
Hankel Singular Value Regularization for Highly
Compressible State Space Models

Paul Schwerdtner
Courant Institute of Mathematical Sciences

New York University
New York, NY 10012

paul.schwerdtner@nyu.edu

Jules Berman
Courant Institute of Mathematical Sciences

New York University
New York, NY 10012
jmb1174@nyu.edu

Benjamin Peherstorfer
Courant Institute of Mathematical Sciences

New York University
New York, NY 10012

pehersto@cims.nyu.edu

Abstract

Deep neural networks using state space models as layers are well suited for long-
range sequence tasks but can be challenging to compress after training. We use
that regularizing the sum of Hankel singular values of state space models leads to a
fast decay of these singular values and thus to compressible models. To make the
proposed Hankel singular value regularization scalable, we develop an algorithm
to efficiently compute the Hankel singular values during training iterations by
exploiting the specific block-diagonal structure of the system matrices that is we
use in our state space model parametrization. Experiments on Long Range Arena
benchmarks demonstrate that the regularized state space layers are up to 10× more
compressible than standard state space layers while maintaining high accuracy.

1 Introduction

1.1 Compressing state space models

As deep neural networks (DNNs) get bigger, compression via quantization [27, 32], pruning [64, 39,
62], and distillation [29, 43] becomes ever more important [9, 65, 19]. In this work, we focus on
compressing neural networks for long-sequence modeling. In particular, we focus on DNNs with state
space models (SSMs) as layers [21, 22, 24, 15], which have been shown to achieve state-of-the-art
accuracy while reducing training and inference costs compared to transformer models [21, 53, 59].
Significant progress was necessary to make SSM layers competitive for long-sequence tasks [22, 15].
After the initial success of S4 layers [22], a big step forward were S5 layers [53], which contain linear
time-invariant systems that have diagonal system matrices and reach state of the art performance while
balancing expressivity with training and inference costs. Additionally, initialization of SSMs has
been identified as being critical for training success, for which HiPPO matrices are now commonly
used [22].

In this work, we build on DNNs with SSM layers that are well suited for long-sequence tasks and
aim to further reduce inference costs by training neural networks such that the SSM layers are highly
compressible: The critical quantity in SSMs that controls inference costs is the order n, which is
the dimension of the internal state [26]. Therefore, instead of training DNNs with general SSMs

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

as layers with order n, we regularize the training to determine SSMs of order n but such that at
the same time SSMs with lower order r ≪ n exist that mimic the sequence-to-sequence map of
the individual SSM layers. Thus, in our approach, training is performed with a larger order n to
provide the opportunity for exploring a large parameter space for high expressivity while enabling
compression as a post-processing step. Our proposed regularization is founded on well-established
and rigorous system-theoretic results [1].

1.2 System-theoretic perspective on SSM compressibility

A classical system-theoretic way [1] of describing a sequence-to-sequence map {uk}∞k=0 7→ {yk}∞k=0
induced by a linear time-invariant dynamical system (as used in S5 [53]) is via the convolution with
the impulse response hk ∈ Rp×m,

yk =
∑k

i=0
hk−iui , k = 0, 1, 2, 3, . . . ,

where the input uk ∈ Rm and output yk ∈ Rp at time step k are of dimension m and p, respectively.
Note that the common design choice in deep state space models is to set m = p. This convolution
leads to the Hankel operator H : ℓm2 → ℓp2 that acts on sequences and maps {uk}∞k=0 to {yk}∞k=0.
The Hankel operator can be explicitly described by the blocks Hij = hk−i−j for i, j ∈ 0, 1, 2, 3, . . .
and is linear and bounded. Importantly, the number of non-zero singular values of a Hankel operator
is finite and gives the McMillan degree, which is the minimal order n necessary for an SSM to
describe the map {uk}∞k=0 7→ {yk}∞k=0 [1]. Analogous definitions hold for finite-length sequences
ns < ∞, in which case the finite Hankel operator is obtained by Hij = hk−i−j for i, j = 0, . . . , ns.
While clearly a system of order ns exists to describe the map {uk}ns

k=0 7→ {yk}
ns

k=0, the goal is
finding a system with order n ≪ ns that achieves the same mapping or at least a good approximation
of it.

The key for compressibility are the singular values of the Hankel operator: if n is the number of
non-zero singular values σ1, . . . , σn > 0, then there exists a system of order r ≤ n that maps
{uk}ns

k=0 7→ {ŷk}
ns

k=0 with error ∥ŷk − yk∥ℓ2 ≤ 2∥u∥ℓ2
∑n

i=r+1 σi. Thus, the quicker the singular
values of the Hankel operator decay, the more compressible a system is, which is relevant for, e.g.,
model reduction [50, 5, 36].

When training SSM layers with standard optimization, however, one only prescribes an order n, and
then the optimizer can distribute the Hankel singular values at will, which typically leads to systems
that are only poorly compressible. In Figure 1, we show the decay of the Hankel singular values of
the systems learned for the Long Range Arena (LRA) [59] image benchmark. The Hankel singular
values decay slowly and thus there cannot exist a much smaller system with r ≪ n that achieves a
good approximation of the sequence-to-sequence map of the original state space models of order

ba
la

nc
in

g
tr

an
sf

or
m

at
io

n

 s
ta

te
 tr

un
ca

tio
n

re
du

ce
d

or
de

r i
nf

er
en

ce

Energy
coordinates

Truncated
coordinates

co
nc

en
tr

at
ed

di
sp

er
se

d

10− 6

10− 4

10− 2

100

102

our method: HSV regularization

102

104

106

108

0 64 128 192 256 320 384

no HSV regularization

layer 2
layer 4
layer 6

H
an

ke
ls

in
gu

la
r

va
lu

e
σ i

fast HSV decay

layer 2
layer 4
layer 6

slow HSV decay

0
20
40
60
80

100

0
20
40
60
80

100

50 60 70 80 90

te
st

ac
cu

ra
cy

%

HSV regularization
no regularization

te
st

ac
cu

ra
cy

%

truncation ratio %

Figure 1: We propose to regularize the Hankel singular values of SSMs so that they become
compressible. Left: Regularizing with the Hankel singular values during training leads to SSMs
with a fast Hankel singular value (HSV) decay. Middle: SSMs with a fast HSV decay have many
low-energy states that only contribute little to the layer output. Right: Compressing the SSM
by truncating only such low-energy states changes the corresponding sequence-to-sequence map
insignificantly and retains the overall accuracy. Without our regularization, HSVs decay slowly and
compression leads to an accuracy deterioration.

2

n. The results in Figure 1 are in agreement with other attempts of compressing SSMs such as [13],
which show that on standard LRA benchmarks the Hankel singular values of the SSM layers also
decay slowly and thus the systems are not well compressible when trained with default procedures.

1.3 Literature review

Models with state space layers DNNs with state space models as layers have recently been
made popular starting with the introduction and utilization of the high-order polynomial projection
operators (HiPPO) framework in [22], which was applied as structured state space sequence model
(S4) to efficiently model long sequences in [23] and outperformed the state of the art in the Long
Range Arena (LRA) benchmark [59]. This was a major step forward as other architectures such as
recurrent neural networks (RNNs) [2, 12, 51, 8] and transformers [60] and memory efficient variants
of transformer layers [10, 33, 35, 4, 25, 61] achieved poorer performance at the time on long-range
sequence tasks as in [59]. After the initial introduction of S4, a simplified SSM layer (S5) was
introduced in [53], in which S4 was streamlined from its original single-input single-output (SISO)
and convolutional formulation to a multi-input multi-output (MIMO) time-domain formulation.
The time-domain formulation, which leverages a parallel scan for computational efficiency, was an
important contribution as it facilitates more variations such as time-varying and input-dependent
SSM operators, which are explored independently in Liquid-S4 [28].

Large scale SSMs are explored in Mamba-S6 [21], which introduces selective SSMs that allow for
efficient filtering and context compression, and H3 [15], which is extended further in [49]. The new
class of structured SSMs has found a wide range of applications such as audio generation [17] and
vision tasks [44, 31].

Even methodological contributions to the layer architecture are still made such as a recent state-free
transfer-function-based implementation [46], novel parameterization schemes [63], a reformulation
of RNNs in the SSM framework [45], or bidirectional extensions of Mamba [30].

Compression and distillation of SSMs Given that costs and the number of parameters grow with
n, the order of the SSM, there has been investigations about how to keep n small without sacrificing
expressivity. While pruning and post-training compression is extensively studied for transformer
architectures [43, 7, 58], model compression for SSM and mixed models has only recently started
to gain traction [16, 42, 56]. The work [26] develops system and control-inspired criteria for state-
pruning over multiple layers. In contrast, we propose to regularize the Hankel singular values
already during training, which is an approach from classical system and control theory for system
identification [48, 55, 20] and has been pursued in the context of deep networks with state space
model layers in [14]. Our work combines the ideas of [14] and [26]: we leverage Hankel singular
value regularization as in [14] and multi-layer state pruning as in [26]. Combining Hankel singular
value regularization with multi-layer state pruning enables layer-dependent rank adaptation, which is
important when networks get deeper as necessary for the benchmarks we consider. In contrast, the
work [14] uses the same rank for all layers. Moreover, we consider a block-structured real-valued
parametrization of stable systems, for which we propose novel algorithmic methods for the efficient
Hankel singular value computation compared to the diagonal matrices and corresponding algorithms
considered in [14]. Combining the layer-adaptive rank, the block-diagonal structure, and our novel
algorithms for computing singular values allows us to demonstrate scalability on Long Range Arena
benchmarks, thereby highlighting relevance to language modeling tasks beyond the physics problems
considered in [14]. Directly applying general model reduction methods to SSMs is attempted in [13]
but the method in [13] requires retraining a smaller model after the reduction, which can be a costly
step that our approach avoids. Additionally, there is distillation that aims to learn a smaller model
from a larger teacher model; see, e.g., [29]. Distillation in the context of SSMs is explored in [43].

1.4 Our approach and summary of contributions

We propose a training procedure that allows efficiently regularizing the Hankel singular values of the
SSM layers so that the singular values decay favorably for compression. Our contributions are:

• Connecting SSM layers to system theory for deriving conditions under which layers are compress-
ible.

3

• Regularizing Hankel singular values to nudge the optimizer to seek models that can be well
compressed with standard tools from system theory such as balanced truncation, while maintaining
accurate sequence-to-sequence mappings. To this end, we prove the differentiability of a nuclear
norm regularizer constructed from the Hankel singular values.

• For efficient training, developing an algorithm that enables the computation of so-called gramians,
which are needed to evaluate the Hankel singular values of SSMs, with our imposed block structure,
that reduces the computational cost from O(n3) to O(n2) in the state dimension n.

• Demonstrating that applying our method can lead to up to a 10× improvement in accuracy for
strongly compressed models on Long Range Arena benchmarks.

2 Hankel singular value regularization (HSVR)

We propose to regularize the training of neural-network models with SSM layers so that the SSMs
have a fast Hankel singular value decay which means they can be compressed efficiently. The
key to regularizing the Hankel singular values is ensuring that the regularizer building on them is
differentiable and that computing the singular values is efficient during the training iterations, for
which we introduce a scalable parametrization and a scalable algorithm.

2.1 Parametrization of SSMs for scalable computation of Hankel singular values

Time-discrete SSMs and their Hankel singular values Each SSM layer consists of a linear
time-invariant dynamical system,

xk+1 = Axk +Buk, x0 = 0 ∈ Rn,

yk = Cxk +Duk,
(1)

where A ∈ Rn×n,B ∈ Rn×p,C ∈ Rp×n, and D ∈ Rp×p, are the system, input, output, and
feedthrough matrices, respectively, and {uk}ns

k=0 and {yk}
ns

k=0 are the input signal and the system
output, respectively. The controllability gramian P and observability gramian Q of size n× n of
the system (1) carry information about the singular values of the underlying Hankel operator H:
For stable, controllable, and observable systems (terms defined in the Appendix A), the non-zero
Hankel singular values σ1, σ2, . . . of the system (1) are the square-roots of the eigenvalues of the
product PQ, σi(H) =

√
λi(PQ), where λi denotes the i-th eigenvalue of its matrix argument. The

gramians can be computed as the solutions to the discrete Lyapunov equations

APA⊤ − P +BB⊤ = 0, (2)

A⊤QA−Q+C⊤C = 0. (3)

A straightforward solution to these Lyapunov equations can be computed by vectorizing both equa-
tions, which yields

vec(P) = −(A⊗A− I)
−1vec(BB⊤), (4)

vec(Q) = −(A⊤ ⊗A⊤ − I)
−1

vec(C⊤C), (5)

where vec denotes the vectorization operator that stacks all columns of its matrix argument. However,
computing P and Q using (4) scales as O(n6). The Bartels-Steward algorithm [3] can be used to
solve general Lyapunov equations in O(n3) using generalized eigen-decompositions.

Parametrization via rotation matrices We now parametrize discrete dynamical systems (1) via
scaled rotation matrices. Scaled rotation matrices lead to favorable properties such as making it
easy to enforce stability. Furthermore, the rotation block structure allows us to derive algorithms
to compute solutions of the Lyapunov equations (2)–(3) with costs that scale as O(n2) (instead of
O(n3) as in the standard Bartels-Steward algorithm). Note that we are not claiming we are the first
to recognize the benefits of parametrizing SSMs with rotation matrices as a discrete-time alternative
to the HiPPO framework (see, e.g., [11]) but we show how they are useful for efficiently computing
Hankel singular values for regularization.

4

In the following, we set q = n/2 and only consider the case m = p to ease the notation burden. At
layer ℓ, we have a system of the form (1) with matrices

A(ℓ) =


A1(ρ

(ℓ)
1 , α

(ℓ)
1) 0 · · · 0

0 A2(ρ
(ℓ)
2 , α

(ℓ)
2) · · · 0

...
...

. . .
...

0 0 · · · Aq(ρq
(ℓ), α

(ℓ)
q)

 , B(ℓ) =


e1 B

(ℓ)
1

e1 B
(ℓ)
2

...
...

e1 B(ℓ)
q

 , (6)

where e1 = [1, 0]⊤ and each block in A(ℓ) is a rotation matrix

Ai(ρ
(ℓ)
i , α

(ℓ)
i) = ρ

(ℓ)
i

[
cos(α

(ℓ)
i) sin(α

(ℓ)
i)

− sin(α
(ℓ)
i) cos(α

(ℓ)
i)

]
∈ R2×2, B

(ℓ)
i =

[
b
(ℓ)
i1

b
(ℓ)
i2

]
∈ R2×(p−1) , (7)

which has the complex conjugate eigenvalues ρ(ℓ)i

(
cos(α

(ℓ)
i)± i sin(α

(ℓ)
i)

)
. The output matrix C(ℓ)

of size p×n has no special structure. In our experiments, we only use diagonal feed-through matrices
D(ℓ) of size p× p; which is standard also in other works [53].

We can summarize the parameters of the SSM in layer ℓ in the parameter vector θ(ℓ) ∈
R2q+n(p−1)+pn+p, which contains in vectorized form α(ℓ),ρ(ℓ), b

(ℓ)
11 , . . . , b

(ℓ)
q2 ,C

(ℓ),D(ℓ). Notice
that the number of SSM-parameters per layer, i.e., the dimension of θ(ℓ), grows linearly in the order
n of the SSM, which is the same as using diagonal system matrices as in the S5 SSM layers [53].

The parametrization given by rotation matrices is universal in the sense that it is dense in the space of
linear time-invariant systems of order n, which is shown in the following. Recall that systems with the
same impulse response are equivalent in the sense that they describe the same sequence-to-sequence
map.
Proposition 1. For any linear time-invariant system of order n there exists an infinitesimal perturba-
tion such that the sequence-to-sequence map {uk}∞k=0 7→ {yk}∞k=0 of the perturbed model can be
described by an SSM with matrices of the form (7) with α,ρ ∈ Rñ, where ñ ≤ n.

Our proof, which we present in the Appendix A.1, uses [34, Chapter 2.2] to break up any Jordan blocks
with infinitesimal perturbations, exploits the fact that controllable systems are dense in the space
of n-dimensional systems [54, Proposition 3.3.12], and finally uses the block Schur decomposition
to bring A into the desired form and applies Givens rotations to establish the first column of B as
repeated standard-basis vectors.

Enforcing stability Stability of SSMs parametrized via rotation matrices can be achieved by
enforcing that the entries of the ρ vector remain below one for all layers. Thus, for example, it is
sufficient to threshold the entries of ρ with tanh, which we use in our implementation. Moreover, we
scale the parameters α using tanh to be contained in the interval [0, π]. With this parametrization,
we can attain any pair of complex-conjugate eigenvalues inside the unit-disk and thus have a simple
and differentiable parametrization of stable systems.

2.2 Scalable training procedure

Leveraging block-diagonal structure for computing singular values Recall that if we want to
regularize the distribution of the Hankel singular values, then we have to compute them at least
once in each gradient-descent step during training. The standard algorithm for computing Hankel
singular values is solving the Lyapunov equations (2) and (3) with the Bartels-Stewart algorithm [3],
which incurs costs that scale as O(n3) with the system order n. We now introduce an algorithm that
leverages the block-diagonal structure (6) of our system parametrization and achieves a cost scaling
of O(n2). We describe the algorithm for the control Lyapunov equation (2); the treatment of (3) is
analogous.

Plugging our parametrization (6) into the control Lyapunov equation (2) leads to
A1 0 ··· 0

0 A2 ··· 0

...
...

. . .
...

0 0 ··· Aq




P 11 P 12 ··· P 1q

P⊤
12 P 22 ··· P 2q

...
...

. . .
...

P⊤
1q P⊤

2q ··· P qq


A1

⊤ 0 ··· 0

0 A2
⊤ ··· 0

...
...

. . .
...

0 0 ··· Aq
⊤

−


P 11 P 12 ··· P 1q

P⊤
12 P 22 ··· P 2q

...
...

. . .
...

P⊤
1q P⊤

2q ··· P qq

+


B1

B2

...

Bq




B1

B2

...

Bq


⊤

= 0,

5

where each P ij ∈ R2×2. This decomposes into q Lyapunov equations

AiP iiAi
⊤ − P ii +BiBi

⊤ = 0,

for i ∈ {1, . . . , q} and q(q − 1)/2 Sylvester equations (note that the solution P of (2) is symmetric)

AiP ijAj
⊤ − P ij +BiBj

⊤ = 0, (8)

for i ∈ {1, . . . , q} and j ∈ {i + 1, . . . , q}, which can be solved similarly by vectorizing as in (4),
which is efficient for small 2-by-2 blocks. As each block P ij can be solved independently, solving
for P can be efficiently parallelized. The overall costs scale as O(q2) and thus as O(n2) because
q = n/2. Note that the computational costs of the regularizer is independent of the sequence length
ns.

After computing the gramians P and Q, the Hankel singular values are the singular values of the
product PQ, which can be computed using standard algorithms. Note that the block structure in the
system matrix A does not imply a block structure in P and Q. This is again because the Hankel
operator does not consider the subsystems separately but considers their interaction as well. For a
block structure in P and Q, the matrices B and C would have to be block-diagonal as well, which
limits the expressivity of the SSM, and thus of the corresponding neural-network model.

Fast time integration with associative scan A major ingredient for making SSMs scalable is using
parallel scans for computing output sequences. For diagonal matrices A, a parallel scan version has
been introduced in [53], but it critically depends on A to be a diagonal matrix to keep the costs in
O(n). The work [11] builds on rotation matrices as well and proposes a parallel scan version that
explicitly calculates products of the blocks. In contrast, we now show that an analogous associative
scan operation exists for our parametrization via rotation matrices that avoids having to compute
products of the blocks explicitly.

For an associative binary operator ⋆, i.e. an operator such that (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c), and a sequence
of elements [a1, . . . , ans], the scan operation returns [a1, (a1 ⋆ a2), . . . , (a1 ⋆ a2 ⋆ · · · ⋆ ans)]. In [53],
the authors consider the associative binary operation

⋆ : (Cn×n,Cn), (Cn×n,Cn) → (Cn×n,Cn), ((X,x), (Y ,y)) 7→ (Y X,Y x+ y),

where the matrix-matrix product Y X can be computed in O(n), when X and Y are diagonal
matrices. This is the key why SSMs with diagonal matrices in [53] are scalable. The sequence, on
which the scan operates, is then initialized as

a = [(A,Bu1), (A,Bu2), . . . , (A,Buns
)]. (9)

It is easy to verify that the scan with ⋆ over a leads to the state sequence of (1) by noting that the scan
output elements can be written as si = (Ai,

∑i
k=1 A

i−kBuk). The second element of each tuple si
is exactly the state xi for a discrete system (1). Here Ai denotes the i-fold matrix product of A with
itself.

For our rotation-based parametrization, we can define a similar associative binary operation

⋆̃ :(Rq,Rq,Rn), (Rq,Rq,Rn) → (Rq,Rq,Rn), (10)

(x(1),x(2),x(3)), (y(1),y(2),y(3)) 7→ ((x(1) ⊙ y(1)), (x(2) + y(2)),A(y(1),y(2))x(3) + y(3)),

where ⊙ denotes the Hadamard product and A(·, ·) is formed as in (6) for its vector-valued arguments.
We can then initialize the scan sequence for each layer with

b = [(ρ,α,Bu1), (ρ,α,Bu2), . . . , (ρ,α,Buns
)].

We can verify that a scan with ⋆̃ over b leads to the state sequence because the scan output elements
can be written as si = (A(ρ,α))i,

∑i
k=1(A(ρ,α))i−kBuk). Here we use the fact that for scalars

x, y, β, γ, we have that

x

[
cos(β) sin(β)
− sin(β) cos(β)

]
y

[
cos(γ) sin(γ)
− sin(γ) cos(γ)

]
= xy

[
cos(β + γ) sin(β + γ)
− sin(β + γ) cos(β + γ)

]
,

such that we can use that A(x,β)A(y,γ) = A(x ⊙ y,β + γ) in (10). This avoids having to
compute the product of all blocks on the diagonal as in [11]. Using our parallel scan operation, the
costs of generating an output sequence of length ns scale as O(log(ns)n), assuming ns processors
which is the same scaling as when using diagonal matrices as in [53].

6

2.3 Regularizing Hankel singular values during training

Differentiable regularizers involving Hankel singular values Building on the efficient compu-
tation of Hankel singular values from the previous section, we now develop a regularizer R that
depends on the Hankel singular values of all layers. We stress that building regularizers based on
the Hankel singular values is standard practice in systems and control theory [48, 55, 20] and has
been proposed in the work [14] for deep state-space models for the first time; see Section 1.3 for an
in-depth comparison to these works.

First, we show a new result that even though the individual Hankel singular values are not differen-
tiable with respect to the entries of the system matrices (6) (i.e., the network parameters), the sum of
the Hankel singular values is differentiable. We follow similar arguments as used in [52, Proposition
3.7], which uses that different branches of singular value curves that intersect each other and form
a non-simple singular value still add up smoothly locally. Denote with σ(ℓ) = [σ

(ℓ)
1 , . . . , σ

(ℓ)
n] the

singular values of the system at layer ℓ.
Proposition 2. Given an asymptotically stable matrix A, as well as B and C such that the pairs
(A,B) and (A,C) are controllable and observable, respectively, let P and Q be the solutions (2)
and (3), respectively. Then the sum of Hankel singular values

∑n
i=1 σi of PQ depends smoothly on

A, B, and C.

For a proof, see Appendix A.2.

Regularizing the Hankel nuclear norm Nuclear norm regularization, i.e., penalizing the sum
of singular values of a matrix, to encourage singular values to decay rapidly, is common practice
in machine learning; see, e.g., [20, 14] for uses cases in reducing systems. With the tools we just
developed, we can now regularize sums of Hankel singular values of SSM layers for a fast Hankel
singular value decay. In particular, the Hankel nuclear norm of a system is the sum of its Hankel
singular values.

For this, we introduce the regularizer

R∗(σ
(1), . . . ,σ(L)) =

L∑
ℓ=1

n∑
i=1

σ
(ℓ)
i , (11)

which is added to the loss during training. Recall that Proposition 2 in combination with our
parametrization guarantees that R∗ is differentiable with respect to the neural-network parameters.

2.4 Compressing the trained models (post-processing)

Compressing regularized SSMs with balanced truncation After having trained a DNN with SSM
layers with regularized Hankel singular values, we can apply off-the-shelf model reduction methods to
compress the SSM layers. We use balanced truncation to compute the compressed (reduced) systems,
because it is well studied and developed and the reduced system inherits favorable properties such as
stability from the original, full system. We use the standard square-root method [6, Chapter 6.2] to
compute the balanced truncation SSM with reduced state dimension. For this, in each layer we first
compute the final controllability and observability gramians P and Q by solving (2) and (3). After
that, we compute the singular value decomposition ΦΣΨ⊤ = svd(S⊤R), where SS⊤ = Q and
RR⊤ = P are Cholesky decompositions of Q and P . Then we can define the projection matrices
V = S⊤Φ:,:rΣ

− 1
2

:r,:r and W = R⊤Ψ:,:rΣ
− 1

2
:r,:r, where for a matrix M , the expression M :,:r denotes

the first r columns of M and M :r,:r denotes the upper left r-dimensional block of M . The reduced
r-dimensional SSM is then obtained as [W⊤AV ,W⊤B,CV ,D].

For balanced truncation, the error incurred in the sequence-to-sequence map {uk}k 7→ {ŷk}k of the
compressed system is bounded as

∥ŷk − yk∥ℓ2 ≤ 2∥u∥ℓ2
n∑

i=r+1

σi (12)

and thus controlled by the sum of truncated Hankel singular values. Thus, the bound (12) provides a
viable criterion for choosing the compression order r in the different layers; see next paragraph.

7

0

20

40

60

80

100

50 60 70 80 90 100

(a) sCIFAR10 (grayscale)

0

20

40

60

80

100

50 60 70 80 90 100

(b) sMNIST dataset

40

60

80

100

50 60 70 80 90 100

(c) IMDB dataset

40

60

80

100

50 60 70 80 90 100

(d) PATH dataset

40

60

80

100

50 60 70 80 90 100

(e) PATH-X dataset

HSVR (ours) no regularization Pruning LAST [26]

te
st

ac
cu

ra
cy

%

truncation ratio %

random chance line

truncation ratio %

random chance line

truncation ratio %

random chance line

te
st

ac
cu

ra
cy

%

truncation ratio %

random chance line

truncation ratio %

random chance line

Figure 2: Regularizing Hankel singular values leads to highly compressible SSMs while maintaining
accuracy.

Balancing the reduced order r of compressed SSMs across all layers The Hankel singular values
give us guidance to which order r ≪ n to compress the regularized SSMs: We define the energy of
the SSM at layer ℓ as e(ℓ) =

∑n
i=1 σ

ℓ
i , which is the sum of all Hankel singular values of the SSM at

layer ℓ. We then prescribe a criterion such as retaining 99% of all energy, which means truncating at
order r so that eℓr/e

ℓ = 0.99 for eℓr =
∑r

i=1 σ
(ℓ)
i . We stress that there is a one-to-one correspondence

to the error incurred in the sequence-to-sequence map, because of the bound (12) satisfied by models
compressed with balanced truncation. Notice that we prescribe the same energy criterion (e.g., 99%)
for all layers ℓ = 1, . . . , L but that the corresponding compression order r1, . . . , rL can be different
for each layer.

Alternatively, we can prescribe a total budget rt =
∑L

ℓ=1 r
(ℓ) of state dimensions, where r(1), . . . , r(ℓ)

are the state dimensions of the SSMs corresponding to layers ℓ = 1, . . . , L. Given a total budget rt,
we can then distribute the state dimensions across the ℓ = 1, . . . , L layers such that the same amount
of energy is preserved in each layer. For this, we use a bisection algorithm that is described in detail
in the Appendix in Section C.1.

Diagonalizing compressed systems The reduced systems are balanced but not necessarily di-
agonal or block-diagonal, which is essential for an efficient application of the associative scan
operations; see Section 2.2. We diagonalize the compressed SSMs using an eigenvalue decompo-
sition: Let Ar = W⊤AV be the reduced system matrix. Then we can compute an eigenvalue
decomposition TΛrT

−1 = Ar, where Λr ∈ Rr×r is diagonal. An equivalent diagonal system to
[W⊤AV ,W⊤B,CV ,D] is then given by [T−1W⊤AV T ,T−1W⊤B,CV T ,D]. The diago-
nalized system might be complex-valued like the systems in [53]; however, since the eigenvalues
will appear in complex-conjugate pairs, a real-valued input sequence will be mapped to a real-valued
output sequence, which is also used in [53].

3 Results

Benchmarks We demonstrate our HSVR approach on five sequence classification examples. The
first example consists of the 32×32 CIFAR-10 images [37] that are converted to grayscale, flattened
into 1,024-length sequences, and normalized to zero mean and unit variance across the entire dataset.
It includes 50,000 training, and 10,000 test samples and has ten target classes. The second example
is also a sequentialized image classification task and consists of the 28×28 grayscale MNIST [38]
images, where again each image is flattened into a sequence of 784 scalar values. The goal is to
predict the depicted written digits correctly. The third task uses the IMDB sentiment dataset [41],
where movie reviews are represented as sequences of one-hot encoded characters with 129 possible
values, padded to a maximum length of 4,096. The goal is to classify each review as positive or
negative; the dataset includes 25,000 training and 25,000 test examples. Finally, we consider the

8

10−8

10−4

100

104

108

0 100 200 300

(a) sCIFAR10 (grayscale)

0 50 100

(b) sMNIST dataset

0 50 100 150

(c) IMDB dataset

100

104

108

0 50 100 150 200 250

(d) PATH dataset

0 50 100 150 200 250

(e) PATH-X dataset

ℓ=2, no reg.
ℓ=4, no reg.
ℓ=6, no reg.

ℓ=2, HSVR (ours)
ℓ=4, HSVR (ours)
ℓ=6, HSVR (ours)H

an
ke

ls
in

gu
la

rv
al

ue
σ
i

index i

ℓ=2, no reg.
ℓ=4, no reg.

ℓ=2, HSVR (ours)
ℓ=4, HSVR (ours)

index i

ℓ=2, no reg.
ℓ=4, no reg.
ℓ=6, no reg.

ℓ=2, HSVR (ours)
ℓ=4, HSVR (ours)
ℓ=6, HSVR (ours)

index i

ℓ=2, no reg.
ℓ=4, no reg.
ℓ=6, no reg.

ℓ=2, HSVR (ours)
ℓ=4, HSVR (ours)
ℓ=6, HSVR (ours)

H
an

ke
ls

in
gu

la
rv

al
ue

σ
i

index i

ℓ=2, no reg.
ℓ=4, no reg.
ℓ=6, no reg.

ℓ=2, HSVR (ours)
ℓ=4, HSVR (ours)
ℓ=6, HSVR (ours)

index i

Figure 3: Our HSVR approach trains SSMs that have favorably Hankel singular value decay for
compression.

Table 1: Test accuracies for different methods for different truncation ratios.

Method sCIFAR (grayscale) sMNIST IMDB
trunc. ratio 60% 70% 80% 90% 60% 70% 80% 90% 60% 70% 80% 90%

LAST [26] 62.93 36.66 17.35 11.19 95.11 89.17 62.37 27.67 88.48 85.05 80.26 57.08
global [26] 28.91 13.62 11.12 10.47 91.67 83.32 52.52 21.94 88.28 87.70 83.75 63.80

uniform [26] 58.90 34.45 19.18 12.67 97.74 79.20 44.38 23.20 82.44 77.34 64.79 53.22

no reg. 71.28 41.98 21.14 9.84 91.32 13.35 11.05 10.55 71.45 71.04 51.32 50.00
HSVR (ours) 81.84 81.75 81.37 51.08 99.45 99.22 98.90 86.95 87.26 87.16 86.97 86.40

Method PATH PATH-X
trunc. ratio 60% 70% 80% 90% 60% 70% 80% 90%

LAST [26] 50.51 50.11 49.96 50.25 50.33 49.16 49.53 49.64
global [26] 49.16 50.15 50.16 49.37 49.50 50.93 49.14 50.61

uniform [26] 50.32 49.78 49.84 50.16 49.74 50.23 49.70 50.47

no reg. 60.21 53.48 50.35 50.20 56.09 50.39 50.16 50.14
HSVR (ours) 65.94 63.64 50.50 49.27 87.74 82.82 54.02 51.97

PATH and PATH-X datasets, which consist of the flattened pathfinder images [40], which consists of
two points and a set of paths. The classifier must determine whether the two points are connected by
the paths. The flattened PATH images have a sequence length of 1,024 and flattened PATH-X images
have a sequence length of 16,384a. We denote the examples by sCIFAR (grayscale), sMNIST, IMDB,
PATH, and PATH-X. The examples sCIFAR (grayscale), IMDB, PATH, and PATH-X are also part of
the Long Range Arena (LRA) benchmark [59] collection.

Setup We select the state, input, and output dimensions of our SSMs according to the setup in [53].
In particular, we use a state dimension n = 384, and input and output dimensions m = p = 512
for sCIFAR 10 (grayscale), n = m = p = 128 for sMNIST, n = 192,m = p = 256 for IMDB,
n = 256, m = p = 192 for PATH, and n = 256, m = p = 128 for PATH-X. As in [53] for sCIFAR
10 (grayscale) IMDB, PATH, and PATH-X, we use 6 SSM layers and for sMNIST we use 4 layers.
The remainder of the model architecture, which we describe alongside the training parameters in
the Appendix in Section B, is also the same as in [53]. In all examples, we use HSVR with the
Hankel nuclear norm regularizer (11), even though other regularizers based on the Hankel singular
values could be used, which remains future work. One notable difference compared to [53, 26] is
that we only use unidirectional associative scans, whereas [53, 26] scan bidirectionally for sCIFAR
(grayscale) and IMDB. This means that they apply the associative scan to the given and the reversed
sequence and double the dimension of the output matrices of the SSMs to merge both sequences into
one output sequence.

9

SSMs trained with our HSVR are highly compressible In Figure 2, we show the model accuracy
on the given test data, as we increase the truncation ratio χ, which is the maximum allowed average
reduced state dimension across all layers. For an original state dimension n, the maximum allowed
average reduced state dimension r is n(1−χ). For our comparison to [26], we extracted the accuracies
reported in Figures 2 and 6 in [26]. For HSVR, we show the median over three training runs initialized
with different random seeds; standard deviations are reported in the Appendix in Section D. The
results in Figure 2 clearly demonstrate the effectiveness of our proposed HSVR. The accuracy of
the full SSM model is retained for truncation ratios of 80% for sCIFAR (grayscale) and sMNIST
and even for over 90% truncation ratio for the IMDB dataset. Even for the more challenging PATH
and PATH-X datasets, we can observe a higher test accuracy for larger truncation ratios compared
to other methods. Without regularized training, the accuracy drops much earlier, which is also the
case for LAST-based pruning of [26], which also follows the S5 architecture in its experiment setup.
The results in Figure 3 provide further evidence that HSVR leads to favorable Hankel singular value
decay compared to unregularized training. Note that only for the PATH dataset our HSVR regularizer
did not lead to a significant difference in the HSV distribution when comparing with unregularized
training; especially when comparing with the HSV distributions for the other datasets in Figure 3,
where a clear gap appears between regularized and unregularized training. Moreover, on the PATH
dataset, we achieved the smallest test accuracy improvement. This again emphasizes that the HSV
distribution is key when considering the compressibility of SSMs.

HSVR achieves higher compression than previous methods In Table 1, we conduct a comparison
to all pruning methods proposed in [26] as well as training our models with no regularization.
Overall, Table 1 again demonstrates the benefits of HSV regularized training. Our HSVR approach
outperforms all other compression methods over a wide range of compression ratios and accuracy
ranges; the only exception being at very low compression ratios, which are of less interest in most
cases. For example, we maintain accuracy of around to 99% with a compression ratio of 80% in the
sMNIST data set, while compressing unregularized SSMs leads to an accuracy drop to almost 10%.
Notably, with our regularization we can maintain a high accuracy on the challenging PATH-X dataset
even at compression ratios above 60%, where prior methods collapse to random-chance performance.

4 Conclusions, limitations, and impact statement

Conclusions We demonstrated that regularizing the Hankel singular values of the SSMs is key
for compression. While the individual Hankel singular values are not differentiable, their sum
is, which is all that is needed for obtaining a differentiable regularizer. A key aspect is that we
developed an algorithm that can efficiently compute the Hankel singular values to keep training
costs low. Experiments with standard LRA benchmark examples demonstrate that we can compress
models by up to 90% while maintaining acceptable accuracy. An implementation is provided at
https://github.com/Algopaul/hankelreg.

Limitations (a) Models need to be trained with the regularizer to achieve compressibility, which
means that our compression approach is not applicable to pre-trained models without our regularizer.
Because it is known that linear equivalence transformations cannot change the Hankel singular values,
it remains future work to find nonlinear transformations to achieve compressibility also for pre-trained
models. (b) By regularizing the Hankel singular values and compressing with system-theoretic tools
such balanced truncation, we are restricted to linear compression. This is reasonable as the SSMs
are linear in the state too but there can exist more efficient nonlinear compressions. Rigorous
nonlinear compressions for dynamical systems are an active research direction in systems and control
theory [47] and it remains future work to develop corresponding regularizers for SSM layers and
neural-network models. (c) We focus on SSMs that are linear time-invariant systems; however, using
time-varying system matrices can increase expressivity of the corresponding neural-network models
without increasing parameter count and they are explored in MAMBA architecture [21]. It remains
future work to extend our approach to systems with time-varying system matrices.

Impact statement We are not expecting negative societal impacts that are specific to our compres-
sion approach.

10

https://github.com/Algopaul/hankelreg

Acknowledgements

The authors have been partially funded by the Air Force Office of Scientific Research (AFOSR),
USA, award FA9550-24-1-0327.

References
[1] Athanasios C. Antoulas. Approximation of Large-Scale Dynamical Systems, volume 6 of Adv.

Des. Control. SIAM, Philadelphia, 2005.

[2] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks.
In International conference on machine learning, pages 1120–1128. PMLR, 2016.

[3] R. H. Bartels and G. W. Stewart. Solution of the matrix equation AX + XB = C. ACM
Commun. Comput. Algebra, 15(9):820–826, 1972.

[4] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

[5] Peter Benner, Serkan Gugercin, and Karen Willcox. A survey of projection-based model
reduction methods for parametric dynamical systems. SIAM Review, 57(4):483–531, 2015.

[6] Peter Benner, Mario Ohlberger, Albert Cohen, and Karen Willcox. Model reduction and
approximation: theory and algorithms. SIAM, 2017.

[7] Akhiad Bercovich, Tomer Ronen, Talor Abramovich, Nir Ailon, Nave Assaf, Mohammad
Dabbah, Ido Galil, Amnon Geifman, Yonatan Geifman, Izhak Golan, et al. Puzzle: Distillation-
based nas for inference-optimized llms. arXiv preprint arXiv:2411.19146, 2024.

[8] Bo Chang, Minmin Chen, Eldad Haber, and Ed H Chi. Antisymmetricrnn: A dynamical system
view on recurrent neural networks. arXiv preprint arXiv:1902.09689, 2019.

[9] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. Model compression and acceleration for deep
neural networks: The principles, progress, and challenges. IEEE Signal Processing Magazine,
35(1):126–136, 2018.

[10] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking
attention with performers. arXiv preprint arXiv:2009.14794, 2020.

[11] Rares Dolga, Kai Biegun, Jake Cunningham, and David Barber. RotRNN: Modelling long
sequences with rotations. In Next Generation of Sequence Modeling Architectures, International
Conference of Machine Learning (ICML), 2025.

[12] N Benjamin Erichson, Omri Azencot, Alejandro Queiruga, Liam Hodgkinson, and Michael W
Mahoney. Lipschitz recurrent neural networks. arXiv preprint arXiv:2006.12070, 2020.

[13] Haruka Ezoe and Kazuhiro Sato. Model compression method for s4 with diagonal state space
layers using balanced truncation. IEEE Access, 2024.

[14] Marco Forgione, Manas Mejari, and Dario Piga. Model order reduction of deep structured
state-space models: A system-theoretic approach. In 2024 IEEE 63rd Conference on Decision
and Control (CDC), page 8620–8625. IEEE, December 2024.

[15] Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré.
Hungry Hungry HiPPOs: Towards language modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022.

[16] Tamer Ghattas, Michael Hassid, and Roy Schwartz. On pruning state-space llms. arXiv preprint
arXiv:2502.18886, 2025.

[17] Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw! audio generation with
state-space models. In International conference on machine learning, pages 7616–7633. PMLR,
2022.

11

[18] Gene H Golub and Charles F Van Loan. Matrix Computations. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 4 edition, 2013.

[19] Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129(6):1789–1819, Jun 2021.

[20] Pawan Goyal, Benjamin Peherstorfer, and Peter Benner. Rank-minimizing and structured model
inference. SIAM Journal on Scientific Computing, 46(3):A1879–A1902, 2024.

[21] Albert Gu and Tri Dao. MAMBA: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

[22] Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems,
33:1474–1487, 2020.

[23] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2022.

[24] Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state space layers.
Advances in neural information processing systems, 34:572–585, 2021.

[25] Ankit Gupta and Jonathan Berant. Gmat: Global memory augmentation for transformers. arXiv
preprint arXiv:2006.03274, 2020.

[26] Minseon Gwak, Seongrok Moon, Joohwan Ko, and PooGyeon Park. Layer-adaptive state
pruning for deep state space models. Advances in Neural Information Processing Systems,
37:10613–10645, 2024.

[27] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding. arXiv: Computer Vision and
Pattern Recognition, 2015.

[28] Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, and
Daniela Rus. Liquid structural state-space models. arXiv preprint arXiv:2209.12951, 2022.

[29] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[30] Sukjun Hwang, Aakash Sunil Lahoti, Ratish Puduppully, Tri Dao, and Albert Gu. Hydra:
Bidirectional state space models through generalized matrix mixers. Advances in Neural
Information Processing Systems, 37:110876–110908, 2024.

[31] Md Mohaiminul Islam and Gedas Bertasius. Long movie clip classification with state-space
video models. In European Conference on Computer Vision, pages 87–104. Springer, 2022.

[32] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2704–2713, 2018.

[33] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers
are rnns: Fast autoregressive transformers with linear attention. In International conference on
machine learning, pages 5156–5165. PMLR, 2020.

[34] Tosio Kato. Perturbation Theory for Linear Operators. Springer Berlin Heidelberg, 1995.

[35] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer.
arXiv preprint arXiv:2001.04451, 2020.

[36] Boris Kramer, Benjamin Peherstorfer, and Karen E. Willcox. Learning nonlinear reduced
models from data with operator inference. Annual Review of Fluid Mechanics, 56(Volume 56,
2024):521–548, 2024.

12

[37] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical Report
TR-2009, University of Toronto, 2009.

[38] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[39] Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, and Jinwoo Shin. Layer-adaptive sparsity
for the magnitude-based pruning. arXiv preprint arXiv:2010.07611, 2020.

[40] Drew Linsley, Junkyung Kim, Vijay Veerabadran, Charles Windolf, and Thomas Serre. Learning
long-range spatial dependencies with horizontal gated recurrent units. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[41] Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies,
pages 142–150. Association for Computational Linguistics, 2011.

[42] J Pablo Muñoz, Jinjie Yuan, and Nilesh Jain. Mamba-shedder: Post-transformer compression
for efficient selective structured state space models. arXiv preprint arXiv:2501.17088, 2025.

[43] Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski,
Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov.
Compact language models via pruning and knowledge distillation. Advances in Neural Informa-
tion Processing Systems, 37:41076–41102, 2024.

[44] Eric Nguyen, Karan Goel, Albert Gu, Gordon Downs, Preey Shah, Tri Dao, Stephen Baccus,
and Christopher Ré. S4nd: Modeling images and videos as multidimensional signals with state
spaces. Advances in neural information processing systems, 35:2846–2861, 2022.

[45] Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan
Pascanu, and Soham De. Resurrecting recurrent neural networks for long sequences. In
International Conference on Machine Learning, pages 26670–26698. PMLR, 2023.

[46] Rom N Parnichkun, Stefano Massaroli, Alessandro Moro, Jimmy TH Smith, Ramin Hasani,
Mathias Lechner, Qi An, Christopher Ré, Hajime Asama, Stefano Ermon, et al. State-free infer-
ence of state-space models: The transfer function approach. arXiv preprint arXiv:2405.06147,
2024.

[47] B. Peherstorfer. Breaking the Kolmogorov barrier with nonlinear model reduction. Notices of
the American Mathematical Society, 69:725–733, 2022.

[48] Gianluigi Pillonetto, Tianshi Chen, Alessandro Chiuso, Giuseppe De Nicolao, and Lennart
Ljung. Regularized linear system identification using atomic, nuclear and kernel-based norms:
The role of the stability constraint. Automatica, 69:137–149, 2016.

[49] Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. In International Conference on Machine Learning, pages 28043–28078.
PMLR, 2023.

[50] G. Rozza, D. B. P. Huynh, and A. T. Patera. Reduced basis approximation and a posteriori error
estimation for affinely parametrized elliptic coercive partial differential equations. Archives of
Computational Methods in Engineering, 15(3):229–275, Sep 2008.

[51] T Konstantin Rusch and Siddhartha Mishra. Unicornn: A recurrent model for learning very
long time dependencies. In International Conference on Machine Learning, pages 9168–9178.
PMLR, 2021.

[52] Paul Schwerdtner and Matthias Voigt. SOBMOR: Structured optimization-based model order
reduction. SIAM J. Sci. Comput., 45(2):A502–A529, 2023.

13

[53] Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for
sequence modeling. In The Eleventh International Conference on Learning Representations,
2023.

[54] Eduardo D. Sontag. Mathematical Control Theory. Springer New York, 1998.

[55] Yue Sun, Samet Oymak, and Maryam Fazel. System identification via nuclear norm regulariza-
tion. arXiv, 2203.16673, 2022.

[56] Ali Taghibakhshi, Sharath Turuvekere Sreenivas, Saurav Muralidharan, Marcin Chochowski,
Yashaswi Karnati, Raviraj Joshi, Ameya Sunil Mahabaleshwarkar, Zijia Chen, Yoshi Suhara,
Oluwatobi Olabiyi, et al. Efficient hybrid language model compression through group-aware
ssm pruning. arXiv preprint arXiv:2504.11409, 2025.

[57] Masayuki Tanaka. Weighted sigmoid gate unit for an activation function of deep neural network.
Pattern Recognition Letters, 135:354–359, 2020.

[58] Shengkun Tang, Oliver Sieberling, Eldar Kurtic, Zhiqiang Shen, and Dan Alistarh. Darwinlm:
Evolutionary structured pruning of large language models. arXiv preprint arXiv:2502.07780,
2025.

[59] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020.

[60] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

[61] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

[62] Kaixin Xu, Zhe Wang, Xue Geng, Min Wu, Xiaoli Li, and Weisi Lin. Efficient joint optimization
of layer-adaptive weight pruning in deep neural networks. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 17447–17457, 2023.

[63] Annan Yu, Michael W. Mahoney, and N. Benjamin Erichson. HOPE for a robust parameter-
ization of long-memory state space models. In The Thirteenth International Conference on
Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025.

[64] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878, 2017.

[65] Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression
for large language models. Transactions of the Association for Computational Linguistics,
12:1556–1577, 11 2024.

A Proofs

For our proofs, the following notions for LTI systems are helpful. An LTI system is controllable if
the controllability matrix C =

[
B AB A2B · · · An−1B

]
, i.e. rank(C) = n. Moreover, the

system is observable if the observability matrix O =
[
C⊤ (CA)⊤ · · · (CAn−1)⊤

]⊤
has full

rank, i.e. rank(O) = n.

The system is asymptotically stable if all eigenvalues of A lie strictly inside the unit circle.

A.1 Parametrization with rotation matrices is dense

We present a proof for Proposition (1), which is restated here for convenience.
Proposition. For any linear time-invariant system of order n there exists an infinitesimal perturbation
such that the sequence-to-sequence map {uk}∞k=0 7→ {yk}∞k=0 of the perturbed model can be
described by an SSM with matrices of the form (7) with α,ρ ∈ Rñ, where ñ ≤ n.

14

Proof. Let the LTI system be given by [A,B,C,D]. As we allow for infinitesimal perturbations,
we can assume without loss of generality (w.l.o.g), that A is diagonalizable [34, Chapter 2] and
that the pair (A,B) is controllable [54, Proposition 3.3.12]. For any nonsingular T ∈ Rn×n, the
impulse response of [A,B,C,D] and [T−1AT ,T−1B,CT ,D] coincide. We will now construct
an invertible T that brings [A,B,C,D] into a form attainable by (7). By [18, Theorem 7.4.1] we
can find an orthogonal T 1 such that T⊤

1 AT is in block upper triangular form with either 1-by-1
or 2-by-2 blocks on the diagonal, which contain the real and complex conjugate eigenvalues of A,
respectively. Moreover, by [18, Theorem 7.1.6] and since we assume diagonalizabiliy, we can find a
nonsingular T 2 such that (T 1T 2)

−1
A(T 1T 2) is block diagonal. W.l.o.g, we can assume that each

2-by-2 block has the form

Tii =

[
ai bi
−bi ai

]
,

as the 2-by-2 blocks contain complex conjugate eigenvalues. The final equivalence transformation we
apply is a block diagonal transformation that brings the first column of (T 1T 2)

−1
B into the desired

form. For this, let

(T 1T 2)
−1

B =


b1,1 b1,2
b2,1 b2,2

...
...

bq,1 bq,2

 ,

where q is the number of blocks in (T 1T 2)
−1

A(T 1T 2) and bi,1 is either in R1 or R2 depending on
the corresponding block dimension in (T 1T 2)

−1
A(T 1T 2). Now we construct T 3 as block diagonal

matrix such that that T 3
−1 contains either 1/bi,1 when bi,1 ∈ R1 or a scaled Givens rotation γG

when bi,1 ∈ R2 that is constructed such that γGbi,1 = [1, 0]⊤. Note that we can construct such a
rotation for bi,1 ∈ R2 or have a finite value 1/bi,1 for bi,1 ∈ R1 since we have assumed controllability.
Moreover, we have that (T 1T 2T 3)

−1
A(T 1T 2T 3) = (T 1T 2)

−1
A(T 1T 2). W.l.o.g. let us assume

for convenience that the blocks in (T 1T 2)
−1

A(T 1T 2) are sorted such that a partitioning[
A1 0
0 A2

]
= (T 1T 2)

−1
A(T 1T 2)

can be chosen such that A1 is diagonal and A2 contains all 2-by-2 blocks. Thus, the system
[T−1AT ,T−1B,CT ,D] with T = T 1T 2T 3 where T−1B is of the form

T−1B =



1 b̃1,2
...

...
1 b̃q1,2
1 b̃q1+1,2

0 b̃q1+2,2

1 b̃q1+3,2

0 b̃q1+4,2

...
...

1 b̃q1+2q2,2

0 b̃q1+2q2,2

,


where b̃i,2 ∈ R1,m and q1 and q2 are the number of real and the number of pairs of complex-conjugate
eigenvalues in A, respectively. The final step to reach the form (7) is to add a zero row in T−1B
after each row in {1, . . . , q1} and a zero column in CT after each column in {1, . . . q1}. The system
matrix is formed from Ã = T−1AT by choosing ρi = Ãi and αi = 0, when Ai is a 1-by-1 block
and by setting ρi = |λi|, αi = arctan(|ℑ(λi)|/ℜ(λi)), when Ai is a 2-by-2 block. Here λi denotes
one of the complex conjugate eigenvalues of Ai. Since we only applied equivalence transformations
and the states we add in our final step do not change the impulse response (they are uncontrollable and
unobservable) the impulse response remains the same. Moreover, since the number of blocks in Ã is
less than or equal to n, we can parametrize the system with ρ = [ρ1, . . . , ρñ] and α = [α1, . . . , αñ]
where ñ ≤ n.

15

A.2 Proof that sums of Hankel singular values are differentiable

We present a proof for Proposition (2), which is restated here for convenience.

Proposition. Given an asymptotically stable matrix A, as well as B and C such that the pairs
(A,B) and (A,C) are controllable and observable, respectively, let P and Q be the solutions (2)
and (3), respectively. Then the sum of Hankel singular values

∑n
i=1 σi depends smoothly on A, B,

and C.

Proof. • Note that if A is asymptotically stable, the matrix (A⊗A− I) has no zero eigenvalues,
such that the inverse in (4) exists and P depends smoothly on A and B.

• An analogous argument establishes the smooth dependency of Q on A and C.

• If all eigenvalues of PQ are simple, the result is automatic.

• For non simple eigenvalues of PQ, we can use [34, Theorem 6.8] to define an set of smooth
functions representing the repeated eigenvalues, such that their sum is differentiable as well. Note
that controllability and observability of A,B,C ensures that PQ has no zero eigenvalues.

B Experimental setup

For the model architecture, we closely follow the setup proposed in [53] for comparability. In
particular, we use the same number of layers and SSM dimensions. Moreover, as in [53], the
SSM layers in between linear encoder and decoder layers, that map the dimension of the sequence
(1 in all our experiments) to the SSM input dimension, and the SSM output dimension to the
number of classes for classification, respectively. In after each sequence layer, we apply the same
nonlinearity as [53], which is a weighted sigmoid gated unit [57]. It transforms the SSM output
yt such that ỹt = gelu(yt) ⊙ sigmoid(W gelu(yt)), with a learnable matrix W . As in [53] final
output is mean-pooled to compress the output of the last SSM layer along the sequence length
dimension to enable softmax classification of the given sequence. Each sequence layer is preceded
with batch-normalization. While in [53] two different learning rates for the SSM parameters and
the other parameters are used, we use a single learning rate for all parameters. As in [53], we do
not apply weight-decay to the SSM parameters (except for the feedthrough matrix D as it is not
affected by our HSV regularization). In Table 2 we show the parameters used to generate our results.
The parameters for dropout, weight-decay and regularization magnitude (the scalar by which we
multiply our regularizer (11)) are found via grid-search. Note that the regularization magnitude is
small because it includes a sum of all the HSVs in all the different layers. Since we implement our
regularizer by adding it to the softmax cross-entropy loss we use during training, this must be scaled,
appropriately.

With this setup, in our flax/nnx implementation, it takes around two hours to train an sMNIST
model, around four hours for training an IMDB model, and around six hours to train an sCIFAR model
on a single H100 GPU. This is slightly higher than the train times reported in [26]; which we attribute
to our slow train data input pipeline. Parameters are initialized from standard normal distributions
unless stated otherwise. The SSM parameters ρ are initialized using Gaussian distributions with mean
1.5, and standard deviation 0.25, which yields to an eigenvalue distribution similar to that of HiPPO
matrices after discretization. Note that, as stated in Section 2.1, ρ is subsequently thresholded using a
tanh nonlinearity. The matrices B and C in each state space layer are initialized with zero-mean
Gaussian distributions, with standard deviation 1/

√
n2 +m2 and 1/

√
n2 + p2, respectively.

C Postprocessing details

C.1 Bisection algorithm for selecting ranks

We present our algorithm for selecting the ranks in the different layers in Algorithm 1. Given a total
budget rt, it distributes the state dimensions across the ℓ = 1, . . . , L layers such that the same amount
of energy is preserved in each layer. It terminates once a prescribed tolerance or maximum number of
iterations is reached. In our experiments, we set the tolerance to ϵ = 10−8 and the maximum number
of iterations to nmax = 100.

16

Table 2: Hyperparameter setup in our experiments. Depth denotes the number of sequence layers,
LR the learning rate, WD the weight decay, and reg. mag. the scalar by which we multiply our
regularizer (11).

depth n p = m dropout LR batch dim. epochs WD reg. mag.

sCIFAR 6 384 512 0.2 0.001 50 200 0.3 0.00002
sMNIST 4 128 128 0.1 0.001 50 250 0.1 0.00001

IMDB 6 192 256 0.1 0.001 50 35 0.1 0.001
PATH 6 256 192 0.1 0.001 64 100 0.03 0.00000001

PATH-X 6 256 128 0.0 0.0001 16 30 0.0 0.00000001

Algorithm 1 Bisection method for reduced state dimension determination
Require: sorted HSVs of the different SSMs [Σ1,Σ2, . . . ,Σℓ], target order r, tolerance ϵ, maximum

number of iterations nmax

Ensure: truncation order for each layer
1: Normalize each HSV vector such that

∑n
i=1 Σj,i = 1 for all Σ1,Σ2, . . . ,Σℓ

2: Set γmin = 0, γmax = 1
3: Set γ = (γmin + γmax)/2
4: Set k = 0
5: Compute r̂ as mean of [argmin(Σ1 > γ), argmin(Σ2 > γ), . . . , argmin(Σℓ > γ)]
6: while |r̂ − r| > ϵ and k < nmax do
7: Set γ = (γmin + γmax)/2
8: Set k = k + 1
9: if r̂ > r then

10: Set γmax = γ
11: else
12: Set γmin = γ
13: end if
14: end while
15: Return reduced orders [argmin(Σ1 > γ), argmin(Σ2 > γ), . . . , argmin(Σℓ > γ)]

D Extra Results

Table 4 evaluates the computational cost of adding our regularizer to the SSM training procedure.
When adding our regularizer with our block-wise Lyapunov-solver, the training-time only increases
slightly, while the naive Lyapunov-solver leads to prohibitively high training-times. We report the
increase in train time relative to unregularized training. In Figure 4, we compare our approach to all
methods proposed in [26].

In Table 3, we demonstrate the runtime speed up that is obtained during inference at different
truncation ratios.

In Table 5, we report median and standard deviation of the test accuracies across three different
training runs, in which the models are initialized with different random seeds. Note that, importantly,
for truncation ratios, where the accuracy of the original model is retained (until around 80% for
sCIFAR (grayscale) and sMNIST), the standard deviation is low, and it only increases after that
threshold. This is because after losing approximation accuracy of the original SSM layers, the
sequence-to-sequence maps change in different ways across the different runs, which has a different
impact on the test accuracy.

We also compare our HSVR approach to a simple ℓ1-norm regularization of the diagonal blocks
to justify the computational overhead incurred when computing the Hankel singular values during

Table 3: Inference runtime ratios (sCIFAR) at different truncation ratios

trunc. ratio 50% 60% 70% 80% 90%

runtime ratio 0.66 0.57 0.51 0.45 0.40

17

Table 4: Relative runtimes measured over one training epoch. We report “−” when training is
impossible due to excessive resource consumption. Remember that the costs of naive Lyapunov
solver scale as O(n6) Training time is measured in and extra run for one epoch to ensure the same
hardware is used. Experiments are carried out on a single H100 GPU.

regularizer sCIFAR (grayscale) sMNIST IMDB
none 1× 1× 1×

HSVR (blocked) 1.59× 1.12× 1.15×
HSVR (naive) − 27.3× −

Table 5: Median and standard deviation of test accuracies [%] for HSVR.

quantity sCIFAR (grayscale) sMNIST IMDB
trunc. ratio 60% 70% 80% 90% 60% 70% 80% 90% 60% 70% 80% 90%

median 81.53 81.74 80.28 27.72 99.28 99.26 98.95 60.58 87.32 87.47 87.40 85.62
std. dev. 0.20 0.43 1.22 2.95 0.02 0.06 0.22 16.75 0.13 0.13 0.15 0.87

optimization. We compare our result to a fine parameter sweep for the ℓ1-norm regularization
magnitude on the CIFAR, MNIST, and IMDB datasets in Tables 6, 7, and 8, respectively, and observe
that for almost all truncation ratios, our approach outperforms the simple ℓ1 regularization, which is
in line with the system theoretical results for balanced truncation.

In Figure 4, we show a comparison of our method to all methods proposed in [26].

trunc. ratio ℓ1, 10
−6 ℓ1, 10

−5 ℓ1, 10
−4 ℓ1, 10

−3 ℓ1, 10
−2 ℓ1, 10

−1 HSVR

50% 40.17 29.18 63.02 65.88 78.86 72.53 82.19
60% 38.05 28.09 57.53 61.34 77.15 69.57 81.84
70% 35.35 24.94 13.56 55.79 74.84 64.95 81.75
80% 12.28 21.92 09.95 45.64 69.90 52.67 81.37
90% 10.76 09.71 10.76 30.80 55.54 31.84 51.08

Table 6: CIFAR: Test accuracies (%) in comparison to L1 regularization

18

trunc. ratio ℓ1, 10
−6 ℓ1, 10

−5 ℓ1, 10
−4 ℓ1, 10

−3 ℓ1, 10
−2 ℓ1, 10

−1 HSVR

50% 50.68 54.75 56.17 52.27 50.02 59.16 87.25
60% 51.39 55.15 50.93 50.94 50.02 56.61 87.26
70% 52.67 51.04 50.02 50.78 50.57 61.97 87.16
80% 51.74 50.99 50.06 51.66 50.16 58.72 86.97
90% 51.23 50.14 50.14 49.60 50.22 51.94 86.40

Table 7: IMDB: Test accuracies (%) in comparison to ℓ1 regularization

trunc. ratio ℓ1, 10
−6 ℓ1, 10

−5 ℓ1, 10
−4 ℓ1, 10

−3 ℓ1, 10
−2 ℓ1, 10

−1 HSVR

50% 58.58 66.94 98.99 99.01 99.00 95.88 99.29
60% 39.57 46.28 97.85 98.54 98.28 84.92 99.45
70% 13.94 18.88 86.50 97.53 97.09 76.81 99.22
80% 12.03 11.03 14.78 82.56 90.12 55.09 98.90
90% 11.12 10.62 9.51 13.61 37.03 11.72 86.95

Table 8: MNIST: Test accuracies (%) in comparison to ℓ1 regularization

0

20

40

60

80

100

50 60 70 80 90 100

(a) sCIFAR10 (grayscale)

0

20

40

60

80

100

50 60 70 80 90 100

(b) sMNIST dataset

40

60

80

100

50 60 70 80 90 100

(c) IMDB dataset

40

60

80

100

50 60 70 80 90 100

(d) PATH dataset

40

60

80

100

50 60 70 80 90 100

(e) PATH-X dataset

HSVR (ours) Pruning LAST [26] Pruning uniform [26] Pruning global [26]

te
st

ac
cu

ra
cy

%

truncation ratio %

random chance line

truncation ratio %

random chance line

truncation ratio %

random chance line

te
st

ac
cu

ra
cy

%

truncation ratio %

random chance line

truncation ratio %

random chance line

Figure 4: Comparison of HSVR to all methods in [26]

19

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract we claim that regularizing the Hankel singular value distribution
leads to more compressible models, which we motivate theoretically by considering the role
of Hankel singular values in model compression and we demonstrate experimental results
that support our claims. In particular the statement: Up to 10× more compressible models is
found in Table 1, in which at a truncation ratio of 80% our HSVR model retains an accuracy
of close to 100%, whereas the unregularized truncated model has an accuracy of around
10%.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We added the limitations in Section 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

20

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide proofs to Propositions 1 and 2 in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We clearly describe the experimental setup in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

21

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our jax implementation is available at www.github.com/Algopaul/
hankelreg.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify training details in Section B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For our proposed method (HSVR) we report the median of the test accuracies
across three different in the main text and present the standard deviations for each truncation
ratio in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

22

www.github.com/Algopaul/hankelreg
www.github.com/Algopaul/hankelreg
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide an explanation of our hardware setup and execution times in
Section B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the Code of Ethics and have ensured that the research
conducted in the paper conforms with it in every aspect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have stated in our conclusion that we are not expecting negative societal
impacts that are specific to our compression approach.

Guidelines:

23

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not anticipate such risks in our work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly credit the datasets used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

24

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We clearly explain the implementation details of our layer and regularizer and
a jax implementation is available at www.github.com/Algopaul/hankelreg.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

25

paperswithcode.com/datasets
www.github.com/Algopaul/hankelreg

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The method does not involve LLMs as any components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

26

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Compressing state space models
	System-theoretic perspective on SSM compressibility
	Literature review
	Our approach and summary of contributions

	Hankel singular value regularization (HSVR)
	Parametrization of SSMs for scalable computation of Hankel singular values
	Scalable training procedure
	Regularizing Hankel singular values during training
	Compressing the trained models (post-processing)

	Results
	Conclusions, limitations, and impact statement
	Proofs
	Parametrization with rotation matrices is dense
	Proof that sums of Hankel singular values are differentiable

	Experimental setup
	Postprocessing details
	Bisection algorithm for selecting ranks

	Extra Results

