
Towards Understanding Catastrophic Forgetting in Two-layer Convolutional
Neural Networks

Boqi Li 1 Youjun Wang 1 Weiwei Liu 1

Abstract
Continual learning (CL) focuses on the ability
of models to learn sequentially from a stream of
tasks. A major challenge in CL is catastrophic
forgetting (CF). CF is a phenomenon where the
model experiences significant performance degra-
dation on previously learned tasks after training
on new tasks. Although CF is commonly ob-
served in convolutional neural networks (CNNs),
the theoretical understanding about CF within
CNNs remains limited. To fill the gap, we present
a theoretical analysis of CF in a two-layer CNN.
By employing a multi-view data model, we ana-
lyze the learning dynamics of different features
throughout CL and derive theoretical insights.
The findings are supported by empirical results
from both simulated and real-world datasets.

1. Introduction
In recent years, large volumes of data are generated. De-
signing a general machine learning model to adapt quickly
to changing environments becomes a significant concern
(Ebrahimi et al., 2021; Goldfarb et al., 2024). One of the
popular approaches is to train the model on a sequence
of multiple tasks, which is called continual learning (CL)
(Parisi et al., 2019; Chen & Liu, 2018; Wang et al., 2024;
Gao & Liu, 2025a). A major challenge in CL is that after
training on a few new tasks, the model “forgets” knowledge
learned from previous tasks with a significant performance
degradation, which is also known as catastrophic forgetting
(CF) (McCloskey & Cohen, 1989; Goodfellow et al., 2015;
Shi et al., 2021; Korbak et al., 2022). CF is widely observed
in various models, such as linear models (Evron et al., 2022),

1School of Computer Science, Wuhan University National
Engineering Research Center for Multimedia Software, Wuhan
University Institute of Artificial Intelligence, Wuhan University
Hubei Key Laboratory of Multimedia and Network Communica-
tion Engineering, Wuhan University. Correspondence to: Weiwei
Liu <liuweiwei863@gmail.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

convolutional neural networks (CNNs) (Goodfellow et al.,
2015), transformers (Kotha et al., 2024), and others, across
different CL scenarios, such as task-incremental CL (Sun
et al., 2023), class-incremental CL (Babakniya et al., 2023),
domain-incremental CL (Jeeveswaran et al., 2024) and so
on.

Alleviating CF is a core challenge in CL, and many methods
(Kirkpatrick et al., 2017; Serrà et al., 2018; Gao & Liu, 2023;
Wu et al., 2024; Gao & Liu, 2025b) have been proposed to
address CF in recent years. Despite tangible improvements
in the field of CL, the theoretical understanding of CF re-
mains underexplored. Recent theoretical works investigate
CF from the perspectives of optimization (Doan et al., 2021;
Lin et al., 2023; Evron et al., 2022) and statistics (Goldfarb
& Hand, 2023; Zhao et al., 2024). However, few of these
studies analyze the learning dynamics in non-linear models,
particularly CNNs.

To bridge the gap, we investigate CF in a two-layer CNN
model. Following Allen-Zhu & Li (2023); Shen et al. (2022),
we employ a multi-view data model and focus on task-
incremental binary-classification CL. In a multi-view data
model, the data consists of features and noises. By an-
alyzing the learning dynamics of the features and noise,
we identify which components the model ultimately learns
after several time steps. Our data model includes four com-
ponents: task-specific features, general features, random
features, and background noise. Using gradient descent
(GD) to update the model, we analyze the learning process
of the model. Under mild assumptions, our theoretical re-
sults offer insights into the underlying causes of CF. Our
findings suggest that when task-specific features are learned
more rapidly than others, the learning of general features
with low signals is hindered. Additionally, when training on
new tasks, we observe that if the random feature has a large
signal, CF occurs, causing the model to forget knowledge
from previous tasks. We also offer a theoretical insight into
the effectiveness of replay-based methods (Rolnick et al.,
2019; Jeeveswaran et al., 2023), which are commonly used
to mitigate CF.

We perform numerical analysis and conduct experiments on
real-world datasets to further validate our theoretical find-
ings. In numerical analysis, we validate the key components

1

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

derived from our theoretical results. The experiments in
real-world datasets further support our theoretical analysis.

The contributions of our work can be summarized as fol-
lows:

• We provide a novel theoretical framework to analyze
CF in a two-layer CNN, focusing on the learning dy-
namics of different features and noises.

• Theoretical findings reveal the existence of CF for two
reasons: the task-specific feature has a larger signal
than the general feature, and the task-specific feature
appears as a random feature with a strong signal in
other tasks.

• We validate our theoretical results using experiments
on both simulated and real-world datasets, demonstrat-
ing the practical relevance of our findings.

2. Related Works
Theoretical Analysis on Catastrophic Forgetting. A few
works study CF in linear regression problems. Evron et al.
(2022) show connections between CL in the linear setting
and alternating projections and the Kaczmarz methods. The
authors also study the effect of task orderings and similar-
ity on CF. Li et al. (2023) investigate regularized CL with
two linear regression tasks. Goldfarb & Hand (2023) ex-
hibit the effect of over-parameterization on performance
degradation due to CF. Lin et al. (2023) provide an explicit
characterization of CF and generalization error to analyze
how over-parameterization, task similarity, and task order-
ing are relevant to CF and generalization error. Zhao et al.
(2024) provide a statistical analysis of regularization-based
CL on a sequence of tasks, and study the effect of regu-
larization terms on model performance. Li et al. (2025)
provide a theoretical study of mixture-of-experts models
in CL. (Ding et al., 2024) analyze factors contributing to
forgetting under linear models in CL. Zheng et al. (2025)
examine memory-based CL under overparameterized linear
models.

There are also some works that investigate CF in neural
networks. Doan et al. (2021) analyze CF under the Neural
Tangent Kernel (NTK) regime, and they propose measuring
task similarity using an NTK overlap matrix. Andle &
Sekeh (2022) show a theoretical analysis of information
flow through layers in linear networks for task sequences,
and the effect of information flow on learning performance.
Cao et al. (2022a) propose a provable CL algorithm that
maintains and refines the internal feature representation.
Benjamin et al. (2024) introduce the concept of NTE in
CL, reformulating a single neural network as an ensemble
of fixed classifiers. Their analysis focuses on the linear
networks with non-linear activation fucntion. Different from

the above works, we study CF in a two-layer CNN using a
multi-view data model.

Theoretical Analysis in Two-Layer CNN Model. Re-
cently, a lot of works study the learning dynamics in a
two-layer CNN using a multi-view data model under an
over-parameterization regime. The multi-view data model
is firstly proposed by Allen-Zhu & Li (2023), with a frame-
work to study the learning dynamics in ensemble learning,
knowledge distillation, and self-distillation. Within a similar
framework, Jelassi & Li (2022) investigate the effect of mo-
mentum in (S)GD for improving generalization of CNNs,
Shen et al. (2022) study the effect of data augmentation,
Huang et al. (2024) investigate the federated learning, Li
& Liu (2024) investigate the backdoor poisoning attacks
and Kou et al. (2023); Meng et al. (2024) study benign
overfitting in CNN models.

However, previous works mainly focus on learning a sin-
gle task, while we analyze the learning dynamics across a
sequence of tasks. A major difficulty in our setting is that,
at the beginning of learning a new task, the weights of the
model are not randomly initialized, which is not discussed
in the above works. Therefore, it is imperative to study the
dynamics of CL in a two-layer CNN model.

3. Preliminaries
Consider a standard task-incremental CL problem, where
a sequence of tasks indexed by τ = 1, . . . , T . Each task
τ is a binary classification problem over a dataset S(τ) ={(

x
(τ)
i , y

(τ)
i

)}nτ

i=1
. Let D(τ)

z be the distribution of Z(τ) =

(X(τ), Y (τ)) over Z = X×Y . In this work, we consider the
task-incremental scenario with T = 2, meaning the model
sequentially trains on a pair of tasks.

Data. In each task τ , we assume the data points are drawn
from a multi-view data model (Allen-Zhu & Li, 2023). In
our multi-view data model, each data point x consists of
P + 3 non-overlapping patches x = (x1, . . . ,xP+3) ∈
Rd×(P+3), and each patch is a vector of dimension d.
We suppose that there exists a general feature space
O ∈ Rd×3 spanned by three basis vectors Features =
{e1, e2, erob}. In each task, the task-specific, general,
and random features are defined as u(τ) = αueτ ,v

(τ) =
αverob, ζ

(τ) = αζe3−τ . Additionally, P background noise
vectors {ξ(τ)p}Pp=1 exist in x, and the distribution of ξ(τ)
is denoted by Dξ. We define the feature-noise multi-view
data model as follows:

Definition 3.1. In task τ , given vectors u(τ),v(τ), ζ(τ), and
the noise distribution Dξ, let U be the uniform distribution
and [n] is used to denote the set {1, . . . , n}. A data point
z = (x, y) is drawn from the distribution D(τ)

z which is
defined as follows:

2

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

1. Draw two Rademacher variables (y, ϵ) ∼
U {+1,−1}2.

2. Given y, ϵ, arbitrarily choose three distinct patches
pu, pv and pζ . The feature patches are set as{
xpu ,xpv ,xpζ

}
= {yu, yv, ϵζ}.

3. Each remaining background patch pξ ∈ [P + 3] \{
pu, pv, pζ

}
of x is set as xpξ = ξ, where ξ ∼ Dξ.

Remark 3.2. In our data model, each task has both task-
specific and general features. In a pair of tasks, v(1) =
v(2) = v is an aligned and robust feature that allows the
model to achieve high accuracy on both tasks. Using task-
specific features u(τ), the model can only correctly classify
the data points in task τ . Since ζ(3−τ) = α−1

u αζu
(τ), if

the model has not learned u(3−τ), and αζ is large, the sign
of the model’s output in the second task matches the sign
of ϵ, which is independent of y. The presence of a random
feature ensures that the task-specific feature can only be
used for classification within its corresponding task.

To ilustrate the data model, we consider an example in two-
task incremental learning based on Definition 3.1:

• Task 1: Data x with label y contains features
{yαue1, yαverob, ϵαζe2} and noises.

• Task 2, Data x with label y contains features
{yαue2, yαverob, ϵαζe1} and noises.

Remark 3.3. In such an example, all of {e1, erob, e2} appear
in each task, but only yαueτ and yαverob are correlated
with the true label in task τ , which means the two features
can be used for classification in task τ . ϵαζe3−τ is called
a random feature, which is uncorrelated with the true label.
In such a model, the task-specific feature is only used in
its respective task. αu, αv, αζ controls the strength of the
features.

In this paper, we assume Dξ is a zero-mean Gaussian distri-
bution N (0, σ2

ξd
−1(Id − e1e

T
1 − e2e

T
2 − erobe

T
rob)). We

use I to denote the index set of S . The training set S(τ)
tr con-

sists of n(τ) independent and identically distributed (i.i.d.)
data points drawn from Dn

z . In this work, we suppose that
∀τ, n(τ) = n.

Model. We use a patch-wise CNN architecture F (x) with
C channels, which is defined as

F (x) =

C∑
c=1

λc

P+3∑
p=1

ϕ (⟨wc,xp⟩) , (1)

where {w1, . . . ,wC} are the parameters in the first layer,
{λ1, . . . , λC} are the parameters in the last layer, and
ϕ(z) = zq is the activation function. In this work, we

use q = 3 while our results can be extended to any q ≥ 3.
The CNN predicts label as ŷ = sign(F (x)), where sign(·)
denotes the sign function.

Training Process. The entire training process can be split
into two stages:

In the first stage, the model begins with initialization. We
use Gaussian initialization to initialize the weights of the
first layer, i.e. ∀c ∈ [C],w

(1)
c (0) ∼ N (0, σ2

0Id), while
the last layer is fixed and set as the all-one vector, i.e.,
∀c ∈ [C], λc = 1. We then use the training data from the
first task S(1)

tr to train the model. After T1 epochs, we stop
training the model, and the model at the end of the first stage
is denoted by F (1) = F

(1)
T1

with parameters w(1)
c (T1).

In the second stage, the model is initialized as w(2)
c (0) =

w
(1)
c (T1), and we use the training data of the second task

S(2)
tr to train the model for an additional T2 epoch. The

model at the end of the second stage is denoted by F (2) =

F
(2)
T2

with parameters w(2)
c (T2).

We utilize the logistic loss ℓ(F (x), y) = log
(
1 + e−yF (x)

)
as the loss function and apply gradient descent (GD) to
optimize the parameters. Throughout the learning process,
the last layer remains fixed. Given a learning rate η, at
round t of stage τ ∈ {1, 2}, the parameters of the network
are updated as follows:

w(τ)
c (t+ 1)−w(τ)

c (t)

=− η

n

n∑
i=1

ℓ′(F (x
(τ)
i), y

(τ)
i)∇

w
(τ)
c

ℓ(F (x
(τ)
i), y

(τ)
i)

=− η

n

n∑
i=1

P+3∑
p=1

y
(τ)
i λcℓ

′(F (x
(τ)
i), y

(τ)
i)ϕ′

(〈
w(τ)

c (t),x
(τ)
i,p

〉)
x
(τ)
i,p .

The CF is formally defined as follows:

Definition 3.4 (Catastrophic Forgetting). We say that CF
occurs in the training process when the following conditions
are satisfied:

1. At the end of the first stage, with a high probability
1− δ1, the model correctly classifies the test data from
the first task:

P
(x,y)∼D(1)

z
[yF (1)(x) > 0] > 1− δ1.

2. At the end of the second stage, with a high probability
1− δ2, the accuracy on the first task degrades signifi-
cantly:

P
(x,y)∼D(1)

z
[yF (2)(x) > 0] < 1/2 + δ2.

Remark 3.5. For a binary classification task, an algorithm
that outputs randomly would achieve approximately 50%

3

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

accuracy. The above definition implies that when CF occurs,
the model’s performance on the first task is close to random
guessing. By fixing the last layer, we can focus on the
learning dynamics of features to find the hidden reason
behind CF. It is crucial for identifying whether and how
certain features contribute to CF.

We use the standard asymptotic notations O,Θ,Ω in this pa-
per, and Õ, Θ̃, Ω̃ are used to hide the log factors in O,Θ,Ω,
respectively. We use f ≤ o(g) to denote that for every
α > 0, there exists x0 such that for all x > x0 we have
f(x) ≤ αg(x). We use f ≥ ω(g) to denote that for every
α > 0, there exists x0 such that for all x > x0 we have
f(x) ≥ αg(x). We suppose the following conditions hold
in our analysis.

Condition 3.6. In the training process, for any τ ∈ {1, 2},
we have

1. The feature vectors u(τ),v(τ), ζ(τ) are mutually or-
thogonal, and the norms of u(τ),v(τ), ζ(τ) satisfy
0 ≤ αv, αζ < αu ≤ O (1).

2. The network is over-parameterized, and nP ≤
o
(√

d
)

. The number of channels C is of the order
of logarithm of d, i.e., C = Θ(log d).

3. The network is initialized with a small variance, i.e.,
Pσ0 ≤ o(1) and the variance of background noise is
large, i.e., ω(1) ≤ σξ ≤ o (1/ (Pσ0)).

4. The learning rate is not large, i.e., η ≤ O
(
1/
(
σ0α

3
u

))
.

5. Signal-to-Noise Ratio (SNR) is sufficiently large to
ensure that the model does not fit the noise during the
training process, i.e., nα3

u/σ
3
ξ ≥ ω (1).

Remark 3.7. In Condition 3.6, the condition on σξ is to
ensure that at the beginning of the training process, the
network cannot easily classify the data with the task-specific
feature. We use a small σ0 to ensure that the output of the
network after initialization is the order of o(1). The last
condition is a lower bound for SNR3 := α3

u/σ
3
ξ , and a

similar condition of SNR is also shown in Cao et al. (2022b)

4. Theoretical Insights in Learning Process
We first simplify our CNN model as C = 1 and consider
four ideal models. Let κ > 0 be a large constant. First,
we consider task-specific models. Using w1 = κu(1), the
model achieves low training and test error in the first task
but has low accuracy for data drawn from the second task.
Similarly, using w1 = κu(2), the model only achieves high
training and test accuracy in the second task and misclassi-
fies half of the data points drawn from the first task. Both of
these models fail to generalize robustly to unseen tasks.

In contrast, we consider two task-robust models. Firstly,
employing the robust vector v(1) = v(2) allows for accu-
rate data classification, expressed as w1 = wrob = κv(1),
successfully categorizing both training and test datasets in
both tasks. Secondly, the model can be built using u(1) and
u(2), represented as w1 = wgen = κu(1) + κu(2). When
αζ < αu, both vectors u(1) and u(2) can effectively classify
the data across both tasks.

Among the four models outlined previously, the goal of the
user is to develop a model with the ability of generalization,
akin to the last two models wrob and wgen. We then ana-
lyze the gradient descent dynamics involved in sequential
task learning and investigate the conditions under which
generalized models can be acquired. For the remainder of
this section, we assume C > 1 and set σξ = 0. The condi-
tions involving σξ in Condition 3.6 can be ignored in this
section.

4.1. Features Learned by the Model in the First Stage

At the beginning of the first stage, the weights of F are
closer to the initialization. The following lemma shows that
the inner products of weight vectors and patch vectors are
all small, meaning that none of the channels capture the
features at initialization.

Lemma 4.1. Given the weights w
(1)
c initialized as

w
(1)
c (0) ∼ N (0, σ0Id), at the beginning of the first stage,

with a probability of 1−O
(

n2P 2C
poly(d)

)
, we have

∀e∈
{
u(1),v(1), ζ(1)

}
,max
c∈[C]

∣∣∣〈w(1)
c (0), e

〉∣∣∣≤Õ (∥e∥2 σ0) ,

∀e∈
{
u(1),v(1), ζ(1)

}
,max
c∈[C]

〈
w(1)

c (0), e
〉
≥ Ω (∥e∥2 σ0) ,

∀i ∈ [n], p ∈ Pξ
i ,max

c∈[C]

∣∣∣〈w(1)
c (0), ξ

(1)
i,p

〉∣∣∣ ≤ Õ (σ0σξ) ,

∀i ∈ [n], p ∈ Pξ
i ,max

c∈[C]

〈
w(1)

c (0), ξ
(1)
i,p

〉
≥ Ω (σ0σξ) .

The proof of Lemma 4.1 can be found in Appendix C. We
then analyze the dynamics of

〈
w

(1)
c ,u(1)

〉
:

d
〈
w

(1)
c ,u(1)

〉
dt

=− 1

n

n∑
i=1

P∑
p=1

y
(1)
i ℓ′iϕ

′
(〈

w(1)
c ,x

(1)
i,p

〉)〈
x
(1)
i,p ,u

(1)
〉

=− 1

n

n∑
i=1

ℓ′iϕ
′
(〈

w(1)
c ,u(1)

〉)∥∥∥u(1)
∥∥∥2
2
.

At initialization, ∀i ∈ [n], F (xi) = o(1), and ℓ′i =

ℓ′(y
(1)
i F (x(1))) ≈ −1/2. The dynamic reduces to

4

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

an ODE. Let g(t) =
〈
w

(1)
c ,u(1)

〉
, we have g′(t) ≈∥∥u(1)

∥∥2
2
ϕ′(g(t)). When g(t) ≤ 1, we have (g(t)−1)′ = α2

u

due to the definition of ϕ. Then at T (1)
u = Θ

(
1

α2
ug(0)

)
=

Θ
(

1
σ0α3

u

)
, we yield maxc

〈
w

(1)
c ,u(1)

〉
≥ Ω(1), which

implies that u(1) has been captured by the NN.

By replacing v(1) to u(1), we yield that

d
〈
w

(1)
c ,v(1)

〉
dt

=− 1

n

n∑
i=1

P∑
p=1

y
(1)
i ℓ′iϕ

′
(〈

w(1)
c ,x

(1)
i,p

〉)〈
x
(1)
i,p ,v

(1)
〉

=− 1

n

n∑
i=1

ℓ′iϕ
′
(〈

w(1)
c ,v(1)

〉)∥∥∥v(1)
∥∥∥2
2
.

At T
(1)
v = Θ

(
1

σ0α3
v

)
, we yield maxc

〈
w

(1)
c ,v(1)

〉
≥

Ω(1). When T
(1)
v ≪ T

(1)
u , which means αv ≪ αu, the

feature v(1) cannot be captured by the CNN model. The
above analysis shows that u(1) is easier to learn than v(1)

when u(1) has a stronger signal than v(1).

As for ζ(1), let I(τ)
= and I(τ)

̸= denote the sets{
i : i ∈ I(τ), yi = ϵi

}
and

{
i : i ∈ I(τ), yi ̸= ϵi

}
, respec-

tively. n(τ)
= and nτ

̸= are used to denote the sizes of I(τ)
= and

I(τ)
̸= , respectively. We have

d
〈
w

(1)
c , ζ(1)

〉
dt

=− 1

n

n∑
i=1

P∑
p=1

y
(1)
i ℓ′iϕ

′
(〈

w(1)
c ,x

(1)
i,p

〉)〈
x
(1)
i,p , ζ

(1)
〉

=− 1

n

∑
i∈I=

ℓ′i −
∑
i∈I ̸=

ℓ′i

ϕ′
(〈

w(1)
c , ζ(1)

〉)∥∥∥ζ(1)
∥∥∥2
2

=Θ
(
n(1)
= − n

(1)
̸=

)
ϕ′
(〈

w(1)
c , ζ(1)

〉)∥∥∥ζ(1)
∥∥∥2
2
.

Since ϵ is a sub-Gaussian random variable, with a high
probability, we yield

∣∣∣n(1)
= − n

(1)
̸=

∣∣∣ ≤ Õ (
√
n). Even

if αζ = αu, the update speed of maxc

〈
w

(1)
c , ζ(1)

〉
is still slower than maxc

〈
w

(1)
c ,u(1)

〉
. The time step

that maxc

〈
w

(1)
c , ζ(1)

〉
reaches Ω (1) is at least T (1)

ζ =

Θ

(
n(

n
(1)
= −n

(1)
̸=

)
σ0∥ζ(1)∥3

2

)
≥ Ω

(√
n

σ0α3
ζ

)
.

Note that u(2) = α−1
ζ αuζ

(1), we have

d
〈
w

(1)
c ,u(2)

〉
dt

=Θ
((

n(1)
= − n

(1)
̸=

)
α−3
u α3

ζ

)
ϕ′
(〈

w(1)
c ,u(2)

〉)∥∥∥u(2)
∥∥∥2
2
.

The time step that maxc

〈
w

(1)
c ,u(2)

〉
≥ Ω(1) is also at

least T (1)
u′ = Θ

(
n(

n
(1)
= −n

(1)
̸=

)
σ0α3

ζ

)
≥ Ω

(√
n

σ0α3
ζ

)
. Finally,

after the task-specific feature u(1) or general feature v(1) is
captured by the model, the condition that ∀i ∈ [n], F (xi) =
o(1) and ℓ′i = ℓ′(yiF (x)) ≈ −1/2 no longer hold, and the
update speed of each component decreases.

To summarize, in the first stage, if the general feature
v(1) has a minimal signal, the model only learns the task-
specific feature u(1), and the updates of

〈
w

(1)
c ,v(1)

〉
and〈

w
(1)
c , ζ(1)

〉
are both slight. From a practical perspective,

the existence of the general feature is difficult to meet in two
randomly sampled tasks. Our experiments demonstrate that
the general feature does not exist in the majority of cases.
When

〈
w

(1)
c ,u(1)

〉
≥ Ω (1), we stop training the model in

the first stage.

4.2. Model Forgets Task-Specific Feature in the Second
Stage

In the second stage, we show that the model tends to forget
u(1) when the norm of random feature ζ(2) becomes large.
Let ∆c

(
ζ(τ)

)
=
〈
w

(τ)
c (t+ 1), ζ(τ)

〉
−
〈
w

(τ)
c (t), ζ(τ)

〉
,

since ϕ′(·) is an even function, we have

∆c

(
ζ(τ)

)
=

ηλc ∥ζ∥22 ϕ′
(〈

w
(1)
c (t), ζ

〉)
n

(G(τ)
= − G(τ)

̸=),

where G(τ)
= =

∑
i∈I(τ)

=
−ℓ′(F (xi), yi) and G(τ)

̸= =∑
i∈I(τ)

̸=
−ℓ′(F (xi), yi). The update direction of ⟨wc, ζ⟩

depends on the sign of G(2) = (G(2)
= − G(2)

̸=), which is
different from the task-specific and general features. Let
h (e) =

∑
c∈[C] ϕ

(〈
w

(2)
c , e

〉)
, we rewrite ℓ′ as

− ℓ′ (F (xi), yi) = (1 + exp (yiF (xi)))
−1

=
(
1+exp

(
yih
(
yiu

(2)
)
+yih

(
yiv

(2)
)
+yih

(
ϵiζ

(2)
)))−1

=
(
1+exp

(
h
(
u(2)

)
+h
(
v(2)

)
+yiϵih

(
ζ(2)

)))−1

=

(
1+exp

(
h
(
u(2)

)
+h
(
v(2)

)
+h
(
ζ(2)

)))−1

, i ∈ I(2)
= ;(

1+exp
(
h
(
u(2)

)
+h
(
v(2)

)
−h
(
ζ(2)

)))−1

, i ∈ I(2)
̸= .

5

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

Since ℓ′(z1)/ℓ
′(z2) = Θ (exp (z2 − z1)), we have

G(2)
= /G(2)

̸= =Θ
(
n(2)
= n

(2)
̸=

−1
exp

(
−2h

(
ζ(2)
)))

=Θ
(
n(2)
= n

(2)
̸=

−1
exp

(
−2α3

ζα
−3
u h

(
u(1)
)))

.

On the one hand, when αζ ≤ o (αu), we yield that

maxc

〈
w

(2)
c , ζ(2)

〉
≤ o (1), and ℓ′i = ℓ′(yiF (x)) =

−1/2± o (1). In such a case,∣∣∣G(2)
∣∣∣ = Θ(|n= − n ̸=|) ≤ O

(√
n
)
,

and the update of
〈
w

(2)
c , ζ(2)

〉
has a relatively slow speed.

On the other hand, for some αζ ≥ Ω (αu), we have

maxc

〈
w

(2)
c , ζ(2)

〉
≥ Ω (1) and G(2)

= /G(2)
̸= can achieve

the order of Ω (1). At the beginning of the second stage,
h
(
u(2)

)
= α3

uα
−3
ζ h

(
ζ(1)

)
≤ o (1), h

(
v(2)

)
≤ o (1),

we yield that −ℓ′ (F (xi), yi) ≤ O (1) for i ∈ I(2)
= while

−ℓ′ (F (xi), yi) ≥ Ω (1) for i ∈ I(2)
̸= . We then have that

G(2) = −Θ(n ̸=) = −Θ(n) ,

and the model forgets u(1).

The speed of forgetting depends on αζ . As αζ increases,
maxc

〈
wc,u

(1)
〉

decreases to a low value. Additionally, as
the task-specific feature u(2) is gradually learned by the
model, the speed of forgetting also decreases. As a result,
after sequentially training on two tasks, the CNN model
gains the ability of generalization in two ways:

1. When αv ≥ Ω (αu), the model learns the general fea-
ture v(1) = v(2), and behaves like F with wrob.

2. When αζ ≤ o (αu), the model learns both u(1) and
u(2), and behaves like F with wgen.

CF does not occur in the above two cases. Instead, CF
occurs when αv < o (αu) and αζ ≥ Ω (αu). In such a case,
the model ends up classifying the data using only feature
u(2), resulting in a high error on the first task. We then show
the formal results in Section 5.

4.3. Replay-Based Methods Can Suppress CF

When αv ≤ o (αu) and αζ ≥ Ω (αu), our analysis im-
plies that CF occurs with a high probability. The remaining
question is how to suppress CF. In the second stage, replay-
based methods add data points from previous tasks into the
training set to suppress CF. We then analyze the effect of
replay-based methods.

Given ñ data points from the first task, the update rule for
∆c(u

(1)) and ∆c(u
(2)) can be rewritten as

∆c(u
(1)) =m(u(1))(G̃(1)

= + G̃(1)
̸= + αζG(2)

= − αζG(2)
̸=)

∆c(u
(2)) =m(u(2))(αζ G̃(1)

= − αζ G̃(1)
̸= + G(2)

= + G(2)
̸=),

where m(e) = −η(n+ ñ)−1λc ∥e∥22 ϕ′ (⟨wc(t), e⟩).

Note that G̃(1)
= = Θ

(
G̃(1)
̸=

)
= Θ(ñ) while G(2)

= =

Θ
(
G(2)
̸=

)
= Θ(n), and αζ = Θ(αu). We can replay

at least ñ ≥ Ω (n) data points from past tasks to ensure that

G̃(1)
= + G̃(1)

̸= + αζG(2)
= − αζG(2)

̸= > 0,

which suppresses CF in the second stage. Moreover, we
should add ñ ≤ O (n) to ensure that u(2) can also be suc-
cessfully captured by the model. Adding data points from
the first task enables the model to correctly classify data
points from both tasks.

5. Main Results
In this section, we show the theoretical results in this work.
The proofs of Lemma 5.1 and Theorem 5.2 are deferred
in Appendix D and the proofs of Corollaries 5.3 and 5.5
and Theorem 5.4 can be found in Appendix E.

The following lemma shows that the background noises are
not fitted by the network during the learning process.
Lemma 5.1. In the first stage, under Condition 3.6, and
given T ≥ Ω̃

(
1

ησ0α3
u

)
, for any 0 < t ≤ T, i ∈ I(1)

tr , p ∈

Pξ
i , we have following:

max
c∈C

〈
w(1)

c (t+ 1), ξ
(1)
i,p

〉
−max

c∈C

〈
w(1)

c (t), ξ
(1)
i,p

〉
≤o (σ0σξ) .

Moreover, we have

max
c∈C

〈
w(1)

c (t), ξ
(1)
i,p

〉
≤ Õ (σ0σξ) .

In the first stage, we show that when the task-specific feature
has a larger norm than the general feature, the model only
learns u(1) at the end of the first stage.

Theorem 5.2. In the first stage, given a training set S(1)
tr

with size n, if αv ≤ o (αu), there exists T̃ (1) ≤ Õ
(

1
ησ0α3

u

)
such that for any T (1) ≥ T̃ (1), the network FT (1) fits all
training data points with a high probability:

P
[
∀i ∈ S(1)

tr , yiF
(1)

T (1)(xi)≥ Ω̃(1)
]
≥1−O

(
n2P 2C

poly(d)

)
.

Moreover, F (1)

T (1) achieves a high accuracy on test data points
at T (1):

P
(x,y)∼D(1)

z

[
yF

(1)

T (1)(x)>0
]
≥ 1−O

(
nP 2C

poly(d)

)
.

6

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

We stop training the model at T̃ (1) in the first stage. At the
beginning of the second stage, we initialize F

(2)
0 = F

(1)

T
(1)
u

.

The parameters are set as ∀c ∈ [C],w
(2)
c (0) = w

(1)
c (T

(1)
u).

We have the following corollary.

Corollary 5.3. At the beginning of the second task, if αu ≥
ω (αv), we have

max
c∈[C]

〈
w(2)

c (0),u(2)
〉
= Θ̃ (σ0αu) ,

max
c∈[C]

〈
w(2)

c (0),v(2)
〉
= Θ̃ (σ0αv) ,

max
c∈[C]

〈
w(2)

c (0),u(1)
〉
≥ Ω̃ (1) .

In the second stage, the following theorem shows that if the
ζ has a significant norm, CF occurs, and the model cannot
achieve a high accuracy in the first task again.

Theorem 5.4. In the second stage, given a training set S(2)
tr

with size n, there exists T̃ (2) = Θ̃
(

1
ησ0α3

u

)
such that for

T (2) ≥ T̃ (2), the network FT (2) fits all training data points
with a high probability:

P
[
∀i∈S(2)

tr ,yiF
(2)

T (2)(xi)≥ Ω̃(1)
]
≥1−O

(
n2P 2C

poly(d)
+

1

poly(n)

)
.

Moreover, FT (2) achieves a high accuracy on test data sam-
pled from the second task:

P
(x,y)∼D(2)

z

[
yF

(2)

T (2)(x)>0
]
≥1−O

(
nP 2C

poly(d)
+

1

poly(n)

)
.

If αv ≤ o (αu), and αζ ≥ Ω (αu), FT (2) achieves a low
accuracy on test data sampled from the first task

P
(x,y)∼D(1)

z

[
yF

(2)

T (2)(x)>0
]
≤ 1

2
+O

(
nP 2C

poly(d)
+

1

poly(n)

)
.

We stop to train the model at T (2) = T̃ (2) in the second
stage. The following corollary demonstrates that the model
forgets the task-specific feature of the previous task.

Corollary 5.5. At the end of the second task, for T̃ (2) =

Θ̃
(

1
ησ0α3

u

)
, if αu ≥ ω (αv) and αζ ≥ Ω (αu), we have

max
c∈[C]

〈
w(2)

c (T̃ (2)),u(1)
〉
≤ o (1) ,

max
c∈[C]

〈
w(2)

c (T̃ (2)),v(2)
〉
= Θ̃ (σ0αv) ,

max
c∈[C]

〈
w(2)

c (T̃ (2)),u(2)
〉
≥ Ω̃ (1) .

Through our theoretical analysis on the entire learning pro-
cess in CL, we show that CF occurs during the learning
process due to the following reasons:

1. The general and robust feature v(1) has a low sig-
nal, while the task-specific feature u(1) has a rela-
tively large signal. As shown in Corollary 5.3, if
αv ≤ o (αu), after training in the first stage, only u(1)

is learned by the model.

2. The task-specific feature from the first task manifests as
a random feature with a strong signal in the second task.
If αζ ≥ Ω (αu), Corollary 5.5 shows that the model
forgets u(1) while learns u(2) in the second stage.

Remark 5.6. Based on our analysis, CF can be mitigated
by violating the two conditions identified above, which is
empirically supported by simulated data in Figure 2 of Sec-
tion 6. Furthermore, our findings indicate that CNNs trained
with (S)GD tend to learn the features with the strongest
signal rather than the most robust ones. When the robust
feature has a weak signal, the CNNs fail to capture the ro-
bust feature during training, which highlights the necessity
of developing robust training algorithms that encourage the
learning of robust features to prevent CF. In addition, by
fixing αu and αζ and increasing αv , the similarity between
tasks increases, and our results suggest that CF is less likely
to occur when learning on such similar tasks. We hope that
our findings will inspire future research to investigate CF
from the perspective of feature learning.

6. Experiments
In this section, we conduct experiments on both simulated
and real-world datasets to validate our findings.

6.1. Numerical Analysis on Simulated Dataset

We conduct a numerical analysis on simulated data, drawn
from our data model, and use the CNN model defined in
Equation (1). To analyze the feature extraction capabilities
of the model, we fix the last layer of the CNN.

To investigate which features the model captures during
the two stages of training, we generate images containing
only u, v, and ζ. We evaluate the model at the end of both
the first and second stages, and the results are shown in
Figure 1. We set αu = 1, αv = 0.1, and αζ = 0.9. In the
first stage, as shown in the first column, we find that only
u(1) is captured by the model using two channels, while the
learning of v(1) and ζ(1) progresses slowly, which aligns
with Corollary 5.3. In the second stage, as shown in the
last two columns of the first row, we observe that u(1) is
forgotten by the model, and u(2) dominates the model’s
output, which aligns with Corollary 5.5. Moreover, the
images in the last row of Figure 1 illustrate the model’s
output with different inputs. We find that the output of
the model is dominated by u(1) in the first stage, while
dominated by u(2) in the second stage.

7

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

20 40 60 80 100
0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Fe
at

ur
e-

U

Channel--0
Channel--1
Channel--2
Channel--3
Channel--4
Channel--5
Channel--6
Channel--7
Channel--8
Channel--9

20 40 60 80 100
0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

20 40 60 80 100
0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

20 40 60 80 100
0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

20 40 60 80 100
0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Fe
at

ur
e-

V

Channel--0
Channel--1
Channel--2
Channel--3
Channel--4
Channel--5
Channel--6
Channel--7
Channel--8
Channel--9

20 40 60 80 100
0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

20 40 60 80 100
0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

20 40 60 80 100
0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

20 40 60 80 100
0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Fe
at

ur
e-

ze
ta

Channel--0
Channel--1
Channel--2
Channel--3
Channel--4
Channel--5
Channel--6
Channel--7
Channel--8
Channel--9

20 40 60 80 100
0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

20 40 60 80 100
0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

20 40 60 80 100
0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

20 40 60 80 100

epoch
0

1

2

3

4

5

Stage 1 Task 1

Ou
tp

ut

Data-U
Data-V
Data-zeta
Data-xi

20 40 60 80 100

epoch
0

1

2

3

4

5

Stage 1 Task 2

20 40 60 80 100

epoch
0

1

2

3

4

5

Stage 2 Task 1

20 40 60 80 100

epoch
0

1

2

3

4

5

Stage 2 Task 2

Figure 1. The output of each layer in the CNN model using differ-
ent inputs. Top three rows: The output of each channel in the first
layer. Bottom row: The output of the last layer.

We then set the norm of u to αu = 1, and vary αv and αζ

within the range of [0, 1] to study the condition under which
CF occurs. In the first row of Figure 2, the results in the
first column demonstrate that at the end of the first stage,
the model correctly classifies the data points drawn from
the first task. At the end of the second stage, as shown in
the last column, the model also correctly classifies the data
points drawn from the second task. However, the results in
the third column show that the value of αv and αζ affects
the performance of the model on the first task in the second
stage. For a small αv, as αζ increases, the model struggles
to achieve high accuracy on both old and new tasks. We
also observe that as the norm of the general feature v(2)

increases, CF is suppressed even when αζ is large. The
findings support Corollary 5.3. Additionally, in the second
column, we observe that when αv = αu = 1, the model
successfully extracts the general feature, achieving high
accuracy on the second task without needing to train on the
second task’s data points.

We further investigate the effect of the replay-based method.
We fix αu = 1, αv = 0.5, αζ = 0.8 and show the results in
the second row of Figure 2. The third column in the last row
shows the performance of the model on the first task at the
end of the second stage. The result demonstrates that when
no additional data is used, CF occurs in the second stage.
However, by incorporating data points from previous tasks
into the training set, CF is suppressed. These results further
validate our theoretical insights, as shown in Section 4.3.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Alpha_zeta
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Al
ph

a_
V

Stage 1 Task 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Alpha_zeta
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Al
ph

a_
V

Stage 1 Task 2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Alpha_zeta
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Al
ph

a_
V

Stage 2 Task 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Alpha_zeta
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Al
ph

a_
V

Stage 2 Task 2

100 400 700 10001300160019002200250028003100

Data Num
0

100

200

300

400

500

600

700

800

900

1000

Ad
di

tio
na

l T
as

k
1

Da
ta

 N
um

100 400 700 10001300160019002200250028003100

Data Num
0

100

200

300

400

500

600

700

800

900

1000

Ad
di

tio
na

l T
as

k
1

Da
ta

 N
um

100 400 700 10001300160019002200250028003100

Data Num
0

100

200

300

400

500

600

700

800

900

1000

Ad
di

tio
na

l T
as

k
1

Da
ta

 N
um

100 400 700 10001300160019002200250028003100

Data Num
0

100

200

300

400

500

600

700

800

900

1000

Ad
di

tio
na

l T
as

k
1

Da
ta

 N
um

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. The effect of αv and αζ on the model’s performance.
First Row: Performance of the model in a standard CL setup.
Second Row: Performance of the model when additional samples
from the previous task are added in the second stage to suppress CF.
The X-axis represents the number of data points n, and the Y-axis
represents the number of additional data points from Task-1.

6.2. Experiments on Real-World Datasets

In real-world datasets, it is challenging to decompose im-
ages into distinct features. Therefore, we focus on studying
the features extracted by the model in the representation
space. We conduct experiments on CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009), and Tiny-ImageNet (Deng et al.,
2009) to evaluate the model’s performance on real-world
datasets. For each dataset, we split the data into K/2 binary
tasks, where K is the number of classes. We then sequen-
tially select a pair of tasks, and train the model on the pair
of tasks.

Our first empirical observation is that, in practice, the model
is easier to extract non-robust features that do not generalize
to unseen tasks in most cases, as shown in Figure 3. This
implies that for two independently sampled tasks, achiev-
ing a shared general feature is difficult. In CIFAR-10, for
example, when the model is trained on Task-0, the model
successfully extracts the general feature which can be used
in Task-4. However, in most cases, the model tends to ex-
tract task-specific features for each task. Therefore, this
empirical result aligns with the condition αv ≤ o (αu).

0 1 2 3 4
Task 2

0

1

2

3

4

Ta
sk

 1

CIFAR10

0 10 20 30 40
Task 2

0

10

20

30

40

Ta
sk

 1

CIFAR100

0 20 40 60 80
Task 2

0

20

40

60

80

Ta
sk

 1

TINYIMAGENET

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3. Overview of CF in different datasets: CIFAR-10 (Left),
CIFAR-100 (Middle), and Tiny-ImageNet (Right). We record the
model’s performance on the second task at the end of the first stage.
A deeper color means a better performance of the model.

8

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

-60 -40 -20 0 20 40 60

-40

-20

0

20

40

Feature Space: Initialization

Task 1 Class 0

Task 1 Class 1

Task 2 Class 0

Task 2 Class 1

-60 -40 -20 0 20 40 60

-40

-20

0

20

40

Data from Task 1

Task 1 Class 0

Task 1 Class 1

-60 -40 -20 0 20 40 60

-40

-20

0

20

40

Data from Task 2

Task 2 Class 0

Task 2 Class 1

-60 -40 -20 0 20 40 60

-40

-20

0

20

40

Feature Space: Stage 1

Task 1 Class 0

Task 1 Class 1

Task 2 Class 0

Task 2 Class 1

-60 -40 -20 0 20 40

-40

-20

0

20

40

Data from Task 1

Task 1 Class 0

Task 1 Class 1

-60 -40 -20 0 20 40 60

-40

-20

0

20

40

Data from Task 2

Task 2 Class 0

Task 2 Class 1

-80 -60 -40 -20 0 20 40 60 80

-40

-20

0

20

40

Feature Space: Stage 2

Task 1 Class 0

Task 1 Class 1

Task 2 Class 0

Task 2 Class 1

-60 -40 -20 0 20 40 60

-40

-30

-20

-10

0

10

20

30

40
Data from Task 1

Task 1 Class 0

Task 1 Class 1

-80 -60 -40 -20 0 20 40 60 80

-40

-20

0

20

40

Data from Task 2

Task 2 Class 0

Task 2 Class 1

Figure 4. Using T-SNE to visualize the feature space at different
stages of CL when sequentially train the model on the Task-0 and
Task-3 in CIFAR-10. First row. The model is randomly initialized.
Second row. At the end of the first stage. Third row. At the end
of the second stage.

We then use T-SNE (van der Maaten & Hinton, 2008) to
visualize the feature in both the first and second stages of
CL. As shown in the second row of Figure 4, when using the
same feature extractor, the features from the first task are
clustered, while the features from the second task are not.
This suggests that the features extracted in the first stage
are task-specific. As features from task 1 and task 2 exhibit
significant overlap, which aligns the condition αζ ≥ Ω (αu).
Additionally, we calculate the maximal singular vector in
the feature space. The result, shown in the last column of
Figure 5, demonstrates that in the direction of the maximal
singular vector, the features from the first task have a weak
signal in the second stage, implying that the model forgets
the learned features.

T1-C1 T1-C2 T2-C1 T2-C2

-0.10

-0.05

0.00

0.05

0.10

0.15

Initialization

T1-C1 T1-C2 T2-C1 T2-C2

-20

-10

0

10

20

30

Stage 1

T1-C1 T1-C2 T2-C1 T2-C2

-20

-10

0

10

20

30
Stage 2

Figure 5. Inner product of the features with the maximal singular
vector at different stages of CL. The label Ta-Cb indicates that the
data drawn from class-b in ath task. We choose Task-0 and Task-3
in CIFAR-10 as the first and second task.

7. Conclusion
In this work, we theoretically analyze the condition that
CF occurs in a two-layer CNN model using a multi-view
data model. We consider a task-incremental CL scenario.
Our theoretical results demonstrate that, in a pair of tasks,
if the general feature is either absent or has a low signal,
the model will learn the task-specific feature during the first
stage. Moreover, if the task-specific feature has a large norm
in the second task, CF manifests in the second stage. We also
provide theoretical insights into the effectiveness of replay-
based methods. Finally, experiments on both simulated and
real-world datasets validate our findings.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgments
We would like to thank Xin Zou for helpful suggestions.
This work is supported by the Key R&D Program of Hubei
Province under Grant 2024BAB038, the National Key R&D
Program of China under Grant 2023YFC3604702, the Fun-
damental Research Funds for the Central Universities under
Grant 2042025kf0045.

References
Allen-Zhu, Z. and Li, Y. Towards understanding ensem-

ble, knowledge distillation and self-distillation in deep
learning. In ICLR, 2023.

Andle, J. and Sekeh, S. Y. Theoretical understanding of the
information flow on continual learning performance. In
ECCV, volume 13672, pp. 86–101, 2022.

Babakniya, S., Fabian, Z., He, C., Soltanolkotabi, M., and
Avestimehr, S. A data-free approach to mitigate catas-
trophic forgetting in federated class incremental learning
for vision tasks. In NeurIPS, 2023.

Benjamin, A. S., Pehle, C., and Daruwalla, K. Continual
learning with the neural tangent ensemble. In NeurIPS,
2024.

Cao, X., Liu, W., and Vempala, S. S. Provable lifelong
learning of representations. In AISTATS, volume 151,
pp. 6334–6356, 2022a.

Cao, Y., Chen, Z., Belkin, M., and Gu, Q. Benign overfitting
in two-layer convolutional neural networks. In NeurIPS,
2022b.

9

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

Cao, Y., Chen, Y., and Liu, W. Prevalence of sim-
plex compression in adversarial deep neural networks.
Proceedings of the National Academy of Sciences, 122
(17):e2421593122, 2025.

Chen, Y. and Liu, W. A theory of transfer-based black-box
attacks: Explanation and implications. In NeurIPS, 2023.

Chen, Z. and Liu, B. Lifelong Machine Learning, Second
Edition. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers, 2018.

Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In CVPR, pp. 248–255, 2009.

Ding, M., Ji, K., Wang, D., and Xu, J. Understanding
forgetting in continual learning with linear regression. In
ICML, 2024.

Doan, T., Bennani, M. A., Mazoure, B., Rabusseau, G.,
and Alquier, P. A theoretical analysis of catastrophic
forgetting through the NTK overlap matrix. In AISTATS,
volume 130, pp. 1072–1080, 2021.

Ebrahimi, S., Petryk, S., Gokul, A., Gan, W., Gonzalez, J. E.,
Rohrbach, M., and Darrell, T. Remembering for the right
reasons: Explanations reduce catastrophic forgetting. In
ICLR, 2021.

Evron, I., Moroshko, E., Ward, R. A., Srebro, N., and
Soudry, D. How catastrophic can catastrophic forget-
ting be in linear regression? In COLT, 2022.

Frei, S., Chatterji, N. S., and Bartlett, P. L. Benign overfit-
ting without linearity: Neural network classifiers trained
by gradient descent for noisy linear data. In COLT, vol-
ume 178, pp. 2668–2703, 2022.

Gao, R. and Liu, W. DDGR: continual learning with deep
diffusion-based generative replay. In ICML, volume 202,
pp. 10744–10763, 2023.

Gao, R. and Liu, W. Defying catastrophic forgetting via
influence function. Artificial Intelligence, 339:104261,
2025a.

Gao, R. and Liu, W. Red alarm: Controllable backdoor at-
tack in continual learning. Neural Networks, 188:107479,
2025b.

Goldfarb, D. and Hand, P. Analysis of catastrophic forget-
ting for random orthogonal transformation tasks in the
overparameterized regime. In AISTATS, volume 206, pp.
2975–2993, 2023.

Goldfarb, D., Evron, I., Weinberger, N., Soudry, D., and
Hand, P. The joint effect of task similarity and overpa-
rameterization on catastrophic forgetting - an analytical
model. In ICLR, 2024.

Gong, X., Yuan, D., and Bao, W. Understanding partial
multi-label learning via mutual information. In NeurIPS,
pp. 4147–4156, 2021.

Gong, X., Yuan, D., and Bao, W. Partial label learning
via label influence function. In ICML, volume 162, pp.
7665–7678, 2022.

Gong, X., Yuan, D., and Bao, W. Discriminative metric
learning for partial label learning. IEEE Transactions
on Neural Networks and Learning Systems, 34(8):4428–
4439, 2023a.

Gong, X., Yuan, D., Bao, W., and Luo, F. A unifying
probabilistic framework for partially labeled data learn-
ing. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(7):8036–8048, 2023b.

Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and
Bengio, Y. An empirical investigation of catastrophic
forgetting in gradient-based neural networks. CoRR,
abs/1312.6211, 2015.

Huang, W., Shi, Y., Cai, Z., and Suzuki, T. Understand-
ing convergence and generalization in federated learning
through feature learning theory. In ICLR, 2024.

Jeeveswaran, K., Bhat, P. S., Zonooz, B., and Arani, E. Birt:
Bio-inspired replay in vision transformers for continual
learning. In ICML, volume 202, pp. 14817–14835, 2023.

Jeeveswaran, K., Arani, E., and Zonooz, B. Gradual diver-
gence for seamless adaptation: A novel domain incremen-
tal learning method. In ICML, 2024.

Jelassi, S. and Li, Y. Towards understanding how momen-
tum improves generalization in deep learning. In ICML,
volume 162, pp. 9965–10040, 2022.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N. C., Veness, J.,
Desjardins, G., Rusu, A. A., Milan, K., Quan, J., Ra-
malho, T., Grabska-Barwinska, A., Hassabis, D., Clopath,
C., Kumaran, D., and Hadsell, R. Overcoming catas-
trophic forgetting in neural networks. Proceedings of the
national academy of sciences, 114(13):3521–3526, 2017.

Korbak, T., Elsahar, H., Kruszewski, G., and Dymetman,
M. Controlling conditional language models without
catastrophic forgetting. In ICML, volume 162, pp. 11499–
11528, 2022.

Kotha, S., Springer, J. M., and Raghunathan, A. Under-
standing catastrophic forgetting in language models via
implicit inference. In ICLR, 2024.

Kou, Y., Chen, Z., Chen, Y., and Gu, Q. Benign overfitting in
two-layer relu convolutional neural networks. In ICML,
volume 202, pp. 17615–17659, 2023.

10

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Laurent, B. and Massart, P. Adaptive estimation of a
quadratic functional by model selection. The Annals
of Statistics, 28(5):1302 – 1338, 2000.

Li, B. and Liu, W. A theoretical analysis of backdoor poison-
ing attacks in convolutional neural networks. In ICML,
2024.

Li, H., Wu, J., and Braverman, V. Fixed design analysis
of regularization-based continual learning. In CoLLA,
volume 232, pp. 513–533, 2023.

Li, H., Lin, S., Duan, L., Liang, Y., and Shroff, N. B. Theory
on mixture-of-experts in continual learning. In ICLR,
2025.

Lin, S., Ju, P., Liang, Y., and Shroff, N. B. Theory on
forgetting and generalization of continual learning. In
ICML, volume 202, pp. 21078–21100, 2023.

Liu, W., Shen, X., Du, B., Tsang, I. W., Zhang, W., and Lin,
X. Hyperspectral imagery classification via stochastic
hhsvms. IEEE Transactions on Image Processing., 28(2):
577–588, 2019.

McCloskey, M. and Cohen, N. J. Catastrophic interfer-
ence in connectionist networks: The sequential learning
problem. Psychology of Learning and Motivation, 24:
109–165, 1989.

Meng, X., Zou, D., and Cao, Y. Benign overfitting in two-
layer relu convolutional neural networks for XOR data.
In ICML, 2024.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter,
S. Continual lifelong learning with neural networks: A
review. Neural Networks, 113:54–71, 2019.

Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T. P., and
Wayne, G. Experience replay for continual learning. In
NeurIPS, pp. 348–358, 2019.

Serrà, J., Suris, D., Miron, M., and Karatzoglou, A. Over-
coming catastrophic forgetting with hard attention to the
task. In ICML, volume 80, pp. 4555–4564, 2018.

Shen, R., Bubeck, S., and Gunasekar, S. Data augmenta-
tion as feature manipulation. In ICML, volume 162, pp.
19773–19808, 2022.

Shi, G., Chen, J., Zhang, W., Zhan, L., and Wu, X. Over-
coming catastrophic forgetting in incremental few-shot
learning by finding flat minima. In NeurIPS, pp. 6747–
6761, 2021.

Sun, W., Li, Q., Zhang, J., Wang, W., and Geng, Y. Decou-
pling learning and remembering: a bilevel memory frame-
work with knowledge projection for task-incremental
learning. In CVPR, pp. 20186–20195, 2023.

van der Maaten, L. and Hinton, G. Visualizing data using t-
sne. Journal of Machine Learning Research, 9(86):2579–
2605, 2008.

Wainwright, M. J. High-dimensional statistics: A
non-asymptotic viewpoint, volume 48. Cambridge uni-
versity press, 2019.

Wang, L., Zhang, X., Su, H., and Zhu, J. A comprehen-
sive survey of continual learning: Theory, method and
application. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 46(8):5362–5383, 2024.

Wu, Y., Wang, H., Zhao, P., Zheng, Y., Wei, Y., and Huang,
L. Mitigating catastrophic forgetting in online contin-
ual learning by modeling previous task interrelations via
pareto optimization. In ICML, 2024.

Zhao, X., Wang, H., Huang, W., and Lin, W. A statisti-
cal theory of regularization-based continual learning. In
ICML, 2024.

Zheng, G., Wang, P., and Shen, L. Towards understanding
memory buffer based continual learning. 2025.

Zou, X. and Liu, W. On the adversarial robustness of out-of-
distribution generalization models. In NeurIPS, 2023a.

Zou, X. and Liu, W. Generalization bounds for adversar-
ial contrastive learning. Journal of Machine Learning
Research, 24:114:1–114:54, 2023b.

11

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

A. Useful Lemmas
We first show the important lemmas, which are useful in our proof.

Lemma A.1 (Lemma 1 in Laurent & Massart (2000)). Suppose Xi . . . , Xn are n i.i.d. Gaussian random variables with
mean 0 and variance 1. Let a1, . . . , an be non-negative. We set

|a|∞ = sup
i=1,...,n

|ai| , |a|22 =

n∑
i=1

a2i .

Let

Z =

n∑
i=1

ai(X
2 − 1).

Then, the following inequalities hold for any positive t:

P
[
Z ≥ 2 |a|2

√
t+ 2 |a|∞ t

]
≤ exp(−t).

P
[
Z ≤ −2 |a|2

√
t
]
≤ exp(−t).

Lemma A.2 (Lemma 4 in Shen et al. (2022)). Consider independently sampled Gaussian vectors z1 ∼ N (0, σ2
1Id) and

z2 ∼ N (0, σ2
2Id). For any δ ∈ (0, 1) and a large enough d, there exists constants c1, c2 such that

P
[
|⟨z1, z2⟩| ≤ c1σ1σ2

√
d log(2/δ)

]
≥ 1− δ,

P
[
⟨z1, z2⟩ ≥ c2σ1σ2

√
d
]
≥ 1/4.

Lemma A.3 (Proposition 2.5 in Wainwright (2019)). Suppose that the variables Xi, i = 1, . . . , n, are independent, and Xi

has mean µi and sub-Gaussian parameter σi. Then for all r ≥ 0, we have

P

[
n∑

i=1

(Xi − µi) ≥ t

]
≤ exp

{
− t2

2
∑n

i=1 σ
2
i

}
Lemma A.4 (Lemma A.1 in Zou & Liu (2023a)). If X ∼ N (µ,Σ) where X ∈ Rn, then for any A ∈ Rm×n, we have:

AX ∼ N (Aµ, AΣAT). (2)

Lemma A.5 (Fact A.2. in Frei et al. (2022)). Let g(z) = ℓ′(z) = −1/(1 + exp(z)), for any z1, z2 ∈ R, we have

g(z1)

g(z2)
≤ max

(
2, 2

exp(−z1)

exp(−z2)

)
.

The following lemma shows a lower bound for g(z1)
g(z2)

, which is inspired by Lemma C.6 in Kou et al. (2023).

Lemma A.6. Let g(z) = ℓ′(z) = −1/(1 + exp(z)). Let c1, c2 ∈ R be two constants and suppose c1 ≤ z1 ≤ c2, z2 ∈ R.
Then, there exists a constant c′ > 0 such that

g(z1)

g(z2)
≥ c′ exp(z2 − z1).

Proof. We begin by rewriting the ratio as

g(z1)

g(z2)
=

1 + exp(z2)

1 + exp(z1)
= 1 +

exp(z2)− exp(z1)

1 + exp(z1)
= 1 +

exp(z2 − z1)− 1

1 + exp(−z1)
.

We first consider the case where z2 ≥ z1. Since exp(z2 − z1) ≥ 1, we obtain

g(z1)

g(z2)
≥ 1 +

exp(z2 − z1)− 1

1 + exp(−c1)
=

exp(z2 − z1) + exp(−c1)

1 + exp(−c1)
≥ c′ exp(z2 − z1),

12

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

where c′ = 1
1+exp(−c1)

.

Next, consider the case where z2 < z1, so that exp(z2 − z1) < 1. We have

g(z1)

g(z2)
≥ 1 +

exp(z2 − z1)− 1

1 + exp(−c2)
=

exp(z2 − z1) + exp(−c2)

1 + exp(−c2)
≥ c′ exp(z2 − z1),

where c′ = 1
1+exp(−c2)

.

Combining both cases, the desired inequality holds for all z1 ∈ [c1, c2] and z2 ∈ R, which completes the proof.

Proposition A.7. Given a standard Gaussian variable Z ∼ N (0, 1), then we have P [Z ≥ 1/2] ≥ 1/4.

Lemma A.8. Given a training dataset S(τ) containing data drawn from the data model defined in Definition 3.1. Define the
index sets

I(τ)
= :=

{
i : y

(τ)
i = ϵi

}
, I(τ)

̸= :=
{
i : y

(τ)
i ̸= ϵi

}
.

Then, with probability at least 1−O
(

1
poly(n)

)
, we have

∀I ∈
{
I(τ)
= , I(τ)

̸=

}
,
∣∣∣|I| − n

2

∣∣∣ ≤ Õ
(
n1/2

)
. (3)

and

max

∣∣∣I(τ)

̸=

∣∣∣∣∣∣I(τ)
=

∣∣∣ ,
∣∣I(τ)

=

∣∣∣∣∣I(τ)
̸=

∣∣∣
 ≤ 1 + Õ

(
n−1/2

)
. (4)

Proof. By Lemma A.3, with probability at least 1− δ, we have the following concentration bound for both subsets:

∀I ∈
{
I(τ)
= , I(τ)

̸=

}
,
∣∣∣|I| − n

2

∣∣∣ ≤√2n log(2/δ).

Setting δ ≤ O
(

1
poly(n)

)
, we have Equation (3).

Let ∆ :=
√

2n log(2/δ). We analyze the size ratio through the following steps:

max

{
|I ̸=|
|I=|

,
|I=|
|I̸=|

}
≤ max

I∈{I=,I ̸=}

n
2 +∆

n
2

·
n
2

n
2 −∆

= max
I∈{I=,I ̸=}

(
1 +

2∆

n

)
·
(
1− 2∆

n

)−1

≤ 1 +
4∆/n

1− 2∆/n

= 1 +
4
√
2 log(2/δ)

√
n
(
1− 2

√
2 log(2/δ)/

√
n
)

Setting δ = n−a for constant a > 0, we have
√
log(2/δ) =

√
a log n+ log 2 = Õ(1). Thus:

4
√
2 log(2/δ)√

n
= Õ

(
n−1/2

)
, 1− 2

√
2 log(2/δ)/

√
n = 1− o(1).

Therefore, the ratio bound simplifies to 1 + Õ(n−1/2). By a union bound over both subsets, the total failure probability is
2δ = O(n−a) = O(1/poly(n))

13

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

B. Update Rule for Each Components
Given a learning rate η, the parameters are optimized as

wc(t+ 1) = wc(t)−
ηλc

n

n∑
i=1

∇ℓ(F (xi), yi)

= wc(t)−
ηλc

n

n∑
i=1

P∑
p=1

yiℓ
′(F (xi), yi)ϕ

′ (⟨wc(t),xi,p⟩)xi,p

= wc(t)−
ηλc

n

n∑
i=1

ℓ′(F (xi), yi)ϕ
′ (⟨wc(t), yiu⟩)u− ηλc

n

n∑
i=1

ℓ′(F (xi), yi)ϕ
′ (⟨wc(t), yiv⟩)v

−ηλc

n

n∑
i=1

yiϵiℓ
′(F (xi), yi)ϕ

′ (⟨wc(t), ϵiζ⟩) ζ − ηλc

n

n∑
i=1

∑
p∈Pξ

i

yiℓ
′(F (xi), yi)ϕ

′ (〈wc(t), ξi,p
〉)

ξi,p

(5)

Equation (5) due to the decomposition of x. We then analyze the update of each component.

Lemma B.1. [Task-Specific and General Features]. In stage τ , Let ∆c

(
u(τ)

)
=
〈
w

(τ)
c (t+ 1),u(τ)

〉
−
〈
w

(τ)
c (t),u(τ)

〉
,

and ∆c

(
v(τ)

)
=
〈
w

(τ)
c (t+ 1),v(τ)

〉
−
〈
w

(τ)
c (t),v(τ)

〉
we have

∆c

(
u(τ)

)
= −ηλc

n

n∑
i=1

ℓ′(F (x
(τ)
i), y

(τ)
i)ϕ′

(〈
w(τ)

c (t),u(τ)
〉)∥∥∥u(τ)

∥∥∥2
2

∆c

(
v(τ)

)
= −ηλc

n

n∑
i=1

ℓ′(F (x
(τ)
i), y

(τ)
i)ϕ′

(〈
w(τ)

c (t),v(τ)
〉)∥∥∥v(τ)

∥∥∥2
2

Proof. We can rewrite ∆c

(
u(τ)

)
as

∆c

(
u(τ)

)
=
〈
w(τ)

c (t+ 1),u(τ)
〉
−
〈
w(τ)

c (t),u(τ)
〉

=− ηλc

n

n∑
i=1

yiyiℓ
′(F (x

(τ)
i), y

(τ)
i)ϕ′

(〈
w(τ)

c (t), y
(τ)
i u(τ)

〉)〈
u(τ),u(τ)

〉
− η

n

n∑
i=1

ℓ′(F (x
(τ)
i), y

(τ)
i)ϕ′

(〈
w(τ)

c (t), y
(τ)
i v(τ)

〉)〈
v(τ),u(τ)

〉
− ηλc

n

n∑
i=1

y
(τ)
i ϵiℓ

′(F (x
(τ)
i), y

(τ)
i)ϕ′

(〈
w(τ)

c (t), ϵiζ
(τ)
〉)〈

ζ(τ),u(τ)
〉

− ηλc

n

n∑
i=1

∑
p∈Pξ

i

y
(τ)
i ℓ′(F (x

(τ)
i), y

(τ)
i)ϕ′

(〈
w(τ)

c (t), ξ
(τ)
i,p

〉)〈
ξ
(τ)
i,p ,u

(τ)
〉

=− ηλc

n

n∑
i=1

ℓ′
(
F (x

(τ)
i), y

(τ)
i

)
ϕ′
(〈

w(τ)
c (t), y

(τ)
i u(τ)

〉)∥∥∥u(τ)
∥∥∥2
2

14

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

Similarly, we have

∆c

(
v(τ)

)
=
〈
w(τ)

c (t+ 1),v(τ)
〉
−
〈
w(τ)

c (t),v(τ)
〉

=− ηλc

n

n∑
i=1

yiyiℓ
′(F (x

(τ)
i), y

(τ)
i)ϕ′

(〈
w(τ)

c (t), y
(τ)
i u(τ)

〉)〈
u(τ),v(τ)

〉
− η

n

n∑
i=1

ℓ′(F (x
(τ)
i), y

(τ)
i)ϕ′

(〈
w(τ)

c (t), y
(τ)
i v(τ)

〉)〈
v(τ),v(τ)

〉
− ηλc

n

n∑
i=1

y
(τ)
i ϵiℓ

′(F (x
(τ)
i), y

(τ)
i)ϕ′

(〈
w(τ)

c (t), ϵiζ
(τ)
〉)〈

ζ(τ),v(τ)
〉

− ηλc

n

n∑
i=1

∑
p∈Pξ

i

y
(τ)
i ℓ′(F (x

(τ)
i), y

(τ)
i)ϕ′

(〈
w(τ)

c (t), ξ
(τ)
i,p

〉)〈
ξ
(τ)
i,p ,v

(τ)
〉

=− ηλc

n

n∑
i=1

ℓ′(F (x
(τ)
i), y

(τ)
i)ϕ′

(〈
w(τ)

c (t), y
(τ)
i v(τ)

〉)∥∥∥v(τ)
∥∥∥2
2

We conclude our proof.

Note that ϕ′ ≥ 0, ℓ′ < 0, ∆c (u) is increasing because λc = 1.

Lemma B.2. [Random Feature]. In any stage τ , let ∆c

(
ζ(τ)

)
=
〈
w

(τ)
c (t+ 1), ζ(τ)

〉
−
〈
w

(τ)
c (t), ζ(τ)

〉
, if ϕ′(·) is an

even function, we have

∆c

(
ζ(τ)

)
=

ηλc

∥∥∥ζ(τ)
∥∥∥2
2
ϕ′
(〈

w
(τ)
c (t), ζ(τ)

〉)
n

G(τ),

where G(τ) =
∑

i:yi=ϵi

(
−ℓ′(F

(
x
(τ)
i), y

(τ)
i

))
−
∑

i:yi=−ϵi

(
−ℓ′(F

(
x
(τ)
i), y

(τ)
i

))
.

Proof. We ignore τ in expression, and rewrite ∆c (ζ) as

∆c

(
ζ(τ)

)
=
〈
w(τ)

c (t+ 1), ζ(τ)
〉
−
〈
w(τ)

c (t), ζ(τ)
〉

=− ηλc

n

n∑
i=1

y
(τ)
i y

(τ)
i ℓ′(F (x

(τ)
i), y

(τ)
i)ϕ′

(〈
w(τ)

c (t), y
(τ)
i u(τ)

〉)〈
u(τ), ζ(τ)

〉
− ηλc

n

n∑
i=1

y
(τ)
i ϵiℓ

′(F (x
(τ)
i), y

(τ)
i)ϕ′

(〈
w(τ)

c (t), ζ(τ)
〉)〈

ζ(τ), ζ(τ)
〉

− η

n

n∑
i=1

y
(τ)
i y

(τ)
i ℓ′(F (x

(τ)
i), y

(τ)
i)ϕ′

(〈
w(τ)

c (t), y
(τ)
i v(τ)

〉)〈
v(τ), ζ(τ)

〉
− ηλc

n

n∑
i=1

∑
p∈Pξ

i

y
(τ)
i ℓ′(F (x

(τ)
i), y

(τ)
i)ϕ′

(〈
w(τ)

c (t), ξ
(τ)
i,p

〉)〈
ξ
(τ)
i,p , ζ

(τ)
〉

=− ηλc

n

n∑
i=1

y
(τ)
i ϵ

(τ)
i ℓ′(F (x

(τ)
i), y

(τ)
i)ϕ′

(〈
w(τ)

c (t), ϵiζ
(τ)
〉)〈

ζ(τ), ζ(τ)
〉

=
ηλc

∥∥∥ζ(τ)
∥∥∥2
2
ϕ′
(〈

w
(τ)
c (t), ζ(τ)

〉)
n

G(τ),

where G(τ) =
∑

i:yi=ϵi

(
−ℓ′(F

(
x
(τ)
i), y

(τ)
i

))
−
∑

i:yi=−ϵi

(
−ℓ′(F

(
x
(τ)
i), y

(τ)
i

))
. We conclude our proof.

15

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

Lemma B.3 (Background Noises). We use ∆(ξ
(τ)
i′,p′) to denote

〈
w

(τ)
c (t+ 1), ξ

(τ)
i′,p′

〉
−
〈
w

(τ)
c (t), ξ

(τ)
i′,p′

〉
, and have

∆(ξ
(τ)
i′,p′) = −ηλc

n

n∑
i=1

∑
p∈Pξ

i

y
(τ)
i ℓ′(F (τ)(x

(τ)
i), y

(τ)
i)ϕ′

(〈
w(τ)

c (t), ξ
(τ)
i,p

〉)〈
ξ
(τ)
i,p , ξ

(τ)
i′,p′

〉

Proof. We can rewrite ∆(ξ
(τ)
i′,p′) as

∆(ξ
(τ)
i′,p′) =− ηλc

n

n∑
i=1

∑
p∈Pξ

i

y
(τ)
i y

(τ)
i ℓ′(F (x

(τ)
i), y

(τ)
i)ϕ′

(〈
w(τ)

c (t), yiu
〉)〈

u(τ), ξ
(τ)
i′,p′

〉

− ηλc

n

n∑
i=1

∑
p∈Pξ

i

y
(τ)
i y

(τ)
i ℓ′(F (x

(τ)
i), y

(τ)
i)ϕ′

(〈
w(τ)

c (t), y
(τ)
i v(τ)

〉)〈
v(τ), ξ

(τ)
i′,p′

〉

− ηλc

n

n∑
i=1

∑
p∈Pξ

i

y
(τ)
i ϵiℓ

′(F (x
(τ)
i), y

(τ)
i)ϕ′

(〈
w(τ)

c (t), ϵ
(τ)
i ζ

〉)〈
ζ(τ), ξ

(τ)
i′,p′

〉

− ηλc

n

n∑
i=1

∑
p∈Pξ

i

y
(τ)
i ℓ′(F (x

(τ)
i), y

(τ)
i)ϕ′

(〈
w(τ)

c (t), ξ
(τ)
i,p

〉)〈
ξ
(τ)
i,p , ξ

(τ)
i′,p′

〉

=− ηλc

n

n∑
i=1

∑
p∈Pξ

i

y
(τ)
i ℓ′(F (x

(τ)
i), y

(τ)
i)ϕ′

(〈
w(τ)

c (t), ξ
(τ)
i,p

〉)〈
ξ
(τ)
i,p , ξ

(τ)
i′,p′

〉
We conclude our proof.

C. Theoretical Results at the Initialization
With the lemmas shown in Appendix A, we can individually analyze the inner product of different components. In task
τ , as the vectors

{
u(τ),v(τ), ζ(τ)

}
are mutually orthogonal in our assumption, we have

〈
u(τ),v(τ)

〉
=
〈
u(τ), ζ(τ)

〉
=〈

v(τ), ζ(τ)
〉
= 0. We then analyze the inner product of two noise vectors.

Lemma C.1. Let I(τ)
tr = {(xi, yi)}ni=1 be i.i.d. samples drawn from the distribution D(τ)

z defined in Definition 3.1. Then,

with probability at least 1−O
(

n2P 2+nP
d

)
, the following holds simultaneously:

∀i, i′ ∈ [n], p, p′ ∈ Pξ
i , (i, p) ̸= (i′, p′),

∣∣∣〈ξ(τ)i,p , ξ
(τ)
i′,p′

〉∣∣∣ ≤ a1σ
2
ξd

−1
√

(d− 3) log(2d), (6)

∀i ∈ [n], p ∈ Pξ
i , σ2

ξd
−1
(
d−3− 2

√
(d−3) log d

)
≤
∥∥∥ξ(τ)i,p

∥∥∥2
2
≤ σ2

ξd
−1
(
d−3 + 2

√
(d−3) log d+ 2 log d

)
. (7)

Proof. We construct an orthonormal basis {e1, e2, erob, ẽ1, . . . , ẽd−3} in Rd, and define two row-orthonormal matrices:

M = [ẽ1, . . . , ẽd−3]
⊤ ∈ R(d−3)×d, M⊥ = [e1, e2, erob]

⊤ ∈ R3×d.

Then for any i ∈ [n], p ∈ Pξ
i , we decompose the Gaussian vector ξ(τ)i,p as:

ξ
(τ)
i,p = M⊤Mξ

(τ)
i,p +M⊤

⊥M⊥ξ
(τ)
i,p .

Based on our definition, each ξ
(τ)
i,p ∼ N (0, σ2

ξd
−1(Id − e1e

⊤
1 − e2e

⊤
2 − erobe

⊤
rob)). Therefore, by using Lemma A.4, the

projected components satisfy:

Mξ
(τ)
i,p ∼ N (0, σ2

ξd
−1Id−3), M⊥ξ

(τ)
i,p = 03×1.

16

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

Consequently, the inner product between any pair of distinct vectors ξ(τ)i,p and ξ
(τ)
i′,p′ satisfies:〈

ξ
(τ)
i,p , ξ

(τ)
i′,p′

〉
=
〈
Mξ

(τ)
i,p ,Mξ

(τ)
i′,p′

〉
+
〈
M⊥ξ

(τ)
i,p ,M⊥ξ

(τ)
i′,p′

〉
=
〈
Mξ

(τ)
i,p ,Mξ

(τ)
i′,p′

〉
,

since both projections onto M⊥ are zero.

According to Lemma A.2, for any distinct pair (i, p) ̸= (i′, p′), there exists a constant a′ such that:

P
(∣∣∣〈Mξ

(τ)
i,p ,Mξ

(τ)
i′,p′

〉∣∣∣ ≤ a′σ2
ξd

−1
√
(d−3) log(2/δ)

)
≥ 1− δ.

Applying the union bound over all nP (nP −1) distinct index pairs, we conclude that with probability at least 1−nP (nP −
1)δ, the following inequality holds uniformly:∣∣∣〈ξ(τ)i,p , ξ

(τ)
i′,p′

〉∣∣∣ ≤ a′′σ2
ξd

−1
√
(d−3) log(2/δ), ∀(i, p) ̸= (i′, p′),

for some constant a′′ > 0. Substituting δ = 1/d yields the desired bound in (6) with constant a1, with overall failure
probability bounded by O

(
n2P 2/d

)
.

To prove (7), since the distribution of Mξ
(τ)
i,p is N (0, σ2

ξd
−1Id−3), we have∥∥∥ξ(τ)i,p

∥∥∥2
2

σ2
ξd

−1
=

∥∥∥Mξ
(τ)
i,p

∥∥∥2
2

σ2
ξd

−1
∼ χ2(d− 3),

where χ2(d− 3) denotes the chi-squared distribution with d− 3 degrees of freedom. Applying Lemma A.1 with ai = 1, we
yield:

P
(∥∥∥ξ(τ)i,p

∥∥∥2
2
≥ σ2

ξd
−1
(
d−3 + 2

√
(d−3) log d+ 2 log d

))
≤ 1

d
,

P
(∥∥∥ξ(τ)i,p

∥∥∥2
2
≤ σ2

ξd
−1
(
d−3− 2

√
(d−3) log d

))
≤ 1

d
.

Finally, applying a union bound over all nP such vectors shows that the inequalities in (7) hold simultaneously with
probability at least 1−O (nP/d).

Since w is initialized as w(1)
c (0) ∼ N (0, σ2

0Id), the analysis of the inner product of the weight vector and the patch vector
is similar to the proof of Lemma C.1.

Lemma C.2. Let the network weights be initialized as w
(1)
c (0) ∼ N (0, σ2

0Id) for each class c ∈ [C], and let S(τ)
tr =

{(x(τ)
i , y

(τ)
i)}ni=1 be i.i.d. samples from the distribution Dz defined in Definition 3.1. If C = Θ(log d), then with probability

at least 1−O
(
nPC
d

)
, there exists constants a1, a2 such that following inequalities hold:

∀e ∈ {u(τ),v(τ), ζ(τ)}, max
c∈[C]

∣∣∣⟨w(1)
c (0), e⟩

∣∣∣ ≤√log d ∥e∥2 σ0, max
c∈[C]

⟨w(1)
c (0), e⟩ ≥ 1

2 ∥e∥2 σ0,

∀i ∈ [n], p ∈ Pξ
i , max

c∈[C]

∣∣∣⟨w(1)
c (0), ξ

(τ)
i,p ⟩
∣∣∣ ≤ a1σ0σξ

√
d−1(d− 3) log(2d), max

c∈[C]
⟨w(1)

c (0), ξ
(τ)
i,p ⟩ ≥ a2σ0σξ.

Proof. Since each w
(1)
c (0) is sampled from a spherical Gaussian, the inner products ⟨w(1)

c (0), e⟩ for any fixed vector
e ∈ {u,v, ζ} follow the distribution N (0, ∥e∥22 σ2

0). By using standard sub-Gaussian tail bounds in Lemma A.3, we have:

P
[
∃c ∈ [C] :

∣∣∣⟨w(1)
c (0), e⟩

∣∣∣ ≥√2 log d ∥e∥2 σ0

]
≤

C∑
c=1

P
[∣∣∣⟨w(1)

c (0), e⟩
∣∣∣ ≥√2 log d ∥e∥2 σ0

]
≤ O

(
C

d

)
. (8)

Moreover, applying Proposition A.7, we yield:

P
[
max
c∈[C]

⟨w(1)
c (0), e⟩ ≤ 1

2 ∥e∥2 σ0

]
=

C∏
c=1

P
[
⟨w(1)

c (0), e⟩ ≤ 1
2 ∥e∥2 σ0

]
≤
(
3
4

)C ≤ e−C/4. (9)

17

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

Inequalities (8) and (9) jointly establish the first line of the lemma.

For the second line, consider the noise vectors ξ
(τ)
i,p ∼ N

(
0, σ2

ξd
−1(Id − e1e

⊤
1 − e2e

⊤
2 − erobe

⊤
rob)

)
. Let

{e1, e2, erob, ẽ1, . . . , ẽd−3} be an orthonormal basis of Rd, and define two projection matrices:

M = [ẽ1, . . . , ẽd−3]
⊤ ∈ R(d−3)×d, M⊥ = [e1, e2, erob]

⊤ ∈ R3×d.

By Lemma A.4, we have

Mw(1)
c (0) ∼ N (0, σ2

0Id−3), Mξ
(τ)
i,p ∼ N (0, σ2

ξd
−1Id−3), M⊥ξ

(τ)
i,p = 03×1.

Thus, we can write

⟨w(1)
c (0), ξ

(τ)
i,p ⟩ = ⟨Mw(1)

c (0),Mξ
(τ)
i,p ⟩+ ⟨M⊥w

(1)
c (0),M⊥ξ

(τ)
i,p ⟩ = ⟨Mw(1)

c (0),Mξ
(τ)
i,p ⟩.

Applying Lemma A.2 and taking a union bound over nPC such vectors yields:

P
[
max
i,p,c

∣∣∣⟨w(1)
c (0), ξ

(τ)
i,p ⟩
∣∣∣ ≤ a1σ0σξ

√
d−1(d− 3) log(2d)

]
≥ 1−O

(
nPC

d

)
, (10)

where a1 is a constant. Likewise, applying the lower bound in Lemma A.2, we have:

P

[
min

i∈[n],p∈Pξ
i

max
c∈[C]

⟨w(1)
c (0), ξ

(τ)
i,p ⟩ ≥ a2σ0σξ

√
d−1(d− 3)

]
≥ 1−O

(
nP
(
3
4

)C) ≥ 1−O
(
nPe−C/4

)
. (11)

where a2 is a constant. Finally, combining (8) to (11) and applying a union bound completes the proof.

At the initialization, we have the following result:

Lemma 4.1. Given the weights w
(1)
c initialized as w

(1)
c (0) ∼ N (0, σ0Id), at the beginning of the first stage, with a

probability of 1−O
(

n2P 2C
poly(d)

)
, we have

∀e∈
{
u(1),v(1), ζ(1)

}
,max
c∈[C]

∣∣∣〈w(1)
c (0), e

〉∣∣∣≤Õ (∥e∥2 σ0) ,

∀e∈
{
u(1),v(1), ζ(1)

}
,max
c∈[C]

〈
w(1)

c (0), e
〉
≥ Ω (∥e∥2 σ0) ,

∀i ∈ [n], p ∈ Pξ
i ,max

c∈[C]

∣∣∣〈w(1)
c (0), ξ

(1)
i,p

〉∣∣∣ ≤ Õ (σ0σξ) ,

∀i ∈ [n], p ∈ Pξ
i ,max

c∈[C]

〈
w(1)

c (0), ξ
(1)
i,p

〉
≥ Ω (σ0σξ) .

Proof. The results can be obtained by using Lemma C.2. Recall that C = Θ(log d) in Condition 3.6, using a union bound,
the probability of the inequalities hold is at least 1−O

(
n2P 2C
poly(d)

)
.

D. Learning Dynamics in the First Stage
In this section, we study the learning process of the first task, which can be seen as single-task learning. If the signal of the
task-specific feature is larger than other components, the feature can be captured by CNN.

Lemma 5.1. In the first stage, under Condition 3.6, and given T ≥ Ω̃
(

1
ησ0α3

u

)
, for any 0 < t ≤ T, i ∈ I(1)

tr , p ∈ Pξ
i , we

have following:

max
c∈C

〈
w(1)

c (t+ 1), ξ
(1)
i,p

〉
−max

c∈C

〈
w(1)

c (t), ξ
(1)
i,p

〉
≤o (σ0σξ) .

Moreover, we have

max
c∈C

〈
w(1)

c (t), ξ
(1)
i,p

〉
≤ Õ (σ0σξ) .

18

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

Proof. We analyze the change in the projection
〈
w

(1)
c (t), ξ

(1)
i′,p′

〉
induced by the gradient update, denoted by ∆(ξ

(1)
i′,p′) from

Lemma B.3:

∆(ξ
(1)
i′,p′) = −ηλc

n

n∑
i=1

∑
p∈Pξ

i

y
(1)
i ℓ′

(
F (x

(1)
i), y

(1)
i

)
ϕ′
(〈

w(1)
c (t), ξ

(1)
i,p

〉)〈
ξ
(1)
i,p , ξ

(1)
i′,p′

〉
.

We separate the summand with (i, p) = (i′, p′):

∆(ξ
(1)
i′,p′) = −ηλc

n

∑
i∈[n], p∈Pξ

i

(i,p)̸=(i′,p′)

y
(1)
i ℓ′

(
F (x

(1)
i), y

(1)
i

)
ϕ′
(〈

w(1)
c (t), ξ

(1)
i,p

〉)〈
ξ
(1)
i,p , ξ

(1)
i′,p′

〉

− ηλc

n
y
(1)
i′ ℓ′

(
F (x

(1)
i′), y

(1)
i′

)
ϕ′
(〈

w(1)
c (t), ξ

(1)
i′,p′

〉)∥∥∥ξ(1)i′,p′

∥∥∥2 .
We now upper bound both terms. Note that |ℓ′| ≤ 1. Lemma C.1 implies that∣∣∣∆(ξ

(1)
i′,p′)

∣∣∣ ≤ ηλc

n

∑
i∈[n], p∈Pξ

i

(i,p)̸=(i′,p′)

∣∣∣ϕ′
(〈

w(1)
c (t), ξ

(1)
i,p

〉)〈
ξ
(1)
i,p , ξ

(1)
i′,p′

〉∣∣∣+ ηλc

n

∣∣∣ϕ′
(〈

w(1)
c (t), ξ

(1)
i′,p′

〉)∣∣∣ ∥∥∥ξ(1)i′,p′

∥∥∥2

≤ ηλcÕ

(
max
c,i,p

∣∣∣ϕ′
(〈

w(1)
c (t), ξ

(1)
i,p

〉)∣∣∣ · σ2
ξ ·
(

P√
d
+

1

n

))
.

Given that d is sufficiently large under Condition 3.6, we have P/
√
d = o(1/n). Thus, the bound simplifies to∣∣∣∆(ξ

(1)
i′,p′)

∣∣∣ ≤ λcÕ

(
ηmax

c,i,p

∣∣∣ϕ′
(〈

w(1)
c (t), ξ

(1)
i,p

〉)∣∣∣ · σ2
ξ

n

)
.

We proceed by induction. At t = 0, by Lemma 4.1 and η ≤ O
(
1/
(
σ0α

3
u

))
, for all i ∈ I(1)

tr , p ∈ Pξ
i , c ∈ [C], we have〈

w(1)
c (0), ξ

(1)
i,p

〉
≤ Õ(σ0σξ).

Suppose this upper bound holds at step t. Then, the update satisfies∣∣∣∆(ξ
(1)
i,p)
∣∣∣ ≤ Õ

(
ησ2

0σ
4
ξ

n

)
= o(σ0σξ),

since η ≤ O
(
1/
(
σ0α

3
u

))
, nα3

u/σ
3
ξ ≥ ω (1) and λc = 1.

Thus, we obtain 〈
w(1)

c (t+ 1), ξ
(1)
i,p

〉
=
〈
w(1)

c (t), ξ
(1)
i,p

〉
+∆(ξ

(1)
i,p) ≤ Õ(σ0σξ) + o(σ0σξ) = Õ(σ0σξ).

By induction, we conclude that for all 0 ≤ t ≤ T ,

max
c∈[C]

〈
w(1)

c (t), ξ
(1)
i,p

〉
≤ Õ(σ0σξ), and

∣∣∣∆(ξ
(1)
i,p)
∣∣∣ ≤ o(σ0σξ),

as claimed. We conclude our proof.

Lemma D.1 (Learning the task-specific feature). Under Condition 3.6, suppose that for all iterations t ∈ [0, T] with some

T ≥ Ω̃
(

1
ησ0α3

u

)
, the weights satisfy

max
c∈[C]

max
e∈{u(1),v(1),ζ(1)}

〈
w(1)

c (t), e
〉
≤ O

(
C−1/3

)
.

19

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

Then there exists an iteration T
(1)
u ≤ Õ

(
1

ησ0α3
u

)
such that

max
c∈[C]

〈
w(1)

c (T (1)
u),u(1)

〉
≥ Ω

(
C−1/3

)
.

Proof. Suppose that for all t ∈ [0, T],

max
c∈[C]

max
e∈{u(1),v(1),ζ(1)}

〈
w(1)

c (t), e
〉
≤ O

(
C−1/3

)
,

where T ≥ Ω
(
1/(ησ0α

3
u)
)
. Then for each i ∈ [n], the margin satisfies

y
(1)
i F

(1)
t (x

(1)
i) ≤ O(1),

which implies that
Ω(1) ≤ −ℓ′i ≤ 1, ∀i ∈ [n]. (12)

We can both upper and lower bound the growth in alignment with the task-specific feature u(1) as

max
c∈[C]

〈
w(1)

c (t+ 1),u(1)
〉
− max

c∈[C]

〈
w(1)

c (t),u(1)
〉

=Θ

(
n−1ηα2

u

n∑
i=1

(−ℓ′i) · ϕ′
(∣∣∣〈w(1)

c (t),u(1)
〉∣∣∣)) = Θ

(
ηα2

uϕ
′
(∣∣∣〈w(1)

c (t),u(1)
〉∣∣∣)) , (13)

where the last equality follows from Equation (12).

Equation (13) shows that the sequence
{
maxc∈[C]

〈
w

(1)
c (t),u(1)

〉}T

t=0
is monotonically increasing. By Lemma 4.1, we

have the initialization
max
c∈[C]

〈
w(1)

c (0),u(1)
〉
= Θ̃ (σ0αu) .

Let T (1)
u be the first time t such that maxc∈C

〈
w

(1)
c (t),u(1)

〉
≥ Ω

(
C−1/3

)
. Starting from some maxc∈C

〈
w

(1)
c (t′),u(1)

〉
,

the number of iterations it takes to reach maxc∈C

〈
w

(1)
c (t),u(1)

〉
≥ 2maxc∈C

〈
w

(1)
c (t′),u(1)

〉
is at most

O

(
maxc∈C⟨w(1)

c (t′),u(1)⟩
ηα2

u

(
maxc∈C

〈
w

(1)
c (t′),u(1)

〉)2

)
. Then, starting from Θ̃ (σ0αu), it takes at most

T (1)
u ≤ Õ

(∞∑
i=0

2iσ0αu

ηα2
u (2

iσ0αu)
2

)
≤ Õ

(
1

ησ0α3
u

)
(14)

times steps to reach maxc∈C

〈
w

(1)
c (t),u(1)

〉
≥ Ω

(
C−1/3

)
. This completes the proof.

Theorem 5.2. In the first stage, given a training set S(1)
tr with size n, if αv ≤ o (αu), there exists T̃ (1) ≤ Õ

(
1

ησ0α3
u

)
such

that for any T (1) ≥ T̃ (1), the network FT (1) fits all training data points with a high probability:

P
[
∀i ∈ S(1)

tr , yiF
(1)

T (1)(xi)≥ Ω̃(1)
]
≥1−O

(
n2P 2C

poly(d)

)
.

Moreover, F (1)

T (1) achieves a high accuracy on test data points at T (1):

P
(x,y)∼D(1)

z

[
yF

(1)

T (1)(x)>0
]
≥ 1−O

(
nP 2C

poly(d)

)
.

20

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

At t = 0, by Lemma 4.1, we have

max
c∈[C]

〈
w(1)

c (0),u(1)
〉
= Θ̃(σ0αu), max

c∈[C]

〈
w(1)

c (0),v(1)
〉
= Θ̃(σ0αv), max

c∈[C]

〈
w(1)

c (0), ζ(1)
〉
= Θ̃(σ0αζ).

Let T ⋆ be the final time such that maxc∈[C]

〈
w

(1)
c (t),u(1)

〉
≤ O(C−1/3). Suppose that at some time t ≤ T ⋆, we have

max
c∈[C]

〈
w(1)

c (t),v(1)
〉
= Θ̃(σ0αv), max

c∈[C]

∣∣∣〈w(1)
c (t), ζ(1)

〉∣∣∣ = Θ̃(σ0αζ),

and additionally,

max
c∈[C]

〈
w(1)

c (t),u(1)
〉
≤ O(C−1/3).

Then the margin satisfies
y
(1)
i F

(1)
t (x

(1)
i) ≤ O(1), ∀i ∈ [n].

This implies that

Ω(1) ≤ −ℓ′i ≤ 1. (15)

We now analyze the update of maxc∈[C]

〈
w

(1)
c (t),v(1)

〉
. At time t, we have

max
c∈[C]

〈
w(1)

c (t+ 1),v(1)
〉
− max

c∈[C]

〈
w(1)

c (t),v(1)
〉

= Θ

(
ηα2

v

n

n∑
i=1

(−ℓ′i) · ϕ′
(〈

w(1)
c (t),v(1)

〉))
= Θ

(
ηα2

vϕ
′
(〈

w(1)
c (t),v(1)

〉))
,

and
{
maxc∈[C]

〈
w

(1)
c (t),v(1)

〉}
is an increasing sequence, hence

max
c∈[C]

〈
w(1)

c (t+ 1),v(1)
〉
≥ max

c∈[C]

〈
w(1)

c (t),v(1)
〉
≥ Ω̃(σ0αv). (16)

Since maxc∈[C]

〈
w

(1)
c (t),v(1)

〉
≤ Õ(σ0αv), η ≤ O

(
1/
(
σ0α

3
u

))
, and αv ≤ o (αu), it follows that

max
c∈[C]

〈
w(1)

c (t+ 1),v(1)
〉
≤ max

c∈[C]

〈
w(1)

c (t),v(1)
〉
+Θ(ηα4

vσ
2
0) ≤ Õ(σ0αv) + o(σ0αv) ≤ Õ(σ0αv). (17)

Combining Equations (16) and (17), we yield

max
c∈[C]

〈
w(1)

c (t+ 1),v(1)
〉
= Θ̃(σ0αv).

We now analyze the alignment with the random feature ζ(1). For any t, we have

∣∣∣∣max
c∈[C]

〈
w(1)

c (t+ 1), ζ(1)
〉
− max

c∈[C]

〈
w(1)

c (t), ζ(1)
〉∣∣∣∣ ≤ ηλc

∥∥∥ζ(1)
∥∥∥2
2
· ϕ′
(
maxc∈[C]

∣∣∣〈w(1)
c (t), ζ(1)

〉∣∣∣)
n

·
∣∣∣G(1)

∣∣∣ .
Define a sequence {Φ(t)}Tt=0 by

Φ(0) = max
c∈[C]

∣∣∣〈w(1)
c (0), ζ(1)

〉∣∣∣ ,
Φ(t+ 1) = Φ(t) +

ηλc

∥∥∥ζ(1)
∥∥∥2
2
· ϕ′
(
maxc∈[C]

∣∣∣〈w(1)
c (t), ζ(1)

〉∣∣∣)
n

·
∣∣∣G(1)

∣∣∣ .
21

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

By the bounded margin condition in (15) and Lemma A.8, we have∣∣∣G(1)
∣∣∣ = Θ(|n= − n ̸=|) ≤ Õ(n−1/2),

so

Φ(t+ 1) ≤ Φ(t) +
ηλc

∥∥∥ζ(1)
∥∥∥2
2
· ϕ′
(〈

w
(1)
c (t), ζ(1)

〉)
√
n

.

Since Φ(t) ≤ Õ(σ0αζ), η ≤ O
(
1/
(
σ0α

3
u

))
, it follows that

Φ(t+ 1) ≤ Φ(t) +O(ηα4
ζσ

2
0n

−1/2) ≤ Φ(t) + o(σ0αζ) ≤ Õ(σ0αζ).

and

Φ(t+ 1) ≥ Φ(t)−O(ηα4
ζσ

2
0n

−1/2) ≥ Φ(t)− o(σ0αζ) ≥ Ω̃(σ0αζ).

Then for all t ∈ [0, T ⋆], we have

max
c∈[C]

〈
w(1)

c (t),v(1)
〉
= Θ̃(σ0αv), max

c∈[C]

∣∣∣〈w(1)
c (t), ζ(1)

〉∣∣∣ = Θ̃(σ0αζ). (18)

By Lemma D.1, there exists T (1)
u ≤ Õ(1/(ησ0α

3
u)) such that

max
c∈[C]

〈
w(1)

c (T (1)
u),u(1)

〉
≥ Ω(C−1/3). (19)

At T (1) ≥ T̃ (1) = T
(1)
u , the output for any training sample (xi, yi) ∈ S(1)

tr can be expressed as

yiF
(1)

T (1)(xi) =

C∑
c=1

λcϕ
(〈

w(1)
c (T (1)),u(1)

〉)
+

C∑
c=1

λcϕ
(〈

w(1)
c (T (1)),v(1)

〉)
+ yiϵi

C∑
c=1

λcϕ
(〈

w(1)
c (T (1)), ζ(1)

〉)
+ yi

C∑
c=1

∑
p∈Pξ

i

ϕ
(〈

w(1)
c (T (1)), ξ

(1)
i,p

〉)
.

By Lemma 5.1, we have

max
c∈[C]

max
p∈Pξ

i

∣∣∣〈w(1)
c (T (1)), ξ

(1)
i,p

〉∣∣∣ ≤ o(σ0σξ). (20)

Combining Equations (18) to (20), we yield

yiF
(1)

T (1)(xi) ≥ max
c∈[C]

λcϕ
(〈

w(1)
c (T (1)),u(1)

〉)
+ (C − 1) min

c∈[C]
λcϕ

(〈
w(1)

c (T (1)),u(1)
〉)

− C max
c∈[C]

λcϕ
(∣∣∣〈w(1)

c (T (1)),v(1)
〉∣∣∣)− C max

c∈[C]
λcϕ

(∣∣∣〈w(1)
c (T (1)), ζ(1)

〉∣∣∣)
− CP max

c∈[C]
max
p∈Pξ

i

ϕ
(∣∣∣〈w(1)

c (T (1)), ξ
(1)
i,p

〉∣∣∣)
≥ Ω(1/C)− CO(σ3

0α
3
u)− CO(σ3

0α
3
v)− CO(σ3

0α
3
ζ)− CPO(σ3

0σ
3
ξ) ≥ Ω̃(1). (21)

With probability at least 1−O(n2P 2C/poly(d)), the bound in (21) holds, showing that the model correctly classifies all
training samples with a significant margin.

22

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

Now consider a test sample (x, y) from the same data model. With probability at least 1−O(nP 2C/poly(d)), we have

yF
(1)

T (1)(x) =

C∑
c=1

λcϕ
(〈

w(1)
c (T (1)),u(1)

〉)
+

C∑
c=1

λcϕ
(〈

w(1)
c (T (1)),v(1)

〉)
+ yϵ

C∑
c=1

λcϕ
(〈

w(1)
c (T (1)), ζ(1)

〉)
+ y

C∑
c=1

∑
p∈Pξ

i

ϕ
(〈

w(1)
c (T (1)), ξ(1)p

〉)
≥ Ω̃(1). (22)

This completes the proof.

E. Learning Dynamics in the Second Stage

In the second task, recall that u(2) = αuα
−1
ζ ζ(1),v(2) = v(1), ζ(2) = αζα

−1
u u(1). Let w(2)

c (0) = w
(1)
c (Tu), at Tu, the

following lemma shows the status of w(2)
c at T = 0.

Corollary 5.3. At the beginning of the second task, if αu ≥ ω (αv), we have

max
c∈[C]

〈
w(2)

c (0),u(2)
〉
= Θ̃ (σ0αu) ,

max
c∈[C]

〈
w(2)

c (0),v(2)
〉
= Θ̃ (σ0αv) ,

max
c∈[C]

〈
w(2)

c (0),u(1)
〉
≥ Ω̃ (1) .

Proof. Lemma D.1 shows that at the end of first task, we have maxc∈[C]

〈
w

(1)
c (T̃ (1)),u(1)

〉
≥ Ω

(
C−1/3

)
. Moreover,

Equation (18) shows that at T̃ (1), we have maxc∈[C]

〈
w

(1)
c (T̃ (1)),v(1)

〉
= Θ̃

(
maxc∈[C]

〈
w

(1)
c (0),v(1)

〉)
= Θ̃ (σ0αv)

and maxc∈[C]

〈
w

(1)
c (T̃ (1)), ζ(1)

〉
= Θ̃

(
maxc∈[C]

〈
w

(1)
c (0), ζ(1)

〉)
= Θ̃ (σ0αζ). Using the definition of ζ(1),u(2), we

conclude our proof.

Corollary E.1. In the second stage, under Condition 3.6, given T ≥ Ω̃
(

1
ησ0α3

u

)
, for any 0 < t ≤ T , we have

max
c∈C

〈
w(2)

c (t+ 1), ξ
(2)
i,p

〉
−max

c∈C

〈
w(2)

c (t), ξ
(2)
i,p

〉
≤o (σ0σξ)

hold for any i, p. Moreover, we have

∀i, p max
c∈C

〈
w(2)

c (t), ξ
(2)
i,p

〉
≤ Õ (σ0σξ) .

Proof. Similar to the analysis in Lemma 5.1 for the first stage, we study the change in the projection
〈
w

(2)
c (t), ξ

(2)
i′,p′

〉
due

to the gradient update. Denoting this change by ∆(ξ
(2)
i′,p′), we have

∆(ξ
(2)
i′,p′) = −ηλc

n

n∑
i=1

∑
p∈Pξ

i

y
(2)
i ℓ′

(
F (x

(2)
i), y

(2)
i

)
ϕ′
(〈

w(2)
c (t), ξ

(2)
i,p

〉)〈
ξ
(2)
i,p , ξ

(2)
i′,p′

〉
− ηλc

n
y
(2)
i′ ℓ′

(
F (x

(2)
i′), y

(2)
i′

)
ϕ′
(〈

w(2)
c (t), ξ

(2)
i′,p′

〉)∥∥∥ξ(2)i′,p′

∥∥∥2 .
We now upper bound the magnitude of the update. Using the fact that |ℓ′| ≤ 1, we obtain∣∣∣∆(ξ

(2)
i′,p′)

∣∣∣ ≤ ηλc

n

∑
i∈[n], p∈Pξ

i

(i,p)̸=(i′,p′)

∣∣∣ϕ′
(〈

w(2)
c (t), ξ

(2)
i,p

〉)〈
ξ
(2)
i,p , ξ

(2)
i′,p′

〉∣∣∣+ ηλc

n

∣∣∣ϕ′
(〈

w(2)
c (t), ξ

(2)
i′,p′

〉)∣∣∣ ∥∥∥ξ(2)i′,p′

∥∥∥2

≤ λc Õ

(
ηmax

c,i,p

∣∣∣ϕ′
(〈

w(2)
c (t), ξ

(2)
i,p

〉)∣∣∣ · σ2
ξ

(
P√
d
+

1

n

))
.

23

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

Given that d is sufficiently large under Condition 3.6, we have P/
√
d = o(1/n). Thus, we obtain

∣∣∣∆(ξ
(2)
i′,p′)

∣∣∣ ≤ λc Õ

(
ησ2

0σ
4
ξ

n

)
.

Under the condition that n ≥ ω
(
σ3
ξα

−3
u

)
, η ≤ O

(
1/
(
σ0α

3
u

))
and λc = 1, this bound simplifies to

∣∣∣∆(ξ
(2)
i′,p′)

∣∣∣ = o(σ0σξ).

We then proceed by induction to bound the projection
〈
w

(2)
c (t), ξ

(2)
i′,p′

〉
across all steps. At t = 0, w(2)

c (0) = w
(1)
c (T̃ (1))

by the definition, Lemma 5.1 implies that 〈
w(2)

c (0), ξ
(2)
i′,p′

〉
≤ Õ(σ0σξ).

Assume the inductive hypothesis holds at step t, i.e.,〈
w(2)

c (t), ξ
(2)
i′,p′

〉
≤ Õ(σ0σξ).

Then, by the bound derived earlier in the proof, we have∣∣∣∆(ξ
(2)
i′,p′)

∣∣∣ = o(σ0σξ).

Therefore, the updated projection satisfies〈
w(2)

c (t+ 1), ξ
(2)
i′,p′

〉
=
〈
w(2)

c (t), ξ
(2)
i′,p′

〉
+∆(ξ

(2)
i′,p′) ≤ Õ(σ0σξ) + o(σ0σξ) ≤ Õ(σ0σξ).

By induction, we conclude that for all 0 ≤ t ≤ T ,

max
c∈[C]

〈
w(2)

c (t), ξ
(2)
i′,p′

〉
≤ Õ(σ0σξ), and

∣∣∣∆(ξ
(2)
i′,p′)

∣∣∣ ≤ o(σ0σξ),

as claimed. This completes the proof.

Recall that the update of
〈
w

(τ)
c , ζ(τ)

〉
is ∆c

(
ζ(τ)

)
= −

ηλc∥ζ(τ)∥2

2
ϕ′(⟨w(τ)

c (t),ζ(τ)⟩)
n G(τ). The direction of

〈
w

(2)
c , ζ(2)

〉
depends on the sign of G(2), which is studied in the following lemma.

Lemma E.2. In the second stage, let h(2)
(
ζ(2)

)
=
∑

c∈[C] ϕ
(〈

w
(2)
c , ζ(2)

〉)
, given T ≥ Ω̃

(
1

ησ0α3
u

)
, we suppose

max
c∈[C]

max
e∈{u(2),v(2)}

∣∣∣〈w(2)
c (t), e

〉∣∣∣ ≤ O
(
C−1/3

)
holds for all t ≤ T . Then we have

 G(2) < 0, if h(2)
(
ζ(2)

)
≥ Ω̃

(
n−1/2 + CPσ3

0σ
3
ξ

)
,

G(2) > 0, if h(2)
(
ζ(2)

)
≤ −Ω̃

(
n−1/2 + CPσ3

0σ
3
ξ

)
.

24

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

Proof. Since ∆c

(
ζ(τ)

)
=

ηλc∥ζ(τ)∥2

2
ϕ′(⟨w(τ)

c (t),ζ(τ)⟩)
n G(τ), we show the upper bound and lower bound for G(τ). Note that

I(2) = I(2)
= ∪ I(2)

̸= , we have∑
i∈I(2)

=

−ℓ′(F (x
(2)
i), y

(2)
i)−

∑
i∈I(2)

̸=

(
−ℓ′(F (x

(2)
i), y

(2)
i)
)

=
∑

i∈I(2)
=

1 + exp

h(2)
(
u(2)

)
+ h(2)

(
v(2)

)
+ h(2)

(
ζ(2)

)
+ y

(2)
i

∑
p∈Pξ

i

h(2)
(
ξ
(2)
i,p

)−1

−
∑

i∈I(2)
̸=

1 + exp

h(2)
(
u(2)

)
+ h(2)

(
v(2)

)
− h(2)

(
ζ(2)

)
+ y

(2)
i

∑
p∈Pξ

i

h(2)
(
ξ
(2)
i,p

)−1

≤
∑

i∈I(2)
=

(
1 + exp

(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

)
+ h(2)

(
ζ(2)

)
− CP max

c∈[C]i∈I(2),p∈Pξ
i

ϕ
(∣∣∣〈w(2)

c , ξ
(2)
i,p

〉∣∣∣)))−1

−
∑

i∈I(2)
̸=

(
1 + exp

(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

)
− h(2)

(
ζ(2)

)
+ CP max

c∈[C]i∈I(2),p∈Pξ
i

ϕ
(∣∣∣〈w(2)

c , ξ
(2)
i,p

〉∣∣∣)))−1

=n(2)
=

(
1 + exp

(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

)
+ h(2)

(
ζ(2)

)
− CP max

c∈[C]i∈I(2),p∈Pξ
i

ϕ
(∣∣∣〈w(2)

c , ξ
(2)
i,p

〉∣∣∣)))−1

− n
(2)
̸=

(
1 + exp

(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

)
− h(2)

(
ζ(2)

)
+ CP max

c∈[C]i∈I(2),p∈Pξ
i

ϕ
(∣∣∣〈w(2)

c , ξ
(2)
i,p

〉∣∣∣)))−1

Let γ =
∑

c∈[C] ϕ
(〈

w
(2)
c , ζ(2)

〉)
− CP maxc,i,p ϕ

(∣∣∣〈w(2)
c , ξ

(2)
i,p

〉∣∣∣), we yield

∑
i∈I(2)

=

−ℓ′(F (x
(2)
i), y

(2)
i)−

∑
i∈I(2)

̸=

(
−ℓ′(F (x

(2)
i), y

(2)
i)
)

≤
n(2)
= − n

(2)
̸= + exp

(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

)) (
n(2)
= exp (−γ)− n

(2)
̸= exp (γ)

)
(
1 + exp

(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

)
+ γ
)) (

1 + exp
(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

)
− γ
))

=
exp (−γ)

(
−n(2)

̸= exp
(
h(2)

(
u(2)

)
+h(2)

(
v(2)

))
exp (2γ)+n(2)

= exp
(
h(2)

(
u(2)

)
+h(2)

(
v(2)

))
+
(
n(2)
= −n

(2)
̸=

)
exp (γ)

)
(
1+exp

(
h(2)

(
u(2)

)
+h(2)

(
v(2)

)
+γ
))(

1+exp
(
h(2)

(
u(2)

)
+h(2)

(
v(2)

)
−γ
)) .

We fix the values of h(2)
(
u(2)

)
and h(2)

(
v(2)

)
, and consider the equation

−n
(2)
̸= exp

(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

))
exp (2γ) + n(2)

= exp
(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

))
+
(
n(2)
= − n

(2)
̸=

)
exp (γ) = 0,

where the solution is given by

γ⋆ = log

n(2)
= − n

(2)
̸= +

√
(n

(2)
= − n

(2)
̸=)2 + 4n

(2)
= n

(2)
̸= exp

(
2h(2)

(
u(2)

)
+ 2h(2)

(
v(2)

))
2n

(2)
̸= exp

(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

))
 .

This implies that G(2) > 0 requires

h(2)
(
ζ(2)

)
≤ γ⋆ + CP max

c,i,p
ϕ
(∣∣∣〈w(2)

c , ξ
(2)
i,p

〉∣∣∣)
25

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

as a sufficient condition. Since
√
a2 + b2 ≤ |a|+ |b|, we further upper bound γ⋆ as

γ⋆ = log

n(2)
= − n

(2)
̸= +

√
(n

(2)
= − n

(2)
̸=)2 + 4n

(2)
= n

(2)
̸= exp

(
2h(2)

(
u(2)

)
+ 2h(2)

(
v(2)

))
2n

(2)
̸= exp

(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

))

≤ log

∣∣∣n(2)

= − n
(2)
̸=

∣∣∣+√n
(2)
= n

(2)
̸= exp

(
2h(2)

(
u(2)

)
+ 2h(2)

(
v(2)

))
n
(2)
̸= exp

(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

))

≤ log

∣∣∣n(2)

= − n
(2)
̸=

∣∣∣
n
(2)
̸= exp

(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

)) +
√√√√n

(2)
=

n
(2)
̸=

≤

∣∣∣n(2)
= − n

(2)
̸=

∣∣∣
n
(2)
̸= exp

(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

)) +
√√√√n

(2)
=

n
(2)
̸=

− 1.

Note that
∣∣h(2)

(
u(2)

)
+ h(2)

(
v(2)

)∣∣ ≤ O (1), by using Equations (3) and (4) in Lemma A.8, with a probability of

1−O
(

1
poly(n)

)
, we yield

∣∣∣n(2)
= − n

(2)
̸=

∣∣∣
n
(2)
̸= exp

(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

)) ≤ O

∣∣∣n(2)

= − n
(2)
̸=

∣∣∣
n
(2)
̸=

 ≤ Õ
(
n−1/2

)

and

√√√√n
(2)
=

n
(2)
̸=

− 1 ≤
√
1 + Õ

(
n−1/2

)
− 1 ≤ Õ

(
n−1/4

)
.

Hence, we have

γ⋆ ≤ Õ
(
n−1/2

)
.

Therefore, if

h(2)
(
ζ(2)

)
≥ Ω̃

(
n−1/2 + CPσ3

0σ
3
ξ

)
,

we yield G(2) < 0.

26

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

On the other hand, we upper bound −G(2) as∑
i∈I(2)

̸=

−ℓ′(F (x
(2)
i), y

(2)
i)−

∑
i∈I(2)

=

(
−ℓ′(F (x

(2)
i), y

(2)
i)
)

=
∑

i∈I(2)
̸=

1 + exp

h(2)
(
u(2)

)
+ h(2)

(
v(2)

)
− h(2)

(
ζ(2)

)
+ yi

∑
p∈Pξ

i

h(2)
(
ξ
(2)
i,p

)−1

−
∑

i∈I(2)
=

1 + exp

h(2)
(
u(2)

)
+ h(2)

(
v(2)

)
+ h(2)

(
ζ(2)

)
+ yi

∑
p∈Pξ

i

h(2)
(
ξ
(2)
i,p

)−1

≤
∑

i∈I(2)
̸=

(
1 + exp

(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

)
− h(2)

(
ζ(2)

)
− CP max

c∈[C]i∈I(2),p∈Pξ
i

ϕ
(∣∣∣〈w(2)

c , ξ
(2)
i,p

〉∣∣∣)))−1

−
∑

i∈I(2)
=

(
1 + exp

(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

)
+ h(2)

(
ζ(2)

)
+ CP max

c∈[C]i∈I(2),p∈Pξ
i

ϕ
(∣∣∣〈w(2)

c , ξ
(2)
i,p

〉∣∣∣)))−1

=n
(2)
̸=

(
1 + exp

(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

)
− h(2)

(
ζ(2)

)
− CP max

c∈[C]i∈I(2),p∈Pξ
i

ϕ
(∣∣∣〈w(2)

c , ξ
(2)
i,p

〉∣∣∣)))−1

− n(2)
=

(
1 + exp

(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

)
+ h(2)

(
ζ(2)

)
+ CP max

c∈[C]i∈I(2),p∈Pξ
i

ϕ
(∣∣∣〈w(2)

c , ξ
(2)
i,p

〉∣∣∣)))−1

Let γ̃ = −
∑

c∈[C] ϕ
(〈

w
(2)
c , ζ(2)

〉)
− CP maxc,i,p ϕ

(∣∣∣〈w(2)
c , ξ

(2)
i,p

〉∣∣∣), we yield∑
i∈I(2)

̸=

−ℓ′(F (x
(2)
i), y

(2)
i)−

∑
i∈I(2)

=

(
−ℓ′(F (x

(2)
i), y

(2)
i)
)

≤
n
(2)
̸= − n(2)

= + exp
(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

)) (
n
(2)
̸= exp (−γ̃)− n(2)

= exp (γ̃)
)

(
1 + exp

(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

)
+ γ̃
)) (

1 + exp
(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

)
− γ̃
))

=
exp (−γ̃)

(
−n(2)

= exp
(
h(2)

(
u(2)

)
+h(2)

(
v(2)

))
exp (2γ̃)+n

(2)
̸= exp

(
h(2)

(
u(2)

)
+h(2)

(
v(2)

))
+
(
n
(2)
̸= −n(2)

=

)
exp (γ̃)

)
(
1+exp

(
h(2)

(
u(2)

)
+h(2)

(
v(2)

)
+γ̃
))(

1+exp
(
h(2)

(
u(2)

)
+h(2)

(
v(2)

)
−γ̃
)) .

Similarly, we fix the values of h(2)
(
u(2)

)
and h(2)

(
v(2)

)
, and consider the equation

−n(2)
= exp

(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

))
exp (2γ) + n

(2)
̸= exp

(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

))
+
(
n
(2)
̸= − n(2)

=

)
exp (γ) = 0,

where the solution is given by

γ̃⋆ = log

n
(2)
̸= − n(2)

= +
√
(n

(2)
̸= − n

(2)
=)2 + 4n

(2)
̸= n

(2)
= exp

(
2h(2)

(
u(2)

)
+ 2h(2)

(
v(2)

))
2n

(2)
= exp

(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

))

(23)

We then use a similar technique in bounding γ⋆. Since
∣∣h(2)

(
u(2)

)
+ h(2)

(
v(2)

)∣∣ ≤ O (1), by using Equations (3) and (4)

in Lemma A.8, with a probability of 1−O
(

1
poly(n)

)
, we yield

γ̃⋆ ≤

∣∣∣n(2)
= − n

(2)
̸=

∣∣∣
n
(2)
= exp

(
h(2)

(
u(2)

)
+ h(2)

(
v(2)

)) +
√√√√n

(2)
̸=

n
(2)
=

− 1 ≤ Õ
(
n−1/2

)
+

√
1 + Õ

(
n−1/2

)
− 1 ≤ Õ

(
n−1/2

)
.

27

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

This implies that G(2) < 0 requires

h(2)
(
ζ(2)

)
≥ −γ̃⋆ − CP max

c,i,p
ϕ
(∣∣∣〈w(2)

c , ξ
(2)
i,p

〉∣∣∣) ≥ −Õ
(
n−1/2 + CPσ3

0σ
3
ξ

)
as a sufficient condition. Therefore, if h(2)

(
ζ(2)

)
≤ −Ω̃

(
n−1/2 + CPσ3

0σ
3
ξ

)
, then it follows that G(2) > 0.

We conclude our proof.

Lemma E.3. Under Condition 3.6, given T ≥ Ω̃
(

1
ησ0α3

u

)
, we suppose

max
c∈[C]

max
e∈{u(2),v(2)}

∣∣∣〈w(2)
c (t), e

〉∣∣∣ ≤ O
(
C−1/3

)

holds for all t ≤ T . We let αζ = Θ(αu). Then there exists T (2)
ζ ≤ Õ

(
1

ησ0α3
u

)
such that

max
c∈[C]

〈
w(2)

c (T
(2)
ζ), ζ(2)

〉
≤ o (1) ,

∣∣∣h(2)(ζ(2))
∣∣∣ ≤ o(1).

Proof. At t = 0, when αζ = Θ(αu), By using Corollary 5.3, we yield∑
c∈[C]

ϕ
(〈

w(2)
c , ζ(2)

〉)
≥ Θ

(
α3
ζα

−3
u C−1

)
= Θ̃ (1) , CP max

c∈[C],i∈I=,p∈Pξ
i

ϕ
(∣∣∣〈w(2)

c , ξ
(2)
i,p

〉∣∣∣) ≤ O
(
CPσ3

0σ
3
ξ

)
≤ o (1) .

We then have ∑
c∈[C]

ϕ
(〈

w(2)
c , ζ(2)

〉)
≥ ω

(
n−1/2 + CPσ3

0σ
3
ξ

)
,

which means ∆c

(
ζ(2)

)
≤ 0 due to Lemma E.2. By rewriting G(2), we yield

G(2) =
∑

i∈I(2)
=

−ℓ′(F (xi), yi)−
∑

i∈I(2)
̸=

(−ℓ′(F (xi), yi))

=
∑

i∈I(2)
=

1 + exp

h(2)
(
u(2)

)
+ h(2)

(
v(2)

)
+ h(2)

(
ζ(2)

)
+ yi

∑
p∈Pξ

i

h(2)
(
ξ
(2)
i,p

)−1

−
∑

i∈I(2)
̸=

1 + exp

h(2)
(
u(2)

)
+ h(2)

(
v(2)

)
− h(2)

(
ζ(2)

)
+ yi

∑
p∈Pξ

i

h(2)
(
ξ
(2)
i,p

)−1

By the assumption, for any i, we have∣∣∣∣∣∣h(2)
(
u(2)

)
+ h(2)

(
v(2)

)
+ yi

∑
p∈Pξ

i

h(2)
(
ξ
(2)
i,p

)∣∣∣∣∣∣ ≤ O(1).

At the beginning of the second stage, we have h(2)(ζ(2)) ≥ Ω̃

((
maxc∈[C]

〈
w

(2)
c (t), ζ(2)

〉)3)
≥ Ω̃ (1). Then, for some t,

if h(2)(ζ(2)) ≥ Ω̃ (1), it is clear to show that there must exist α = Θ(1) such that for all αζ ≥ α, we have

−O (n) ≤ G(2) ≤ −Ω (n) .

28

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

We consider the update rule for maxc∈[C]

〈
w

(2)
c (t), ζ(2)

〉
:

〈
w(2)

c (t+ 1), ζ(2)
〉
−
〈
w(2)

c (t), ζ(2)
〉
=−Θ

(
ηλc

∥∥∥ζ(2)
∥∥∥2
2
ϕ′
(〈

w(2)
c (t), ζ(2)

〉))
. (24)

This shows that
〈
w

(2)
c (t), ζ(2)

〉
decreases monotonically for all c ∈ [C]. Consequently, h(2)(ζ(2)) also decreases. Let T (2)

ζ

be the first time t such that h(2)(ζ(2)) drops below Ω̃ (1). Then, the monotonic decrease described in Equation (24) holds
for any 0 ≤ T (2) < T

(2)
ζ .

Given 0 ≤ t′ < t ≤ T
(2)
ζ , starting from some

〈
w

(2)
c (t′), ζ(2)

〉
, the number of iterations it takes to reach

maxc∈[C]

〈
w

(2)
c (t), ζ(2)

〉
≤ 1

2 maxc∈[C]

〈
w

(2)
c (t′), ζ(2)

〉
is at most O

(
maxc∈[C]⟨w(2)

c (t′),ζ(2)⟩
ηα2

ζ

(
maxc∈[C]

〈
w

(2)
c (t′),ζ(2)

〉)2

)
. Then, starting

from Θ̃ (1), it takes at most

Õ

(
r−1∑
i=0

2−i

ηα2
ζ2

−2i

)
≤ Õ

(
2r

ηα2
ζ

)
. (25)

time steps to reach maxc∈[C]

〈
w

(2)
c (t), ζ(2)

〉
≤ 2−r maxc∈[C]

〈
w

(2)
c (t′), ζ(2)

〉
. Setting r =

⌈
log(1/σ0αu)

log(2)

⌉
, we obtain

T
(2)
ζ ≤ Õ

(
1

ησ0α3
u

)
such that

max
c∈[C]

〈
w(2)

c (T
(2)
ζ), ζ(2)

〉
≤ o

(
C−1/3

)
= o (1) , h(2)(ζ(2)) ≤ o (1) .

Then, the update magnitude
∣∣∣〈w(2)

c (t+ 1), ζ(2)
〉
−
〈
w

(2)
c (t), ζ(2)

〉∣∣∣ is small, and according to Lemma E.2, h(2)(ζ(2))

cannot decrease to −Ω (1) because we have G(2) > 0 if h(2)
(
ζ(2)

)
≤ −Ω̃

(
n−1/2 + CPσ3

0σ
3
ξ

)
. Hence, we conclude that∣∣∣h(2)(ζ(2))

∣∣∣ ≤ o(1),

at some T
(2)
ζ ≤ Õ

(
1

ησ0α3
u

)
.

We then analyze the change of
〈
w

(2)
c ,u(2)

〉
and

〈
w

(2)
c ,v(2)

〉
in the second task.

Lemma E.4 (Learning the Task-Specific and General Features). Under Condition 3.6, starting from T (2) = 0, there exists
T

(2)
u ≤ Õ

(
1

ησ0α3
u

)
such that

max
c∈[C]

〈
w(2)

c (T (2)
u),u(2)

〉
≥ Ω

(
C−1/3

)
,

max
c∈[C]

〈
w(2)

c (T (2)
u),v(2)

〉
≤ Õ (σ0αv) .

Proof. At T (2) = 0, for all c ∈ [C], we have〈
w(2)

c (0),u(1)
〉
≥
〈
w(1)

c (0),u(1)
〉
≥ −Õ (σ0αu) ,

where the first inequality follows that
{〈

w
(1)
c (t),u(1)

〉}T (1)

t=0
is an increasing sequence. The second inequality holds

because w
(1)
c (0) is drawn from an isotropic Gaussian distribution and Lemma 4.1. It follows that

∀c ∈ [C],
〈
w(2)

c (0), ζ(2)
〉
= αzα

−1
u

〈
w(2)

c (0),u(1)
〉
≥ −Õ (σ0αζ) .

29

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

and similarly,

∀c ∈ [C],
〈
w(2)

c (0),v(2)
〉
=
〈
w(2)

c (0),v(1)
〉
≥ −Õ (σ0αv) , (26)

where the last inequality uses the monotonicity of
{〈

w
(1)
c (t),v(1)

〉}T (1)

t=0
and Lemma 4.1.

By Equation (18) and Corollary 5.3, we obtain

max
c∈[C]

max
e∈{u(2),v(2)}

∣∣∣〈w(2)
c (0), e

〉∣∣∣ ≤ O
(
C−1/3

)
.

We proceed by induction. Suppose that for some t > 0, we have

max
c∈[C]

max
e∈{u(2),v(2)}

∣∣∣〈w(2)
c (t), e

〉∣∣∣ ≤ O
(
C−1/3

)
, and

∣∣∣h(2)
(
ζ(2)

)∣∣∣ ≤ Õ (1) .

Then by Lemma E.3,
∣∣∣h(2)

(
ζ(2)

)∣∣∣ is non-increasing, and at t+ 1, we still have∣∣∣h(2)
(
ζ(2)

)∣∣∣ ≤ Õ (1) .

This ensures that
Ω(1) ≤ −ℓ′i ≤ 1, ∀i ∈ [n],

which further implies

max
c∈C

〈
w(2)

c (t+ 1),v(2)
〉
−max

c∈C

〈
w(2)

c (t),v(2)
〉
= Θ

(
n−1ηα2

v

(
n∑

i=1

ℓ′i

)
ϕ′
(∣∣∣〈w(2)

c (t),v(2)
〉∣∣∣)) .

It shows that
{
maxc∈[C]

〈
w

(2)
c (t),v(2)

〉}
is an increasing sequence, hence

max
c∈[C]

〈
w(2)

c (t+ 1),v(2)
〉
≥ max

c∈[C]

〈
w(2)

c (t),v(2)
〉
≥ Ω̃(σ0αv). (27)

Since maxc∈[C]

〈
w

(2)
c (t),v(2)

〉
≤ Õ(σ0αv), η ≤ O

(
1/
(
σ0α

3
u

))
, and αv ≤ o (αu), it follows that

max
c∈[C]

〈
w(2)

c (t+ 1),v(2)
〉
≤ max

c∈[C]

〈
w(2)

c (t),v(2)
〉
+Θ(ηα4

vσ
2
0) ≤ Õ(σ0αv) + o(σ0αv) ≤ Õ(σ0αv). (28)

Combining Equations (27) and (28), we yield

max
c∈[C]

〈
w(2)

c (t+ 1),v(2)
〉
= Θ̃(σ0αv). (29)

Thus, combining Equations (26) and (29), we maintain

max
c∈[C]

∣∣∣〈w(2)
c (t+ 1),v(2)

〉∣∣∣ ≤ Õ (σ0αv) .

Meanwhile, for u(2) we have

max
c∈C

〈
w(2)

c (t+ 1),u(2)
〉
−max

c∈C

〈
w(2)

c (t),u(2)
〉

=Θ

(
n−1ηα2

u

(
n∑

i=1

−ℓ′i

)
ϕ′
(∣∣∣〈w(2)

c (t),u(2)
〉∣∣∣)) = Θ

(
ηα2

uϕ
′
(∣∣∣〈w(2)

c (t),u(2)
〉∣∣∣)) .

30

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

It shows that
{
maxc∈[C]

〈
w

(2)
c (t),u(2)

〉}
is an increasing sequence. Let T

(2)
u be the first time t such that

maxc∈C

〈
w

(2)
c (t),u(2)

〉
≥ Ω

(
C−1/3

)
. Then for all 0 ≤ T (2) < T

(2)
u , we have

max
c∈[C]

∣∣∣〈w(2)
c (T (2)),v(2)

〉∣∣∣ ≤ Õ (σ0αv) , and
∣∣∣h(2)

(
ζ(2)

)∣∣∣ ≤ Õ (1) .

and

max
c∈C

〈
w(2)

c (T (2) + 1),u(2)
〉
−max

c∈C

〈
w(2)

c (T (2)),u(2)
〉
= Θ

(
ηα2

uϕ
′
(∣∣∣〈w(2)

c (T (2)),u(2)
〉∣∣∣)) . (30)

Corollary 5.3 implies that maxc∈[C]

〈
w

(2)
c (0),u(2)

〉
= Θ̃ (σ0αu). Starting from some maxc∈C

〈
w

(2)
c (t′),u(2)

〉
,

the number of iterations it takes to reach maxc∈C

〈
w

(2)
c (t),u(2)

〉
≥ 2maxc∈C

〈
w

(2)
c (t′),u(2)

〉
is at most

O

(
maxc∈C⟨w(2)

c (t′),u(2)⟩
ηα2

u

(
maxc∈C

〈
w

(2)
c (t′),u(2)

〉)2

)
. Then, starting from Θ̃ (σ0αu), it takes at most

T (2)
u ≤ Õ

(∞∑
i=0

2iσ0αu

ηα2
u (2

iσ0αu)
2

)
≤ Õ

(
1

ησ0α3
u

)
(31)

times steps to reach maxc∈C

〈
w

(2)
c (t),u(2)

〉
≥ Ω

(
C−1/3

)
.

This completes the proof.

After training the second task, the following theorem and corollary show that at the end of the second stage, CF occurs if
αζ ≥ Ω (αu), i.e., at T̃ (2) = Θ̃

(
1

ησ0α3
u

)
, only u(2) can be used for classification.

Theorem 5.4. In the second stage, given a training set S(2)
tr with size n, there exists T̃ (2) = Θ̃

(
1

ησ0α3
u

)
such that for

T (2) ≥ T̃ (2), the network FT (2) fits all training data points with a high probability:

P
[
∀i∈S(2)

tr ,yiF
(2)

T (2)(xi)≥ Ω̃(1)
]
≥1−O

(
n2P 2C

poly(d)
+

1

poly(n)

)
.

Moreover, FT (2) achieves a high accuracy on test data sampled from the second task:

P
(x,y)∼D(2)

z

[
yF

(2)

T (2)(x)>0
]
≥1−O

(
nP 2C

poly(d)
+

1

poly(n)

)
.

If αv ≤ o (αu), and αζ ≥ Ω (αu), FT (2) achieves a low accuracy on test data sampled from the first task

P
(x,y)∼D(1)

z

[
yF

(2)

T (2)(x)>0
]
≤ 1

2
+O

(
nP 2C

poly(d)
+

1

poly(n)

)
.

Proof. For any training sample (xi, yi) from the second task, the output can be rewritten as:

yiFT (2)(xi) =yi

C∑
c=1

λcϕ
(〈

w(2)
c , yiu

(2)
〉)

+ yi

C∑
c=1

λcϕ
(〈

w(2)
c , yiv

(2)
〉)

+ yi

C∑
c=1

λcϕ
(〈

w(2)
c , ϵiζ

(2)
〉)

+ yi

C∑
c=1

∑
p∈Pξ

i

ϕ(
〈
w(2)

c , ξ
(2)
i,p

〉
)

=

C∑
c=1

λcϕ
(〈

w(2)
c ,u(2)

〉)
+

C∑
c=1

λcϕ
(〈

w(2)
c ,v

〉)
+ yiϵi

C∑
c=1

λcϕ
(〈

w(2)
c , ζ(2)

〉)
+ yi

C∑
c=1

∑
p∈Pξ

i

ϕ
(〈

w(2)
c , ξ

(2)
i,p

〉)

31

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

By using Lemmas E.3 and E.4, there exists some time T̃ (2) = Θ̃
(

1
ησ0α3

u

)
such that for T (2) ≥ T̃ (2), we have

yiFT (2)(xi) ≥max
c∈[C]

λcϕ
(〈

w(2)
c ,u(2)

〉)
+ (C − 1) min

c∈[C]
λcϕ

(〈
w(2)

c ,u(2)
〉)

−C max
c∈[C]

λcϕ
(∣∣∣〈w(2)

c ,v(2)
〉∣∣∣)− C∑

c=1

λcϕ
(∣∣∣〈w(2)

c , ζ(2)
〉∣∣∣)− CP max

c∈[C]
max
p∈Pξ

i

ϕ
(∣∣∣〈w(2)

c , ξ
(2)
i,p

〉∣∣∣)
≥Ω (1/C)− CO

(
σ3
0α

3
u

)
− CO

(
σ3
0α

3
v

)
− Co (1)− CPO

(
σ3
0σ

3
ξ

)
≥ Ω̃ (1) . (32)

The probability of Equation (32) hold is 1−O
(

n2P 2C
poly(d) + 1

poly(n)

)
. For a test sample (x, y) drawn from the second task,

with a probability of 1−O
(

nP 2C
poly(d) +

1
poly(n)

)
, we have

yFT (2)(x) =y

C∑
c=1

λcϕ
(〈

w(2)
c , yu(2)

〉)
+ y

C∑
c=1

λcϕ
(〈

w(2)
c , yv(2)

〉)
+y

C∑
c=1

λcϕ
(〈

w(2)
c , ϵζ(2)

〉)
+ y

C∑
c=1

∑
p∈Pξ

i

ϕ
(〈

w(2)
c , ξ(2)p

〉)
≥Ω̃ (1) .

Additionally, for a test data (x, y) drawn form the first task, let ϵ as the definition in Definition 3.1, we have

ϵFT (2)(x) =ϵ

C∑
c=1

λcϕ
(〈

w(2)
c , yu(1)

〉)
+ ϵ

C∑
c=1

λcϕ
(〈

w(2)
c , yv(1)

〉)
+ ϵ

C∑
c=1

λcϕ
(〈

w(2)
c , ϵζ(1)

〉)
+ ϵ

C∑
c=1

∑
p∈Pξ

i

ϕ
(〈

w(2)
c , ξ

(1)
i,p

〉)

=yϵ

C∑
c=1

λcα
3
uα

−3
ζ ϕ

(〈
w(2)

c , ζ(2)
〉)

+ yϵ

C∑
c=1

λcϕ
(〈

w(2)
c ,v(2)

〉)
+

C∑
c=1

λcα
−3
u α3

ζϕ
(〈

w(2)
c ,u(2)

〉)
+ ϵ

C∑
c=1

∑
p∈Pξ

i

ϕ
(〈

w(2)
c , ξ

(2)
i,p

〉)
≥max

c∈[C]
λcα

−3
u α3

ζϕ
(〈

w(2)
c ,u(2)

〉)
+(C−1) min

c∈[C]
λcα

−3
u α3

ζϕ
(〈

w(2)
c ,u(2)

〉)
−C max

c∈[C]
λcϕ

(∣∣∣〈w(2)
c ,v(2)

〉∣∣∣)
− α3

uα
−3
ζ

C∑
c=1

λcϕ
(∣∣∣〈w(2)

c , ζ(2)
〉∣∣∣)− CP max

c∈[C],p∈Pξ
i

ϕ
(∣∣∣〈w(2)

c , ξ
(2)
i,p

〉∣∣∣)
≥Ω

(
α−3
u α3

ζ

C

)
− α−3

u α3
ζCO

(
σ3
0α

3
u

)
− CO

(
σ3
0α

3
v

)
− Cα3

uα
−3
ζ o (1)− CPO

(
σ3
0σ

3
ξ

)
≥Ω̃ (1) .

Note that P (ϵ = y) = 1/2, using the union bound, we conclude our proof.

Corollary 5.5. At the end of the second task, for T̃ (2) = Θ̃
(

1
ησ0α3

u

)
, if αu ≥ ω (αv) and αζ ≥ Ω (αu), we have

max
c∈[C]

〈
w(2)

c (T̃ (2)),u(1)
〉
≤ o (1) ,

max
c∈[C]

〈
w(2)

c (T̃ (2)),v(2)
〉
= Θ̃ (σ0αv) ,

max
c∈[C]

〈
w(2)

c (T̃ (2)),u(2)
〉
≥ Ω̃ (1) .

32

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

Proof. Lemma E.4 implies that at T̃ (2) = Θ̃
(

1
ησ0α3

u

)
, we have

max
c∈[C]

〈
w(2)

c (t),u(2)
〉
≥ Ω

(
C−1/3

)
,

max
c∈[C]

〈
w(2)

c (t),v(2)
〉
= Θ̃ (σ0αv) .

Moreover, Lemma E.3 implies that

max
c∈[C]

〈
w(2)

c (T̃ (2)), ζ(2)
〉
≤ o (1) .

Since u(1) = αuα
−1
ζ ζ(2) and αζ ≥ Ω (αu), we conclude the proof.

F. Additional Experiments
F.1. Simulated Dataset

For simulated dataset, we use PyTorch as the deep learning framework for training. The CNN model used is defined as
Equation (1) with C = 10, and the model is optimized using GD. The learning rate is set to 0.1. In each stage, the model is
trained for 100 epochs. The hyperparameters are set as follows: P = 1, σξ = 0.5

√
d, and d = 50. The value of αu is fixed

at 1, while αv and αζ are varied across discrete values. Specifically, αv takes values in the range {0, 0.1, 0.2, . . . , 1.0}, and
αζ takes values in the range {0, 0.1, 0.2, 0.3, . . . , 1.0}. For each combination of αv and αζ , In Figure 2, we perform 20
independent experiments to calculate the average accuracy of both tasks at the completion of the first and second stages.

We then include additional experimental results for simulated datasets. Figure 6 shows the case that both u(1) and u(2) are
captured by the model. Since the signal of ζ(2) is slight, CF does not occur in this case. Moreover, Figure 7 shows the case
that v(1) = v(2) is learned by the model while none of the other components are fitted by the model since v has a large
norm in this experiment.

F.2. Real-World Datasets

In real-world datasets, we use ResNet-18 as the CNN model, which is trained for 100 epochs in both the first and second
stage. We show the full results for Figure 3. Figures 8 to 10 show the performance of the model on both first and second
tasks in different stages in CIFAR-10, CIFAR-100, and Tiny-ImageNet, respectively.

We then use T-SNE (van der Maaten & Hinton, 2008) to visualize the feature in both the first and second stages of CL in
CIFAR-100 and Tiny-ImageNet. The results in CIFAR-100 and Tiny-ImageNet are shown in Figures 11 and 12, respectively.
Additionally, we calculate the maximal singular vector in the feature space in CIFAR-100 and Tiny-ImageNet, and the
results are shown in Figures 13 and 14.

33

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

20 40 60 80 100
epoch

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Feature-U

Channel--0
Channel--1
Channel--2
Channel--3
Channel--4
Channel--5
Channel--6
Channel--7
Channel--8
Channel--9

20 40 60 80 100
epoch

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

20 40 60 80 100
epoch

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

20 40 60 80 100
epoch

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

20 40 60 80 100
epoch

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Feature-V

Channel--0
Channel--1
Channel--2
Channel--3
Channel--4
Channel--5
Channel--6
Channel--7
Channel--8
Channel--9

20 40 60 80 100
epoch

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

20 40 60 80 100
epoch

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

20 40 60 80 100
epoch

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

20 40 60 80 100
epoch

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Feature-zeta

Channel--0
Channel--1
Channel--2
Channel--3
Channel--4
Channel--5
Channel--6
Channel--7
Channel--8
Channel--9

20 40 60 80 100
epoch

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

20 40 60 80 100
epoch

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

20 40 60 80 100
epoch

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

20 40 60 80 100
epoch

0

1

2

3

4

5

Stage 1 Task 1

Output

Data-U
Data-V
Data-zeta
Data-xi

20 40 60 80 100
epoch

0

1

2

3

4

5

Stage 1 Task 2

20 40 60 80 100
epoch

0

1

2

3

4

5

Stage 2 Task 1

20 40 60 80 100
epoch

0

1

2

3

4

5

Stage 2 Task 2

Figure 6. The output of each layer in the CNN model using different inputs. Top three rows: The output of each channel in the first layer.
Bottom row: The output of the last layer. (αu = 1, αv = 0.9, and αζ = 0.1)

34

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

20 40 60 80 100
epoch

0.0

0.5

1.0

1.5

2.0

Feature-U

Channel--0
Channel--1
Channel--2
Channel--3
Channel--4
Channel--5
Channel--6
Channel--7
Channel--8
Channel--9

20 40 60 80 100
epoch

0.0

0.5

1.0

1.5

2.0

20 40 60 80 100
epoch

0.0

0.5

1.0

1.5

2.0

20 40 60 80 100
epoch

0.0

0.5

1.0

1.5

2.0

20 40 60 80 100
epoch

0.0

0.5

1.0

1.5

2.0

Feature-V

Channel--0
Channel--1
Channel--2
Channel--3
Channel--4
Channel--5
Channel--6
Channel--7
Channel--8
Channel--9

20 40 60 80 100
epoch

0.0

0.5

1.0

1.5

2.0

20 40 60 80 100
epoch

0.0

0.5

1.0

1.5

2.0

20 40 60 80 100
epoch

0.0

0.5

1.0

1.5

2.0

20 40 60 80 100
epoch

0.0

0.5

1.0

1.5

2.0

Feature-zeta

Channel--0
Channel--1
Channel--2
Channel--3
Channel--4
Channel--5
Channel--6
Channel--7
Channel--8
Channel--9

20 40 60 80 100
epoch

0.0

0.5

1.0

1.5

2.0

20 40 60 80 100
epoch

0.0

0.5

1.0

1.5

2.0

20 40 60 80 100
epoch

0.0

0.5

1.0

1.5

2.0

20 40 60 80 100
epoch

0

1

2

3

4

5

6

7

Stage 1 Task 1

Output

Data-U
Data-V
Data-zeta
Data-xi

20 40 60 80 100
epoch

0

1

2

3

4

5

6

7

Stage 1 Task 2

20 40 60 80 100
epoch

0

1

2

3

4

5

6

7

Stage 2 Task 1

20 40 60 80 100
epoch

0

1

2

3

4

5

6

7

Stage 2 Task 2

Figure 7. The output of each layer in the CNN model using different inputs. Top three rows: The output of each channel in the first layer.
Bottom row: The output of the last layer. (αu = 1, αv = 1, and αζ = 0.8)

0 1 2 3 4
Task 2

0

1

2

3

4

Ta
sk
 1

Stage 1 Task 1

0 1 2 3 4
Task 2

0

1

2

3

4

Ta
sk
 1

Stage 1 Task 2

0 1 2 3 4
Task 2

0

1

2

3

4

Ta
sk
 1

Stage 2 Task 1

0 1 2 3 4
Task 2

0

1

2

3

4

Ta
sk
 1

Stage 2 Task 2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8. Overview of CF in CIFAR-10.

35

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

0 10 20 30 40
Task 2

0

10

20

30

40

Ta
sk
 1

Stage 1 Task 1

0 10 20 30 40
Task 2

0

10

20

30

40

Ta
sk
 1

Stage 1 Task 2

0 10 20 30 40
Task 2

0

10

20

30

40

Ta
sk
 1

Stage 2 Task 1

0 10 20 30 40
Task 2

0

10

20

30

40

Ta
sk
 1

Stage 2 Task 2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9. Overview of CF in CIFAR-100.

0 20 40 60 80
Task 2

0

20

40

60

80

Ta
sk
 1

Stage 1 Task 1

0 20 40 60 80
Task 2

0

20

40

60

80

Ta
sk
 1

Stage 1 Task 2

0 20 40 60 80
Task 2

0

20

40

60

80

Ta
sk
 1

Stage 2 Task 1

0 20 40 60 80
Task 2

0

20

40

60

80

Ta
sk
 1

Stage 2 Task 2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10. Overview of CF in Tiny-ImageNet.

36

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

-40 -30 -20 -10 0 10 20 30
-10.0

-7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

Initialization

Task 1 Class 0

Task 1 Class 1

Task 2 Class 0

Task 2 Class 1

-30 -20 -10 0 10 20 30
-10.0

-7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

Data from Task 1

Task 1 Class 0

Task 1 Class 1

-40 -30 -20 -10 0 10 20 30
-6

-4

-2

0

2

4

6

8

10

Data from Task 2

Task 2 Class 0

Task 2 Class 1

-30 -20 -10 0 10 20 30 40

-10

-5

0

5

Stage 1

Task 1 Class 0

Task 1 Class 1

Task 2 Class 0

Task 2 Class 1

-30 -20 -10 0 10 20 30 40

-10

-5

0

5

Data from Task 1

Task 1 Class 0

Task 1 Class 1

-30 -20 -10 0 10 20 30

-10

-5

0

5

Data from Task 2

Task 2 Class 0

Task 2 Class 1

-40 -30 -20 -10 0 10 20 30 40

-6

-4

-2

0

2

4

6

8

Stage 2

Task 1 Class 0

Task 1 Class 1

Task 2 Class 0

Task 2 Class 1

-40 -30 -20 -10 0 10 20 30 40

-6

-4

-2

0

2

4

6

8

Data from Task 1

Task 1 Class 0

Task 1 Class 1

-40 -30 -20 -10 0 10 20 30 40

-6

-4

-2

0

2

4

6

8
Data from Task 2

Task 2 Class 0

Task 2 Class 1

Figure 11. Using T-SNE to visualize the feature space at different stages of CL when sequentially train the model on the Task-0 and
Task-2 in CIFAR-100. First row. The model is randomly initialized. Second row. At the end of the first stage. Third row. At the end of
the second stage.

37

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

-7.5 -5.0 -2.5 0.0 2.5 5.0 7.5
-20

-15

-10

-5

0

5

10

15

Initialization

Task 1 Class 0

Task 1 Class 1

Task 2 Class 0

Task 2 Class 1

-7.5 -5.0 -2.5 0.0 2.5 5.0 7.5

-15

-10

-5

0

5

10

15

Data from Task 1

Task 1 Class 0

Task 1 Class 1

-7.5 -5.0 -2.5 0.0 2.5 5.0 7.5
-20

-15

-10

-5

0

5

10

15

Data from Task 2

Task 2 Class 0

Task 2 Class 1

-15 -10 -5 0 5 10 15 20

-3

-2

-1

0

1

2

3

4

Stage 1

Task 1 Class 0

Task 1 Class 1

Task 2 Class 0

Task 2 Class 1

-15 -10 -5 0 5 10 15 20

-3

-2

-1

0

1

2

3

Data from Task 1

Task 1 Class 0

Task 1 Class 1

-15 -10 -5 0 5 10 15 20

-3

-2

-1

0

1

2

3

4

Data from Task 2

Task 2 Class 0

Task 2 Class 1

-15 -10 -5 0 5 10 15 20

-4

-2

0

2

4

6

Stage 2

Task 1 Class 0

Task 1 Class 1

Task 2 Class 0

Task 2 Class 1

-15 -10 -5 0 5 10 15 20

-4

-2

0

2

4

6

Data from Task 1

Task 1 Class 0

Task 1 Class 1

-15 -10 -5 0 5 10 15 20

-4

-2

0

2

4

6
Data from Task 2

Task 2 Class 0

Task 2 Class 1

Figure 12. Using T-SNE to visualize the feature space at different stages of CL when sequentially train the model on the Task-0 and
Task-3 in Tiny-ImageNet. First row. The model is randomly initialized. Second row. At the end of the first stage. Third row. At the end
of the second stage.

38

Towards Understanding Catastrophic Forgetting in Two-layer Convolutional Neural Networks

T1-C1 T1-C2 T2-C1 T2-C2

-0.10

-0.05

0.00

0.05

0.10

0.15

Initialization

T1-C1 T1-C2 T2-C1 T2-C2

-20

-10

0

10

20

30

Stage 1

T1-C1 T1-C2 T2-C1 T2-C2

-20

-10

0

10

20

30
Stage 2

Figure 13. Inner product of the features with the maximal singular vector at different stages of CL. The label Ta-Cb indicates that the data
drawn from class-b in ath task. We choose Task-0 and Task-2 in CIFAR-100 as the first and second task.

T1-C1 T1-C2 T2-C1 T2-C2

-0.10

-0.05

0.00

0.05

0.10

0.15

Initialization

T1-C1 T1-C2 T2-C1 T2-C2

-20

-10

0

10

20

30

Stage 1

T1-C1 T1-C2 T2-C1 T2-C2

-20

-10

0

10

20

30
Stage 2

Figure 14. Inner product of the features with the maximal singular vector at different stages of CL. The label Ta-Cb indicates that the data
drawn from class-b in ath task. We choose Task-0 and Task-3 in Tiny-ImageNet as the first and second task.

39

