M
.

4) Substituting this into the inequality from step 2:

L(W(t+1)) ≤ L(W(t)) + ⟨∇L(W(t)),∇W(t)+A(t)B(t)TL(W(t) +A(t)B(t)T) +E(t)⟩

+
β

2
∥A(t)∥2F ∥B(t)∥2F

5) Using the Gradient Lipschitz Continuity Lemma:

∥∇L(W(t))−∇W(t)+A(t)B(t)TL(W(t) +A(t)B(t)T)∥F ≤ L′∥A(t)B(t)T ∥F

6) Applying Cauchy-Schwarz inequality and the bound from step 5:

L(W(t+1)) ≤ L(W(t))− ∥∇W(t)+A(t)B(t)TL(W(t) +A(t)B(t)T)∥2F

+ L′∥A(t)B(t)T ∥2F + ∥∇L(W(t))∥F ∥E(t)∥F +
β

2
∥A(t)∥2F ∥B(t)∥2F

7) Using the Accumulated Update Bound Lemma and the gradient bound G:

L(W(t+1)) ≤ L(W(t))− (1− Lη2mM2G2 − β

2
η2mM2G2)∥∇W(t)+A(t)B(t)TL(W(t) +A(t)B(t)T)∥2F

+G(
C1√
r
+

C2√
M

)

8) By µ-strong convexity of L:

∥∇W(t)+A(t)B(t)TL(W(t) +A(t)B(t)T)∥2F ≥ 2µ(L(W(t) +A(t)B(t)T)− L∗)

9) Substituting this into the inequality from step 7:

L(W(t+1))− L∗ ≤ (1− 2µα)(L(W(t))− L∗) +G(
C1√
r
+

C2√
M

)

where α = 1− Lη2mM2G2 − β
2 η

2
mM2G2.

10) Taking expectation and applying this inequality recursively for T iterations:

E[L(W(T))− L∗] ≤ (1− 2µα)T (L(W(0))− L∗) +
G

2µα
(
C1√
r
+

C2√
M

)

11) Using the inequality (1− x)T ≤ exp(−xT) ≤ 1
xT for x ∈ (0, 1):

E[L(W(T))− L∗] ≤ C3√
T

+
C4

M
√
T

+
C5

r

where C3 = (L(W(0))−L∗)
2µα , C4 = GC2

2µα , and C5 = GC1

2µα .

This completes the proof.

C DETAILED PROOF OF XGBLoRA EXPRESSIVENESS THEOREM

Theorem 4 (XGBLoRA Expressiveness) Let f∗ be any function in the original function class, and
fT be the function represented by the XGBLoRA-updated network after T iterations. Then:

Ex∼D[(fT (x)− f∗(x))2] ≤ C6(
1

r
+

1

M
√
T

+
1√
T
)

where C6 is a constant depending on the network architecture, the Lipschitz constants of the activation
functions, and L.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof 5 1) Let W∗ be the weights that exactly represent f∗ in the original function class.

2) Define fopt as the best function that can be represented by XGBLoRA updates:

fopt = argmin
f∈FXGBLoRA

Ex∼D[(f(x)− f∗(x))2]

where FXGBLoRA is the class of functions representable by XGBLoRA updates.

3) We can decompose the error as:

Ex∼D[(fT (x)− f∗(x))2] ≤ 2Ex∼D[(fT (x)− fopt(x))
2] + 2Ex∼D[(fopt(x)− f∗(x))2]

= 2E1 + 2E2

4) For E1, we can use the Convergence Theorem (Theorem 1):

E1 ≤ K1(
1√
T

+
1

M
√
T
)

where K1 is a constant related to C3 and C4 from Theorem 1.

5) For E2, we need to analyze how well XGBLoRA updates can approximate W∗. Let ∆W =
W∗ −W(0).

6) We can approximate ∆W with a sequence of low-rank updates:

∆W ≈
T∑

t=1

A(t)(B(t))T

7) By the properties of low-rank matrix approximation:

∥∆W −
T∑

t=1

A(t)(B(t))T ∥F ≤
∥∆W∥∗√

rT

where ∥ · ∥∗ denotes the nuclear norm.

8) Assuming the network function is Lipschitz continuous with respect to its weights with Lipschitz
constant Lf :

E2 ≤ L2
f∥∆W −

T∑
t=1

A(t)(B(t))T ∥2F ≤
L2
f∥∆W∥2∗

rT

9) Combining the bounds for E1 and E2:

Ex∼D[(fT (x)− f∗(x))2] ≤ 2K1(
1√
T

+
1

M
√
T
) +

2L2
f∥∆W∥2∗
rT

≤ C6(
1

r
+

1

M
√
T

+
1√
T
)

where C6 = max(2K1, 2L
2
f∥∆W∥2∗).

This completes the proof.

D BROADER IMPACT

The proposed XGBLoRA framework has the potential to bring about significant positive societal
impacts by democratizing access to state-of-the-art language technologies. By enabling efficient and
effective fine-tuning of large language models, XGBLoRA can empower researchers and practitioners
with limited computational resources to leverage the power of pre-trained models for a wide range
of downstream tasks. This can foster innovation and accelerate progress in various domains, such
as healthcare, education, and social sciences, where natural language understanding and generation

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 7: Details of GLUE dataset.

Dataset Task # Train # Dev # Test # Label Metrics

Single-Sentence Classification
CoLA Acceptability 8.5 k 1 k 1 k 2 Matthews corr

SST Sentiment 67 k 872 1.8 k 2 Accuracy

Pairwise Text Classification
MNLI NLI 393 k 20 k 20 k 3 Accuracy

RTE NLI 2.5 k 276 3 k 2 Accuracy

QQP Paraphrase 364 k 40 k 391 k 2 Accuracy / F1

MRPC Paraphrase 3.7 k 408 1.7 k 2 Accuracy / F1

QNLI QA/NLI 108 k 5.7 k 5.7 k 2 Accuracy

Text Similarity
STS-B Similarity 7 k 1.5 k 1.4 k 1 Pearson/ Spearman Corr

can be applied to improve decision-making, personalize learning experiences, and analyze large-
scale social data. However, it is crucial to acknowledge and mitigate potential negative societal
impacts associated with the widespread adoption of language models. Fine-tuned models may
perpetuate biases present in the pre-training data, leading to unfair or discriminatory outcomes if
not carefully audited and corrected. Additionally, the efficiency of XGBLoRA may lower the barrier
to developing and deploying language models, potentially enabling malicious actors to create and
disseminate harmful content at scale. To address these concerns, it is important to develop and
adhere to ethical guidelines for the responsible development and deployment of language models,
ensuring transparency, accountability, and fairness. Researchers and practitioners should also actively
engage in public discourse to raise awareness about the benefits and risks of language technologies
and collaborate with policymakers to develop appropriate governance frameworks. By proactively
addressing these challenges, we can harness the potential of efficient fine-tuning techniques like
XGBLoRA to create positive societal impact while mitigating the risks and negative consequences.

E LIMITATIONS

One limitation of our current approach is that our theoretical analysis is based on linear models, which
may influence the generalizability of our findings to more complex, non-linear systems. Additionally,
the assumptions made in our theoretical framework may not hold in certain real-world scenarios,
potentially limiting the applicability of our method in such cases. Future work will focus on extending
our theory to encompass more generalized forms, allowing for a broader range of applications and
improved robustness to model misspecification.

19

