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Abstract

Modern deep learning systems do not generalize well when the test data distribution is
slightly different to the training data distribution. While much promising work has been
accomplished to address this fragility, a systematic study of the role of optimizers and their
out-of-distribution generalization performance has not been undertaken. In this study, we
examine the performance of popular first-order optimizers for different classes of distributional
shift under empirical risk minimization and invariant risk minimization. We address this
question for image and text classification using DomainBed, WILDS, and Backgrounds
Challenge as testbeds for studying different types of shifts—mamely correlation and diversity
shift. We search over a wide range of hyperparameters and examine classification accuracy
(in-distribution and out-of-distribution) for over 20,000 models. We arrive at the following
findings, which we expect to be helpful for practitioners: i) adaptive optimizers (e.g.,
Adam) perform worse than non-adaptive optimizers (e.g., SGD, momentum SGD) on out-of-
distribution performance. In particular, even though there is no significant difference in in-
distribution performance, we show a measurable difference in out-of-distribution performance.
ii) in-distribution performance and out-of-distribution performance exhibit three types of
behavior depending on the dataset—Ilinear returns, increasing returns, and diminishing
returns. For example, in the training of natural language data using Adam, fine-tuning
the performance of in-distribution performance does not significantly contribute to the
out-of-distribution generalization performance.

1 Introduction

The choice of numerical optimization method can make a big difference when it comes to successfully
training deep neural networks. In particular, the choice of optimizer influences training speed, stability,
and generalization performance. Several studies have compared a variety of optimizers and investigated
their influence on trainability and generalization (Wilson et al., 2017; Schneider et al., 2019; Choi et al.,
2019). Some concluded that non-adaptive optimizers yield better generalization (Wilson et al., 2017; Balles
& Hennig, 2018), while others countered that optimizer selection does not affect generalization performance
(Schneider et al., 2019; Schmidt et al., 2020).

The conflicting nature of past reports can be explained by disparities in the methodology used for hyperpa-
rameter search. For Adam, in particular, hyperparameter € controls the degree of adaptation. Low values,
which are used by default, lead to a highly adaptive method. Unusually high values lead to less adaptation.
In the limit of large €, Adam turns into a non-adaptive momentum method. In other words, when arbitrary
tuning is allowed, methods like a Adam can be thought of as a superset of gradient descent with momentum.
The authors in Choi et al. (2019) take this approach, and also consider the less adaptive and non-adaptive
regimes of Adam. Not surprisingly, they find that in this full generality Adam never performs worse than
gradient descent with momentum in terms of in-distribution generalization, and in some cases, it can perform
better.

Although these studies have made substantial progress to improve our understanding of optimizer char-
acteristics, they are based on a common, foundational assumption in learning: training and test data are
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drawn from the same distribution. In applications, however, it is often the case that test data obey a
distribution different from the one for training data. This distributional shift violates the typical assumption
of independent and identically distributed (i.i.d.) data for learning (Nagarajan et al., 2021). Comparing the
generalization performance of different optimizers under this distributional shift, known as out-of-distribution
(OOD) generalization (Shen et al., 2021), is of great interest in theory and practice.

In our large suite of experiments, we focus on this OOD generalization question for Natural Language
Processing (NLP) and image classification tasks. We train deep neural networks under the principle of
Empirical Risk Minimization (ERM) or Invariant Risk Minimization (IRM) (Arjovsky et al., 2019) using a
variety of optimizers. Because our objective is to investigate the impact of commonly used optimizers, we
target five of the most popular optimizers that have been used and studied in recent years (Schmidt et al.,
2021): stochastic gradient descent (SGD), Momentum SGD (Polyak, 1964), and Nesterov accelerated gradient
(NAG, also known as Nesterov’s momentum) (Nesterov, 2003) in the family of non-adaptive methods as well
as RMSProp (Tieleman & Hinton, 2012) and Adam (Kingma & Ba, 2015) in the family of adaptive optimizers.
We evaluate the OOD generalization performance of these optimizers on 10 different benchmarks: DomainBed
(which includes seven image datasets) (Gulrajani & Lopez-Paz, 2021), the Backgrounds Challenge dataset
(Xiao et al., 2021), , and CivilComments-WILDS (Koh et al., 2021).

As discussed above, methods like RMSProp and Adam can be tuned not to be adaptive, in which case they
would subsume methods like gradient descent with momentum, and we would trivially get that the more
general method can never underperform. Instead, we focus on the more nuanced question of adaptive vs
non-adaptive methods: we tune RMSProp and Adam using a range of values for the hyperparameter e,
which is strictly wider than ranges used in practice but still keeps the optimizers in their adaptive regime.
In this context, we conduct an exhaustive hyperparameter search to select configurations that give good
in-distribution validation accuracy for each optimizer. We then test the selected models on the above OOD
test sets. Importantly, we demonstrate that our experiments explore more hyperparameter configurations
than many existing benchmarks, as betrayed by the fact that we find better-performing models on said
benchmarks.

In summary, our contributions are as follows:

e We design and perform a comparison of the effect of optimizers on OOD generalization on a number
of OOD benchmarks. To the best of our knowledge, we are the first to consider such a wide variety
and scale of datasets. Also, we conduct an empirical study using a wide range of hyperparameter
configurations, examining over 20,000 models, evaluating their performance, and measuring the
performance gap when moving from the in-distribution test set to the OOD test set.

e We demonstrate on a large number of image classification and NLP tasks that different optimizer
choices lead to differences in OOD generalization performance. Furthermore, we show that adaptive
optimizers yield more in-distribution overfitting and degrade OOD performance more than non-
adaptive optimizers.

e We show that the observed correlation behaviors between in-distribution performance and OOD
performance can be categorized into typical patterns: linear return, diminishing return, and increasing
return *. This categorization should help practitioners better understand and select optimizers.

The following evidence supports the claim that non-adaptive methods outperform adaptive methods in OOD
settings: i) There is no significant difference in the in-distribution generalization performance between adaptive
and non-adaptive optimizers, ii) Adaptive optimizers perform worse in 8 out of 10 datasets regarding best
out-of-distribution generalization performance, iii) We match models trained by adaptive optimizers to models
trained by non-adaptive optimizers that yield the same in-distribution performance. Using this matching
scheme for our comparison, models trained by non-adaptive methods achieve better OOD performance on 9
out of 10 datasets. These results are based on a comprehensive hyperparameter search and validated through
soundness checks in the Appendix G.4.

1These show how much performance can be expected in the out-of-distribution if we increase the in-distribution performance.
These terms are explained in detail in Section 4.3.
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Given the similarity of the results between ERM and IRM training principles, we have opted to focus
our analysis on the former. Therefore, in the main section of this paper, we primarily report the results
of ERM. Our observations that adaptive optimizers perform worse than non-adaptive methods in OOD
performance align with theoretical results (Zou et al., 2022) previously reported in the literature, highlighting
the drawbacks of adaptive optimizers such as Adam under the i.i.d. assumption and their tendency to fit
noise in the data.

The paper is structured as follows. In Section 2, we discuss optimizer selection under the i.i.d. assumption and
outline the problem of OOD generalization in the presence of distributional shifts, which can be encountered
in real-world problems. In Section 3, we outline the optimizers and the OOD datasets that are the subject of
this study, as well as our model selection method. In Section 4, we present the experimental protocol and the
experimental results of 10 different datasets and 5 optimizers in each experimental setting.

2 Related Work

2.1 Optimizer Selection

Understanding the characteristics of the many optimizers proposed for deep neural network training (Schmidt
et al., 2021) is of great importance to the machine learning research community. In terms of convergence,
preconditioned optimizers, including Adam, are known to be superior to non-adaptive optimizers (Kingma &
Ba, 2015; Liu et al., 2019; Amari, 1998).

While preconditioned optimization methods seem to be better than non-preconditioned ones in terms of
convergence, Zhang et al. (2019) argued that there is a trade-off between generalization performance and
convergence rate (Zhang et al., 2019). Wadia et al. (2020) also reported that preconditioned methods,
especially second-order methods, do not provide great generalization performance either empirically or
theoretically. With a simple theoretical and empirical analysis, Wilson et al. (2017) showed that adaptive
optimizers are worse at generalization than simple SGD. Balles & Hennig (2018) also reported that Adam
generalizes worse than Momentum SGD.

Contrary to these studies, Schneider et al. (2019) found that no single optimizer is the “best" in general.
Similarly, Schmidt et al. (2020) claimed that optimizer performance varies from task to task. Choi et al. (2019)
have come to a different conclusion from all the studies cited above. As described in Section 1, Choi et al.
(2019) tuned the hyperparameter € of adaptive methods that control the degree of adaptivity, which leads
to non-adaptive methods. As a result, they found that well-tuned adaptive optimizers never underperform
simple gradient methods.

These studies provided insights into how optimizer selection influences generalization. However, they focused
on the classical supervised learning setting, in which the test distribution is assumed to be the same as the
training distribution. Our research differs from theirs in that we investigate optimizer selection’s influence on
OOD generalization.

2.2 Out-of-Distribution Generalization

Taming the distributional shift is a big challenge in machine learning research (Sugiyama & Kawanabe, 2012;
Ben-David et al., 2010; Pan & Yang, 2009; Szegedy et al., 2014; Arjovsky et al., 2019). Geirhos et al. (2020)
argued that many modern deep neural network models sometimes learn shortcut features instead of intended
features and overfit to a specific dataset.

Some studies have focused on generalization with adversarial noise to evaluate the impact of optimizer
selection on OOD generalization. For instance, the theoretical and empirical analysis by Khoury (2019)
showed that SGD is more robust against adversarial noise than adaptive optimizers. Wang et al. (2019)
argued that adversarial examples to some methods are not necessarily adversarial to others. Abdelzad et al.
(2020) found that the best optimizers for OOD detection vary by experimental setting. Metz et al. (2020)
reported that a learned optimizer somehow unexpectedly outperformed a human-designed optimizer in terms
of the OOD generalization.



Under review as submission to TMLR

Algorithm 1 Generic adaptive optimization method setup.

Require: {n;}1 ;: step size, {¢¢, ¢}, function to calculate momentum and adaptive rate, y: initial
parameter, £(8): objective function
1: fort=1to T do
2 gy < Vafi(0;_1) (Calculate stochastic gradients w.r.t. objective at timestep t)
3: wg + ¢¢(g1,...,g:) (Calculate momentum)
4: 1y < (g1, ..., g¢) (Calculate adaptive learning rate)
5. 0y « 0;_1 — nywl; (Update parameters)
6: end for

These studies provide valuable insights on optimizer selection for the OOD problem. However, we emphasize
that the previous work discussed above explores hyperparameters in a limited range. Khoury (2019) conducted
the most exhaustive hyperparameter search but tuned only the learning rate for adaptive optimizers. As we
briefly explain in Section 1, an exhaustive hyperparameter search is crucial for the empirical investigation of
an optimizer’s effect. Thus, we explored more hyperparameters than previous studies, including searching for
over 20,000 models.

Here we emphasize that only shifts such as adversarial noise have been studied in previous studies of
optimization selection for OOD generalization. Thus, we use a much more diverse set of real OOD datasets,
including image classification and NLP tasks where the distributional shift is significant, covariate shift,
correlation shift, subpopulation shift, and background shift, not only domain generalization. The set of
datasets we explored is the most exhaustive for evaluating the optimizer’s role in OOD generalization, as far
as we know.

Finally, we mention to some relevant works Kumar et al. (2022a); Wortsman et al. (2022); Chen et al. (2023);
Kumar et al. (2022b). Kumar et al. (2022a); Wortsman et al. (2022); Kumar et al. (2022b) have studied the
intricate balance between IID and OOD performance when fine-tuning pre-trained models. Chen et al. (2023)
theoretically showed that optimizing the ERM with the relaxed OOD penalty is not likely to have a good
performance and proposed a better practical solution.

3 Preliminaries

3.1 Optimizers Subjected to Our Analysis

Similar to previous studies (Wilson et al., 2017; Schneider et al., 2019; Choi et al., 2019), we compare two
types of optimizers. The first one is non-adaptive optimizers. The update equation at iteration ¢ of model
parameter 6, is as follows:

Vg 4 YU-1 + ntﬁet,lé(atfl)a 0, 0,1 —v, (1)

where 7, is the learning rate, £(8) is the loss, and Vg, , is the stochastic gradient, in the particular case of
stochastic gradient descent, v = 0. Optimizers with momentum terms such as Momentum SGD (Polyak,
1964), and Nesterov momentum (Nesterov, 2003) are also classified as non-adaptive optimizers, and = is
the parameter for controlling the momentum term. For Nesterov momentum, ¢(6;_1) should be replaced
001 —yvi—1).

The second type of optimizer is adaptive methods. Adam and RMSprop are adaptive optimizers and they
can be written in the form of the generic adaptive optimization method. The generic adaptive optimization

method can be written as in Algorithm 1. This is based on what (Liu et al., 2020) and (Reddi et al., 2018)
propose.

Our selection of optimizers aligns with prior research on optimizer comparison (Choi et al., 2019) and
recent studies on out-of-distribution (OOD) tasks, which have predominantly focused on Adam rather than
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alternatives such as AdamW. Therefore, we concentrate on the five most commonly employed optimizers
in practice (Schmidt et al., 2021). Given their widespread usage, we chose to focus on studying Adam’s
performance under the adaptive regime, as this would provide more pertinent findings for present-day practices.
Experimental results for AdamW (Loshchilov & Hutter, 2017) and SAM (Foret et al., 2020), although not for
all data sets, are also discussed in Appendix 1.3.

3.2 Out-of-Distribution Generalization Datasets

We use the following datasets to evaluate the optimizer influence on OOD generalization: DomainBed (Gulra-
jani & Lopez-Paz, 2021), Backgrounds Challenge (Xiao et al., 2021), (Koh et al., 2021), and CivilComments-
WILDS (Koh et al., 2021). These datasets include both artificially created and real-world data, and the
applications include image classification and NLP tasks. Although we describe the details of these datasets in
Appendix C, we summarize them below.

Image Classification Datasets: DomainBed consists of a set of benchmark datasets for domain general-
ization, which includes PACS (Fang et al., 2013), VLCS (Li et al., 2017), Office-Home (Venkateswara et al.,
2017), Terra Incognita (Beery et al., 2018) DomainNet (Peng et al., 2019), Rotated MNIST (Ghifary et al.,
2015), and Colored MNIST (Arjovsky et al., 2019). These datasets contain a variety of distributional shifts.
VLCS is a set of different image datasets, for example, images of birds from several datasets. Terra Incognita
is a dataset consisting of images taken by cameras at different locations. The difference in the location of the
camera corresponds to the difference in the domain. PACS, Office-Home, and DomainNet are image datasets
whose style varies by domain. For example, an image of PACS in one domain is photography, while that in
another domain is a sketch. Rotated MNIST is an artificially generated dataset of domains that have been
given different rotation angles.

Colored MNIST is an anomaly in the DomainBed dataset. P(Y|X) remains the same for all datasets
(covariate shift) except in Colored MNIST. This dataset is designed to make models fail by exploiting spurious
correlations in training environments. In particular, the dataset is such that the model can only exploit the
source of spurious correlation (color) and achieve a very high training accuracy without relying on the true
invariant source of correlation (shape). In contrast, none of the other datasets have such strong spuriousness.
The strength of the spurious correlation flips in the test domain and thus it induces a negative correlation
between the validation and the test accuracy.

The Backgrounds Challenge dataset measures a model’s robustness against background shift (Xiao et al.,
2021). A model is trained on an image and evaluated on the same image with a different background. If the
model exploits the background features during training, it will be fooled during evaluation. Therefore, if
the model strongly depends on the background, this dataset is a difficult OOD dataset, while if the model
does not, this dataset is easy to model. To further strengthen our claim, we also performed experiments on
CIFAR10-C and CIFAR10-P. The results are shown in Appendix I.1.

Natural Language Processing (NLP) Datasets: The CivilComments-WILDS dataset is cast as a
subpopulation shift problem. The shift problem tackles a binary classification problem that predicts the
toxicity of comments on articles, and domain vectors are assigned according to whether the comment refers
to one of eight demographic identities. In the subpopulation shift, the test distribution is a subpopulation of
the training distribution.

The dataset has the characteristics of a hybrid shift of a subpopulation shift and domain shift. This dataset
is cast as the problem of estimating a rating of 1-5 from the rating comments of each user. In this kind
of dataset, each user corresponds to a domain, and the goal is to produce a high performance for all user
comments.

3.3 Model Selection Method and Evaluation Metrics

In the training phase of DomainBed datasets, we do not access the data in the test domain but split data from
the training domains into a training dataset and validation dataset. We choose the model with the highest
average performance (accuracy) on the validation data in the training domain. As a metric for evaluation, we
evaluated the generalization performance in the test domain as the OOD accuracy.
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The Backgrounds Challenge uses Imagenet-1k as the training data set and selects models based on their
accuracy on the validation data in the training domain. After that, we measure the in-distribution performance
with IN9L (Xiao et al., 2021), which aggregates the test data into nine classes. As for the OOD performance,
we measure the classification performance on the data where the background image of IN9L is replaced with
the background image of other images.

In CivilComments-WILDS, we divide the data into training, validation, and test datasets and maximize
worst-group accuracy in the validation data (and by association, maximize the average accuracy over all
domains). Then, we perform model selection and evaluate the OOD accuracy on the test data. We adopt the
same hyperparameter selection strategy for datasets as that for CivilComments-WILDS. As a metric, we do
not evaluate the worst-group performance but rather the 10th-percentile accuracy for the performance of
each domain by following the standard federated learning literature (Caldas et al., 2018).

4 Experiments

4.1 Experimental Overview

Our study aims to elucidate the influence of optimizer selection under distributional shifts. To that end,
we perform image classification and NLP tasks and evaluate the trained model accuracy on the benchmark
datasets introduced in Section 3.2. By comparing the test accuracy for in-distribution samples with that for
OOD samples, we can observe how the solution found by each optimizer is robust to the distributional shift.
We investigate both ERM and IRMv1 (Arjovsky et al., 2019), a problem setting to solve IRM, to clarify
the relationship between the problem formulation and optimizer selection in the OOD problem. For VREx
(Krueger et al., 2021) small-scale experimental results are also provided in Appendix I1.7.

We compare five optimizers for all datasets except for the Backgrounds Challenge dataset. For the Backgrounds
Challenge dataset, we compare only Momentum SGD and Adam due to the computational cost.

We describe the configurations of hyperparameters and protocol for the experiments in further detail in
Appendix E and Appendix D respectively. The remaining experimental settings of environment are explained
in Appendix B.

Hyperparameter Tuning: The hyperparameters are tuned using Bayes optimization functionality of
Weights&Biases? by evaluating in-distribution validation accuracy. Bayesian optimization sequentially
explored the potential hyperparameter candidate points, and we evaluated all the trained models in the
search process for comparison. As a confirmation of the soundness of our hyperparameter search, Appendix
H.1 shows the histogram that the explored hyperparameters are drawn from the reasonably wide range. In
addition, we investigated the relationship between the number of trials to explore hyperparameters and the
best OOD performance and show results in Appendix G.2. The impact of initialization strategies during
hyperparameter optimization is also confirmed in Appendix H.3. The data shown in the box plot (Figure 2,
3, and 4) are from the evaluation of several trained models.

The number of epochs (the steps budget) used is in line with previous studies (Gulrajani & Lopez-Paz, 2021;
Koh et al., 2021; Choi et al., 2019) to ensure the soundness of our experimental design. Since we use the fixed
epoch, it might seem to be unfair than when tuning the epoch as well for the optimizer that converges faster.
Thus, we studied the effect of early stopping, which corresponds to the tuned epoch in Appendix G.4, and
the result confirms that employing a fixed epoch does not impair the fairness of our comparison experiments.
We discuss the details in Appendix G.4.

Boxplot: We believe that sharing the whole distribution of tuning outcomes is important because: it gives
an idea of how sensitive methods are to tuning and how much tuning effort is required. We also share the
raw data as scatter plots (Figure 15, 16, and 16) in Appendix F.4.

2https://wandb.ai/site
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Table 1: DomainBed, Backgrounds Challenge, and CivilComments-WILDS: Comparison of the best OOD
accuracy of ERM between five optimizers. We use oracle (see definition at 3.1 in Gulrajani & Lopez-Paz
(2021)) as model selection method in this table. The model selection results in the training-domain validation
set are shown in Table 12. Except for a small set of problems, momentum SGD outperforms Adam in all but
ten cases. As a soundness check, we confirm that our Adam results outperform all existing benchmark results
using Adam. Details are given in Appendix G.4.

. L Non-Adaptive Optimizer Adaptive Optimizer
Model OOD Dataset SGD Momentum Netsterov RMSProp Adam
A-Laver CNN Colored MNIST 34.01% 34.23% 40.56% 89.30% 73.92%
¥ RotatedMNIST 90.00% 95.41% 94.06% 96.27% 96.40%
VLCS 99.43% 99.43% 99.29% 99.29% 99.29%
PACS 88.67% 89.55% 89.25% 88.81% 89.30%
ResNet50 OfficeHome 64.64% 65.01% 63.82% 62.91% 63.82%
Terralncognita 63.21% 62.41% 62.85% 62.31% 61.35%
DomainNet 58.38% 61.91% 62.24% 55.74% 58.48%
BackgroundChallenge - 80.09% = = 77.90%
DistilBERT Amazon-WILDS 52.00% 54.66% 54.66% 53.33% 52.00%
CivilComment-WILDS 51.66% 57.69% 60.07% 45.39% 46.82%
ResNet-20 ColoredMNIST - 33.50% - - 31.47%
ViT PACS - 91.80% - - 91.26%
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Figure 1. DomainBed, Backgrounds Challenge, and CivilComments-WILDS: Comparison of the in-distribution
accuracy and the OOD accuracy of ERM between Momentum SGD and Adam. We also show the training
results in the exhaustive hyperparameter search range as a scatter plot in Appendix F.3. In these ten
plots, for each dataset, the in-distribution performance is separated by every ten bins 0.1. The average OOD
performance when evaluating the checkpoints in that bin is shown on the vertical axis. We compare which
optimizer shows better OOD performance for each model that achieves equivalent in-distribution performance.
In most cases, momentum SGD outperforms Adam in OOD performance in the rightmost region of our
interest (the region where high in-distribution performance is achieved).

4.2 Experimental Results

Figure 1 shows the relationship between the in-distribution and OOD accuracy in the ERM setting. The
x-axis of the plot is the in-distribution accuracy, and the y-axis is the OOD accuracy. To clarify the trend,
the in-distribution accuracy corresponding to the x-axis is divided into ten bins, and the average performance
of the OOD accuracy in each bin is shown on the y-axis.

We conducted a comparison between Momentum SGD, the best non-adaptive optimizer, and Adam, the best
adaptive optimizer. Our findings reveal that, in our field of study, where high in-distribution performance is
achieved, Momentum SGD outperforms Adam on 9 out of 10 datasets (Figure 1). With respect to the best
OOD performance, non-adaptive optimizers surpassed adaptive optimizer methods on 8 out of 10 datasets
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Figure 2. PACS and OfficeHome in DomainBed: Comparison of the in-distribution (validation) accuracy and
the out-of-distribution (test) accuracy of ERM across five optimizers. Non-adaptive optimizers outperform
the adaptive optimizers in terms of OOD generalization, and the gap between in-distribution performance and
OOD performance is small. The details and results of other dataset experiments are described in Appendix
F.2.

(Table 1). These results suggest that non-adaptive optimizers are more advantageous than adaptive optimizers
in OOD, despite their similar performance in the IID environment. For a more detailed explanation of the
experimental results for each dataset, please refer to the following section.

Experimental Results on DomainBed:

Figure 2 shows a box plot of the difference between the average in-distribution accuracy and average OOD
accuracy for ERM. In the following discussion, we call this difference a gap for convenience. Due to the
limitation of the paper length, only the plots of PACS and Office-Home are shown here. All results, including
IRM results, are shown in Appendixes F.2.1 and ?7.

We found two distinct optimizer effect patterns, depending on the dataset: i) PACS, Office-Home, VLCS,
Terra Incognita, Rotated MNIST, and DomainNet, and ii) Colored MNIST. Because these patterns appear in
both the results of ERM and IRM, we focus on ERM for the explanation.

For PACS, Office Home, VLCS, Terralncognita, RotatedMNIST, and DomainNet, the OOD accuracy is
greater for non-adaptive optimizers. The gap between the mean OOD accuracy and the mean in-distribution
accuracy was smaller for the non-adaptive optimizer except for Terralncognita. This means the models
trained with the non-adaptive optimizer are more robust on average. In Terralncognita, the non-adaptive
optimizer significantly outperforms the adaptive optimizer on the average in-distribution performance and
OOD performance. We note, however, that except in this problem, the adaptive optimizer achieves a
smaller gap between the two. As shown in Figure 1, when comparing models with the same in-distribution
performance, the non-adaptive optimizer showed higher OOD accuracy than the adaptive optimizer. The
results in Figures 1 and 2 confirm that the non-adaptive method achieves higher OOD accuracy than the
adaptive method, both on average and for models with the same in-distribution performance.

Colored MNIST shows the opposite pattern of these results, where the adaptive optimizer is better than
the non-adaptive optimizers. As outlined in Section 3.2, Colored MNIST differs from the other datasets. To
comprehend why adaptive optimizers are more effective in OOD generalization for this dataset, we have
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Figure 3. Backgrounds Challenge: Comparison of the in-distribution (validation) accuracy and the out-of-
distribution (test) accuracy of ERM across two optimizers. In terms of OOD generalization, Momentum
SGD outperforms Adam in both average and best OOD performance. The highest value of in-distribution
accuracy remains the same, but Momentum SGD shows higher performance on average.

plotted the average training, validation, and test accuracy over time during training, as illustrated in Figure
33. Our explanation for this outcome can be found in Appendix G.3.

We note our considerations regarding the exceptional behavior of ColoredMNIST. ColoredMNIST is a binary
classification task dataset with random labels, where spurious features are positively correlated with invariant
features in in-distribution and negatively correlated with OOD. Non-adaptive optimizers learn the spurious
features, achieve the oracle performance for in-distribution and perform worse than a random guess for OOD
due to inverted correlations. Adaptive optimizers, in contrast, seem to overfit the training data, achieving
100% accuracy in the training set (more than oracle ?) in this dataset, and failing to learn the spurious
features. Due the aforementioned (synthetic) inverted correlations in the dataset, this overfitting behaviour
in-distribution happens to favor adaptive optimizers. This behavior happens exceptionally on ColoredMNIST
due to these synthetic flips in correlation. This exploitation unexpectedly enables Adam to avert being
trapped in the training domain and produces better OOD generalization.

Experimental Results on Backgrounds Challenge:

Backgrounds Challenge requires training of ImageNet-1k on ResNet50 from scratch, and it takes 256 GPU
hours to obtain a single trained model, so we only compared Momentum SGD with Adam. Because Momentum
SGD achieved competitive performance among non-adaptive optimization methods in the DomainBed and
WILDS experiments, we adopted Momentum SGD to represent non-adaptive optimization methods. In
the same way, Adam outperformed RMSProp in almost all the benchmarks, so we adopted Adam as a
representative of the adaptive optimizers.

Figure 3 compares the accuracy for ORIGINAL (in-distribution) and Mixed-Rand (out-of-distribution). The
best in-distribution performance is the same for each optimizer, but concerning the best OOD performance,
the non-adaptive optimizer outperformed the adaptive optimizer. As can be seen from Figure 1 (second
row, middle column), particularly in the region of high in-distribution performance on the right, the OOD
performance of Momentum SGD exceeds that of Adam.

Experimental Results on WILDS: A comparison of in-distribution and OOD averages for WILDS is
shown in Figure 4. It can be clearly seen that the adaptive optimizer is fit too well to the in-distribution in
the WILDS problem setting. For and CivilComment-WILDS, as in DomainBed and Backgrounds Challenge,
the non-adaptive optimizer outperforms the adaptive optimizer in terms of OOD generalization. The gap
between in-distribution accuracy and OOD accuracy is also tiny for non-adaptive optimizers. In particular,
the CivilComments-WILDS experimental result is remarkable, as both non-adaptive and adaptive optimizers
show similar high in-distribution performance, but in the OOD environment, adaptive methods significantly
fail to make inferences.

3Since ColoredMNIST includes label flip as noise, even the best model that correctly learns the data rules will only perform
85%.
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Figure 4. and CivilComments-WILDS: Comparison of the in-distribution (validation) accuracy and the
out-of-distribution (test) accuracy of ERM across five optimizers. Both non-adaptive and adaptive optimizers
have similar in-distribution accuracy, but the adaptive method significantly degrades the performance of the

OOD generalization.
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Figure 5. Three types of correlation behavior: increasing return (PACS), linear return (DomainNet), and
diminishing return (). The legend circles on the right side of each figure show, in order, the SGD, Momentum
SGD, Nesterov Momentum, RMProp, and Adam. The details and results of other dataset experiments are
described in Appendixes 15, 16, and 16

4.3 Correlation Behaviors

Our results show that three typical types of behavior are observed in terms of the correlation between
in-distribution performance and OOD performance for different datasets. Detailed results of the experiments
on all datasets are shown in Appendix F.4. We follow Miller et al. (2021), who used a probit transform to
show the relationship. The three types are increasing return, linear return, and diminishing return. These
show how much performance in OOD can be expected if we increase the in-distribution performance.

The increasing return is an example, as shown in the leftmost part of Figure 5. The increasing returns in
large regions of the in-distribution generalization significantly affect the OOD generalization, suggesting that
the last tuning is significant for the OOD generalization, as seen in all domain generalization datasets except
for DomainNet.

The linear return is as shown in the middle of Figure 5. The OOD accuracy increases linearly with the
in-distribution accuracy. This is generally the same result for in-distribution validation and test.

10
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Conversely, diminishing return behavior, illustrated in the rightmost part of Figure 5, indicates that substantial
in-distribution improvement leads to a saturation of OOD generalization with only a marginal effect. This
observation implies that the effort invested in fine-tuning might not always yield significant enhancements
in OOD generalization. We have observed similar trends in settings with subpopulation shifts, such as
CivilComments-WILDS.

In Appendix F.4, we present our experimental results without a probit transform, confirming that diminishing
returns are not necessarily linear before probit transformation. This finding aligns with recent studies by
Wenzel et al. (2022); Teney et al. (2022), stating that the accuracy of IID and OOD varies across datasets.
Moreover, as Baek et al. (2022) suggests, the occurrence of linear return depends on the problem set. Our
results support these claims, providing a comprehensive analysis of datasets and problem sets that Miller
et al. (2021) did not address and uncovering trends they did not reveal.

For practitioners, our findings offer valuable insights into adjusting their expectations and strategies based
on the observed behavior. For instance, if they work with a dataset similar to CivilComments, they can
anticipate one of the identified types of behavior. Should their dataset exhibit saturating behavior, they can
adjust their expectations accordingly; conversely, if their dataset demonstrates a regime where every slight
improvement in in-distribution accuracy aids, they should pursue enhanced in-distribution optimization.

5 Discussion and Conclusion

We conduct an exhaustive empirical comparison of the generalization performance of various optimizers under
different practical distributional shifts. Notably, ten state-of-the-art OOD datasets were used to study the
environment of broad shifts in correlation and diversity shifts. The investigation elucidates how optimizer
selection affects OOD generalization. As the main claim, the answer to our research objective is that the
non-adaptive optimizer is superior to the adaptive optimizer in terms of OOD generalization.

The following evidence supports this: i) when comparing in-distribution accuracy is the same, OOD accuracy
of non-adaptive optimizers is greater than that of adaptive optimizers (Figure 1); ii) on average and top
performance, the OOD accuracy of the non-adaptive optimizer is higher (Figures 2, 3, and 4). All these
points support our main claim that non-adaptive optimizers are superior in OOD generalization within our
exhaustive experiments. We have tuned Adam to the range that it is used in practice and have updated
Adam’s scores on all OOD datasets, which use Adam optimizer as default for benchmarks. This supports the
soundness of our experiments.

Overall, we can conclude that optimizer selection influences OOD generalization in the cases we are interested
in. Future research should consider the algorithm or loss function and optimizers in the OOD problem.
The results of IRM show a trend similar to ERM’s, but a more detailed analysis is needed to consider the
differences in loss landscapes. All these points support our main claim that non-adaptive optimizers are
superior in OOD generalization within our exhaustive experiments.

Finally, we would like to mention the limitations of our work. One limitation is that we did not study recently
proposed and less popular optimizers.

The choice of optimizers we study is in line with previous work (Choi et al., 2019), (Schmidt et al., 2021)
on optimizer comparison and with most recent OOD work; those studies overwhelmingly focused on Adam
rather than e.g., AdamW (Loshchilov & Hutter, 2017). Similarly, other less popular optimizers such as SWA
(Izmailov et al., 2018), SWAD (Cha et al., 2021), have been omitted to allow for a more extensive study of
the chosen methods.

Another limitation is that we employed a total of six models used in the DomainBed (ConvNet, ResNet20,
ResNet50 and Vision Transformer (Dosovitskiy et al., 2020)), Backgrounds Challenge (ResNet50), and WILDS
(DistilBERT (Sanh et al., 2019)) benchmarks.
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