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ABSTRACT

We propose SlowFast-LLaVA (or SF-LLaVA for short), a training-free video large
language model (LLM) that can jointly capture detailed spatial semantics and
long-range temporal context without exceeding the token budget of commonly
used LLMs. This is realized by using a two-stream SlowFast design of inputs
for Video LLMs to aggregate features from sampled frames in an effective way.
Specifically, the Slow pathway extracts features at a low frame rate while keep-
ing as much spatial detail as possible (e.g., with 12 × 24 tokens), and the Fast
pathway operates on a high frame rate but uses a larger spatial pooling stride
(e.g., downsampling 6×) to focus on the motion cues. As a result, this design
allows us to adequately capture both spatial and temporal features that are benefi-
cial for detailed video understanding. Experimental results show that SF-LLaVA
outperforms existing training-free methods on a wide range of video tasks. On
some benchmarks, it achieves comparable or even better performance compared
to state-of-the-art Video LLMs that are fine-tuned on video datasets.

Figure 1: Comparison with state-of-the-art 7B Video LLMs on 8 video benchmarks. Training-free
and supervised fine-tuned (SFT) Video LLMs are marked using solid (—) and dashed (- - -) lines, re-
spectively. SF-LLaVA outperforms existing training-free methods on all benchmarks, and achieves
even better results compared to most SFT methods that are fine-tuned on video datasets.

1 INTRODUCTION

Video large language models (LLMs) process video inputs and generate coherent and contextually
appropriate responses to user commands by using a pre-trained LLM (Achiam et al., 2023; Chiang
et al., 2023; Touvron et al., 2023b; Jiang et al., 2024). Although achieving convincing results, most
Video LLMs (Maaz et al., 2024b; Lin et al., 2023; Xu et al., 2024; Zhang et al., 2024b) are fine-tuned
on large-scale labeled video datasets, leading to high computational and labeling cost. Recently,
training-free methods (Kim et al., 2024; Wu, 2024; Zhang et al., 2024b) have been proposed as a
simple and highly cost-efficient solution. They directly use well-trained Image LLMs for video tasks
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without additional fine-tuning and demonstrate encouraging performance. However, most existing
Video LLMs have two main drawbacks: (1) they work effectively only with a limited number of
frames as inputs (e.g., 6 for IG-VLM (Kim et al., 2024) and 16 for PLLaVA (Xu et al., 2024)),
making them difficult to capture fine-grained spatial and temporal content throughout the video, and
(2) they simply feed the video features into an LLM without a proper temporal modeling design and
fully rely on the capability of the LLM to model the motion patterns.

We present SlowFast-LLaVA (or SF-LLaVA for short), a training-free Video LLM that is built upon
LLaVA-NeXT (Liu et al., 2024) without further fine-tuning. Inspired by the successful two-stream
networks (Simonyan & Zisserman, 2014; Feichtenhofer et al., 2019) for action recognition, we pro-
pose a new SlowFast design of inputs for Video LLMs to capture both detailed spatial semantics and
long-range temporal context. Specifically, the Slow pathway extracts features at a low frame rate
while keeping spatial information at a higher resolution (e.g., 8 frames each with 24 × 24 tokens),
and the Fast pathway operates on a high frame rate but uses an aggressive spatial pooling stride
(e.g., downsampling each frame to 4 × 4 tokens) to focus on motion cues. SF-LLaVA combines
the “Slow and Fast features” together as an effective video representation for various tasks. SF-
LLaVA has two main advantages over prior work. First, it integrates complementary features from
the slowly changing visual semantics and rapidly changing motion dynamics, providing a compre-
hensive understanding of videos. Second, the dual-pathway design balances the modeling capability
and computational efficiency, and enables us to input more video frames to preserve adequate details.

SF-LLaVA takes a video as input by uniformly sampling a large number of frames (denoted as N )
to maintain as much detail as possible. Frame features Fv are extracted independently via a visual
encoder (e.g., CLIP-L (Radford et al., 2021)) followed by a visual-language adaptor for feature
alignment. Then, the features Fv are fed into the Slow and Fast pathways separately. The Slow
pathway uniformly samples N slow ≪ N features from Fv . Prior work (Xu et al., 2024) found that
properly pooling frame features can improve both efficiency and robustness. We follow them to
aggregate features in the Slow pathway by using a pooling with a small stride (e.g., 1× 2) over the
spatial dimensions. The Fast pathway takes all N fast = N features and performs a more aggressive
spatial pooling of each frame to focus on a finer temporal resolution. Finally, visual tokens from
both pathways are concatenated and fed into the LLM to generate the answer.

We extensively evaluate SF-LLaVA on 3 video tasks (i.e., Open-Ended VideoQA, Multiple Choice
VideoQA, and Text Generation) with 8 benchmark, including videos from various types (e.g., first-
and third-person views) and lengths (e.g., short and long videos). Experimental results (as shown
in Fig. 1) show that SF-LLaVA outperforms existing training-free methods by a clear margin on all
benchmarks, and achieves on-par or even better performance compared to SFT models that have
been carefully fine-tuned on video datasets. We also conduct comprehensive ablation studies on our
SlowFast design recipe, which hopefully provide some valuable insights for future work.

2 RELATED WORK

Image Large Language Models. Significant advances have been observed in the development of
multimodal large language models (LLMs) (Achiam et al., 2023; Team et al., 2023; McKinzie et al.,
2024; Abdin et al., 2024; Liu et al., 2024). As a pioneer work, Flamingo (Alayrac et al., 2022)
accepts arbitrarily interleaved visual and text data as inputs and generates text in an open-ended
manner. BLIP-2 (Li et al., 2023b) uses pre-trained visual and text models, and bridges the domain
gap with the proposed Q-Former. LLaVA(-v1.5/NeXT) (Liu et al., 2023b;a; 2024) achieves remark-
able performance by leveraging a simple linear connector or an MLP between visual and text mod-
els and designing an efficient instruction following data pipeline assisted with GPT. More recently,
MM1 (McKinzie et al., 2024) conducts comprehensive ablation studies on model components and
data choices, and offers valuable insights for understanding Image LLMs. There are also efforts
to ingest other modalities. Ferret (You et al., 2023; Zhang et al., 2024a) focuses on the box/shape
modality and enhances a model’s language grounding capability at any granularity. 3D-LLM (Hong
et al., 2023) enables open-ended question answering in 3D by injecting 3D representations into an
LLM. 4M (Mizrahi et al., 2023; Bachmann et al., 2024) presents a general any (modality) to any
(modality) framework with strong out-of-box perceptional and generative capabilities.

Video Large Language Models. With the rapid development of LLMs (Achiam et al., 2023; Team
et al., 2023; Chiang et al., 2023; Touvron et al., 2023a;b), there is increasing interest in generalist
video models that can perform a wide range of video tasks. Video-ChatGPT (Maaz et al., 2024b)
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extracts per-frame features then aggregates them by using two spatial and temporal pooling op-
erations before inputting them to an LLM. VideoChat (Li et al., 2023c) encodes a video as both
video text descriptions and video appearance embeddings. Video-LLaVA (Lin et al., 2023) pre-
aligns the image and video encoders, and learns a shared projector to project them to the language
space. PLLaVA (Xu et al., 2024) achieves convincing performance by fine-tuning a pre-trained
Image LLM on video understanding data. LLaVA-NeXT-Video (Zhang et al., 2024b) improves
LLaVA-NeXT (Liu et al., 2024) by fine-tuning it on video data, and its DPO version (Zhang et al.,
2024b) further aligns the model responses with AI feedbacks.

Training-Free Video LLMs are built upon Image LLMs and require no additional fine-tuning to
work for video scenarios. FreeVA (Wu, 2024) explores different temporal aggregation methods
and effectively pools video features before sending them to an LLM. IG-VLM (Kim et al., 2024)
assembles multiple video frames into an image grid and uses the Image LLM as it is on the image
grid for video tasks. These training-free models show encouraging results on various benchmarks,
but they have two main drawbacks. First, they can only successfully process a few frames from a
video (e.g., 4 frames in FreeVA and 6 frames in IG-VLM), which limits them to work only for short
and simple videos. Second, they simply ingest the video features and fully rely on the capability
of the LLMs to capture the temporal dependency along the video. In this paper, we propose a
new SlowFast design to capture both detailed spatial and temporal cues for video understanding by
effectively and efficiently taking more frames (e.g., 50) as inputs.

3 SLOWFAST-LLAVA

We introduce a training-free Video LLM, named SlowFast-LLaVA (or SF-LLaVA for short), based
on the LLaVA-NeXT (Liu et al., 2024), as shown in Fig. 2. Inspired by (Simonyan & Zisserman,
2014; Feichtenhofer et al., 2019) for action recognition, we propose a SlowFast design that uses two-
stream inputs for Video LLMs to jointly capture detailed spatial semantic and long-range temporal
context without exceeding the token budget of commonly used LLMs. (e.g., 4096 in Vicuna-v1.5).
Specifically, the Slow pathway includes “high-resolution”1 but low-frame-rate frame features (e.g.,
8 frames each with 12 × 24 tokens) to capture spatial detail as much as possible, and the Fast
pathway includes “low-resolution” but high-frame-rate frame features (e.g., 64 frames each with
4× 4 tokens) to model greater temporal context. This design allows us to adequately preserve both
spatial and temporal information, and aggregate them together as a powerful video representation.

3.1 PRELIMINARIES: TRAINING-FREE VIDEO LLMS

A training-free Video LLM is built upon a pre-trained Image LLM without further fine-tuning on
any data. It saves significant computation resources and model training time, and offers a greater
flexibility that can be quickly adapted into different application scenarios. The main effort of this
research direction is to improve the visual representation (e.g., organizing sampled frames (Kim
et al., 2024) or incorporating textual descriptions (Zhang et al., 2023a)) and effectively leveraging
the knowledge of a pre-trained LLM to better fit into the video tasks.

Given a video V, a frame sampler first selects N key frames (denoted as I).2 The sampled frames
are either arranged to a combined image grid (Kim et al., 2024) or treated independently (Wu, 2024;
Zhang et al., 2024b) as the inputs to the model. Video features are extracted as Fv = Visualenc(I),
where Visualenc is an image-based visual encoder, such as CLIP-L (Radford et al., 2021).3 Note
that IG-VLM (Kim et al., 2024) uses the AnyRes (Liu et al., 2024) technique to extract features
from a combined image grid, and most other methods, such as FreeVA (Wu, 2024), extracts features
from each frame independently. Before inputting the video features Fv into the LLM, a feature
aggregator, Faggr

v = Aggregator(Fv), is usually used to aggregate visual features using pre-
defined pooling operations. This stage aims to (1) leverage the temporal prior knowledge for better
video representation and (2) reduce the number of video tokens to avoid exceeding the LLM’s token
limit. Finally, the aggregated video features Faggr

v and the question Q are fed into the LLM to get a

1We mean “high- or low-resolution” frames by their number of tokens after the visual encoder and pooling,
such as 24× 24 or 4× 4, not the raw image size. We extract features for all frames in size of 336× 336.

2Most existing methods uniformly sample frames from a video for both effectiveness and simplicity.
3An Image LLM usually has a projector, such as MLPs, between its visual encoder and the LLM to align

the visual and text modalities. Unless noted otherwise, we extract the features after the projector.
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Figure 2: Visualization of SlowFast-LLaVA, which is a training-free model built upon LLaVA-NeXT
without further fine-tuning. The Slow pathway (in color yellow) extracts features at a low frame rate
while keeping as much spatial detail as possible with more tokens, and the Fast pathway (in color
blue) operates on a high frame rate but applies a larger spatial pooling stride to focus on the motion
cue. This design allows us to adequately preserve adequate spatial and temporal information, and
aggregate them together as an effective representation for detailed video understanding.

corresponding answer, as shown in Eq. 1.

A = LLM(Prompt,Aggregator(Visualenc(I)),Q), (1)

where Prompt denotes the system prompt or the instruction that is used to properly guide an
LLM for obtaining desirable answers. Since training-free Video LLMs directly use an image-based
vision-language model (VLM) for video understanding, it is essential to modify the original prompt
to accommodate the change from image to video scenarios. We will experiment for different prompts
and show the importance of using a proper instruction design for Video LLMs in Sec. 4.5.

3.2 SLOWFAST ARCHITECTURE

As shown in Fig. 2, our SF-LLaVA follows the standard training-free Video LLM pipeline. It takes
a video V and a question Q as inputs, and outputs an answer A, in response to Q. For the input, we
uniformly sample N frames, I = {I1, I2, ..., IN}, from each video in an arbitrary size and length,
without special frame assembling. The video features are extracted frame by frame independently
as Fv ∈ RN×H×W , where H and W are the height and width of the frame feature. Then, we further
process Fv in two streams (i.e., the Slow and Fast pathways as follows), and combine them together
as an effective video representation.

The Slow pathway uniformly samples N slow frame features from Fv , where N slow ≪ N since
it operates on a low frame rate. Since prior work (Xu et al., 2024) found that pooling “properly”
(e.g., stride 2 × 2) along the spatial dimension improves both the efficiency and robustness, we
reserve the opportunity to apply the pooling over Fv with stride σh × σw and gets the final feature
Fslow

v ∈ RN slow×Hslow×W slow
, where Hslow = H/σh and W slow = W/σw. The whole process of the

Slow pathway can be summarized in Eq. 2.

Fv ∈ RN×H×W spatial pool−−−−−−−−−−−−−−→
temporal downsample

Fslow
v ∈ RN slow×Hslow×W slow

(2)

The Fast pathway keeps all frame features from Fv to capture temporal context as much as possible
along the video. Specifically, we aggressively downsample Fv with a large spatial pooling stride
γh × γw and gets the final feature RN fast×H fast×W fast

, where N fast = N , H fast = H/γh, and W fast =
W/γw. We set H fast ≪ H and W fast ≪ W to make the Fast pathway to focus on modeling the
temporal context and motion cues. Formally, the whole process of the Fast pathway is as in Eq. 3.

Fv ∈ RN×H×W spatial pool−−−−−−−→ Ffast
v ∈ RN fast×H fast×W fast

, whereN fast = N (3)

Finally, the aggregated video feature is obtained by Faggr
v = [flat(Fslow

v ),flat(Ffast
v )], where

flat and [, ] indicate the flatten and concatenation operations, respectively. As the equation implies,
we do not use any special tokens in Faggr

v to separate the Slow and Fast pathways. Thus, SF-LLaVA
uses N slow ×Hslow ×W slow +N fast ×H fast ×W fast video tokens in total.

4
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The visual features Faggr
v will be concatenated with the text tokens (including both prompt and

question) as the inputs to the LLM as in Eq. 1. An overview of our SlowFast pipeline is summarized
as in Eq. 4, where Slow and Fast indicate our Slow and Fast aggregation pipelines as above.

A = LLM(Prompt, [Slow(Fv),Fast(Fv)],Q), whereFv = Visualenc(I) (4)

4 EXPERIMENTS

4.1 BENCHMARKS AND METRICS

Open-Ended VideoQA expects the model to generate answers in freestyle in response to a question
for a video. We include MSVD-QA (Chen & Dolan, 2011), MSRVTT-QA (Xu et al., 2016), TGIF-
QA (Li et al., 2016) and ActivityNet-QA (or ANet-QA in tables) (Yu et al., 2019) as the benchmarks
for this task. Except for ActivityNet-QA, we follow prior work (Maaz et al., 2024b) and report
the performance on the validation set. We use the GPT-assisted evaluation to assess the accuracy
(accuracy with the answer being true or false) and the quality (score ranging from 0 to 5) of the
models. As pointed out by FreeVA (Wu, 2024) different GPT versions can significantly impact the
results, we report to use GPT-3.5-Turbo-0125 to perform a fair comparison.

Multiple Choice VideoQA presents a set of multiple choice options to Video LLMs and evaluates
their capability of picking the correct choice. Specifically, we evaluate our model on NExTQA (Xiao
et al., 2021), EgoSchema (Mangalam et al., 2024) and IntentQA (Li et al., 2023a). The accuracy of
selecting the correct answer from the options is used as the evaluation metric.

Text Generation is used to evaluate the text generation performance of a Video LLM, and espe-
cially focuses on the following aspects: Correctness of Information (CI), Detail Orientation (DO),
Contextual Understanding (CU), Temporal Understanding (TU), and Consistency (CO). We use the
VCGBench (Maaz et al., 2024b) to evaluate these tasks and follow its official pipeline to evaluate
this capability. Specifically, we use GPT-3.5-Turbo-0125 for evaluation.

4.2 IMPLEMENTATION DETAILS

Experimental Settings. We perform all experiments on a system with 8 Nvidia A100 80G graphics
cards. SF-LLaVA is built upon LLaVA-NeXT (Liu et al., 2024) 7B and 34B models. We use their
pre-trained weights available on HuggingFace4. To deal with long sequences, we follow LLaVA-
NeXT-Video (Zhang et al., 2024b) to apply the rotary position embedding (RoPE) (Su et al., 2024),
and use the scaling factor of 2, which doubles the context length to 8192 tokens.

Input and Model Settings. SF-LLaVA takes as inputs a video with arbitrary size and length, and
uniformly samples N = 50 frames as key frames. The key frames are resized to 336× 336, and the
visual encoder (i.e., OpenAI’s CLIP-L-14) will output 24×24 tokens for each of them. For the Slow
pathway, we uniformly select N slow = 10 frame features from Fv and pool their extracted features
to 10× 12× 24; for the Fast pathway, we use features of all frames (i.e., N fast = N = 50) and pool
their extracted features to 50×4×4. Thus, SF-LLaVA uses 10×12×24+50×4×4 = 3680 visual
tokens in total, and we choose this as the maximum number since the inference on the SF-LLaVA-
34B model already reaches 80G GPU memory. The SlowFast video tokens are then concatenated
with the text tokens as inputs to the LLM.

4.3 MAIN RESULTS

Open-Ended VideoQA results are shown in Table 1. SF-LLaVA obtains better performance than ex-
isting training-free methods on all benchmarks. Specifically, SF-LLaVA outperforms IG-VLM (Kim
et al., 2024) by 2.1% and 5.0% on MSRVTT-QA, 5.7% and 1.5% on TGIF-QA, 1.2% and 0.8% on
ActivityNet-QA, using 7B and 34B LLMs, respectively. When even compared to state-of-the-art
SFT methods, SF-LLaVA achieves on-par results on most benchmarks (i.e., MSVD-QA, MSRVTT-
QA, and TGIF-QA), and only the results of PLLaVA (Xu et al., 2024) and LLaVA-NeXT-Video-
DPO (Zhang et al., 2024b) are better than ours on ActivityNet-QA.

Multiple Choice VideoQA results are shown in Table 2. SF-LLaVA outperforms other training-
free methods that use comparable LLMs and visual encoders, such as IG-VLM (Kim et al., 2024)

4
https://huggingface.co/collections/liuhaotian/llava-16-65b9e40155f60fd046a5ccf2
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Method LLM
Size

Vision
Encoder

Open-Ended VideoQA (Accuracy/Score)
MSVD-QA MSRVTT-QA TGIF-QA ANet-QA

Video-LLaMA (Zhang et al., 2023b) 7B CLIP-G 51.6/2.5 29.6/1.8 - 12.4/1.1
Video-LLaMA2 (Cheng et al., 2024) 7B CLIP-L 70.9/3.8 - - 50.2/3.3
Video-ChatGPT (Maaz et al., 2024b) 7B CLIP-L 64.9/3.3 49.3/2.8 51.4/3.0 35.2/2.7

VideoGPT+ (Maaz et al., 2024a) 3.8B CLIP-L 72.4/3.9 60.6/3.6 74.6/4.1 50.6/3.6
Video-LLaVA (Lin et al., 2023) 7B ViT-L 70.7/3.9 59.2/3.5 70.0/4.0 45.3/3.3
MovieChat (Song et al., 2023) 7B CLIP-G 75.2/3.8 52.7/2.6 - 45.7/3.4

MovieChat+ (Song et al., 2024) 7B CLIP-G 76.5/3.9 53.9/2.7 - 48.1/3.4
VideoChat (Li et al., 2023c) 7B CLIP-G 56.3/2.8 45.0/2.5 34.4/2.3 26.5/2.2

VideoChat2 (Li et al., 2023d) 7B UMT-L 70.0/3.9 54.1/3.3 - 49.1/3.3
Vista-LLaMA (Ma et al., 2023) 7B CLIP-G 65.3/3.6 60.5/3.3 - 48.3/3.3
LLaMA-VID (Li et al., 2023e) 13B CLIP-G 69.7/3.7 57.7/3.2 - 47.4/3.3

PLLaVA (Xu et al., 2024) 7B CLIP-L 76.6/4.1 62.0/3.5 77.5/4.1 56.3/3.5
LLaVA-NeXT-Video (Zhang et al., 2024b) 7B CLIP-L - - - 53.5/3.2

LLaVA-NeXT-Video-DPO (Zhang et al., 2024b) 7B CLIP-L - - - 60.2/3.5
FreeVA (Wu, 2024) 7B CLIP-L 73.8/4.1 60.0/3.5 - 51.2/3.5

DeepStack-L (Meng et al., 2024) 7B CLIP-L 76.0/4.0 - - 49.3/3.1
LLaVA-NeXT-Image (Zhang et al., 2024b) 7B CLIP-L - - - 53.8/3.2
IG-VLM (LLaVA-v1.6) (Kim et al., 2024) 7B CLIP-L 78.8/4.1 63.7/3.5 73.0/4.0 54.3/3.4

SF-LLaVA-7B 7B CLIP-L 79.1/4.1 65.8/3.6 78.7/4.2 55.5/3.4

(a) All models use 7B or comparable LLMs. SF-LLaVA outperforms state-of-the-art training-free methods by
0.3% on MSVD-QA, 2.1% on MSRVTT-QA, 5.7% on TGIF-QA, and 2.0% on ANet-QA. SF-LLaVA also
achieves better performance than most SFT methods on these benchmarks.

Method LLM
Size

Vision
Encoder

Open-Ended VideoQA (Accuracy/Score)
MSVD-QA MSRVTT-QA TGIF-QA ANet-QA

Video-LLaMA2 (Cheng et al., 2024) 46.7B CLIP-L 70.5/3.8 50.3/3.4
PLLaVA (Xu et al., 2024) 34B CLIP-L 79.9/4.2 68.7/3.8 80.6/4.3 60.9/3.7

LLaVA-NeXT-Video (Zhang et al., 2024b) 34B CLIP-L - - - 58.8/3.4
LLaVA-NeXT-Video-DPO (Zhang et al., 2024b) 34B CLIP-L - - - 64.4/3.6

LLaVA-NeXT-Image (Zhang et al., 2024b) 34B CLIP-L - - - 55.6/3.3
IG-VLM (LLaVA-v1.6) (Kim et al., 2024) 34B CLIP-L 79.6/4.1 62.4/3.5 79.1/4.2 58.4/3.5

SF-LLaVA-34B 34B CLIP-L 79.9/4.1 67.4/3.7 80.6/4.3 59.2/3.5

(b) All models use 34B or stronger LLMs. SF-LLaVA outperforms state-of-the-art training-free methods by
0.3% on MSVD-QA, 5.0% on MSRVTT-QA, 1.5% on TGIF-QA, and 0.8% on ANet-QA.

Table 1: Open-Ended VideoQA results. Bold numbers are the best among training-free methods
and underlined numbers are the best among all Video LLMs. Methods below the dashed line (- - -)
are the training-free baselines, and others are models fine-tuned on additional video data.

on all benchmarks. Specifically, on the challenging EgoSchema dataset, which involves complex
long-form temporal reasoning (Mangalam et al., 2024), SF-LLaVA outperforms IG-VLM by 11.4%
and 2.2% when using 7B and 34B LLMs, respectively. This highlights the ability of SF-LLaVA on
long-form video understanding. Note that VideoTree (Wang et al., 2024b) is leading the benchmark
because it is built upon a proprietary LLM (i.e., GPT-4 (Achiam et al., 2023)) whose performance
is much better than the open-sourced LLMs. When compared to SFT methods (Cheng et al., 2024),
SF-LLaVA 34B model also achieves better results (+2.5%) on EgoSchema, which confirms the
capability of our SlowFast design on long videos.

Text Generation benchmarks are shown in Table 3, where SF-LLaVA-34B outperforms all training-
free baselines on average. First, we observe that SF-LLaVA consistently performs worse than
LLaVA-NeXT-Image (Zhang et al., 2024b) on Detail Orientation (DO). This is because LLaVA-
NeXT-Image takes more “high-resolution” input frames than ours (i.e., 32 frames with 12 × 12
tokens v.s. 10 frames with 12 × 24 tokens), thus is able to capture more spatial information. Sec-
ond, SF-LLaVA takes advantage of the SlowFast design to cover a longer temporal context by using
even fewer visual tokens (i.e., 4608 tokens v.s. 3680 tokens), thus excels in all other tasks, especially
in Temporal Understanding (TU). Third, we observe that SF-LLaVA-34B is superior to most SFT
methods (e.g, outperforming Video-LLaMA2 (Cheng et al., 2024) +0.1 score on TU and +0.31 score
on CO), but only needs to catch up with LLaVA-NeXT-Video-DPO (Zhang et al., 2024b).

4.4 DESIGN CHOICES OF SLOWFAST

We first validate if both the Slow and Fast pathways are essential, and continue to experiment for
their design choices respectively. These ablation studies are conducted on ActivityNet-QA (an
Open-Ended VideoQA dataset that contains videos of human activities) and EgoSchema (a Mul-
tiple Choice VideoQA dataset requiring long-form understanding of egocentric videos).
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Method LLM
Size

Vision
Encoder

Multiple Choice VideoQA (Accuracy)
NExTQA EgoSchema IntentQA

Video-LLaMA2 (Cheng et al., 2024) 7B CLIP-L - 51.7 -
MovieChat+ (Song et al., 2024) 7B CLIP-G 54.8 - -
Vista-LLaMA (Ma et al., 2023) 7B CLIP-G 60.7 - -

DeepStack-L (Meng et al., 2024) 7B CLIP-L 61.0 38.4 -
IG-VLM (LLaVA-v1.6) (Kim et al., 2024) 7B CLIP-L 63.1 35.8 60.3

SF-LLaVA-7B 7B CLIP-L 64.2 47.2 60.1

(a) All models use 7B or comparable LLMs. SF-LLaVA outperforms state-of-the-art training-free methods by
1.1% on NExTQA and 11.4% on EgoSchema.

Method LLM
Size

Vision
Encoder

Multiple Choice VideoQA (Accuracy)
NExTQA EgoSchema IntentQA

Video-LLaMA2 (Cheng et al., 2024) 46.7B CLIP-L - 53.3 -
LLoVi (Zhang et al., 2023a) GPT-3.5 Unknown 67.7 50.3 64.0

VideoAgent (Wang et al., 2024a) GPT-4 Unknown 71.3 60.2 -
VideoTree (Wang et al., 2024b) GPT-4 Unknown 73.5 66.2 66.9

IG-VLM (LLaVA-v1.6) (Kim et al., 2024) 34B CLIP-L 70.9 53.6 65.3
SF-LLaVA-34B 34B CLIP-L 72.0 55.8 66.5

(b) All models use 34B or stronger LLMs. VideoAgent and VideoTree use proprietary stronger LLMs, thus win
the leaderboard. On the other hand, SF-LLaVA outperforms baselines using comparable LLMs.

Table 2: Multiple Choice VideoQA results. Bold numbers are the best among training-free methods
and underlined numbers are the best among all Video LLMs. Methods below the dashed line (- - -)
are the training-free baselines, and others are SFT methods fine-tuned by massive video data.

Method LLM
Size

Vision
Encoder

Text Generation (Score)
CI DO CU TU CO Average

Video-LLaMA (Zhang et al., 2023b) 7B CLIP-G 1.96 2.18 2.16 1.82 1.79 1.98
Video-LLaMA2 (Cheng et al., 2024) 7B CLIP-L 3.16 3.08 3.69 2.56 3.14 3.13
Video-ChatGPT (Maaz et al., 2024b) 7B CLIP-L 2.50 2.57 2.69 2.16 2.20 2.42

VideoGPT+ (Maaz et al., 2024a) 3.8B CLIP-L 3.27 3.18 3.74 2.83 3.39 3.28
MovieChat (Song et al., 2023) 7B CLIP-G 2.76 2.93 3.01 2.24 2.42 2.67
VideoChat (Li et al., 2023c) 7B CLIP-G 2.23 2.50 2.53 1.94 2.24 2.29

VideoChat2 (Li et al., 2023d) 7B UMT-L 3.02 2.88 3.51 2.66 2.81 2.98
Vista-LLaMA (Ma et al., 2023) 7B CLIP-G 2.44 2.64 3.18 2.26 2.31 2.57
LLaMA-VID (Li et al., 2023e) 13B CLIP-G 2.96 3.00 3.53 2.46 2.51 2.89

LLaVA-NeXT-Video (Zhang et al., 2024b) 7B CLIP-L 3.39 3.29 3.92 2.60 3.12 3.26
LLaVA-NeXT-Video-DPO (Zhang et al., 2024b) 7B CLIP-L 3.64 3.45 4.17 2.95 4.08 3.66

LLaVA-NeXT-Image (Zhang et al., 2024b) 7B CLIP-L 3.05 3.12 3.68 2.37 3.16 3.07
IG-VLM (LLaVA-v1.6) (Kim et al., 2024) 7B CLIP-L 3.11 2.78 3.51 2.44 3.29 3.03

SF-LLaVA-7B 7B CLIP-L 3.09 2.70 3.57 2.52 3.35 3.04

(a) All models use 7B or comparable LLMs. SF-LLaVA is leading the Temporal Understanding (TU) bench-
mark, which confirms the capability of our SlowFast design on modeling temporal context.

Method LLM
Size

Vision
Encoder

Text Generation (Score)
CI DO CU TU CO Average

Video-LLaMA2 (Cheng et al., 2024) 46.7B CLIP-L 3.08 3.11 3.64 2.67 3.26 3.15
LLaVA-NeXT-Video (Zhang et al., 2024b) 34B CLIP-L 3.48 3.37 3.95 2.64 3.28 3.34

LLaVA-NeXT-Video-DPO (Zhang et al., 2024b) 34B CLIP-L 3.81 3.55 4.24 3.14 4.12 3.77
LLaVA-NeXT-Image (Zhang et al., 2024b) 34B CLIP-L 3.29 3.23 3.83 2.51 3.47 3.27
IG-VLM (LLaVA-v1.6) (Kim et al., 2024) 34B CLIP-L 3.11 2.78 3.51 2.44 3.29 3.03

SF-LLaVA-34B 34B CLIP-L 3.48 2.96 3.84 2.77 3.57 3.32

(b) All models use 34B or stronger LLMs. SF-LLaVA outperforms the state-of-the-art training-free method
(LLaVA-NeXT-Image) by +0.05 score on average and gets +0.19 score on CI and +0.26 score on TU.

Table 3: Text Generation results. Bold numbers are the best among training-free methods and
underlined numbers are the best among all Video LLMs. Methods below the dashed line (- - -) are
the training-free baselines, and others are SFT methods fine-tuned by massive video data.

Can we remove the Slow pathway? First, we simply remove the Slow pathway, while keeping
the Fast pathway as 50 frames, each with 4 × 4 tokens. Fig. 3 shows that, on all benchmarks,
removing Slow pathway (N slow equals to 0) will introduce much lower performance. Second, we
validate if the performance gain is caused by the necessity of the Slow pathway or the increased
visual tokens brought by using more frames. We test this by gradually increasing N fast from 50
to 225 to compensate for the loss of visual tokens. Results in Table 4 show that using larger N fast

generally obtains better results, but the results quickly saturate when N fast is larger than 150. We
also compare the baselines in Table 4, which use N fast = 200, and SF-LLaVA models in Fig. 3 with
N slow = 8 and N fast = 50, since these models use comparable number of tokens (3200 v.s. 3104)
in total. Results show that SF-LLaVA outperforms this new baseline under all settings (e.g., 54.6%

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Effect of using different numbers of frames in the Slow pathway.

Figure 4: Effect of using different numbers of frames in the Fast pathway.

Number of Frames in the Fast Pathway
100 125 150 175 200 225

SF-LLaVA-7B ANet-QA 48.8/3.2 49.1/3.2 49.6/3.2 50.0/3.2 49.7/3.2 50.0/3.2
EgoSchema 36.2 37.0 36.6 36.8 37.0 38.2

SF-LLaVA-34B ANet-QA 55.6/3.4 55.8/3.4 55.5/3.4 55.1/3.4 55.4/3.4 -
EgoSchema 49.8 51.4 50.6 52.2 52.0 -

Table 4: Effect of increasing N fast while keeping N slow = 0. Each frame in the Fast pathway outputs
4× 4 tokens. The symbol “–” means the setting gets out-of-memory on 80GB GPUs.

v.s. 49.7% and 46.0% v.s. 37.0% using 7B LLMs on ActivityNet-QA and EgoSchema, respectively).
All of the above results demonstrate that it is essential to use the Slow pathway in SF-LLaVA.

Can we remove the Fast pathway? We validate this by removing the Fast pathway while retaining
the Slow pathway (having 10 frames, each with 12× 24 tokens). Fig. 4 shows that SF-LLaVA with
N fast = 50 consistently outperforms this baseline. Similar to the experiments for the Slow pathway,
we increase N slow to ensure SF-LLaVA and this new baseline have a comparable number of input
video tokens. Specifically, we increase N slow to 12 frames, which is the maximum number of frames
that the 34B model can afford under 80GB GPU memory. SF-LLaVA still outperforms this baseline
on both ActivityNet-QA (55.5% v.s. 54.1% on 7B model and 59.2% v.s. 58.8% on 34B model) and
EgoSchema (47.2% v.s. 46.6% on 7B model and 55.8% v.s. 54.6% on 34B model). We observe that
the performance gap is more significant on EgoSchema, since it mostly contains long-form videos
and answering the questions requires capturing longer context using the Fast pathway.

Pooling impact on Slow pathway. We analyze the effect of using different pooling strategies over
Fslow

v . The Fast pathway is kept as in Sec. 4.2. First, Table 5 (row 1 v.s. others) shows that keep-
ing visual tokens as many as possible is a viable way to obtain better results on average, however,
to cover longer context, we can easily reach the limits of an LLM’s context window and the GPU
memory (e.g., the 34B model). Second, pooling properly over either the spatial or temporal dimen-
sion (e.g., 2× in row 2 and 4) can also improve the performance (e.g., ∼1% on ActivityNet-QA) but
using an aggressive pooling can decrease the performance a lot (row 1 v.s. row 6). This also matches
the observations in prior work (Xu et al., 2024; Wu, 2024), Third, when preserving the same number
of tokens (e.g., row 2 and row 4), spatial pooling is better than temporal pooling, especially on the
benchmarks (e.g., EgoSchema) that require strong temporal modeling capabilities.

Number of frames in Slow pathway. We evaluate the effect of using different numbers of frames
Ns in the Slow pathway. In particular, we test Ns ∈ {1, 2, 4, 6, 8, 10} as shown in Fig. 3, while
keeping Ffast

v in size of 50 × 4 × 4. Note that we choose the max length to make sure the GPU
memory usage of SF-LLaVA-34B inference is under 80GB. The results show that increasing the
number of frames in the Slow pathway can improve the performance on both ActivityNet-QA and
EgoSchema. Thus we set N slow to 10 to achieve the best possible performance of SF-LLaVA.
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Model Size Output #tokens ANet-QA EgoSchema

7B

10× 24× 24 54.0/3.3 53.2
10× 12× 24 55.5/3.3 47.2
10× 12× 12 54.7/3.3 39.0
5× 24× 24 54.5/3.3 44.4
5× 12× 24 53.9/3.3 39.4
5× 12× 12 51.4/3.2 36.4

(a) Results on SF-LLaVA-7B models.

Model size Output #tokens ANet-QA EgoSchema

34B

10× 24× 24 - -
10× 12× 24 59.2/3.5 55.8
10× 12× 12 58.5/3.5 50.8
5× 24× 24 58.3/3.5 54.4
5× 12× 24 57.2/3.4 51.2
5× 12× 12 55.6/3.4 47.8

(b) Results on SF-LLaVA-34B models.

Table 5: Effect of applying different pooling strategies on the Slow pathway of SF-LLaVA, where
symbol “–” means the model inference gets out-of-memory on 80GB GPUs under this setting.

Model Size Output #tokens ANet-QA EgoSchema

7B

50× 8× 8 54.9/3.3 48.6
50× 4× 8 55.0/3.3 46.8
50× 6× 6 55.2/3.3 46.2
50× 3× 6 54.9/3.3 46.6
50× 4× 4 55.5/3.3 47.2
50× 2× 4 54.7/3.3 47.4
50× 1× 1 54.4/3.3 47.1

(a) Results on SF-LLaVA-7B models.

Model Size Output #tokens ANet-QA EgoSchema

34B

50× 8× 8 - -
50× 4× 8 - -
50× 6× 6 - -
50× 3× 6 58.5/3.5 55.3
50× 4× 4 59.2/3.5 55.8
50× 2× 4 58.6/3.5 55.2
50× 1× 1 58.9/3.5 56.0

(b) Results on SF-LLaVA-34B models.

Table 6: Effect of applying different pooling strategies on the Fast pathway of SF-LLaVA, where
symbol “–” means the model inference gets out-of-memory on 80GB GPUs under this setting.

Model Size Task Instruction Prompt Input Data Prompt Structured Answer Prompt ANet-QA EgoSchema

7B

✔ ✔ ✔ 54.9/3.3 47.2
✘ ✔ ✔ 55.5/3.4 43.0
✔ ✘ ✔ 52.6/3.2 44.8
✔ ✔ ✘ 52.7/3.4 44.4

34B

✔ ✔ ✔ 58.4/3.5 55.8
✘ ✔ ✔ 59.2/3.5 52.2
✔ ✘ ✔ 56.4/3.3 55.4
✔ ✔ ✘ 58.5/3.5 55.6

Table 7: Results of using different prompt designs for SF-LLaVA.

Pooling impact on Fast pathway. We keep Fslow
v ∈ R10×12×24 and N fast = 50, while reducing

Ffast
v to {8 × 8, 4 × 8, 6 × 6, 3 × 6, 4 × 4, 2 × 4, 1 × 1} tokens by pooling. Note that 1 × 1 is

an extreme case that loses all spatial information and can only contribute to temporal modeling.
Table 6 shows that keeping more tokens, such as 8× 8, generally gets better results on average, but
the performance gap is not obvious. Considering that (i) SF-LLaVA-34B cannot afford more than
50× 3× 6 output tokens due to out-of-memory and (ii) 50 frames are able to cover most videos in
existing benchmarks, we use 4 × 4 as our default setting to trade-off between spatial and temporal
information. However, if we extend SF-LLaVA for long-form video understanding (e.g., over 30
minutes), using 1× 1 in the Fast pathway could be a better choice to cover more input frames.

Number of frames in Fast pathway. We evaluate the effect of using different N fast. Similar to the
above experiments, we keep the Slow pathway as its default in Sec. 4.2, and test to increase N fast

from 10 to 50 frames. Note that we chose 50 frames as our maximum because this reaches the GPU
memory limit for the 34B model. The results in Fig. 4 show that using more frames in Fast pathway
improves the performance on both ActivityNet-QA and EgoSchema datasets (e.g., using 50 frames
outperforms 10 frames by 1.7% and 2.8% on EgoSchema on 7B and 34B models, respectively).
Thus, by default, SF-LLaVA uses N fast = 50 in the Fast pathway.

4.5 DESIGN CHOICES OF PROMPT

SF-LLaVA is built upon a pre-trained Image LLM for VideoQA without further fine-tuning. Here we
evaluate if we should design new prompts for SF-LLaVA to better understand the video inputs and
tasks. We decompose the prompt into three main parts and respectively explore their best designs.

Task instruction prompt clarifies the goal of the target task. In particular, we use “Answer the
question precisely based on the input” for the open-ended task, and “Select the best option to answer
the question” for the multiple choice task. Table 7 (row 1 and 2) shows that using the task instruction
prompt can improve the performance on EgoSchema (47.2% v.s. 43.0% and 55.8%v.s. 52.2% on 7B
and 34B) but is not helpful for ActivityNet-QA (54.9% v.s. 55.5% and 58.4% v.s. 59.2% on 7B and
34B). Thus, SF-LLaVA uses the task instruction prompt only for Multiple Choice VideoQA.
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Figure 5: Qualitative results of SF-LLaVA-7B. Our model can correctly understand the video content
and capture important details. On the other hand, error cases show that SF-LLaVA lacks the capa-
bility of fine-grained temporal grounding and may miss certain moments due to uniform sampling.

Input data prompt describes the structure of the inputs, such as the image grid in IG-VLM (Kim
et al., 2024) and image sequence in PLLaVA (Xu et al., 2024). For all tasks, SF-LLaVA uses the
same prompt “The input consists of a sequence of key frames from a video”. Table 7 (row 1 and 3)
shows that using input data prompt obtains better results on both ActivityNet-QA (54.9% v.s. 52.6%
and 58.4% v.s. 56.4%) and EgoSchema (47.2% v.s. 44.8% and 55.8% v.s. 55.4%). This demonstrates
the importance of offering input data details to better understand the structure of visual tokens, which
we think is especially important to training-free methods.

Structured answer prompt guides Video LLMs to generate answers in a more desirable format.
This is especially important to the Multiple Choice VideoQA task, since it makes the answer easier
to be parsed and improves the performance out of the box (Li et al., 2023d). We follow MVBench (Li
et al., 2023d) to use “Best Option:(” as the answer prompt for Multiple Choice VideoQA and follow
Image Grid (Kim et al., 2024) to use “In this video,” to guide the Open-Ended VideoQA tasks.
Table 7 (row 1 and 4) shows that using structured answer prompts improves results by 2.2% on
ActivityNet-QA and 2.8% on EgoSchema with the 7B LLM.

4.6 ERROR ANALYSIS

First, although SF-LLaVA can understand the relative sequence of different video moments, it still
lacks the capability to detect their precise start and end time, such as the Question 2 in Fig. 5. This is
because SF-LLaVA is never trained on any video datasets and relevant tasks. Fine-tuning SF-LLaVA
on fine-grained time-related video datasets could be a promising direction to gain this capability, and
incorporating multimodal inputs (e.g., the timestamp, subtitle, and audio of each frame) can further
improve the performance. Second, as observed in many other methods, SF-LLaVA possibly misses
some key frames due to its uniform frame sampling. Question 3 in Fig. 5 is an example, in which
the frames showing a quick moment of “opening refrigerator” are unintentionally missed (thus not
shown in the figure). Drastically sampling more frames (e.g., in 5 FPS) can mitigate this issue but is
limited by an LLM’s context window. This suggests we may explore dynamic sampling strategies
to ensure a more comprehensive sampling of important video segments.

5 CONCLUSION

We present SF-LLaVA, a training-free Video LLM that is built upon LLaVA-NeXT and requires no
additional fine-tuning to work effectively for various video tasks. Especially, we propose a SlowFast
design that uses two-stream inputs for Video LLMs. It aggregates frame features as an effective
video representation that can capture both detailed spatial semantics and long-range temporal con-
text. Our experiments on a diverse set of 8 video benchmarks demonstrate the effectiveness of
SF-LLaVA, where it outperforms existing training-free methods. On some benchmarks, SF-LLaVA
achieves on-par or even better results than state-of-the-art SFT Video LLMs that have been exten-
sively fine-tuned on large-scale video data. We hope SF-LLaVA can serve as a simple but strong
baseline in the whole picture of Video LLMs, and our ablation on its design choices can provide
valuable insights for future research on modeling video representations for Multimodal LLMs.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We have made every effort to include as many implementation details as possible in Sec. 4.2. We
commit to releasing the source code upon publication.
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