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Abstract
AMR parsing is the task that maps a sen-001
tence to an AMR semantic graph automati-002
cally. The difficulty comes from generating003
the complex graph structure. The previous004
state-of-the-art method translates the AMR005
graph into a sequence, then directly fine-tunes006
a pretrained sequence-to-sequence Transformer007
model (BART). However, purely treating the008
graph as a sequence does not take advantage of009
structural information about the graph. In this010
paper, we design several strategies to add the011
important ancestor information into the Trans-012
former Decoder. Our experiments show that we013
can improve the performance for both AMR 2.0014
and AMR 3.0 dataset and achieve new state-of-015
the-art results.016

1 Introduction017

Abstract Meaning Representation (AMR) (Ba-018

narescu et al., 2013) is a graph that encodes the019

semantic meaning of a sentence. In Figure 1a, we020

show the AMR of the sentence: You told me to021

wash the dog.. AMR has been widely used in many022

NLP tasks (Liu et al., 2015; Hardy and Vlachos,023

2018; Mitra and Baral, 2016).024

AMR parsing is the task that maps a sentence to025

an AMR semantic graph automatically. A graph026

is a complex data structure which is composed of027

multiple vertices and edges. There are roughly four028

types of parsing strategies in previous work:029

• Two-Stage Parsing (Flanigan et al., 2014;030

Lyu and Titov, 2018; Zhang et al., 2019a;031

Zhou et al., 2020): first produce vertices, and032

produce edges after that.033

• Transition-Based Parsing (Damonte et al.,034

2016; Ballesteros and Al-Onaizan, 2017; Guo035

and Lu, 2018; Wang and Xue, 2017; Naseem036

et al., 2019; Astudillo et al., 2020; Zhou et al.,037

2021): process the sentence from left to right,038

and produce vertices and edges based on the039

current focused word.040
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 :ARG2 ( <R2> I ) ):ARG1 ( <R3> wash-01


 :ARG0 <R2> :ARG1 ( <R4> dog ) ) }}

(b)

Figure 1: AMR Graph and linerization for the Sentence:
You told me to wash the dog.

• Graph-Based Parsing (Zhang et al., 2019b; 041

Cai and Lam, 2019, 2020): produce vertices 042

and edges based on a graph traversal order, 043

such as DFS or BFS. 044

• Sequence-to-Sequence Parsing (Konstas 045

et al., 2017; van Noord and Bos, 2017; Peng 046

et al., 2017, 2018; Xu et al., 2020; Bevilacqua 047

et al., 2021): this method linearizes the AMR 048

graph to a sequence, then uses a sequence-to- 049

sequence model to do the parsing. 050

Bevilacqua et al. (2021) achieved the state-of- 051

the-art performance by using the last seq-to-seq 052

strategy. They linearized the AMR graph (see Fig- 053

ure 1b) and fine-tuned BART (Lewis et al., 2020), a 054

denoising sequence-to-sequence pretraining based 055

on Transformer (Vaswani et al., 2017), for the pars- 056

ing. 057

However, purely treating the graph as a sequence 058

may not take advantage of important information 059

about the structure of the graph. When generating 060

the last token dog in Figure 1b, for example, the dot- 061

product attention layer in the Transformer Decoder 062

attends to all the previous tokens and lets the model 063

learn the weight of these tokens. However, if we 064

can tell the model which tokens are its ancestors, 065

like its parent is wash-01 and its grand-parent is 066

tell-01 (see Figure 1a), it will make this token much 067

easier to generate. Adding graph structure has been 068

demonstrated to be useful for the AMR-to-text task 069

(Zhu et al., 2019; Yao et al., 2020; Wang et al., 070

2020). These approaches added the graph structure 071
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Figure 2: Example of finding Ancestors.

to the Transformer Encoder. Therefore, we expect072

that adding structure in Transformer Decoder for073

AMR parsing task will also be helpful.074

In this paper, we base our work on the seq-to-seq075

model of Bevilacqua et al. (2021) with the AMR076

linearized by DFS traversal order. We introduce077

several strategies to add ancestor information into078

the Transformer Decoder layer. We also propose a079

novel strategy, which consists of setting parameters080

in the mask matrix for those ancestor tokens and081

tuning them. We find that this new strategy makes082

the largest improvement.083

2 Add Ancestors Information into Model084

2.1 DFS linearization and Ancestors085

The DFS linearization (in Bevilacqua et al. (2021))086

used pairs of parentheses to indicate the start and087

the end of exploring a node in the DFS traverse088

order. The readers can use Figure 1 as an example089

and are refereed to Bevilacqua et al. (2021) for090

more details.091

This means when generating the next token, we092

can construct the partial graph from previous to-093

kens and determine the ancestors tokens among094

them. In Figure 2b, for example, when we generate095

the token I, we can construct the partial graph in096

Figure 2a and find its ancestors (tell-01 –> :ARG2097

–>).098

If AMR were a tree, then the ancestors of each099

token would be clear to define. However, since100

AMR is a graph, one node may be visited multiple101

times (which is called re-entrancy), which brings102

ambiguity to find the ancestors. For example, in103

Figure 3, when we generate the last token <R2>, it104

is actually the re-entrancy of the token I generated105

before. Under this circumstance, we will use the106

tokens in the new path (tell-01 –> :ARG1 –> wash-107

01 –> :ARG0 –>) as its ancestors. We cannot use108

tokens from the old path (tell-01 –> :ARG2 –>),109

since we cannot know it is a re-entrancy before we110

have actually generated it.111

tell-01

:ARG0

you

:ARG0

:ARG1

:ARG2

I

wash-01

(a)

( <R0> tell-01 :ARG0 ( <R1> you )

 :ARG2 ( <R2> I ) ):ARG1 ( <R3> wash-01


 :ARG0 <R2>

(b)

Figure 3: Example of finding ancestors with re-entrancy.

2.2 Transformer Review 112

The original Transformer (Vaswani et al., 2017) 113

used scaled dot-product self-attention. Typically, 114

the input of the attention consists of a query ma- 115

trix Q, a key matrix K and a value matrix V , the 116

columns of which represent the query vector, the 117

key vector and the value vector of each token. The 118

attention can be caculated as follows: 119

Attention(Q,K, V,M) = Softmax
(

S√
d
+M

)
V,

S = QK⊤,

120

where Q,K, V ∈ RN×d, N is the length of the 121

sequence, d is the dimension of the model, and M 122

is the mask matrix to control which tokens in the 123

sequence are attended for a given token. 124

A typical Transformer module consists several 125

layers. In each layer it uses MultiHead attention. 126

For each head, they calculate the attention as above, 127

and then average the results. 128

In the Encoder self-attention and Encoder- 129

Decoder attention layers, the mask matrix is the 130

same across all the heads and all the layers, and 131

all the elements in the matrix are 0, meaning all 132

the tokens are attended. But in the Decoder self- 133

attention layers, the elements denoting the attention 134

to the future token (Mi,j with i < j) are set to −∞, 135

meaning that they have no effects when calculating 136

the weighted sum. 137

2.3 Add Ancestor Information into Model 138

We focus on the mask matrix M in the Trans- 139

former Decoder self-attention layers to add the 140

ancestor information during the parsing. We in- 141

troduce two strategies: hard strategy and a novel 142

soft strategy. 143

Hard Strategy Under this strategy, we set ele- 144

ments denoting the ancestors to 0, and the elements 145

denoting the non-ancestors to −∞ in M , such that 146
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only the ancestor tokens are attended. We will ex-147

plore the influence by using the new mask matrix148

only on part of decoder layers or on part of heads.149

Soft Strategy Under this novel strategy, we will150

not mask the non-ancestor tokens and abandon151

them in a hard way. Instead, what we do is only152

telling the model which are the ancestor tokens153

and letting the model learn the weights by itself.154

Specifically, we use three different values in the155

mask matrix: −∞ for all future tokens; 0 for all156

non-ancestor previous tokens; parameter α for all157

ancestor tokens. We let the model learn the weight158

α to control how much it should focus on the an-159

cestor tokens. Similar with the hard strategy, we160

will also explore the influence by setting different161

parameters on different layers or on different heads.162

3 Experiments163

3.1 Setup164

Dataset We use the AMR 2.0 (LDC2017T10)165

and AMR 3.0 (LDC2020T02) dataset. The AMR166

2.0 includes 39,260 manually-created graphs, and167

the AMR 3.0 includes 59,255. The AMR 2.0 is168

a subset of AMR 3.0. Both datasets are split into169

training, development and test datasets.170

Pre-processing and Post-processing We use the171

same DFS-based linearization technique as Bevilac-172

qua et al. (2021). We omit the detail here, but the173

reader can refer to Figure 1 as an example. In the174

pre-processing step, the AMR graph is linearized175

into a sequence, and in the post-processing step, the176

generated sequence is translated back to an AMR177

graph.178

Recategorization Recategorization is a widely179

used technique to handle data sparsity. With re-180

categorization, specific sub-graphs of a AMR graph181

(usually corresponding to special entities, like182

named entities, date entities, etc.) are treated as183

a unit and assigned to a single vertex with a new184

content. We experiment with a commonly-used185

method in AMR parsing literature (Zhang et al.,186

2019a,b; Zhou et al., 2020; Bevilacqua et al., 2021).187

The readers are referred to Zhang et al. (2019a)188

for further details. Notice that this method uses189

heuristic rules designed and optimized for AMR190

2.0, therefore it is not able to scale up to AMR191

3.0 (actually the performance dropped a lot for192

AMR 3.0 with recategorization in Bevilacqua et al.193

(2021)). Therefore, we will not conduct the recate-194

gorization experiment on AMR 3.0.195

Model and Baseline We use the model in 196

Bevilacqua et al. (2021) as our baseline. That 197

model was initialized by BART pretraining and 198

fine-tuned on the AMR dataset. We will do the 199

same thing, except that we design different mask 200

matrix in the Transformer Decoder layers. We will 201

introduce these differences in detail in Section 3.2. 202

Training and Evaluation We use one 1080Ti 203

GPU to fine-tune the model. Training takes about 204

13 hours on AMR 2.0 and 17 hours on AMR 3.0. 205

We use development dataset to select the best hyper- 206

parameter. At inference time, we set the beam size 207

as 5 following common practice in neural machine 208

translation (Yang et al., 2018). 209

For evaluation, we use Smatch (Cai and Knight, 210

2013) as the metric. For some experiments, we 211

also report fine-grained scores on different aspects 212

of parsing, such as wikification, concept identifica- 213

tion, NER, and negations using the tool released by 214

Damonte et al. (2017). 215

3.2 Experiments and Results 216

As indicated in Section 2.3, we study the effect of 217

the hard and soft strategy. We explore the influence 218

of these two strategies on different layers or on 219

different heads. Due to space limitation, we only 220

show the Smatch score of AMR 2.0 with the re- 221

categorization preprocessing, since it had the high- 222

est performance (84.5 Smatch score) as far as we 223

know. 224

Once we get the best result among these se- 225

tups, we will conduct experiments on AMR 2.0 226

and AMR 3.0 without recategorization (we have 227

discussed why we don’t conduct experiments for 228

AMR 3.0 with recategorizaiton before). We will 229

also report fine-grained results for these experi- 230

ments. 231

3.2.1 Experiments for Different Number of 232

Heads for the Hard Strategy 233

In the baseline model (Bevilacqua et al., 2021), 234

there are 16 heads in each layer. We conduct exper- 235

iments with 0, 2, 4, . . . , 8, 10 heads in each layer 236

attending to ancestors only. Note that the 0-head 237

model equals the baseline model. We show the 238

result in Table 2. 239

We can see that, up to 4 and 6 heads, the perfor- 240

mance increases along with the number of heads 241

increasing, showing the importance of telling the 242

model what the ancestors are. But then, the per- 243

formance decreases as the number of heads in- 244
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Dataset G.R. Smatch Unlabeled NO WSD Concept SRL Reent. Neg. NER wiki

AMR 2.0 (baseline) ✓ 84.5 86.7 84.9 89.6 79.7 72.3 79.9 83.7 87.3
AMR 2.0 (our method) ✓ 85.2 88.2 85.6 90.3 83.2 75.4 83.0 85.7 86.4

AMR 2.0 (baseline) × 83.8 86.1 84.4 90.2 79.6 70.8 74.4 90.6 84.3
AMR 2.0 (our method) × 84.8 88.1 85.3 90.5 83.4 75.1 74.0 91.8 84.1

AMR 3.0 (baseline) × 83.0 85.4 83.5 89.8 78.9 70.4 73.0 87.2 82.7
AMR 3.0 (our method) × 83.5 86.6 84.0 89.5 82.2 74.2 72.6 88.9 81.5

Table 1: The smatch and fine grained scores of AMR 2.0 and AMR 3.0 datasets without recategorization using the
optimal setup.

number of heads Smatch

0 (baseline) 84.5
2 84.5
4 84.9
6 84.9
8 84.8
10 84.3

Table 2: The influence of different number of heads
attended to the ancestors only for AMR 2.0 with recate-
gorization

different layers Smatch

baseline 84.5
bottom 4 84.6

Medium 4 84.8
top 4 84.3

Table 3: The influence of different layers attended to the
ancestors only for AMR 2.0 with recategorization

creases, showing that we cannot ignore other non-245

ancestor tokens, which still play important roles in246

the model.247

3.2.2 Experiments for Different Layers for the248

Hard Strategy249

In the baseline model (Bevilacqua et al., 2021),250

there are 12 layers in the Transformer decoder. Un-251

like the heads, the order of layers matters. The252

topper layers use information from the more bot-253

tom layers. Therefore, we conduct experiments254

with the bottom, the medium, and the top 4 layers255

attending to ancestors. The mask matrix for each256

head are the same within a single layer. We show257

the result in Table 3.258

We can see that, putting the medium 4 layers259

focusing on the ancestors has the best performance.260

But when we put the top 4 layers focusing on them,261

the performance decreases a lot. One possible rea-262

son is that, when it comes to near the final output263

(the top layers), the model needs to use the infor-264

mation from all tokens.265

different setups Smatch

baseline 84.5
different parameters for layers and heads 84.8

different parameters only for layers 84.7
different parameters only for heads 85.2

Table 4: The influence of tuning the mask matrix for
AMR 2.0 with recategorization

3.2.3 Experiments of Soft Strategy 266

In this section, we will tune the mask matrix and 267

use the soft strategy to add the ancestors informa- 268

tion. We conduct three experiments: different pa- 269

rameters for every layer and head combination; 270

different parameters for different layers only; dif- 271

ferent parameters for different heads only. We show 272

the results in Table 4. We can see that when we 273

only use different parameters for every head, we 274

achieve a new state-of-the-art result. 275

3.2.4 Results for Other Datasets 276

We have conducted different experiments for AMR 277

2.0 with recategorization, and we found that when 278

we set different parameters for different heads only 279

and tune these parameters, we get the best perfor- 280

mance. Therefore, we apply this setup for other 281

datasets: AMR 2.0 and AMR 3.0 without recate- 282

gorization. We show the Smatch scores as well as 283

other fine-grained scores in Table 1. The results are 284

improved for all the datasets. The AMR 2.0 with- 285

out recategorization even obtains an improvement 286

of 1.0 Smatch point. 287

4 Conclusion 288

In this paper, we focus on the DFS linearization and 289

introduce several strategies to add ancestor infor- 290

mation into the model. We conduct several experi- 291

ments to show the improvement for both AMR 2.0 292

and AMR 3.0 datasets. Our method achieves new 293

state-of-the-art performances for the AMR parsing 294

task. 295
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