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ABSTRACT

Label enhancement is a novel label shift strategy that aims to integrate the feature
space with the logical label space to obtain a high-quality label distribution. This
label distribution can serve as a soft target for algorithmic learning, akin to label
smoothing, thereby enhancing the performance of various learning paradigms
including multi-label learning, single positive label learning, and partial-label
learning. However, limited by dataset type and annotation inaccuracy, the same
label enhancement algorithm on different datasets struggles to achieve consistent
performance, for reasons derived from the following two insights: 1) Differential
Contribution of Feature Space and Logical Label Space: The feature space and log-
ical label space of different datasets contribute differently to generating an accurate
label distribution; 2) Presence of Noise and Incorrect Labels: Some datasets contain
noise and inaccurately labeled samples, leading to divergent outputs for similar
inputs. To address these challenges, we propose leveraging CLIP (Contrastive
Language-Image Pre-training) as a foundational strategy, treating the feature space
and the logical label space as two distinct modalities. By recoding these modalities
before applying the label enhancement algorithm, we aim to achieve a fair and
robust representation. In addition, we further explained the reasonableness of our
motives in the discussion session. Extensive experimental results demonstrate
the effectiveness of our approach to help existing label enhancement algorithms
improve their performance on several benchmarks.

1 INTRODUCTION

Currently, improving the performance of multi-label learning algorithms [30], single positive label
learning [26] and partial-label learning [29] by using the label shift become a common means, which
is represented by the label enhancement method [21, 25]. Label enhancement (LE) employs both the
feature space of the samples and the logical label space to generate a high-quality label distribution [7],
which is then enforced as a regularization term on a variety of learning paradigms (see Figure 1(a)).
Despite impressive achievements, current LE algorithms have yet to deliver consistent performance
across various benchmarks. Regarding this issue, we introduce two insights: 1) Many LE algorithms
for label distribution generation assume equal importance between the feature space and the logical
label space, suggesting they make an equivalent impact. Indeed, the contribution of their features is
not fair. 2) Some LE datasets include noisy and inaccurate labels, potentially resulting in significantly
varied outputs for analogous inputs.

For the first insight, we give statistical evidence (see Figure 1(b)) that the difficulty of projecting the
feature space to the label distribution and the logical label space to the label distribution is different
on multiple benchmarks. Note that not in all datasets, logical label space moves to label distribution
space at the least cost. Here, the evaluated method considers the magnitude of the energy [11] of
the feature space X and the logical label space L projected to the label distribution space D with the
help of the matrix W, i.e., the matrix energy of W (the sum of the product of the matrix eigenvalues
and eigenvectors1). W can be regarded as a cost matrix, and its higher energy indicates that the
projection of the matrix is more difficult, that is, the original matrix is further away from the target
matrix. Fig. 1(b) illustrates that the challenge of transforming logical labels → label distributionis
significantly lower than that of feature space → label distribution across the majority of datasets.

1https://wikiless.org/wiki/Eigenvalues_and_eigenvectors
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Figure 1: This figure demonstrates the role of the label enhancement paradigm and also shows our
motivation for why it is necessary to re-represent information from the feature space and the logical
label space.

Current LE algorithms [6, 12, 13, 15, 22, 24, 27, 32] overlook this distinction. Indeed, this oversight
often results in these algorithms generating label distributions that are biased towards either the
feature space or the logical label space, which hinders their ability to perform universally well across
various benchmark datasets (particularly when the feature space transformation is less complex). For
the second insight, there is already a large body of literature [10, 14, 33, 34] supporting that these
datasets contain noise and incorrect labels. These works primarily address the issue by identifying
and tolerating noisy data in the label distribution space, without considering the constraint of similar
feature space inputs on the similarity of outputs in the label distribution space.

To address the challenges posed by the above two insights, we propose in this paper an LE framework
based on CLIP (Contrastive Language-Image Pre-training) [20] alignment. First, we develop a
pre-processing algorithm that harmonizes the transformation difficulty between the feature space and
the logical label space, with the assistance of CLIP. In this context, we consider feature space vectors
and logical label vectors as distinct modalities that convey identical semantics, namely, the label
distribution to be derived. Significantly, this paper ensures that the dimensionality of the transformed
feature vectors aligns with that of the transformed logical label vectors. Second, to mitigate the
impact of noisy data, we use the similarity matrix generated during the pre-training process of CLIP
for constraints i.e. by optimal transmission2 [23] to move its distribution closer to the distribution of
the label distribution.

Based on the proposed novel LE framework, our contribution includes:
i) We propose a pre-processing algorithm that ensures fairness in the representation of the recoded
feature space and the logical labeling space to help downstream LE algorithms achieve better
performance.
ii) We propose a novel regularization method to constrain the modeling process of CLIP to ensure
that the semantic information of new features is not corrupted. Extensive experimental results and
discussions demonstrate the importance of fairness representation, and there is also a significant
performance improvement for downstream LE algorithms.

2 CLIP2LE FRAMEWORK

2.1 ASSUMPTIONS AND NOTATION

The concept of LE is first derived from label distribution learning [24]. The purpose of LE is to
recover label distributions from logical labels as a novel type of supervised information that serves
various learning paradigms. Currently, most LE algorithms can be divided into two categories, one is
algorithmic adaptation [6, 7, 13] and the other is specialized algorithms [16, 22, 24]. These algorithms
not only achieved SOTA results on label distribution learning, but also achieved impressive perfor-

2https://github.com/PythonOT/POT
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Figure 2: This figure shows the framework of our method. Our method has two main components:
first, it starts with the feature space and the logical label space for contrast learning; second, the
coding distributions of the feature space and the coding distributions of the logical label space are both
close to the uniform distribution. The OT in the figure denotes the optimal transmission algorithm; the
aim is to have relatively smooth features after encoding. Wi and Wt denote the prototype matrices
which ensure that the output signals are in the same semantic space.

mance on multi-label learning [30], partial-label learning [29], and single positive-label learning [26].
Nonetheless, the existence of biased characterizations and noise within these benchmarks prevents LE
algorithms from achieving consistently superior performance. We introduce a novel pre-processing
framework, termed CLIP2LE, designed to supply high-quality features to subsequent LE algorithms.

Assumptions. We have three critical assumptions for a CLIP2LE framework (see Figure 2).
a) We recognize the feature space and the logical label space as inherently misaligned modalities,
which can be reconciled using the assistance of CLIP. Moreover, fortunately, a large part of these
benchmarks are tabular data, and the model can gobble up a large number of samples in a single
batch, which ensures the performance of CLIP.
b) We identify a portion of the dataset that has noise and incorrect labels in the logical label space,
which may lead to instability in the output of the LE model, and CLIP ensures that similar inputs
generate similar outputs.
(c) Since both the feature space and the logical label space point to the semantics of the label
distribution, their similarity should also be consistent with the distributional morphology of the label
distribution. Here, we use optimal transmission to ensure the robustness of CLIP modeling.

Notation. Given a particular instance, the goal of our method is to learn the degree to which each
label describes that instance. Input matrix X ∈ RM×N , where M is the number of instances and
N is the dimension of features. xi is the i-th instance in the dataset. The label distribution space
is defined as Y ∈ RM×L, where yj represents the j-th label. For each instance xi, we define its
label distribution Di =

{
dy1
xi
, dy2

xi
, ..., dyL

xi

}
, where d

yj
xi is the description degree of the label yj for

the instance xi. The d
yj
xi is constrained by d

yj
xi ∈ [0, 1] and

∑L
j=1 d

yj
xi = 1. The label distribution

that is predicted by the model is defined as Li =
{
ly1
xi
, ly2

xi
, ..., lyL

xi

}
. The logical label is defined as

Gi =
{
gy1
xi
, gy2

xi
, ..., gyL

xi

}
, where g

yj
xi ∈ {0, 1}.

2.2 METHOD

First, given a pairwise feature space vector xi and a logical labeling vector Gi, we input xi and Gi into
the feature encoder FE and the logical label encoder LLE, respectively, to obtain the re-encoded
features fi and li. Here, both FE and LLE use MLP as an encoder where the activation function
uses ReLU. Next, we conduct joint embedding and regularization for features fi and li. This step can
be written as follows:

Ie = Normalize(fiWi),Te = Normalize(liWt), (1)

where Wi and Wt denote affine matrices (prototype matrix) and Normalize denotes normalization.
Finally, we compute the cosine similarity between features (Ie, Te) and perform a contrast loss
function. This step can be written as follows:

logits = IeT
T
e × Et, (2)
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loss = (CEL(logits, dim=0) + CEL(logits, dim=1))/2, (3)

where CEL denotes the cross-entropy function, t denotes temperature parameters for index E, and
dim=0 and dim=1 denote computations done in a given dimension, respectively.

Feature distribution homogenization. So far, we expect features fi and li to be smooth, which
facilitates fast convergence of the downstream LE model during training. In general, we can
use distribution measure formulas such as KL dispersion, J dispersion, etc., however, they are
computationally expensive. Here, we use optimal transmission (OT) to make the distributions of fi
and li close to the uniform distribution at a small cost. Specifically, first, we need to compute the
migration cost of these two distributions; in this paper, we use earth mover’s distance (EMD)3. Next,
we use Sinkhorn [5] to optimize this transmission cost. This step can be written as follows:

Sinkhorn → EMD(fi,U),Sinkhorn → EMD(li,U), (4)

where Sinkhorn denotes the optimization method, U denotes uniform distribution, and here the
hyperparameter we set to the 10−3.

High-quality feature generation. After N iterations we obtain high quality fi and li. For the range
of values of fi and li, we use Tanh for constraints to avoid outliers. These two new features are used
in downstream LE algorithms for inference to obtain accurate label distributions Li.

Logical label vectors with the help of TableGPT. Predictably, we struggle with treating the logical
label vector as a modality, due to the fact that the logical label vector contains less information and
is sparser compared to the feature space X . Simply increasing the neurons and depth of the LLE
can lead to pre-training that is difficult to converge and an imbalance between LLE and FE exists.
To address this problem, we attempt to introduce a prior on the large model (TableGPT) to precode
the logistic label vectors. We input it as tabular data into TableGPT’s Table Encode to obtain a
high-quality representation. It is worth noting that we are frozen the parameters of TableGPT during
the training process. We also try to input the logic label vectors into BERT as text, but it doesn’t work
well. Here, we extracted the 256-dimensional vectors of the middle layer in Table Encoder as new
feature inputs to the MLP with only 3 layers.

Construction of the prototype matrix Wi and Wt. To make the output space of FE and LLE
more compact, we construct a prototype matrix as the projection space. The prototype space consists
of a set of representative vectors. Specifically, we begin by splicing the input space X and the logical
label space G into a matrix Y ∈ RM×(N+L). Next, we use the nearest neighbor algorithm to obtain
L clusters, the center of which is the representation vector. Finally, we concatenate these L cluster
centers into a matrix Ŵ and use PCA to compress it to the required dimensions. The whole step can
be written as:

Wi = PCA(CONCAT(KNN(SPL(X ,G)))), (5)

where Wi and Wt are constructed in the same way.

3 EXPERIMENTS

Extensive experiments are conducted in this section to verify the effectiveness and competitiveness
of CLIP2LE. We performed four sets of experiments demonstrating the impact of our approach on
downstream LE algorithms, including the impact of our algorithms enforced on LE algorithms on
label distribution learning, multi-label learning, partial-label learning, and single positive multi-label
learning. In addition, we performed experiments evaluating CLIP2LE’s robustness against noise and
the effect of other CLIP algorithms (MaskCLIP and MetaCLIP) on the experiments.

3.1 LE ALGORITHMS ON LABEL DISTRIBUTION LEARNING

Experimental setup. We use 13 real-world datasets [18, 24] for evaluation4. Our algorithm serves as
a pre-processing algorithm for the 8 LE methods, including FCM [6], KM [13], LP [15], ML [12],
GLLE [24], LESC [22], LIB [32], and LEVI [27]. To evaluate the recovery performance, we adopt 6
metrics, namely Chebyshev, Canberra, Clark, Kullback-Leibler, Cosine, and Intersection [7, 22, 24].

3https://encyclopedia.thefreedictionary.com/Earth+Mover%27s+Distance
4http://palm.seu.edu.cn/xgeng/LDL/index.htm
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Here, we show only the performance of the metric functions Chebyshev and Clark. The rest is shown
in the Supplementary Material.

Metric Chebyshev ↓ Clark ↓
Method FCM KM LP ML GLLE LESC LEVI LIB FCM KM LP ML GLLE LESC LEVI LIB

Movie 0.230 0.234 0.161 0.164 0.122 0.121 0.110 0.107 0.859 1.766 0.913 1.140 0.569 0.564 0.551 0.517
SUB-3DFE 0.135 0.238 0.123 0.233 0.126 0.122 0.095 0.094 0.482 1.907 0.580 1.848 0.391 0.378 0.303 0.297
JAFFE 0.132 0.214 0.107 0.186 0.087 0.069 0.075 0.071 0.522 1.874 0.502 1.519 0.377 0.276 0.290 0.262
Yeast-alpha 0.044 0.063 0.040 0.057 0.020 0.015 0.012 0.017 0.821 3.153 1.185 3.088 0.337 0.253 0.319 0.275
Yeast-cdc 0.051 0.076 0.042 0.071 0.022 0.019 0.016 0.017 0.739 2.885 1.014 2.825 0.306 0.251 0.323 0.242
Yeast-cold 0.141 0.252 0.137 0.242 0.066 0.056 0.082 0.054 0.433 1.472 0.503 1.440 0.176 0.152 0.269 0.146
Yeast-diau 0.124 0.152 0.099 0.148 0.053 0.042 0.044 0.049 0.838 1.886 0.788 1.844 0.296 0.224 0.295 0.273
Yeast-dtt 0.097 0.257 0.128 0.244 0.052 0.043 0.084 0.034 0.329 1.477 0.499 1.446 0.143 0.119 0.294 0.092
Yeast-elu 0.052 0.078 0.044 0.072 0.023 0.019 0.017 0.018 0.579 2.768 0.973 2.711 0.295 0.241 0.317 0.224
Yeast-heat 0.169 0.175 0.086 0.165 0.049 0.046 0.052 0.039 0.580 1.802 0.568 1.764 0.213 0.199 0.288 0.165
Yeast-spo 0.130 0.175 0.090 0.171 0.062 0.060 0.055 0.053 0.520 1.811 0.558 1.768 0.266 0.258 0.277 0.224
Yeast-spo5 0.162 0.277 0.114 0.273 0.099 0.092 0.091 0.076 0.395 1.059 0.274 1.036 0.197 0.185 0.209 0.158
Yeast-sopem 0.233 0.408 0.163 0.403 0.088 0.087 0.115 0.069 0.401 1.028 0.272 1.004 0.132 0.129 0.182 0.104
Metric Chebyshev ↓ Clark ↓
Ours + Method FCM KM LP ML GLLE LESC LEVI LIB FCM KM LP ML GLLE LESC LEVI LIB

Movie 0.202 0.214 0.150 0.162 0.112 0.102 0.100 0.095 0.723 1.500 0.843 0.987 0.500 0.533 0.625 0.401
SUB-3DFE 0.121 0.209 0.104 0.222 0.131 0.100 0.099 0.082 0.481 1.807 0.410 1.222 0.201 0.335 0.312 0.250
JAFFE 0.112 0.198 0.095 0.155 0.090 0.066 0.056 0.069 0.521 1.588 0.487 1.322 0.229 0.256 0.232 0.229
Yeast-alpha 0.032 0.059 0.033 0.050 0.019 0.012 0.010 0.010 0.810 2.998 1.010 3.095 0.320 0.223 0.304 0.224
Yeast-cdc 0.050 0.056 0.041 0.080 0.010 0.018 0.015 0.010 0.539 2.288 0.982 2.547 0.222 0.237 0.310 0.238
Yeast-cold 0.123 0.233 0.106 0.214 0.055 0.051 0.088 0.050 0.399 1.256 0.666 1.425 0.168 0.110 0.260 0.139
Yeast-diau 0.111 0.143 0.095 0.144 0.052 0.041 0.049 0.050 0.776 1.566 0.789 1.654 0.122 0.205 0.300 0.266
Yeast-dtt 0.085 0.220 0.113 0.236 0.046 0.042 0.069 0.031 0.320 1.289 0.490 1.255 0.145 0.118 0.302 0.090
Yeast-elu 0.044 0.065 0.041 0.053 0.020 0.013 0.014 0.015 0.454 2.133 0.965 2.551 0.243 0.240 0.328 0.225
Yeast-heat 0.132 0.105 0.056 0.144 0.041 0.045 0.050 0.035 0.582 1.602 0.556 1.789 0.224 0.190 0.206 0.160
Yeast-spo 0.129 0.165 0.088 0.165 0.058 0.061 0.056 0.050 0.521 1.800 0.541 1.413 0.260 0.260 0.256 0.220
Yeast-spo5 0.152 0.272 0.110 0.256 0.090 0.091 0.095 0.081 0.390 1.001 0.257 0.999 0.195 0.180 0.211 0.108
Yeast-sopem 0.253 0.308 0.156 0.456 0.066 0.088 0.103 0.059 0.421 0.967 0.256 1.000 0.135 0.102 0.156 0.100

Table 1: Recovery results on 13 real-world datasets. ↓ indicates that “the smaller the better” and ↑
means that “the larger the better”. The following two table blocks represent the 8 LE algorithms
using our pre-processing steps. We highlight the best recovery results.

Result. We provide the detailed comparison results on 13 real-world datasets in Table 1. Overall,
we found two interesting results: 1) our approach does not allow all algorithms to improve their
performance, and 2) our approach is very friendly to non-deep algorithms, especially adaption ones.
In addition, for the LIB algorithm, the ability of our method to help it boost is effective, probably due
to the fact that the model capacity of LIB reaches its upper limit.

3.2 LE ALGORITHMS ON MULTI-LABEL LEARNING

Experimental setup. In this subsection, the efficiency and the performance of FLEM [31] + our
method are evaluated in multiple multi-label learning datasets. All methods are implemented by
PyTorch. All the computations are performed on a GPU server with NVIDIA Tesla V100. We use
eight datasets, including two text datasets and six image datasets.

Metric Hamming loss ↓ Ranking loss↓
Dataset AAPD Reuters VOC07 VOC12 COCO14 COCO17 CUB NUS AAPD Reuters VOC07 VOC12 COCO14 COCO17 CUB NUS

FLEM-S 0.0276 0.0040 0.0239 0.0226 0.0191 0.0207 0.0850 0.0138 0.0522 0.0092 0.0194 0.0140 0.0239 0.0286 0.1058 0.0149
FLEM-T 0.0271 0.0040 0.0243 0.0228 0.0192 0.0209 0.0849 0.0139 0.0483 0.0094 0.0199 0.0138 0.0238 0.0286 0.1048 0.0148
FLEM-D 0.0271 0.0041 0.0237 0.0231 0.0192 0.0209 0.0848 0.0137 0.0432 0.0091 0.0189 0.0139 0.0231 0.0279 0.1039 0.0139

Metric Hamming loss ↓ Ranking loss ↓
Dataset AAPD Reuters VOC07 VOC12 COCO14 COCO17 CUB NUS AAPD Reuters VOC07 VOC12 COCO14 COCO17 CUB NUS

FLEM-S + our method 0.0265 0.0038 0.0221 0.0220 0.0190 0.0203 0.0843 0.0139 0.0521 0.0098 0.0156 0.0131 0.0233 0.0285 0.1050 0.0145
FLEM-T + our method 0.0263 0.0043 0.0240 0.0222 0.0190 0.0213 0.0840 0.0135 0.0480 0.0093 0.0193 0.0122 0.0245 0.0283 0.1021 0.0140
FLEM-D + our method 0.0230 0.0033 0.0230 0.0221 0.0196 0.0201 0.0801 0.0133 0.0430 0.0090 0.0185 0.0130 0.0234 0.0278 0.1033 0.0121

Table 2: Recovery results on 8 real-world datasets. ↓ indicates that “the smaller the better”. The
following two table blocks represent the 8 LE algorithms using our preprocessing steps.

Result. We provide the detailed comparison results on 8 real-world datasets in Table 2. Overall,
we observe that our method does not uniformly enhance the performance of FLEM, particularly
in scenarios with a fewer number of labels. Conversely, our approach demonstrates a substantial
improvement in cases where there is a higher number of labels.
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3.3 LE ALGORITHMS ON PARTIAL LABEL LEARNING

Our method imposes an evaluation on PL-LE [25]. First, our method + PL-LE and PL-LE were
evaluated on 168 UCI data sets [1]. Our method + PL-LE achieves comparable performance against
PL-LE in 92.0% cases (150 out of 168) and 90.1% cases (147 out of 168) respectively. In addition,
PL-LE achieves superior performance against PL-LEAF and PL-ECOC in 8.0% cases (18 out of 168)
and 9.9% cases (21 out of 168) respectively.

Second, our method + PL-LE and PL-LE were evaluated in Real-World Data Sets. On all data sets,
our method + PL-LE achieves superior or at least comparable performance against PL-LE. Our
method improves 2%, 3.2%, 4.1%, 5.9%, 2.9%, and 3.3% compared to PL-LE on the FG-NET [19],
Lost [4], MSRCv2 [17], BirdSong [3], Soccer Player [28], and Yahoo! News [8] dataset, respectively.

3.4 LE ALGORITHMS ON SINGLE-POSITIVE MULTI-LABEL LEARNING

Experimental setup. In the experiments, we adopt twelve widely-used multi-label learning datasets
[9], which cover a broad range of cases with diversified multi-label properties. To evaluate the
performance of our method + SPMLL [26] methods, we generate the single positive training data by
randomly selecting one positive label to keep for each training example in the multi-label learning
datasets. For each dataset, we run the comparing methods with 80%/10%/10% train/validation/test
split. The validation and test sets are always fully labeled. Five popular multi-label metrics Ranking
loss, Hamming loss, One-error, Coverage, and Average precision are employed for performance
evaluation. Furthermore, for Average precision, the larger the values the better the performance.
While for the other four metrics, the smaller the values the better the performance.

Result. Our method compared to SPMLL on CAL500, image, scene, yeast, core15k, revl-s1,
core116k-s1, delicious, iaprtc12, espgame, mirfiickr, tmc2007 dataset improves 3%, 4.1%, 1.0%,
0.92%, 8.9%, 12.6%, 1.1%, -2.1%, 3.9%, 4.4%, 15.8%, 6.6%, respectively, where the negative sign
denotes performance degradation.

Metric Chebyshev ↓ Clark ↓
w/o AS(i) + Method FCM KM LP ML GLLE LESC LEVI LIB FCM KM LP ML GLLE LESC LEVI LIB

Movie 0.211 0.223 0.162 0.165 0.110 0.129 0.118 0.098 0.729 1.654 0.855 0.990 0.523 0.546 0.657 0.422
SUB-3DFE 0.120 0.210 0.105 0.228 0.141 0.133 0.102 0.091 0.499 1.944 0.430 1.229 0.221 0.339 0.310 0.290
JAFFE 0.113 0.201 0.123 0.166 0.091 0.063 0.059 0.077 0.543 1.589 0.498 1.400 0.222 0.299 0.243 0.230
Yeast-alpha 0.031 0.069 0.048 0.052 0.033 0.033 0.011 0.011 0.859 2.997 1.163 3.421 0.321 0.220 0.395 0.266
Yeast-cdc 0.059 0.068 0.055 0.093 0.012 0.025 0.033 0.012 0.599 2.489 1.177 2.643 0.221 0.255 0.319 0.256
Yeast-cold 0.124 0.289 0.133 0.225 0.059 0.056 0.087 0.052 0.455 1.432 0.678 1.566 0.232 0.115 0.261 0.144

Table 3: We removed the effect of homogenization of the feature distribution. Recovery results on 6
real-world datasets. ↓ indicates that “the smaller the better”. We highlight the best recovery results.

Metric Chebyshev ↓ Clark ↓
w/o AS(ii) + Method FCM KM LP ML GLLE LESC LEVI LIB FCM KM LP ML GLLE LESC LEVI LIB

Movie 0.241 0.252 0.174 0.165 0.129 0.120 0.109 0.110 0.887 1.767 0.947 1.156 0.570 0.561 0.587 0.512
SUB-3DFE 0.136 0.289 0.197 0.265 0.127 0.125 0.096 0.093 0.483 1.905 0.581 1.899 0.399 0.379 0.302 0.299
JAFFE 0.133 0.212 0.175 0.187 0.089 0.071 0.079 0.078 0.521 1.844 0.519 1.566 0.397 0.296 0.292 0.260
Yeast-alpha 0.049 0.065 0.041 0.055 0.029 0.033 0.027 0.065 0.820 3.159 1.192 3.222 0.322 0.250 0.336 0.278
Yeast-cdc 0.055 0.077 0.047 0.067 0.023 0.019 0.021 0.018 0.741 2.889 1.055 2.899 0.316 0.255 0.325 0.241
Yeast-cold 0.145 0.300 0.139 0.241 0.069 0.058 0.089 0.056 0.435 1.477 0.615 1.444 0.179 0.172 0.272 0.145

Table 4: We removed the effects of TabGP. Recovery results on 6 real-world datasets. ↓ indicates that
“the smaller the better”. We highlight the best recovery results.

Metric Chebyshev ↓ Clark ↓
w/o AS(iii) + Method FCM KM LP ML GLLE LESC LEVI LIB FCM KM LP ML GLLE LESC LEVI LIB

Movie 0.249 0.267 0.173 0.195 0.177 0.121 0.111 0.119 0.889 1.766 0.933 1.157 0.571 0.569 0.582 0.519
SUB-3DFE 0.137 0.292 0.195 0.264 0.123 0.133 0.097 0.095 0.485 1.910 0.589 1.912 0.397 0.388 0.313 0.298
JAFFE 0.135 0.213 0.177 0.188 0.091 0.070 0.075 0.079 0.523 1.842 0.588 1.567 0.393 0.294 0.293 0.261
Yeast-alpha 0.056 0.066 0.043 0.057 0.032 0.035 0.022 0.069 0.829 3.177 1.193 3.229 0.325 0.251 0.339 0.289
Yeast-cdc 0.056 0.078 0.055 0.069 0.021 0.015 0.029 0.011 0.745 2.894 1.053 2.895 0.317 0.259 0.321 0.242
Yeast-cold 0.147 0.314 0.135 0.245 0.072 0.063 0.094 0.059 0.436 1.466 0.619 1.474 0.184 0.173 0.274 0.144

Table 5: We remove the effect of the prototype matrix. Recovery results on 6 real-world datasets. ↓
indicates that “the smaller the better”. We highlight the best recovery results.
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3.5 ABLATION STUDY FOR CLIP2LE

To evaluate the effectiveness of our method, we conduct 3 experiments on the 3.1 task.

i) Remove the feature distribution homogenization. We remove the loss term that moves closer to
the uniform distribution. As shown in Table 3, we find that the performance degradation is significant
when the number of labels is greater than 6. This may be due to the principle of label distribution
learning that as the number of labels increases, the lower the percentage of each label, the closer it is
to a uniform distribution.

ii) Remove the TableGPT. To evaluate the effectiveness of recoding the logical label space by
TableGPT, we removed TableEncoder. As shown in Table 4, we find that the performance degradation
is significant when the number of labels is smaller than 6.

iii) Remove the prototype matrix. To demonstrate the effectiveness of the prototype matrices,
the prototype matrices in our approach are replaced by learnable parameter matrices. As shown in
Table 5, we find that the performance of the prototype matrix is almost homotopic to that of TableGPT
and that the prototype matrix may be more important for labeling the role of logical vector encoding.

Metric Chebyshev ↓ Clark ↓
Method without our method FCM KM LP ML GLLE LESC LEVI LIB FCM KM LP ML GLLE LESC LEVI LIB

Movie 0.231 0.236 0.169 0.177 0.125 0.126 0.112 0.107 0.869 1.777 0.921 1.144 0.570 0.576 0.555 0.519
SUB-3DFE 0.136 0.244 0.126 0.236 0.123 0.127 0.100 0.096 0.491 1.913 0.589 1.896 0.393 0.379 0.311 0.298
Metric Chebyshev ↓ Clark ↓
Method with our method FCM KM LP ML GLLE LESC LEVI LIB FCM KM LP ML GLLE LESC LEVI LIB

Movie 0.239 0.248 0.178 0.199 0.165 0.133 0.119 0.108 0.887 1.995 0.932 1.142 0.599 0.601 0.555 0.544
SUB-3DFE 0.164 0.278 0.155 0.280 0.156 0.133 0.125 0.090 0.495 1.966 0.589 1.879 0.466 0.372 0.333 0.299

Table 6: Recovery results on 2 real-world datasets. ↓ indicates that “the smaller the better”. We
highlight the best recovery results.

Metric Chebyshev ↓ Clark ↓
Method without our method FCM KM LP ML GLLE LESC LEVI LIB FCM KM LP ML GLLE LESC LEVI LIB

Movie 0.298 0.246 0.255 0.198 0.213 0.189 0.144 0.143 0.956 1.989 0.977 1.321 0.689 0.762 0.699 0.688
SUB-3DFE 0.157 0.399 0.245 0.319 0.256 0.277 0.189 0.149 0.569 2.005 0.789 2.449 0.457 0.444 0.372 0.333
Metric Chebyshev ↓ Clark ↓
Method without our method FCM KM LP ML GLLE LESC LEVI LIB FCM KM LP ML GLLE LESC LEVI LIB

Movie 0.275 0.230 0.242 0.143 0.202 0.165 0.140 0.122 0.901 1.566 0.879 1.132 0.544 0.712 0.633 0.540
SUB-3DFE 0.152 0.347 0.201 0.311 0.206 0.223 0.175 0.137 0.555 1.998 0.753 2.407 0.438 0.408 0.370 0.300

Table 7: Recovery results on 2 real-world datasets. ↓ indicates that “the smaller the better”. We
highlight the best recovery results. These two datasets were injected with 0.5× Gaussian noise.

3.6 ROBUSTNESS EVALUATION OF CLIP2LE

To evaluate the ability of our method to tolerate noise, we present two experiments: one in which the
labels in the logical label space are incorrect; and the other in which the logical label space carries
Gaussian noise.

1) Since we assumed the problem of incorrect labels in the space of label distributions D, we imposed
20% incorrect labels (for example, [0.1, 0.2. 0.7] → [0.7, 0.1, 0.2]) on the training set in task 3.1 to
validate the effectiveness of our method. As shown in Table 6, the interference of incorrect labels can
be effectively eliminated by our method compared to the method without using preprocessing.

2) As shown in Table 7, we inject 50% Gaussian noise (0.5×) into the label labeling space, and the
LE algorithm using CLIP2LE has better performance.

3.7 PERFORMANCE OF DOWNSTREAM TASKS

To evaluate the effect of using the CLIP2LE method on the downstream prediction task, we select the
LIB and LEVI algorithms as a baseline to be assessed on the SJAFFE dataset. Since the SJAFFE
dataset is a face classification task, we employ ResNet-18 for prediction; where the cross-entropy
function is used as the main loss term, and the label distributions predicted by LIB and LEVI are
used as the regularization terms, where the weights of the regularization terms are all set to 0.15.
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We found that the accuracy of pure LIB-based and LEVI-assisted prediction of facial emotion is
95.2% and 94.9%, respectively. While the accuracy of LIB and LEVI-assisted ResNet-18 prediction
with CLIP2LE is 96.6% and 96.1%, respectively. It is worth noting that the prediction accuracy
of ResNet-18 for facial emotions is 93.9%, without considering the regularization term. Here, our
epochs are set to 200, the learning rate is 0.005, the batch size is set to 16, and the optimizer uses
AdamW.

Metric Chebyshev ↓ Clark ↓
Method without our method FCM KM LP ML GLLE LESC LEVI LIB FCM KM LP ML GLLE LESC LEVI LIB

Movie 0.298 0.246 0.255 0.198 0.213 0.189 0.144 0.143 0.956 1.989 0.977 1.321 0.689 0.762 0.699 0.688
SUB-3DFE 0.157 0.399 0.245 0.319 0.256 0.277 0.189 0.149 0.569 2.005 0.789 2.449 0.457 0.444 0.372 0.333
Metric Chebyshev ↓ Clark ↓
Method with our method FCM KM LP ML GLLE LESC LEVI LIB FCM KM LP ML GLLE LESC LEVI LIB

Movie 0.275 0.230 0.242 0.143 0.202 0.165 0.140 0.122 0.901 1.566 0.879 1.132 0.544 0.712 0.633 0.540
SUB-3DFE 0.152 0.347 0.201 0.311 0.206 0.223 0.175 0.137 0.555 1.998 0.753 2.407 0.438 0.408 0.370 0.300
Method with MaskCLIP FCM KM LP ML GLLE LESC LEVI LIB FCM KM LP ML GLLE LESC LEVI LIB

Movie 0.272 0.228 0.245 0.144 0.200 0.162 0.138 0.121 0.899 1.562 0.877 1.130 0.542 0.711 0.629 0.537
SUB-3DFE 0.151 0.338 0.202 0.313 0.201 0.215 0.170 0.133 0.554 1.995 0.742 2.402 0.433 0.402 0.365 0.293
Method with MetaCLIP FCM KM LP ML GLLE LESC LEVI LIB FCM KM LP ML GLLE LESC LEVI LIB

Movie 0.272 0.228 0.243 0.144 0.210 0.169 0.132 0.121 0.921 1.542 0.870 1.121 0.539 0.710 0.635 0.532
SUB-3DFE 0.149 0.344 0.199 0.310 0.205 0.219 0.170 0.138 0.523 1.989 0.740 2.405 0.433 0.412 0.369 0.298

Table 8: Recovery results on 2 real-world datasets. ↓ indicates that “the smaller the better”. We
highlight the best recovery results. We evaluated the effect of different CLIP versions.

3.8 EFFECT OF OTHER CLIP VERSIONS

To align the semantics of the logical label space and the feature space, we conduct experiments
based on pure CLIP. Here, we investigate the effect of MaskCLIP and MetaCLIP on the experimental
results. As shown in Table 8, MaskCLIP and MetaCLIP are essentially improved over pure CLIP on
both datasets, with a decrease in very few algorithms. However, MaskCLIP and MetaCLIP consume
much more computational resources than pure CLIP.

3.9 ESTIMATION ERROR BOUND

In this subsection, we estimate the error bounds of our method using the example of single positive
multi-label learning. The empirical risk estimator (loss term for [26]) according to 3.4 can be rewritten
as:

Rspmll(f) =
1

n

n∑
i=1

L∑
j=1

(
wj

i ℓ
j
i + w̄j

i ℓ̄
j
i

)
, (6)

where wj
i =

dj
i

p(yγ=1|xi)c
and w̄j

i =
1−dj

i

p(yγ=1|xi)c
. Then the total loss function Lsp is

Lsp =

L∑
j=1

(
wj

i ℓ
j
i + w̄j

i ℓ̄
j
i

)
+ (CEL(logits, dim=0) + CEL(logits, dim=1)) /2. (7)

We define a function space as:

Ksp =

(x, y) 7→
L∑

j=1

(
wjℓj + w̄j ℓ̄j

)
+ (CEL(logits, dim=0) + CEL(logits, dim=1)) /2|f ∈ F

 ,

(8)
and denote the expected Rademacher complexity [2] of Ksp as:

R̃n(Ksp) = Ex,y,σσσ

[
sup
g∈Gsp

1

n

n∑
i=1

σig (xi, yi)

]
, (9)

where σσσ = {σ1, σ2, . . . , σn} is n Rademacher variables with σi independently uniform variable
taking value in {+1,−1}. We suppose that the SPMLL loss function Lsp could be bounded by M ,
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Logical label space Feature space

0

40

JAFFE SUB-3DFE Yeast-alpha Movie Yeast-cold

The figure represents the energy of the matrix, with higher energies denoting greater difficulty to transform that space into the space of label distributions.

w/o CLIP CLIP

0.5

0.7

JAFFE SUB-3DFE Yeast-alpha Movie Yeast-cold

This figure shows the performance of the FCM algorithm under the cosine metric, where FCM improves by 5-13% on several benchmarks after using the
preprocessing features of CLIP.

Logical label space Feature space

0

40

Yeast-cdc Yeast-diau Yeast-elu Yeast-heat Yeast-spo

w/o CLIP CLIP

0.5

0.7

Yeast-cdc Yeast-diau Yeast-elu Yeast-heat Yeast-spo

Figure 3: This figure provides a comprehensive view of how difficult it is to transform information
from a matrix across multiple benchmarks, with higher matrix energies representing more difficult
information transformations.

i.e., M = supx∈X ,f∈F,y∈Y Lsp (f(x), y), and for any δ > 0, with probability at least 1− δ, then we
have

sup
f∈F

Rsp(f)− R̂sp(f) ≤ 2R̃n(Ksp) +
M

2

√
log 2

δ

2n
.

We suppose that the loss function ℓ (f(x), y) and ℓ̄ (f(x), y) are ρ+-Lipschitz and ρ−-Lipschitz with
respect to f(x) (0 < ρ+ < ∞ and 0 < ρ− < ∞) for all y ∈ Y , respectively, and wj and w̄j are
both bounded in [0, κ]. Then, we have

R̃n(Ksp) ≤
√
2κc(ρ+ + ρ−)

c∑
j=1

Rn(Hyj
),

where Hy = {h : x 7→ fy(x)|f ∈ F} and Rn(Hy) = Ex,σσσ

[
suph∈Hy

1
n

∑n
i=1 h (xi)

]
.

We could obtain the following theorem: Assume the loss function ℓ (f(x), y) and ℓ̄ (f(x), y) are
ρ+-Lipschitz and ρ−-Lipschitz with respect to f(x) (0 < ρ+ < ∞ and 0 < ρ− < ∞) for all
y ∈ Y and the loss function Lsp are bounded by M , i.e., M = supx∈X ,f∈F,y∈Y Lsp (f(x), y), with
probability at least 1− δ,

R(f̂sp)−R(f∗) ≤ 4
√
2κc(ρ+ + ρ−)

c∑
j=1

Rn(Hy) +M

√
log 2

δ

2n
.

Here, f̂sp = minf∈F R̂sp(f) and f⋆ = minf∈F R(f) are the empirical risk minimizer and the true
risk minimizer, respectively. The proof can be found in the Appendix. This equation shows that fsp
would converge to f⋆ as n → ∞ and Rn (Hy) → 0.

4 DISCUSSION AND ANALYSIS

In this section, we focus on why CLIP’s methods are effective to echo our motivations. First, we
visualize some matrix energies to represent the difficulty of transforming the feature space and the
logical label space to the label distribution space (see Figure 3). In this paper matrix energies are
computed as described below: First, we set a linear model with bias terms for the transformation
of the feature space matrix to the label distribution matrix and the logical label matrix to the label
distribution matrix, respectively. The linear model uses the nn.Linear operator in PyTorch 1.8. We
used an evaluation platform with a Linux system, a single 3090 RTX GPU shader, the learning rate
was uniformly set to 0.002, the batch size was set to throughput all the data at once, and the number
of iterations was uniformly set to 1200.
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Figure 4: This figure shows the effect of different optimizers on the generation of the energy matrix.

Maintaining fairness. The linear models are uniformly overfitted set to ensure fairness in information
migration, and they all have a training loss below 0.001.

Learning rate’s effect. We attempt to obtain matrix energies at multiple learning rates({0.001, 0.01,
0.1}), and we find that the learning rate interferes with the results by less than 3 percent and does not
affect the ordinal relationship.

Optimizer’s effect. In addition, we also considered the effect of optimizers on our method and
we evaluated the effect of SGD, Adam, and Adagrad on our experiments. As shown in Figure 4,
these four optimizers are essentially homotopic though there are differences in the energy matrices
generated by them.

Before the linear model was trained, the transfer matrix energy of the feature space matrix and
the transfer matrix energy of the logical label space was essentially equal after using CLIP, with a
difference of no more than 2%. We also tried to perform the training of the linear model on the CPU,
due to the limited CPU storage, it is not possible to throughput the entire dataset, which can lead
to unfair comparisons. We also perform an exploratory experiment to consider the role of sample
weights based on the CLIP2LE algorithm. Specifically, each sample is assigned a learned parameter
during training, which is obtained through a 1D convolution and a pooling layer that acts on each
sample. We found an overall improvement of 2.4% in performance across CLIP2LE and will consider
the role of sample weights in future work.

In addition, in the Appendix we show the performance of some variants of CLIP.

5 LIMITATIONS AND BROADER IMPLICATIONS

Since most of the evaluated datasets are tabular, their feature space dimensions are not uniform. For
this, we need to pre-train a CLIP2LE for each dataset, which yields a great training cost. This
may have led to a small amount of performance degradation on some datasets using our method.
Moreover, in this paper, we do not compare with the SOTA method, which is because we focus on
the preprocessing ability of CLIP2LE rather than obtaining the best LE results.

Our approach is a pre-processing algorithm that does not involve ethical and moral issues; it is a safe
and trustworthy machine-learning algorithm.

6 CONCLUSION

In this paper, we propose a generalized label enhancement pre-processing method that can be applied
to tasks such as image, text, and speech. Here, we consider label enhancement as a multimodal fusion
task, where the issues of fairness and consistency of representations are addressed by a customized
CLIP algorithm. In the discussion session, we further illustrate that extant label enhancement
algorithms that do not take into account the fairness of the representations result in not all-round
performance on multiple benchmarks. Extensive experimental results demonstrate that our proposed
CLIP2LE is effective and robust.
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A APPENDIX / SUPPLEMENTAL MATERIAL

This subsection is supplemented with details and data in the 3.1 task.

Details of the comparison methods. For the sake of fairness, we utilize the parameter settings
recommended in their original works. Specifically, for FCM, we set the parameter β = 2. For KM,
we leverage the Gaussian kernel. For LP, we set the parameter α = 0.5. For ML, we set the number
of neighbors k = c + 1. For GLLE, we select λ from {0.01, 0.1, ..., 100} and set the number of
neighbors k to c+ 1. For LESC, λ1 and λ2 are selected from {0.0001, 0.1, ..., 10}. For LEVI, MLPs
with two hidden layers and softplus activation functions are utilized, and the results are reported after
150 training epochs. For LIB, we select α and β from {0.001, 0.01, ..., 10}, and the fully connected
networks with 3 layers and sigmoid activation function are leveraged in the proposed method.

Experimental results. Experimental results show that our method can effectively improve the
performance of existing LE algorithms (see Figure 9 and Figure 11). It is worth noting that the
validity of our method is more outstanding in the Cosine metric. Furthermore, we find that consistent
with the insights in the main manuscript, our approach improves significantly on non-deep learning
algorithms.

Metric Canberra ↓ Kullback-Leibler ↓
Method FCM KM LP ML GLLE LESC LEVI LIB FCM KM LP ML GLLE LESC LEVI LIB

Movie 1.664 3.444 1.720 1.934 1.045 1.034 0.974 0.920 0.381 0.452 0.177 0.218 0.123 0.120 0.082 0.077
SUB-3DFE 1.020 4.121 1.245 4.001 0.820 0.799 0.637 0.611 0.094 0.603 0.105 0.565 0.069 0.064 0.042 0.041
SJAFFE 1.081 4.010 1.064 3.138 0.781 0.561 0.600 0.531 0.107 0.558 0.077 0.391 0.050 0.029 0.032 0.027
Yeast-alpha 2.883 11.809 4.544 11.603 1.134 0.846 1.249 0.893 0.100 0.630 0.121 0.602 0.013 0.008 0.011 0.009
Yeast-cdc 2.415 9.875 3.644 9.695 0.959 0.765 1,148 0.747 0.091 0.630 0.111 0.601 0.014 0.010 0.014 0.008
Yeast-cold 0.734 2.566 0.924 2.519 0.305 0.263 0.501 0.250 0.113 0.586 0.103 0.556 0.019 0.015 0.035 0.012
Yeast-diau 1.895 4.261 1.748 4.180 0.671 0.480 0.689 0.621 0.159 0.538 0.127 0.509 0.027 0.017 0.023 0.022
Yeast-dtt 0.501 2.594 0.941 2.549 0.248 0.206 0.562 0.158 0.065 0.617 0.103 0.586 0.013 0.010 0.042 0.005
Yeast-elu 1.689 9.110 3.381 8.949 0.902 0.727 1.093 0.670 0.059 0.617 0.109 0.589 0.013 0.009 0.014 0.008
Yeast-heat 1.157 3.849 1.293 3.779 0.430 0.401 0.646 0.327 0.147 0.586 0.089 0.556 0.017 0.015 0.027 0.011
Yeast-spo 0.998 3.854 1.231 3.772 0.548 0.533 0.605 0.454 0.110 0.562 0.084 0.532 0.029 0.028 0.025 0.019
Yeast-spo5 0.563 1.382 0.401 1.355 0.305 0.284 0.311 0.241 0.123 0.334 0.042 0.317 0.034 0.031 0.028 0.021
Yeast-sopem 0.534 1.253 0.365 1.226 0.183 0.180 0.248 0.144 0.208 0.531 0.067 0.503 0.027 0.027 0.036 0.018
Metric Canberra ↓ Kullback-Leibler ↓
Ours + Method FCM KM LP ML GLLE LESC LEVI LIB FCM KM LP ML GLLE LESC LEVI LIB

Movie 1.655 3.413 1.677 1.854 1.011 1.022 0.847 0.841 0.380 0.442 0.165 0.215 0.120 0.111 0.080 0.076
SUB-3DFE 1.012 4.022 1.115 3.985 0.765 0.791 0.630 0.610 0.083 0.533 0.095 0.411 0.063 0.061 0.040 0.040
JAFFE 1.033 3.887 1.001 3.132 0.785 0.544 0.538 0.530 0.106 0.550 0.013 0.324 0.033 0.021 0.032 0.016
Yeast-alpha 2.880 11.569 4.336 11.547 1.021 0.841 1.245 0.896 0.006 0.630 0.121 0.602 0.013 0.008 0.011 0.009
Yeast-cdc 2.410 9.863 3.643 9.610 0.921 0.753 1,145 0.740 0.087 0.611 0.110 0.599 0.013 0.010 0.012 0.007
Yeast-cold 0.730 2.543 0.920 2.501 0.296 0.260 0.486 0.243 0.110 0.580 0.102 0.511 0.010 0.015 0.032 0.009
Yeast-diau 1.890 4.245 1.733 4.101 0.671 0.480 0.689 0.621 0.159 0.538 0.127 0.509 0.027 0.015 0.021 0.023
Yeast-dtt 0.500 2.585 0.941 2.549 0.248 0.201 0.560 0.155 0.053 0.601 0.096 0.544 0.011 0.010 0.041 0.002
Yeast-elu 1.655 9.022 3.305 8.888 0.912 0.720 1.064 0.566 0.051 0.610 0.056 0.523 0.031 0.005 0.014 0.004
Yeast-heat 1.123 3.489 1.113 3.536 0.225 0.400 0.619 0.223 0.140 0.513 0.066 0.433 0.012 0.013 0.028 0.011
Yeast-spo 0.963 3.855 1.111 3.656 0.432 0.411 0.599 0.406 0.111 0.553 0.080 0.522 0.021 0.025 0.021 0.010
Yeast-spo5 0.523 1.333 0.400 1.211 0.302 0.255 0.310 0.240 0.122 0.314 0.033 0.301 0.033 0.030 0.025 0.020
Yeast-sopem 0.532 1.233 0.313 1.225 0.180 0.153 0.212 0.140 0.202 0.523 0.060 0.477 0.020 0.021 0.035 0.015

Table 9: Recovery results on 13 real-world datasets. ↓ indicates that “the smaller the better”. The
following two table blocks represent the 8 LE algorithms using our pre-processing steps. We highlight
the best recovery results.

Metric Cosine ↑ Intersection ↑
Method FCM KM LP ML GLLE LESC LEVI LIB FCM KM LP ML GLLE LESC LEVI LIB

Movie (Ours) 0.773 0.880 0.929 0.919 0.936 0.937 0.954 0.955 0.677 0.649 0.778 0.779 0.831 0.833 0.849 0.859
Movie (CCLIP2LE) 0.775 0.856 0.925 0.912 0.934 0.937 0.965 0.967 0.675 0.644 0.772 0.770 0.811 0.815 0.810 0.866
Movie (TCLIP2LE) 0.770 0.888 0.931 0.922 0.934 0.941 0.956 0.959 0.683 0.666 0.779 0.781 0.834 0.835 0.852 0.879

Table 10: Recovery results on 1 real-world dataset. We highlight the best recovery results.

In this subsection, we discuss the role of other variants of CLIP on LE.

In fact, MLP is not necessarily a good choice as a CLIP encoder. Here, we propose two comparison
algorithms, one based on CNN (CCLIP2LE) and the other based on Transformer (TCLIP2LE).
CCLIP2LE used three-layer convolution and ReLU for the activation function; TCLIP2LE used a
three-layer self-attention mechanism and GLU for the activation function. The remaining configura-
tions such as learning rate, optimizer, and batchsize are consistent with the settings of CLIP2LE.

As shown in Table 10, we conducted a comparison experiment on the Movie dataset. We note that
TCLIP2LE performs the best, but also has the highest computational cost, and to trade-off speed and
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Metric Cosine ↑ Intersection ↑
Method FCM KM LP ML GLLE LESC LEVI LIB FCM KM LP ML GLLE LESC LEVI LIB

Movie 0.773 0.880 0.929 0.919 0.936 0.937 0.954 0.955 0.677 0.649 0.778 0.779 0.831 0.833 0.849 0.859
SUB-3DFE 0.912 0.812 0.922 0.815 0.927 0.932 0.956 0.958 0.827 0.579 0.810 0.587 0.850 0.855 0.882 0.887
JAFFE 0.906 0.827 0.941 0.857 0.958 0.973 0.969 0.974 0.821 0.593 0.837 0.661 0.872 0.905 0.897 0.909
Yeast-alpha 0.922 0.751 0.911 0.756 0.987 0.992 0.989 0.992 0.844 0.532 0.774 0.537 0.938 0.953 0.932 0.951
Yeast-cdc 0.929 0.754 0.916 0.759 0.987 0.991 0.987 0.992 0.847 0.533 0.779 0.538 0.937 0.950 0.925 0.951
Yeast-cold 0.922 0.779 0.925 0.784 0.982 0.986 0.970 0.988 0.833 0.559 0.794 0.565 0.924 0.935 0.881 0.938
Yeast-diau 0.882 0.799 0.915 0.803 0.975 0.985 0.980 0.979 0.760 0.588 0.788 0.593 0.906 0.933 0.908 0.913
Yeast-dtt 0.959 0.759 0.921 0.763 0.988 0.991 0.965 0.995 0.894 0.541 0.786 0.546 0.939 0.949 0.866 0.961
Yeast-elu 0.950 0.758 0.918 0.763 0.987 0.991 0.987 0.992 0.883 0.539 0.782 0.544 0.936 0.949 0.924 0.952
Yeast-heat 0.883 0.779 0.932 0.783 0.984 0.986 0.977 0.990 0.807 0.559 0.805 0.564 0.929 0.934 0.897 0.946
Yeast-spo 0.909 0.800 0.939 0.803 0.974 0.975 0.978 0.982 0.836 0.575 0.819 0.580 0.909 0.912 0.903 0.925
Yeast-spo5 0.922 0.882 0.969 0.884 0.971 0.974 0.979 0.983 0.838 0.724 0.886 0.727 0.901 0.908 0.909 0.924
Yeast-sopem 0.878 0.812 0.950 0.815 0.978 0.978 0.972 0.985 0.767 0.592 0.837 0.597 0.912 0.913 0.885 0.931
Metric Cosine ↑ Intersection ↑
Method FCM KM LP ML GLLE LESC LEVI LIB FCM KM LP ML GLLE LESC LEVI LIB

Movie 0.785 0.881 0.955 0.933 0.937 0.956 0.959 0.966 0.678 0.689 0.789 0.796 0.855 0.866 0.874 0.884
SUB-3DFE 0.915 0.844 0.929 0.856 0.928 0.932 0.956 0.958 0.826 0.588 0.819 0.599 0.855 0.859 0.888 0.898
JAFFE 0.910 0.855 0.946 0.869 0.973 0.971 0.979 0.985 0.829 0.603 0.856 0.669 0.883 0.913 0.899 0.926
Yeast-alpha 0.925 0.756 0.916 0.759 0.988 0.993 0.989 0.993 0.846 0.545 0.778 0.556 0.945 0.956 0.935 0.950
Yeast-cdc 0.963 0.788 0.930 0.764 0.988 0.993 0.996 0.997 0.856 0.545 0.783 0.545 0.942 0.958 0.929 0.955
Yeast-cold 0.923 0.785 0.933 0.795 0.983 0.988 0.972 0.989 0.854 0.563 0.798 0.575 0.933 0.946 0.885 0.947
Yeast-diau 0.899 0.803 0.918 0.811 0.986 0.986 0.982 0.981 0.765 0.563 0.789 0.594 0.912 0.945 0.912 0.919
Yeast-dtt 0.963 0.763 0.933 0.789 0.989 0.993 0.972 0.996 0.903 0.544 0.794 0.556 0.944 0.953 0.869 0.962
Yeast-elu 0.955 0.762 0.935 0.763 0.987 0.992 0.989 0.992 0.889 0.545 0.789 0.563 0.945 0.953 0.933 0.959
Yeast-heat 0.889 0.783 0.939 0.799 0.991 0.986 0.978 0.995 0.813 0.556 0.833 0.612 0.935 0.939 0.897 0.953
Yeast-spo 0.913 0.822 0.945 0.821 0.975 0.986 0.978 0.989 0.837 0.589 0.822 0.593 0.912 0.915 0.933 0.939
Yeast-spo5 0.925 0.888 0.968 0.892 0.988 0.981 0.983 0.989 0.845 0.733 0.889 0.753 0.912 0.915 0.908 0.935
Yeast-sopem 0.879 0.815 0.953 0.844 0.979 0.991 0.972 0.993 0.788 0.598 0.845 0.598 0.925 0.933 0.886 0.935

Table 11: Recovery results on 13 real-world datasets. ↑ means that “the larger the better”. The
following two table blocks represent the 8 LE algorithms using our pre-processing steps. We highlight
the best recovery results.

accuracy, we use CLIP2LE in this paper. Moreover, the only potentially unfair point is the number of
iterations; we find that TCLIP2LE converges more slowly, so we set it to have 2× as many iterations
as CLIP2LE.
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