
Sequence-to-sequence AMR Parsing with Ancestor Information

Anonymous ACL submission

Abstract
AMR parsing is the task that maps a sen-001
tence to an AMR semantic graph automati-002
cally. The difficulty comes from generating003
the complex graph structure. The previous004
state-of-the-art method translates the AMR005
graph into a sequence, then directly fine-tunes006
a pretrained sequence-to-sequence Transformer007
model (BART). However, purely treating the008
graph as a sequence does not take advantage of009
structural information about the graph. In this010
paper, we design several strategies to add the011
important ancestor information into the Trans-012
former Decoder. Our experiments show that we013
can improve the performance for both AMR 2.0014
and AMR 3.0 dataset and achieve new state-of-015
the-art results.016

1 Introduction017

Abstract Meaning Representation (AMR) (Ba-018

narescu et al., 2013) is a graph that encodes the019

semantic meaning of a sentence. In Figure 1a, we020

show the AMR of the sentence: You told me to021

wash the dog.. AMR has been widely used in many022

NLP tasks (Liu et al., 2015; Hardy and Vlachos,023

2018; Mitra and Baral, 2016).024

AMR parsing is the task that maps a sentence to025

an AMR semantic graph automatically. A graph026

is a complex data structure which is composed of027

multiple vertices and edges. There are roughly four028

types of parsing strategies in previous work:029

• Two-Stage Parsing (Flanigan et al., 2014;030

Lyu and Titov, 2018; Zhang et al., 2019a;031

Zhou et al., 2020): first produce vertices, and032

produce edges after that.033

• Transition-Based Parsing (Damonte et al.,034

2016; Ballesteros and Al-Onaizan, 2017; Guo035

and Lu, 2018; Wang and Xue, 2017; Naseem036

et al., 2019; Astudillo et al., 2020; Zhou et al.,037

2021): process the sentence from left to right,038

and produce vertices and edges based on the039

current focused word.040

tell-01

:ARG0

you

dog

:ARG0

:ARG1

:ARG2

I

:ARG1

wash-01

(a)

(<R0> tell-01 :ARG0 (<R1> you)

 :ARG2 (<R2> I)):ARG1 (<R3> wash-01

 :ARG0 <R2> :ARG1 (<R4> dog)) }}

(b)

Figure 1: AMR Graph and linerization for the Sentence:
You told me to wash the dog.

• Graph-Based Parsing (Zhang et al., 2019b; 041

Cai and Lam, 2019, 2020): produce vertices 042

and edges based on a graph traversal order, 043

such as DFS or BFS. 044

• Sequence-to-Sequence Parsing (Konstas 045

et al., 2017; van Noord and Bos, 2017; Peng 046

et al., 2017, 2018; Xu et al., 2020; Bevilacqua 047

et al., 2021): this method linearizes the AMR 048

graph to a sequence, then uses a sequence-to- 049

sequence model to do the parsing. 050

Bevilacqua et al. (2021) achieved the state-of- 051

the-art performance by using the last seq-to-seq 052

strategy. They linearized the AMR graph (see Fig- 053

ure 1b) and fine-tuned BART (Lewis et al., 2020), a 054

denoising sequence-to-sequence pretraining based 055

on Transformer (Vaswani et al., 2017), for the pars- 056

ing. 057

However, purely treating the graph as a sequence 058

may not take advantage of important information 059

about the structure of the graph. When generating 060

the last token dog in Figure 1b, for example, the dot- 061

product attention layer in the Transformer Decoder 062

attends to all the previous tokens and lets the model 063

learn the weight of these tokens. However, if we 064

can tell the model which tokens are its ancestors, 065

like its parent is wash-01 and its grand-parent is 066

tell-01 (see Figure 1a), it will make this token much 067

easier to generate. Adding graph structure has been 068

demonstrated to be useful for the AMR-to-text task 069

(Zhu et al., 2019; Yao et al., 2020; Wang et al., 070

2020). These approaches added the graph structure 071

1

tell-01

:ARG0

you :ARG2

I

(a)

(<R0> tell-01 :ARG0 (<R1> you)

 :ARG2 (<R2> I)

(b)

Figure 2: Example of finding Ancestors.

to the Transformer Encoder. Therefore, we expect072

that adding structure in Transformer Decoder for073

AMR parsing task will also be helpful.074

In this paper, we base our work on the seq-to-seq075

model of Bevilacqua et al. (2021) with the AMR076

linearized by DFS traversal order. We introduce077

several strategies to add ancestor information into078

the Transformer Decoder layer. We also propose a079

novel strategy, which consists of setting parameters080

in the mask matrix for those ancestor tokens and081

tuning them. We find that this new strategy makes082

the largest improvement.083

2 Add Ancestors Information into Model084

2.1 DFS linearization and Ancestors085

The DFS linearization (in Bevilacqua et al. (2021))086

used pairs of parentheses to indicate the start and087

the end of exploring a node in the DFS traverse088

order. The readers can use Figure 1 as an example089

and are refereed to Bevilacqua et al. (2021) for090

more details.091

This means when generating the next token, we092

can construct the partial graph from previous to-093

kens and determine the ancestors tokens among094

them. In Figure 2b, for example, when we generate095

the token I, we can construct the partial graph in096

Figure 2a and find its ancestors (tell-01 –> :ARG2097

–>).098

If AMR were a tree, then the ancestors of each099

token would be clear to define. However, since100

AMR is a graph, one node may be visited multiple101

times (which is called re-entrancy), which brings102

ambiguity to find the ancestors. For example, in103

Figure 3, when we generate the last token <R2>, it104

is actually the re-entrancy of the token I generated105

before. Under this circumstance, we will use the106

tokens in the new path (tell-01 –> :ARG1 –> wash-107

01 –> :ARG0 –>) as its ancestors. We cannot use108

tokens from the old path (tell-01 –> :ARG2 –>),109

since we cannot know it is a re-entrancy before we110

have actually generated it.111

tell-01

:ARG0

you

:ARG0

:ARG1

:ARG2

I

wash-01

(a)

(<R0> tell-01 :ARG0 (<R1> you)

 :ARG2 (<R2> I)):ARG1 (<R3> wash-01

 :ARG0 <R2>

(b)

Figure 3: Example of finding ancestors with re-entrancy.

2.2 Transformer Review 112

The original Transformer (Vaswani et al., 2017) 113

used scaled dot-product self-attention. Typically, 114

the input of the attention consists of a query ma- 115

trix Q, a key matrix K and a value matrix V , the 116

columns of which represent the query vector, the 117

key vector and the value vector of each token. The 118

attention can be caculated as follows: 119

Attention(Q,K, V,M) = Softmax
(

S√
d
+M

)
V,

S = QK⊤,

120

where Q,K, V ∈ RN×d, N is the length of the 121

sequence, d is the dimension of the model, and M 122

is the mask matrix to control which tokens in the 123

sequence are attended for a given token. 124

A typical Transformer module consists several 125

layers. In each layer it uses MultiHead attention. 126

For each head, they calculate the attention as above, 127

and then average the results. 128

In the Encoder self-attention and Encoder- 129

Decoder attention layers, the mask matrix is the 130

same across all the heads and all the layers, and 131

all the elements in the matrix are 0, meaning all 132

the tokens are attended. But in the Decoder self- 133

attention layers, the elements denoting the attention 134

to the future token (Mi,j with i < j) are set to −∞, 135

meaning that they have no effects when calculating 136

the weighted sum. 137

2.3 Add Ancestor Information into Model 138

We focus on the mask matrix M in the Trans- 139

former Decoder self-attention layers to add the 140

ancestor information during the parsing. We in- 141

troduce two strategies: hard strategy and a novel 142

soft strategy. 143

Hard Strategy Under this strategy, we set ele- 144

ments denoting the ancestors to 0, and the elements 145

denoting the non-ancestors to −∞ in M , such that 146

2

only the ancestor tokens are attended. We will ex-147

plore the influence by using the new mask matrix148

only on part of decoder layers or on part of heads.149

Soft Strategy Under this novel strategy, we will150

not mask the non-ancestor tokens and abandon151

them in a hard way. Instead, what we do is only152

telling the model which are the ancestor tokens153

and letting the model learn the weights by itself.154

Specifically, we use three different values in the155

mask matrix: −∞ for all future tokens; 0 for all156

non-ancestor previous tokens; parameter α for all157

ancestor tokens. We let the model learn the weight158

α to control how much it should focus on the an-159

cestor tokens. Similar with the hard strategy, we160

will also explore the influence by setting different161

parameters on different layers or on different heads.162

3 Experiments163

3.1 Setup164

Dataset We use the AMR 2.0 (LDC2017T10)165

and AMR 3.0 (LDC2020T02) dataset. The AMR166

2.0 includes 39,260 manually-created graphs, and167

the AMR 3.0 includes 59,255. The AMR 2.0 is168

a subset of AMR 3.0. Both datasets are split into169

training, development and test datasets.170

Pre-processing and Post-processing We use the171

same DFS-based linearization technique as Bevilac-172

qua et al. (2021). We omit the detail here, but the173

reader can refer to Figure 1 as an example. In the174

pre-processing step, the AMR graph is linearized175

into a sequence, and in the post-processing step, the176

generated sequence is translated back to an AMR177

graph.178

Recategorization Recategorization is a widely179

used technique to handle data sparsity. With re-180

categorization, specific sub-graphs of a AMR graph181

(usually corresponding to special entities, like182

named entities, date entities, etc.) are treated as183

a unit and assigned to a single vertex with a new184

content. We experiment with a commonly-used185

method in AMR parsing literature (Zhang et al.,186

2019a,b; Zhou et al., 2020; Bevilacqua et al., 2021).187

The readers are referred to Zhang et al. (2019a)188

for further details. Notice that this method uses189

heuristic rules designed and optimized for AMR190

2.0, therefore it is not able to scale up to AMR191

3.0 (actually the performance dropped a lot for192

AMR 3.0 with recategorization in Bevilacqua et al.193

(2021)). Therefore, we will not conduct the recate-194

gorization experiment on AMR 3.0.195

Model and Baseline We use the model in 196

Bevilacqua et al. (2021) as our baseline. That 197

model was initialized by BART pretraining and 198

fine-tuned on the AMR dataset. We will do the 199

same thing, except that we design different mask 200

matrix in the Transformer Decoder layers. We will 201

introduce these differences in detail in Section 3.2. 202

Training and Evaluation We use one 1080Ti 203

GPU to fine-tune the model. Training takes about 204

13 hours on AMR 2.0 and 17 hours on AMR 3.0. 205

We use development dataset to select the best hyper- 206

parameter. At inference time, we set the beam size 207

as 5 following common practice in neural machine 208

translation (Yang et al., 2018). 209

For evaluation, we use Smatch (Cai and Knight, 210

2013) as the metric. For some experiments, we 211

also report fine-grained scores on different aspects 212

of parsing, such as wikification, concept identifica- 213

tion, NER, and negations using the tool released by 214

Damonte et al. (2017). 215

3.2 Experiments and Results 216

As indicated in Section 2.3, we study the effect of 217

the hard and soft strategy. We explore the influence 218

of these two strategies on different layers or on 219

different heads. Due to space limitation, we only 220

show the Smatch score of AMR 2.0 with the re- 221

categorization preprocessing, since it had the high- 222

est performance (84.5 Smatch score) as far as we 223

know. 224

Once we get the best result among these se- 225

tups, we will conduct experiments on AMR 2.0 226

and AMR 3.0 without recategorization (we have 227

discussed why we don’t conduct experiments for 228

AMR 3.0 with recategorizaiton before). We will 229

also report fine-grained results for these experi- 230

ments. 231

3.2.1 Experiments for Different Number of 232

Heads for the Hard Strategy 233

In the baseline model (Bevilacqua et al., 2021), 234

there are 16 heads in each layer. We conduct exper- 235

iments with 0, 2, 4, . . . , 8, 10 heads in each layer 236

attending to ancestors only. Note that the 0-head 237

model equals the baseline model. We show the 238

result in Table 2. 239

We can see that, up to 4 and 6 heads, the perfor- 240

mance increases along with the number of heads 241

increasing, showing the importance of telling the 242

model what the ancestors are. But then, the per- 243

formance decreases as the number of heads in- 244

3

Dataset G.R. Smatch Unlabeled NO WSD Concept SRL Reent. Neg. NER wiki

AMR 2.0 (baseline) ✓ 84.5 86.7 84.9 89.6 79.7 72.3 79.9 83.7 87.3
AMR 2.0 (our method) ✓ 85.2 88.2 85.6 90.3 83.2 75.4 83.0 85.7 86.4

AMR 2.0 (baseline) × 83.8 86.1 84.4 90.2 79.6 70.8 74.4 90.6 84.3
AMR 2.0 (our method) × 84.8 88.1 85.3 90.5 83.4 75.1 74.0 91.8 84.1

AMR 3.0 (baseline) × 83.0 85.4 83.5 89.8 78.9 70.4 73.0 87.2 82.7
AMR 3.0 (our method) × 83.5 86.6 84.0 89.5 82.2 74.2 72.6 88.9 81.5

Table 1: The smatch and fine grained scores of AMR 2.0 and AMR 3.0 datasets without recategorization using the
optimal setup.

number of heads Smatch

0 (baseline) 84.5
2 84.5
4 84.9
6 84.9
8 84.8
10 84.3

Table 2: The influence of different number of heads
attended to the ancestors only for AMR 2.0 with recate-
gorization

different layers Smatch

baseline 84.5
bottom 4 84.6

Medium 4 84.8
top 4 84.3

Table 3: The influence of different layers attended to the
ancestors only for AMR 2.0 with recategorization

creases, showing that we cannot ignore other non-245

ancestor tokens, which still play important roles in246

the model.247

3.2.2 Experiments for Different Layers for the248

Hard Strategy249

In the baseline model (Bevilacqua et al., 2021),250

there are 12 layers in the Transformer decoder. Un-251

like the heads, the order of layers matters. The252

topper layers use information from the more bot-253

tom layers. Therefore, we conduct experiments254

with the bottom, the medium, and the top 4 layers255

attending to ancestors. The mask matrix for each256

head are the same within a single layer. We show257

the result in Table 3.258

We can see that, putting the medium 4 layers259

focusing on the ancestors has the best performance.260

But when we put the top 4 layers focusing on them,261

the performance decreases a lot. One possible rea-262

son is that, when it comes to near the final output263

(the top layers), the model needs to use the infor-264

mation from all tokens.265

different setups Smatch

baseline 84.5
different parameters for layers and heads 84.8

different parameters only for layers 84.7
different parameters only for heads 85.2

Table 4: The influence of tuning the mask matrix for
AMR 2.0 with recategorization

3.2.3 Experiments of Soft Strategy 266

In this section, we will tune the mask matrix and 267

use the soft strategy to add the ancestors informa- 268

tion. We conduct three experiments: different pa- 269

rameters for every layer and head combination; 270

different parameters for different layers only; dif- 271

ferent parameters for different heads only. We show 272

the results in Table 4. We can see that when we 273

only use different parameters for every head, we 274

achieve a new state-of-the-art result. 275

3.2.4 Results for Other Datasets 276

We have conducted different experiments for AMR 277

2.0 with recategorization, and we found that when 278

we set different parameters for different heads only 279

and tune these parameters, we get the best perfor- 280

mance. Therefore, we apply this setup for other 281

datasets: AMR 2.0 and AMR 3.0 without recate- 282

gorization. We show the Smatch scores as well as 283

other fine-grained scores in Table 1. The results are 284

improved for all the datasets. The AMR 2.0 with- 285

out recategorization even obtains an improvement 286

of 1.0 Smatch point. 287

4 Conclusion 288

In this paper, we focus on the DFS linearization and 289

introduce several strategies to add ancestor infor- 290

mation into the model. We conduct several experi- 291

ments to show the improvement for both AMR 2.0 292

and AMR 3.0 datasets. Our method achieves new 293

state-of-the-art performances for the AMR parsing 294

task. 295

4

References296

Ramón Fernandez Astudillo, Miguel Ballesteros, Tahira297
Naseem, Austin Blodgett, and Radu Florian. 2020.298
Transition-based parsing with stack-transformers. In299
Proceedings of the 2020 Conference on Empirical300
Methods in Natural Language Processing: Findings,301
pages 1001–1007.302

Miguel Ballesteros and Yaser Al-Onaizan. 2017. AMR303
parsing using stack-LSTMs. In Proceedings of the304
2017 Conference on Empirical Methods in Natural305
Language Processing, pages 1269–1275.306

Laura Banarescu, Claire Bonial, Shu Cai, Madalina307
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin308
Knight, Philipp Koehn, Martha Palmer, and Nathan309
Schneider. 2013. Abstract meaning representation310
for sembanking. In Proceedings of the 7th Linguis-311
tic Annotation Workshop and Interoperability with312
Discourse, pages 178–186, Sofia, Bulgaria.313

Michele Bevilacqua, Rexhina Blloshmi, and Roberto314
Navigli. 2021. One SPRING to rule them both: Sym-315
metric AMR semantic parsing and generation without316
a complex pipeline. In Proceedings of the Thirty-317
Fifth AAAI Conference on Artificial Intelligence.318

Deng Cai and Wai Lam. 2019. Core semantic first: A319
top-down approach for AMR parsing. In Proceed-320
ings of the 2019 Conference on Empirical Methods321
in Natural Language Processing and the 9th Inter-322
national Joint Conference on Natural Language Pro-323
cessing (EMNLP-IJCNLP), pages 3790–3800.324

Deng Cai and Wai Lam. 2020. AMR parsing via graph-325
sequence iterative inference. In Proceedings of the326
58th Annual Meeting of the Association for Compu-327
tational Linguistics, pages 1290–1301, Online. Asso-328
ciation for Computational Linguistics.329

Shu Cai and Kevin Knight. 2013. Smatch: an evaluation330
metric for semantic feature structures. In Proceed-331
ings of the 51st Annual Meeting of the Association332
for Computational Linguistics (ACL-13), pages 748–333
752.334

Marco Damonte, Shay B. Cohen, and Giorgio Satta.335
2016. An incremental parser for abstract meaning336
representation. CoRR, abs/1608.06111.337

Marco Damonte, Shay B. Cohen, and Giorgio Satta.338
2017. An incremental parser for abstract meaning339
representation. In Proceedings of the 15th Confer-340
ence of the European Chapter of the Association for341
Computational Linguistics (EACL), pages 536–546,342
Valencia, Spain.343

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris344
Dyer, and Noah A. Smith. 2014. A discriminative345
graph-based parser for the abstract meaning represen-346
tation. In Proceedings of the 52nd Annual Meeting of347
the Association for Computational Linguistics (ACL-348
14), pages 1426–1436, Baltimore, Maryland.349

Zhijiang Guo and Wei Lu. 2018. Better transition-based 350
AMR parsing with a refined search space. In Proceed- 351
ings of the 2018 Conference on Empirical Methods 352
in Natural Language Processing, pages 1712–1722, 353
Brussels, Belgium. Association for Computational 354
Linguistics. 355

Hardy Hardy and Andreas Vlachos. 2018. Guided neu- 356
ral language generation for abstractive summariza- 357
tion using abstract meaning representation. In Pro- 358
ceedings of the 2018 Conference on Empirical Meth- 359
ods in Natural Language Processing, pages 768–773. 360

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin 361
Choi, and Luke Zettlemoyer. 2017. Neural AMR: 362
Sequence-to-sequence models for parsing and gener- 363
ation. In Proceedings of the 55th Annual Meeting of 364
the Association for Computational Linguistics (Vol- 365
ume 1: Long Papers), pages 146–157, Vancouver, 366
Canada. Association for Computational Linguistics. 367

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 368
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 369
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart: 370
Denoising sequence-to-sequence pre-training for nat- 371
ural language generation, translation, and comprehen- 372
sion. In Proceedings of the 58th Annual Meeting of 373
the Association for Computational Linguistics, pages 374
7871–7880. 375

Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman 376
Sadeh, and Noah A. Smith. 2015. Toward abstrac- 377
tive summarization using semantic representations. 378
In Proceedings of the 2015 Conference of the North 379
American Chapter of the Association for Computa- 380
tional Linguistics: Human Language Technologies, 381
pages 1077–1086. 382

Chunchuan Lyu and Ivan Titov. 2018. AMR parsing as 383
graph prediction with latent alignment. In Proceed- 384
ings of the 56th Annual Meeting of the Association 385
for Computational Linguistics (Volume 1: Long Pa- 386
pers), pages 397–407. Association for Computational 387
Linguistics. 388

Arindam Mitra and Chitta Baral. 2016. Addressing a 389
question answering challenge by combining statisti- 390
cal methods with inductive rule learning and reason- 391
ing. In AAAI, pages 2779–2785. 392

Tahira Naseem, Abhishek Shah, Hui Wan, Radu Flo- 393
rian, Salim Roukos, and Miguel Ballesteros. 2019. 394
Rewarding Smatch: Transition-based AMR parsing 395
with reinforcement learning. In Proceedings of the 396
57th Annual Meeting of the Association for Compu- 397
tational Linguistics, pages 4586–4592. 398

Xiaochang Peng, Linfeng Song, Daniel Gildea, and 399
Giorgio Satta. 2018. Sequence-to-sequence models 400
for cache transition systems. In Proceedings of the 401
56th Annual Meeting of the Association for Compu- 402
tational Linguistics (ACL-18), pages 1842–1852. 403

Xiaochang Peng, Chuan Wang, Daniel Gildea, and Ni- 404
anwen Xue. 2017. Addressing the data sparsity issue 405

5

https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/W13-2322
https://doi.org/10.18653/v1/2020.acl-main.119
https://doi.org/10.18653/v1/2020.acl-main.119
https://doi.org/10.18653/v1/2020.acl-main.119
http://www.aclweb.org/anthology/P13-2131
http://www.aclweb.org/anthology/P13-2131
http://www.aclweb.org/anthology/P13-2131
http://arxiv.org/abs/1608.06111
http://arxiv.org/abs/1608.06111
http://arxiv.org/abs/1608.06111
http://www.aclweb.org/anthology/P14-1134
http://www.aclweb.org/anthology/P14-1134
http://www.aclweb.org/anthology/P14-1134
http://www.aclweb.org/anthology/P14-1134
http://www.aclweb.org/anthology/P14-1134
https://doi.org/10.18653/v1/D18-1198
https://doi.org/10.18653/v1/D18-1198
https://doi.org/10.18653/v1/D18-1198
http://aclweb.org/anthology/P17-1014
http://aclweb.org/anthology/P17-1014
http://aclweb.org/anthology/P17-1014
http://aclweb.org/anthology/P17-1014
http://aclweb.org/anthology/P17-1014
https://www.aclweb.org/anthology/N15-1114
https://www.aclweb.org/anthology/N15-1114
https://www.aclweb.org/anthology/N15-1114
http://aclweb.org/anthology/P18-1037
http://aclweb.org/anthology/P18-1037
http://aclweb.org/anthology/P18-1037
https://www.cs.rochester.edu/u/gildea/pubs/peng-acl18.pdf
https://www.cs.rochester.edu/u/gildea/pubs/peng-acl18.pdf
https://www.cs.rochester.edu/u/gildea/pubs/peng-acl18.pdf
https://www.cs.rochester.edu/u/gildea/pubs/peng-eacl17.pdf
https://www.cs.rochester.edu/u/gildea/pubs/peng-eacl17.pdf

in neural AMR parsing. In Proceedings of the Euro-406
pean Chapter of the ACL (EACL-17).407

Rik van Noord and Johan Bos. 2017. Neural semantic408
parsing by character-based translation: Experiments409
with abstract meaning representations. Computa-410
tional Linguistics in the Netherlands Journal, 7:93–411
108.412

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob413
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz414
Kaiser, and Illia Polosukhin. 2017. Attention is all415
you need. In Advances in Neural Information Pro-416
cessing Systems 30, pages 5998–6008.417

Chuan Wang and Nianwen Xue. 2017. Getting the most418
out of AMR parsing. In Proceedings of the 2017419
Conference on Empirical Methods in Natural Lan-420
guage Processing, pages 1257–1268, Copenhagen,421
Denmark. Association for Computational Linguis-422
tics.423

Tianming Wang, Xiaojun Wan, and Hanqi Jin. 2020.424
AMR-to-text generation with Graph Transformer.425
Transactions of the Association for Computational426
Linguistics, 8:19–33.427

Dongqin Xu, Junhui Li, Muhua Zhu, Min Zhang, and428
Guodong Zhou. 2020. Improving AMR parsing with429
sequence-to-sequence pre-training. In Proceedings430
of the 2020 Conference on Empirical Methods in431
Natural Language Processing (EMNLP), pages 2501–432
2511.433

Yilin Yang, Liang Huang, and Mingbo Ma. 2018. Break-434
ing the beam search curse: A study of (re-) scoring435
methods and stopping criteria for neural machine436
translation. In Proceedings of the 2018 Conference437
on Empirical Methods in Natural Language Process-438
ing, pages 3054–3059.439

Shaowei Yao, Tianming Wang, and Xiaojun Wan.440
2020. Heterogeneous graph transformer for graph-441
to-sequence learning. In Proceedings of the Annual442
Meeting of the Association for Computational Lin-443
guistics (ACL-20), pages 7145–7154.444

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin445
Van Durme. 2019a. AMR parsing as sequence-to-446
graph transduction. In Proceedings of the 57th An-447
nual Meeting of the Association for Computational448
Linguistics, pages 80–94, Florence, Italy.449

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin450
Van Durme. 2019b. Broad-coverage semantic pars-451
ing as transduction. In Proceedings of the 2019 Con-452
ference on Empirical Methods in Natural Language453
Processing and the 9th International Joint Confer-454
ence on Natural Language Processing (EMNLP-455
IJCNLP), pages 3786–3798, Hong Kong, China. As-456
sociation for Computational Linguistics.457

Jiawei Zhou, Tahira Naseem, Ramón Fernandez As-458
tudillo, and Radu Florian. 2021. AMR parsing with459
action-pointer transformer. In Proceedings of the460
2021 Conference of the North American Chapter of461

the Association for Computational Linguistics: Hu- 462
man Language Technologies, pages 5585–5598. 463

Qiji Zhou, Yue Zhang, Donghong Ji, and Hao Tang. 464
2020. AMR parsing with latent structural informa- 465
tion. In Proceedings of the 58th Annual Meeting of 466
the Association for Computational Linguistics, pages 467
4306–4319, Online. Association for Computational 468
Linguistics. 469

Jie Zhu, Junhui Li, Muhua Zhu, Longhua Qian, Min 470
Zhang, and Guodong Zhou. 2019. Modeling graph 471
structure in Transformer for better AMR-to-text gen- 472
eration. In Proceedings of the 2019 Conference on 473
Empirical Methods in Natural Language Process- 474
ing and the 9th International Joint Conference on 475
Natural Language Processing (EMNLP-IJCNLP-19), 476
pages 5462–5471. 477

6

https://www.cs.rochester.edu/u/gildea/pubs/peng-eacl17.pdf
https://doi.org/10.18653/v1/D17-1129
https://doi.org/10.18653/v1/D17-1129
https://doi.org/10.18653/v1/D17-1129
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/2020.acl-main.397
https://doi.org/10.18653/v1/2020.acl-main.397
https://doi.org/10.18653/v1/2020.acl-main.397

