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Abstract

Explaining the influence of training data on machine learning model predictions
is a critical tool for debugging models through data curation. A recent appealing
and efficient approach for this task was provided via the concept of Representer
Point Selection (RPS), i.e. a method the leverages the dual form of l2 regularized
optimization in the last layer of the neural network to identify the contribution
of training points to the prediction. However, two key drawbacks of RPS-l2 are
that they (i) lead to disagreement between the originally trained network and the
RPS-l2 regularized network modification and (ii) often yield a static ranking of
training data for test points in the same class, independent of the test point being
classified. Inspired by the RPS-l2 approach, we propose an alternative method
based on a local Jacobian Taylor expansion (LJE). We empirically compared
RPS-LJE with the original RPS-l2 on image classification (with ResNet), text
classification recurrent neural networks (with Bi-LSTM), and tabular classification
(with XGBoost) tasks. Quantitatively, we show that RPS-LJE slightly outperforms
RPS-l2 and other state-of-the-art data explanation methods by up to 3% on a data
debugging task. More critically, we qualitatively observe that RPS-LJE provides
stable and individualized explanations that are more coherent to each test data point.
Overall, RPS-LJE represents a novel approach to RPS-l2 that provides a powerful
tool for sample-based model explanation and debugging.

1 Introduction

Deep learning as well as ensemble methods such as XGBoost [2] have revolutionized the field of
machine learning and led to unprecedented levels of accuracy in a variety of data-driven prediction
applications. However, it can be extremely challenging to debug these complex methodologies when
they make incorrect predictions. The first step in this debugging process is explaining the prediction,
which can stem from a variety of interpretive processes. For example, we may seek to understand the
key features [13, 16] or salient regions [18, 20] that led to a prediction, or in a more recent line of
work, to understand the influence of the training data on test data predictions [1, 11, 15, 23].

In this paper we focus on a particularly appealing (and efficient) method for understanding the impact
of training data on test predictions, namely Representer Point Selection (RPS) [23], which leverages
an application of the representer theorem [17] to deep neural networks. Specifically, it uses the dual
form of l2 regularized optimization in the last layer of the neural network to identify the contribution
of training data to the test prediction. Compared to model-agnostic approaches [1, 9, 10] that estimate
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Test point

test id 3 test id 3 test id 3 test id 3

Explanation 1

train id 4622 train id 1499 train id 4275 train id 4275

Explanation 2

train id 1612 train id 3291 train id 3291 train id 3749

Explanation 3

train id 4947 train id 3749 train id 1499 train id 3112

(a) Same test image, different l2 weight.

Test point

test id 3 test id 8 test id 12 test id 16

Explanation 1

train id 1499 train id 1499 train id 1499 train id 1499

Explanation 2

train id 3291 train id 3291 train id 3291 train id 3291

Explanation 3

train id 3749 train id 3749 train id 3749 train id 3749

(b) Different test image, same l2 weight.

Figure 1: Drawbacks of Current Representer Point Selection Explanation (RPS-l2) on CIFAR-
10 Dataset. The target model is ResNet [6]. (a) Explanations vary when l2 regularized fine-tuning of
RPS-l2 is conducted with different hyperparameter weightings. l2 coefficient value of each column
from left to right:[1e-5, 1e-4, 1e-2, 1e-1] (b) RPS-l2 produces identical explanations (and rankings)
for different test samples that belong to the same predicted class.

data influence after optimization, the RPS approach directly integrates with the prediction model
to provide a high-fidelity white-box interpretation of the prediction. Compared to the influence
function-based approach [11], the RPS is more computationally efficient as it focuses on the last
layer of a neural network instead of all parameters.

While holding many advantages, we note the existing RPS approach faces two key drawbacks. First,
as the RPS approach requires fine-tuning the last layer of the neural network with l2 regularization,
it leads to a disagreement between the originally trained network and the l2 regularized network
and is furthermore highly sensitive to l2 regularization strength (cf. Figure 1(a)). Thus, it is hard to
justify if the explanation produced by RPS is for the original model or the modified model. Second,
we observe that the explanations produced by RPS are nearly identical for all test samples that are
classified into the same category, which provides more of a class-level rather than instance-level
explanation for RPS (cf. Figure 1(b)). While the RPS approach is appealing in principle, both of
these drawbacks significantly harm the utility of the RPS explanation approach in practice.

To address these issues, this paper presents an alternative derivation for Representer Point Selec-
tion (RPS) based on a Local Jacobian Taylor expansion (LJE), which corrects for both aforementioned
problems. We empirically compared RPS-LJE to the RPS-l2 on image classification (with ResNet [6]),
text classification (with Bi-LSTM), and credit analysis (with XGBoost [2]) tasks. Quantitatively, we
show RPS-LJE outperforms RPS-l2 and other state-of-the-art data explanation methods by to up 3%
on a data debugging task. Qualitatively — and perhaps most importantly — the RPS-LJE provides
stable (i.e., no need for l2 tuning) and diverse explanations that are more coherent to the test data.

2 Representer Points Selection for Explaining Deep Neural Networks

2.1 Preliminaries

In a machine learning context, representer theorems [17] loosely state that under certain conditions,
model prediction ŷt of a test sample xt can be expressed as a linear combination of kernel evaluations
K(xi,xt) between each training point xi and the test sample xt such that

ŷt =

n∑
i

αiK(xi,xt) , (1)

where αi is the weight of the training data point i that is independent from the test point t.
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(a) RPS-l2 (b) RPS-LJE

Figure 2: Correlation between the Rank of Explanations (αiφ(xi)
Tφ(xt)) and term αiφ(xi)‘.

We show results for a binary classification task (horses vs. cars), where we only look at αi of the
positive class. (a) RPS-l2’s explanation rank heavily depends on αiφ(xi), which shows strong
dominance of αiφ(xi) that suppresses information in the test example xt being explained. (b) The
proposed RPS-LJE explanation is not dominated by αiφ(xi), which instead varies widely with xt.

As the representer theorem linearly separates the contribution of training samples to the prediction,
it has been introduced into the deep learning model interpretation research [23] for tracking the
training data influence on predictions. Concretely, the current Representer Point Selection (RPS)
approach [23] introduces an l2 regularization term (for the last layer’s parameters ΘL ⊂ Θ) into a
model’s objective function, which facilities its derivation such that it fulfills Equation 1 by setting

αi = − 1

2λn

∂L(xi, yi,Θ)

∂ΘLφ(xi)
and K(xi,xt) = φ(xi)

Tφ(xt) , (2)

where λ denotes the hyper-parameter of l2 regularization term, n denotes the number of total training
samples, and φ(xi) and φ(xt) are the representations of input xi and xt at layerL. As this explanation
approach works on the last layer of a network and is efficient to compute, it demonstrates a significant
advantage over Influence Function-based approaches [11] in terms of computational efficiency.

2.2 Caveats of Current Representer Points Selection

As mentioned, to facilitate its derivation, the current RPS approach introduces an l2 regularization
term into the computation, which inevitably violates the saddle point assumption its derivation relies
on. To address this, the RPS conducts fine-tuning on the trained model with a new objective function

Θ∗L = arg min
ΘL

{
1

n

n∑
i

L(Φ(xi,Θ),Φ(xi,Θgiven)) + λ‖ΘL‖2
}
, (3)

where Φ(xi,Θgiven) and Φ(xi,Θ) represents the post-activation prediction of xi of the given
model and fine-tuned model, respectively. Correspondingly, the kernel weights in the expression of
Equation 2 are updated as

αi = − 1

2λn

∂L(xi, yi,Θ
∗)

∂Θ∗Lφ(xi)
. (4)

As the data importance factor αi is computed with respect to the l2-modified parameter set Θ∗,
the explanations correspond to the modified model instead of the original model. Indeed, the gap
between the two sets of parameters is sensitive to the hyper-parameter setting of the l2 regularizer.
This reflects our previous observation in Figure 1(a) showing that prediction explanations can vary
significantly based on different l2 regularizer weightings.

Also, by inspecting the expression of training data contribution

Θ∗Lφ(xt) = αiK(xi,xt) = − 1

2λn

∂L(xi, yi,Θ
∗)

∂Θ∗Lφ(xi)
φ(xi)

Tφ(xt)

= − 1

2λn

∂L(xi, yi,Θ
∗)

∂Θ∗Lφ(xi)

∂Θ∗Lφ(xi)

∂Θ∗L
φ(xt) = − 1

2λn

∂L(xi, yi,Θ
∗)

∂Θ∗L︸ ︷︷ ︸
dominant term

φ(xt),
(5)
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we note the first-order derivative of the loss of a single training example is the dominant term that
suppresses a small difference of test example representation φ(xt) among test samples in the same
class. Figure 2(a) shows the strong positive correlation between the dominant term and the relevant
order of the training data contribution. This supports our observation in Figure 1(b) that explanations
tend to be identical for the test samples being classified into the same category making RPS more
of a class-level than instance-level explanation that defeats the intent of uncovering instance-level
prediction errors!

3 Representer Point Selection via Local Jacobian Expansion

In an effort to preserve the conceptual and computational advantages of the previously discussed RPS-
l2 methodology while improving fidelity of the explanations to the original model and encouraging
test instance-level explanation, we now present a novel derivation of Representer Point Selection
through a Local Jacobian Expansion (RPS-LJE). Similar to RPS-l2, RPS-LJE also expresses the
pre-activation prediction outcome of a well-trained classification model (near the saddle point) as a
linear combination of kernel evaluations between the test sample and the training points. Specifically,
we use a first-order Taylor expansion on the Jacobian matrix in our derivation, which avoids the
problems introduced by imposing the additional l2 regularization term in RPS-l2. First, we begin
with the formal problem definition.

Consider a classifierMΘ† (the target model in the following context) that has learned to map input
observation xt ∈ IRd to an output space yt ∈ {1 · · · k}, whose pre-activation prediction3 M̄Θ† could
be formulated as

ŷt = M̄Θ†(xt) = Θ†Lφ(xt), (6)
where bold yi ∈ IRk represents the prediction vector (one element for a class). Our goal of prediction
explanation is to reformulate Equation 6 into the format of Equation 1 such that the contribution of
each training data point on the prediction is linearly separable.

While the above setting appears restricted, it represents a large group of machine learning models
commonly used in practice; many well-known models, such as ResNet [6] for images, Transform-
ers [22] for text, and even XGBoost [2] for tabular classification tasks, can be expressed in this simple
formulation leveraging a feature embedding stage followed by a pre-activation linear prediction stage.

3.1 First-order Taylor Expansion on Jacobian Matrix

We begin by presuming we are given a well-trained target modelMΘ† , whose loss derivative with
respect to the decision making parameter ΘL is close to a saddle point such that

0 ≈
n∑
i=1

∂L(xi, yi,Θ)

∂ΘL

∣∣∣∣∣
ΘL=Θ†L

. (7)

Here, we assume that the loss term L is twice-differentiable and strictly convex with respect to the
last linear layer parameters ΘL. In the case of non-convexity, we can adopt the approach proposed in
the Influence Function [11] to form a convex quadratic approximation of the loss by introducing a
damping term .

With any parameter assignment Θ∗L close to the model parameter Θ†L, we can further rewrite Equa-
tion 7 via a first-order Taylor expansion such that

0 ≈ 1

n

n∑
i=1

∂L(xi, yi,Θ)

∂ΘL

∣∣∣∣
ΘL=Θ∗L︸ ︷︷ ︸

∇ΘL
L(xi,yi,Θ∗)

+(Θ†L −Θ∗L)

[
1

n

n∑
i=1

∂L2(xi, yi,Θ)

∂Θ2
L

∣∣∣∣
ΘL=Θ∗L

]
︸ ︷︷ ︸
HΘ∗

L

def
= 1
n

∑n
i=1∇2

ΘL
L(xi,yi,Θ∗)

. (8)

This expansion yields the model parameter Θ†L as a linear combination of functions of each training
data point

Θ†L = Θ∗L −
n∑
i=1

1

n
H−1

Θ∗L
∇ΘLL(xi, yi,Θ

∗) + ξ, (9)

3For the trained classifier, the predictions before and after activation are consistent.
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where ξ is a negligible error term. Intuitively, this equation shows the model parameter Θ†L could be
reconstructed through a one-step gradient descent from the nearby parameter assignment Θ∗L with a
dynamic learning rate 1

nH
−1
Θ∗L

(as a matrix).

We remark that the expression in Equation 9 represents the contribution of each data point as a linearly
separable function, which is fundamentally different from recording gradients at training time as a
data importance score [15]. That is, the gradients during model training are sensitive to both training
order and optimizer settings.

For Equation 9 to hold after the Taylor expansion, Θ∗L has to be close to the model parameter Θ†L.
Therefore, we propose to estimate Θ∗L through a one-step stochastic gradient ascent from the trained
model using any optimizer (Adam, RMSProp, etc), such that

n∑
i=1

L(xi, yi,Θ
∗) >

n∑
i=1

L(xi, yi,Θ
†) (10)

and Θ∗L is maintained close to the original model parameter Θ†L with a small loss shift.

3.2 Representer Point Selection with Local Jacobian Expansion (RPS-LJE)

With the derivation of Equation 9, we can now reformulate the pre-activation prediction of a test point
xt as a weighted linear combination of kernels leading to our key result of the final form of RPS-LJE
(see Appendix B for a more detailed derivation):

Θ†Lφ(xt) =

n∑
i=1

[
1

n
Θ∗L −

1

n
H−1

Θ∗L
∇ΘLL(xi, yi,Θ

∗)

]
φ(xt)

=

n∑
i=1

[
Θ∗L

1

φ(xi)n
− 1

n
H−1

Θ∗L

∂L(xi, yi,Θ
∗)

∂Θ∗Lφ(xi)

]
︸ ︷︷ ︸

αi

φ(xi)
Tφ(xt)︸ ︷︷ ︸

K(xi,xt)

.
(11)

Similar to the claim of the original RPS using an l2 norm (RPS-l2), when a training data xi is close to
the test point xt in the representation space with a large positive value αik , the prediction score for
class k is increased. On the other hand, when the αik is a large negative value, the prediction score
for class k is then decreased.

The first notable difference between our derivation of RPS-LJE and the original RPS-l2 is that the
αi term now contains an inverse of second-order derivative that estimates the correlation among the
parameter entries in Θ†L. This modification mitigates the risk of over-weighting training data points
with a large predictive error that causes a small number of data points to dominate the explanations as
discussed in Section 2.2 and Figure 1(b). Figure 2(b) illustrates the effects of correction.

The second difference is that the prediction explanation of our derivation of RPS-LJE is faithful w.r.t.
the original modelMΘ† instead of the l2-regularized modelMΘ∗ . To clarify, the left hand side of
of Equation 11 is different with that of RPS-l2 in Equation 5. In addition, data importance factor αi
in the new derivation no longer depends on the l2 regularization hyper-parameter. Hence, the changes
in the RPS-LJE framework directly address the problem described in Figure 1(a).

3.3 Relation to Influence Function-based Interpretation

The Influence Function method [11] estimates the prediction importance of each training data point
by up-weighting the data points with small perturbation ε that results in the following final expression

Iup,loss(xi,xt) = −∇ΘLL(xt, yt,Θ
†)T H−1

Θ†L
∇ΘLL(xi, yi,Θ

†)︸ ︷︷ ︸
Iup,params(xi)

def
=
dL(xt,yt,Θ

†)
dε

∣∣∣
ε=0

. (12)

If we rewrite the above equation by expanding the first-order derivatives with chain rule such that

Iup,loss(xi,xt) = −∂L(xt, yt,Θ
†)

∂Θ†Lφ(xt)
H−1

Θ†L

∂L(xi, yi,Θ
†)

∂Θ†Lφ(xi)
φ(xi)

Tφ(xt), (13)
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Test point

test id 3 test id 8 test id 12 test id 16

Explanation 1

train id 3749 train id 168 train id 4622 train id 3749

Explanation 2

train id 4681 train id 2773 train id 3110 train id 2799

Explanation 3

train id 4947 train id 3112 train id 312 train id 3291

(a)

Test point

test id 3 test id 3 test id 3 test id 3

Explanation 1

train id 3749 train id 3749 train id 3749 train id 3749

Explanation 2

train id 4681 train id 4681 train id 4681 train id 4681

Explanation 3

train id 4947 train id 4947 train id 4947 train id 4947

(b)

Figure 3: Sanity Check of Representer Point Selection with Local Jacobian Expansion (RPS-
LJE) on CIFAR-10 Dataset. The target model is ResNet [6] (a) RPS-LJE can correctly produce
individualized explanations. (b) Explanation maintains consistency as the gradient hyperparameter
setting changes. Learning rate of each column from left to right: [5e− 4, 1e− 3, 5e− 3, 1e− 2].

we note the expression is very similar to RPS-LJE proposed in this work (as described in Equation 11)
except two subtle differences:

• The Influence Function includes a multiplicative factor ∂L(xt,yt,Θ
†)

∂Θ†Lφ(xt)
that is relevant to the test

point, whereas the RPS-LJE has an additive factor 1
nΘ∗Lφ(xt) that is also only relevant to the test

point.
• The derivative in the Influence Function respects the original model parameters Θ†, whereas

RPS-LJE’s derivatives apply to Θ∗.

Ultimately, these differences help explain the comparative performance of these methods in our
experiments (cf. Section 4.3), but — because they are also subtle — they help explain the similarity
of explanations produced by RPS-LJE and Influence Functions for image classification explanation.

4 Experimental Evaluation

We perform a range of experiments with multiple datasets (and corresponding model architectures)
and evaluate the performance of RPS-LJE against the original RPS-l2 as well as Influence Function-
based approaches. Note that all three methods do not specifically require access to the training history,
which is rarely available in deployment settings. In contrast, TracIn [15], which requires access to
training checkpoints, is not in the scope of our comparison. The goal of these experiments is to
demonstrate that the alternative derivation of RPS described in this work, RPS-LJE, successfully
addresses the two critical drawbacks of RPS-l2 and leads to substantial performance improvement on
multiple use cases, including data debugging and model behavior explanation. All code to reproduce
these results is publicly available on Github.4

4.1 Sanity Check of Representer Point Selection with Local Jacobian Expansion

Before describing our quantitative analysis, we first start with a sanity check to show the proposed
RPS-LJE approach indeed addresses the problem we highlighted earlier in Section 2.2 and Figure 1.
Concretely, we repeat our showcase in Figure 3 using RPS-LJE with the same test examples and
target model. Here, we highlight the following observations:

• As shown in Figure 3(a), the RPS-LJE can produce an individualized explanation for test samples
in the same category. This observation reflects our previous description in Figure 2(b), where the
term αiφ(xi) in RPS-LJE no longer dominates the explanation ranking.

4https://github.com/echoyi/RPS_LJE
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(a) CIFAR-10 Image Classification with ResNet
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(b) IMDB Sentiment Analysis with LSTM
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(c) German Credit Risk Analysis with XGBoost

Figure 4: Performance Comparison on Dataset Debugging Tasks. For each sub-figure group,
we show data correction rate vs. fraction of data checked (left) and how such a correction would
impact performance (right). RPS-LJE shows slightly better performance than Influence Functions
and marginally better than the original RPS with l2 norm injection.

• To test the sensitivity of one-step gradient descent in RPS-LJE (used to search Θ∗L as described in
Section 3.1), we experimented with multiple learning rates γ in a large range γ ∈ {5e-4 · · · 1e-3,
5e-3 · · · 1e-2}. As shown in Figure 3(b), the explanations vary little with the learning rate.

4.2 Fixing Mislabeled Training Examples (Data Debugging)

In this experiment, we simulate an application scenario where human experts need to inspect the data
annotation quality of the training set that directly impacts the model performance on the test samples.

We simulate data debugging on three classification tasks, including 1) binary image classification
with ResNet [6] (ResNet-20) on CIFAR-10 [12] dataset (horses vs. cars) presented in the RPS-
l2 paper [23], 2) sentiment analysis with Bi-LSTM [7] on IMDB [14] dataset, and 3) credit risk
identification with XGBoost on German Credit dataset [4]. The datasets are intentionally corrupted
by randomly flipping 20-30 percent of the data points’ labels, naturally resulting in low test accuracy.
Our goal is to identify which data points’ label corruption are more harmful and correct them as
early as possible. With the partially corrected dataset (after each 5% of checking), we retrain the
models and record the test accuracies for each task. Experiments are repeated for ten random split
and corruptions on CNN and XGBoost and five random split and corruptions on RNN; we report
the average result. For RPS approaches (LJE and l2), we pick data points that have the largest self-
prediction contribution |αiK(xi,xi)| 5 as suspicious corrupted data points. For Influence Functions,
we use self-influence (see Equation 12) as the score of ranking. For the random baseline, we picked
the data to check randomly.

Figure 4 shows the experimental results. Here, we highlight the following observations:

• RPS-LJE either slightly dominates RPS-l2 or performs comparably to it. This demonstrates that
it is an effective data debugging tool comparable to as RPS-l2, since both show a significant
performance gap to the random baseline on all three tasks.

• RPS-LJE shows slightly better performance than both Influence Function and RPS-l2 on all tests.
For the image classification task (Figure 4(a)), the RPS-LJE shows 3% better performance (around
60 more mislabelled data identified) than original RPS-l2 after searching through 40% of all
training data. For the sentiment analysis task (Figure 4(b)), the performance improvement is about
1% (around 35 more mislabelled data found than the others).

5We note that, for RPS-l2, there is no difference on using |αi| or |αiK(xi,xi)| to select corrupt data points.
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Figure 5: Comparison of Top-4 Influential Training Images for Three Test Samples. For each
test sample, the upper row shows positive influential points, whereas the bottom row shows negative
influential points. Examples are randomly selected from 2000 test samples in our experiment setting.

4.3 Understand Model Behavior through Prediction Explanation

In this section, we qualitatively analyze the prediction explanation ability of candidate sample-based
explanation models on the three tasks mentioned in Section 4.2. While we compare the explanation
results in this experiment, we only intend to compare and contrast the three explanation approaches.

CIFAR-10 Image Classification with ResNet

In Figure 5, we visualize the top-4 training points (both positively and negatively) that have the
strongest influence on the prediction of test samples from Influence Function, RPS-l2, and the
proposed RPS-LJE approaches on the image classification model. Here, we make the following key
observations:

• The explanation produced by RPS-LJE is more similar to that of Influence Function than RPS-l2 but
with some differences in explanation order. This observation aligns with our previous conjecture in
Section 3.3 that the RPS-LJE’s formula of computing training data importance appears similar to
that of Influence Functions.

• Explanations produced by RPS-l2 contain a lot of repetition. Training example ID-3291 and
ID-7655 are in all three test samples’ explanation lists.

IMDB Sentiment Analysis with LSTM

Table 1 shows the top-3 explanations produced by the candidate explanation approaches on the IMDB
sentiment analysis model (Bi-LSTM). Here, we make the following key observations:

• Among the three explanation approaches, RPS-LJE’s explanation is more coherent to the properties
of the test points. For instance, the explanations of RPS-LJE for Sample 1 all start with “This”,
which hints to the auditor that the model has made a generalization (whether correct or not) that
positive sentiment sentences start with “This” based on the identified training data. Similarly, for
Sample 1 and 3, we see the explanations follow the same narrative style by starting with “I”.

• Explanations provided by Influence Functions generate similar explanations (2 out of the top 3)
with RPS-LJE. But Influence Functions sometimes produce confusing explanations. For example,
Sample 2 has a positive comment, but Explanation 1 provided by the Influence Function has a
negative sentiment. Similarly, Sample 3 and its Explanation 3 have the opposite sentiment.

German Credit Risk Analysis with XGBoost

Table 2 lists the predictions of three test samples in the German Credit dataset through the XGBoost
model with corresponding explanations produced by RPS-LJE and Influence Function. Here, we
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Table 1: Explanation Comparison among RPS-LJE, RPS-l2 and Influence Function on IMDB
sentiment analysis data. Column “Sentiment" is the target (label) column, and raw review is the
input of Bi-LSTM network. Examples are randomly selected from the test set.

ID Sentiment Raw Reviews

Sample 1 Test point 41 positive This movie is good for entertainment purposes, but it is not historically reliable. If you are look· · ·

RPS-LJE
Explanation 1 741 positive This movie is about sexual obsession.Bette Davis plays Mildred. This is a woman who men are· · ·
Explanation 2 14701 positive This is a very memorable spaghetti western.It has a great storyline, interesting characters,and some· · ·
Explanation 3 3159 positive This movie was featured on a very early episode of Mystery Science Theater 3000,but when I see· · ·

RPS-l2
Explanation 1 9112 positive Tim Krabbe is the praised author of ’Het Gouden Ei’ , a novel that was put on the screen twice· · ·
Explanation 2 3704 positive THE DEVIL’S PLAYTHING is my second attempt at a Joseph Sarno production-and although I · · ·
Explanation 3 4000 positive So , Todd Sheets once stated that he considers his 1993 , shot-on-video Z - epic, Zombie Bloodbath· · ·

Influence
function

Explanation 1 14701 positive This is a very memorable spaghetti western.It has a great storyline, interesting characters,and some· · ·
Explanation 2 741 positive This movie is about sexual obsession.Bette Davis plays Mildred. This is a woman who men are· · ·
Explanation 3 669 positive Did you ever wonder how far one movie could go?Schizophreniac relentlessly explores the world· · ·

Sample 2 Test point 525 positive I can think of no movie that better captures the concept of grace, in a theological sense.The well-· · ·

RPS-LJE
Explanation 1 14109 positive I can tell you just how bad this movie is.I was in the movie and I haven’t seen it yet,but I cringe at· · ·
Explanation 2 2300 positive I am one of Jehovah’s Witnesses and I also work in an acute care medical facility.Over the years I· · ·
Explanation 3 6372 positive I think the film is educational. However,it fails to treat the issue which sparked so much controversy· · ·

RPS-l2
Explanation 1 9112 positive Tim Krabbe is the praised author of ’Het Gouden Ei’ , a novel that was put on the screen twice· · ·
Explanation 2 3704 positive THE DEVIL’S PLAYTHING is my second attempt at a Joseph Sarno production-and although I · · ·
Explanation 3 4000 positive So , Todd Sheets once stated that he considers his 1993 , shot-on-video Z - epic, Zombie Bloodbath· · ·

Influence
function

Explanation 1 2394 negative A memorable line from a short lived show.After viewing the episode where that line was introduced· · ·
Explanation 2 14109 positive I can tell you just how bad this movie is.I was in the movie and I haven’t seen it yet,but I cringe at· · ·
Explanation 3 2300 positive I am one of Jehovah’s Witnesses and I also work in an acute care medical facility.Over the years I· · ·

Sample 3 Test point 13087 negative I really tried to like this film about a doctor who has the possibility of a new life with a young· · ·

RPS-LJE
Explanation 1 3064 negative I’m sorry but I didn’t like this doc very much I can think of a million ways it could have been better· · ·
Explanation 2 4622 negative I have to be completely honest in saying first that I fell asleep somewhere in the middle, so I can· · ·
Explanation 3 9777 negative I recently viewed Manufactured Landscapes at the Seattle International Film Festival.I was drawn· · ·

RPS-l2
Explanation 1 4801 negative A so common horror story about a luxury building at Brooklyn which hides the gates to hell . It is· · ·
Explanation 2 11015 negative The thing that stands out in my mind in this film ( sadly ) is the introduction , where John Berlin· · ·
Explanation 3 12446 negative Taped this late night movie when I was in grade 11 , watched it on fast forward . I sugest you do· · ·

Influence
function

Explanation 1 3064 negative I’m sorry but I didn’t like this doc very much I can think of a million ways it could have been better· · ·
Explanation 2 4622 negative I have to be completely honest in saying first that I fell asleep somewhere in the middle, so I can· · ·
Explanation 3 16805 positive After viewing several episodes of this series,I have come to the conclusion that television producers· · ·

removed RPS-l2 from the candidate list as it requires fine-tuning the model with l2 normalization,
which is incompatible with tree ensemble models. Here, we highlight the following observations:

• The explanation produced by RPS-LJE is more similar to the test point than that of Influence
Function in the sense of sharing similar feature values. For instance, the “Checking Account"
values of the RPS-LJE explanation always align with the test samples, but that of the Influence
Function does not.

• Influence Function tends to provide diverse explanations for each sample case, where the explana-
tions produced by it show more or fewer differences.

5 Conclusion and Discussion

We presented an approach for explaining the impact of training data on a test prediction, called
Representer Point Selection via Local Jacobian Expansion (RPS-LJE). Our approach aimed to correct
two drawbacks of the existing Representer Point approach (RPS-l2) [23], namely that it often 1)
produces identical explanations for different instances in the same class and 2) produces highly
varying explanations based on the strength of an l2 regularization modification to the original model.
We began by observing these problems empirically and then analyzing the RPS-l2 derivation to reveal
the technical source of these problems. We then proposed corrections to derive a novel form of RPS
based on a local Jacobian Taylor expansion that addresses the technical limitations of the RPS-l2.

We conducted multiple experiments that quantitatively and qualitatively analyzed the proposed RPS-
LJE against existing state-of-the-art approaches, RPS-l2 and Influence Function. Our experiments
empirically show that the proposed RPS-LJE fulfilled our expectation in terms of correcting RPS-
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Table 2: Explanation Comparison between RPS-LJE and Influence Function on German
Credit Data. Column “Risk" is the target (label) column, and all columns after it are feature
columns. Examples are randomly selected from the test set.

ID Risk Checking Account Credit History Savings Account Other Debtors Employment

Sample 1 Test point 318 low none critical account/ other credits existing little none 1 to 4 years

RPS-LJE
Explanation 1 210 low none critical account/ other credits existing unknown/none none 1 to 4 years
Explanation 2 526 low none critical account/ other credits existing moderate none 1 to 4 years
Explanation 3 294 low none critical account/ other credits existing unknown/none none more than 7 years

Influence Function
Explanation 1 668 high poor critical account/ other credits existing little co-applicant more than 7 years
Explanation 2 747 high poor existing credits paid back duly till now little none less than 1 year
Explanation 3 611 high moderate existing credits paid back duly till now moderate none more than 7 years

Sample 2 Test point 414 high poor existing credits paid back duly till now unknown/none none 1 to 4 years

RPS-LJE
Explanation 1 828 high poor existing credits paid back duly till now unknown/none none more than 7 years
Explanation 2 796 high poor existing credits paid back duly till now unknown/none none more than 7 years
Explanation 3 918 high poor existing credits paid back duly till now moderate none unemployed

Influence Function
Explanation 1 828 high poor existing credits paid back duly till now unknown/none none more than 7 years
Explanation 2 252 high little existing credits paid back duly till now little guarantor 1 to 4 years
Explanation 3 796 high poor existing credits paid back duly till now unknown/none none more than 7 years

Sample 3 Test point 951 high poor delay in paying off in the past little none 4 to 7 years

RPS-LJE
Explanation 1 174 high poor delay in paying off in the past little none less than 1 year
Explanation 2 466 high poor delay in paying off in the past little none less than 1 year
Explanation 3 862 high poor existing credits paid back duly till now little none less than 1 year

Influence Function
Explanation 1 174 high poor delay in paying off in the past little none less than 1 year
Explanation 2 172 high little delay in paying off in the past little none unemployed
Explanation 3 534 low none existing credits paid back duly till now unknown/ none none less than 1 year

l2’s problems. It produces individualized explanations instead of a class-level explanation and
quantitatively performs comparably to, or outperforms, existing data-explanation approaches.

6 Scope of Application

This paper presents a novel method of sample-based model explanation for classifiers including deep
neural networks and ensemble models. As stated in Section 3, RPS-LJE is applicable to classification
models with a linear last layer before the activation function. While this requirement may seem
restrictive, many widely-adopted classifiers satisfy them.

In Section 3.1, we state our assumption that the given model is well-trained (near the saddle point),
and thus the gradient of loss with respect to the parameters is close to zero. RPS-l2 [23] and Influence
Function [11] also makes the same assumption. The assumption often holds in practice, as many
classification models will be trained to near-convergence before deployment. However, one exception
to this assumption would be when early stopping is used as a form of regularization.

7 Broader Impacts

Deep learning as well as ensemble methods such as XGBoost have shown exceptional performance in
a variety of data-driven prediction applications including image classification, sentiment classification,
and risk classification (cf. Section 4). This paper proposes a methodology to explain these complex
classifiers via estimating the influence from each training datum on model predictions.

Sample-based explanation methods are critically important for validating and improving classifiers.
For example, explanations can increase the interpretability and transparency of a model’s decision
making process, and thus help to assess the fairness of the model. Furthermore, monitoring training
data quality can facilitate the debugging process and thus improve model performance. One potential
negative impact is that the use of training data for explanations may raise privacy concerns in some
situations; however, measures for data anonymization may (partially) help mitigate such issues.

Acknowledgments and Disclosure of Funding

Yi Sui was funded by a University of Toronto Dean’s Spark award to Scott Sanner. Ga Wu was
funded by a Canadian NSERC Discovery Grant award to Scott Sanner.

10



References

[1] J. Bien and R. Tibshirani. Prototype selection for interpretable classification. The Annals of
Applied Statistics, pages 2403–2424, 2011.

[2] T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, et al. Xgboost: extreme gradient
boosting. R package version 0.4-2, 1(4), 2015.

[3] P. Dabkowski and Y. Gal. Real time image saliency for black box classifiers. In Proceedings of
the 31st International Conference on Neural Information Processing Systems, NIPS’17, 2017.

[4] D. Dua and C. Graff. UCI machine learning repository, 2017.
[5] R. C. Fong and A. Vedaldi. Interpretable explanations of black boxes by meaningful perturbation.

In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Oct 2017.
[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778, 2016.

[7] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9, 1997.
[8] R. Khanna, B. Kim, J. Ghosh, and O. Koyejo. Interpreting black box predictions using fisher

kernels. In AISTATS, 2019.
[9] B. Kim, O. Koyejo, R. Khanna, et al. Examples are not enough, learn to criticize! criticism for

interpretability. In NIPS, pages 2280–2288, 2016.
[10] B. Kim, C. Rudin, and J. A. Shah. The bayesian case model: A generative approach for

case-based reasoning and prototype classification. In Advances in neural information processing
systems, pages 1952–1960, 2014.

[11] P. W. Koh and P. Liang. Understanding black-box predictions via influence functions. In
Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17,
page 1885–1894. JMLR.org, 2017.

[12] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.
[13] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. In I. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems 30, pages 4765–4774. Curran Associates,
Inc., 2017.

[14] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning word vectors
for sentiment analysis.

[15] G. Pruthi, F. Liu, M. Sundararajan, and S. Kale. Estimating training data influence by tracing
gradient descent, 2020.

[16] M. T. Ribeiro, S. Singh, and C. Guestrin. "why should I trust you?": Explaining the predictions
of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages
1135–1144, 2016.

[17] B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem. COLT
’01/EuroCOLT ’01, page 416–426, Berlin, Heidelberg, 2001. Springer-Verlag.

[18] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam: Visual
explanations from deep networks via gradient-based localization. International Journal of
Computer Vision, 128(2):336–359, Oct 2019.

[19] B. Sharchilev, Y. Ustinovsky, P. Serdyukov, and M. de Rijke. Finding influential training
samples for gradient boosted decision trees. In ICML, 2018.

[20] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising
image classification models and saliency maps, 2014.

[21] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In Proceedings
of the 34th International Conference on Machine Learning, ICML’17, 2017.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, u. Kaiser, and
I. Polosukhin. Attention is all you need. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS’17, page 6000–6010, 2017.

11



[23] C.-K. Yeh, J. S. Kim, I. E. Yen, and P. Ravikumar. Representer point selection for explaining
deep neural networks. NIPS’18, 2018.

12


