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Abstract

Scanning acoustic microscopy (SAM) is a cutting-edge
label-free imaging technique that allows viewing of both
surface and internal structures in a variety of samples, in-
cluding industrial and biological. Several factors influence
the acoustic image resolution, including the signal-to-noise
ratio, scanning step size, and the transducer frequency. Our
proposed network involves a combination of SwinIR and the
hypergraph image inpainting technique specifically adapted
to improve the resolution for SAM images. The method aims
to fill in missing information, significantly enhancing the
resolution of the acquired images. We assessed the effec-
tiveness of our approach against the standalone application
of hypergraphs and SwinIR on the dataset, targeting a no-
table fourfold increase in resolution. The results indicate
that the proposed method achieves superior performance,
marked by an average structural similarity index measure
(SSIM) of 0.92, a peak signal-to-noise ratio (PSNR) of
31.60, and a 4× enhancement in image resolution over the
raw SAM image. This integration of SwinIR and hyper-
graphs modules proves indispensable for the precise inter-
pretation of low-resolution acoustic imaging data, allowing
the development of reliable tools for image restoration. This
improves the fidelity and quality of SAM imaging for both
research and practical use.

1. Introduction

Computer-aided diagnosis combines disciplines such
as image processing, machine learning, computer vision,
mathematics, physics, and statistics to develop computer-
ized tools for decision-making in fields ranging from ma-
terial science to biological imaging [7, 40]. Within com-
puter vision, an area of marked interest is high-resolution

image inpainting, which involves discretely reconstructing
or repairing images [15]. This process is invaluable for re-
pairing damaged regions, removing unwanted features, and
seamlessly filling in missing parts of an image. Patch filling
finds various applications, including object removal, high-
resolution imaging, and image denoising.

The primary challenge in refining high-resolution im-
age inpainting is to seamlessly blend global semantic con-
text and local texture details consistent with the back-
ground [45]. Advances in deep learning have risen to this
challenge by predicting missing information using exist-
ing image data, outperforming traditional inpainting tech-
niques, and improving output quality. Despite its estab-
lished effectiveness in biomedical research, its applica-
tion to SAM imaging remains difficult due to the limited
availability of training data. SAM images are complex,
with varied degrees of contrast and noise, along with the
uneven distribution of missing data. They lack a holis-
tic understanding of the global context or semantics of
the image, leading to results that are often implausible.
Some acoustic microscopy imaging applications may also
demand real-time non-invasive processing. Nevertheless,
high-resolution acoustic images are critical to biomedical
and materials research. They allow for investigating, mea-
suring, and determining the mechanical or biomechanical
properties of various samples [18, 19].

1.1. Scanning acoustic microscopy

Scanning acoustic microscopy (SAM) is a label-free
imaging technique widely used in biomedical imaging, non-
destructive testing, and material research fields. It allows
for high-resolution visualization of both surface and sub-
surface structures with precision. In addition to its in-
spection capabilities, SAM provides extensive and accurate
quantitative data about the inspected objects. SAM pos-
sesses a range of capabilities, including non-invasive micro-



structural characterization of materials and monitoring the
structural health of composite structures [17, 18, 20]. It
also detects surface defects in polymer circuits and analyzes
anisotropic phonon propagation [4, 21]. SAM is of signifi-
cant importance in the highly competitive microelectronics
and semiconductor industries [38].

The clarity of images in Scanning Acoustic Microscopy
(SAM) relies on various factors such as excitation sig-
nal frequency, signal-to-noise ratio, and pixel size. At a
given frequency, SAM image quality hinges on the pixel
size or scanning steps in both horizontal (x) and vertical
(y) directions, alongside the acoustic beam’s size. Lower-
resolution images require fewer scanning points, hence
speeding up the process, whereas higher resolution de-
mands more points, elongating data acquisition. In imag-
ing biological specimens, data acquisition is vital, favoring
high resolution with finer step sizes. However, larger scan-
ning steps can compromise image quality due to informa-
tion loss. Despite the time-consuming pixel-by-pixel scan-
ning method in SAM, achieving high-resolution images en-
tails employing a high-frequency transducer and finer step
sizes. Conversely, low-resolution ultrasound images cover
fewer points, reducing scanning time. The utilization of a
super-resolution model simplifies the acquisition of high-
resolution ultrasound images effortlessly.

Deep learning-based algorithms are adept at identifying
patterns in naturally occurring images, making deep neural
networks a common choice for computer vision tasks due
to their ability to deliver superior results over a shallow net-
work model [34]. However, the absence of clear patterns
in ultrasound imaging data suggests that blindly employ-
ing very deep neural networks for resolution upscaling may
not align with our objectives. With the advent of new tech-
nologies that facilitate the generation of high-quality im-
ages, traditional methods of image generation are becom-
ing outdated. Consequently, researchers are making efforts
to improve high-resolution imaging techniques [2, 33].

In this paper, we revisit the high-resolution image in-
painting technique, with a special emphasis on its applica-
tion to acoustic microscopy imaging. To our knowledge,
this marks the first investigation into the use of a synergistic
combination of hypergraphs [37] and high-resolution tech-
niques (SwinIR) [28] for acoustic microscopy. The pro-
posed network is capable of capturing the intrinsic details
from a low-resolution acoustic microscopy image, reveal-
ing that the hybrid framework not only achieves state-of-
the-art (SOTA) performance but significantly improves the
SSIM and PSNR scores beyond what their applications can
provide. The methodology addresses and potentially over-
comes the constraints posed by the step size limitations in-
herent in high-resolution imaging for live biological sam-
ples, where time is a crucial factor. Figure 1 outlines the
overall strategy used in this paper.

2. Related Work
Achieving super-resolution in SAM presents a multi-

faceted challenge, encompassing issues related to image
quality, resolution enhancement, and interpretability. Over
the years, researchers have explored diverse methodologies
to tackle these challenges, drawing upon advancements in
image inpainting and image super-resolution techniques.

Image inpainting methods aim to fill missing or damaged
regions in images while preserving global semantic struc-
tures and fine details. Generating images that are contextu-
ally plausible and realistic involves addressing coherence
in global semantic structures and finely detailed texture
around missing areas. Image inpainting techniques tackle
this challenge through various approaches, most notably
through content/texture adaptation methods and learning-
based methods.

Content/texture adaptation methods heavily relied on
patch-matching algorithms for inpainting [3,10]. These ap-
proaches iteratively fill missing pixels by searching for sim-
ilar patches from neighboring non-missing pixels. While
effective in synthesizing texture-consistent outputs [44],
they struggled to produce semantically meaningful content.
Some recent advancements, such as exemplar-based meth-
ods [12], have shown promise in filling geometric patterns
and textures. However, they predominantly rely on low-
level features for patch matching and are limited in filling
voids with semantically meaningful or novel content.

On the other hand, learning-based techniques, particu-
larly Generative Adversarial Networks (GANs), proved a
powerful strategy for image inpainting [5, 23]. GANs con-
sist of a generator trained on a dataset to generate new ex-
amples and a discriminator that ensures the generated out-
puts are plausible within the dataset domain. Recent ad-
vances include the integration of contextual attention lay-
ers [41] and gated convolutions [42] for improved per-
formance. However, some models struggle with irregular
masks, prompting the development of techniques such as
partial convolution [29] to handle such cases effectively.
Despite their effectiveness, learning-based models often
lack interpretability, making inpainting output control chal-
lenging.

Parallelly, image super-resolution techniques have
emerged as a pivotal area of research, aiming to elevate
the visual quality of low-resolution images by reinstating
finer details. There has been a significant push over the
last decade to improve the performance of deep learning
methods. Notably, within biomedical imaging and MRI, the
refinement of single-image super-resolution methods has
been a focal point, as evidenced by studies such as those
by Yuan et al. [43] and Tang et al. [35]. The inception of
pioneering architectures like SRCNN by Dong et al. [13]
helped numerous studies explore various architectural en-
hancements to improve performance, including those pro-



Figure 1. This illustration demonstrates the high-resolution image inpainting strategy for SAM images, employing SwinIR and hypergraph
techniques. The alternative hole mask serves as the basis for generating a low-resolution (LR) input image for the model. Subsequently,
image inpainting techniques are employed to enhance the resolution, resulting in the creation of a high-resolution (HR) version of the
original image.



posed by Dai et al. [11] and Kim et al. [25], all aimed to-
wards improving performance metrics.

Furthermore, the development of autoencoder-based ap-
proaches [32] and GANs like EE-SRGAN [30] specifically
for biomedical images has enabled more precise diagnos-
tic procedures and refined treatment strategies. More re-
cently, the introduction of Transformer-based models to im-
age restoration tasks such as SwinIR [28], CAT [8], ELAN
[47], ART [46], and GRL [27] have shown remarkable effi-
cacy. These models excel by expanding the scope of recep-
tive fields, achieving superior results in image impainting.

In the field of high-resolution imaging in Scanning
Acoustic Microscopy (SAM), some studies utilized U-
NET-inspired architectures [31]. Whereas the recent ad-
vancements have shifted towards transformer-based ap-
proaches [2, 36] owing to their capability to capture global
interactions and outperform CNNs in various tasks [6, 14].
Transformer networks, inspired by the attention mecha-
nism, have demonstrated remarkable performance in tasks
that require an understanding of long-range dependencies
and the global context.

We believe, that adopting a hybrid approach that com-
bines image inpainting with super-resolution image restora-
tion techniques specifically for SAM imaging can emerge
as an innovative and effective strategy to tackle the com-
plex challenges of SAM imaging. This approach aims to
advance SAM imaging resolution using computer-aided im-
age processing, offering a promising pathway to overcome
obstacles and unlock new potential in acoustic data inter-
pretation.

3. Proposed Method
In this paper, we introduce HDL-SAM, a novel hy-

brid model that leverages the combination of low-resolution
image inpainting and high-resolution image restoration to
achieve a fourfold improvement in image resolution. The
method begins with the crucial task of image inpainting,
where the reconstruction of missing regions in an image is
achieved using a hypergraph-based architecture that is heav-
ily based on the research methodology described in [37].
The method involves the fabrication of a mask to train the
dataset, specifically employing a pattern in which, for every
three white pixels, a black matrix is introduced. By adding
three white pixels between each recorded data point, we ef-
fectively expand the lower-resolution image by a factor of
four.

Attempting to train and apply the hypergraphs model
directly for 4× image inpainting were at par with current
standards but failed to give us SOTA performance. Con-
sequently, we adapted our strategy by training the hyper-
graph from scratch to perform 4× upsampling in two stages
(shown in Fig. 1) - each stage involving 2× upsampling.
This intermediate 2× upsampling was achieved by insert-

ing a white pixel between each recorded data point, which
was then filled in during the image inpainting process. Low-
resolution images, being less prone to noise and primarily
composed of the scene’s major structures, present fewer lo-
cal orientation singularities that might complicate the filling
order. Furthermore, working with a smaller image before
inpainting significantly reduces the computational time re-
quired to inpaint the full-resolution image. This approach
underlines the rationale for prioritizing image inpainting be-
fore undertaking high-resolution restoration.

For the image restoration phase, we turn to the SwinIR
architecture [28], selected for its efficacy in addressing vari-
ous forms of image degradation, such as blurring, noise, and
distortion, through an inverse process that aims to closely
approximate the original, undistorted image. The integra-
tion of the SwinIR model as part of HDL-SAM is not just
for its advanced capabilities in improving image detail and
clarity, but also for its complementarity to our inpainting
process, ensuring that the transition from inpainted low-
resolution images to high-resolution outputs is seamless and
efficient. This holistic approach, combining hypergraph-
based inpainting for filling in missing grid mask areas with
the SwinIR architecture for overall image restoration and
resolution enhancement, sets a new standard in the field by
addressing both specific and general aspects of image qual-
ity improvement. In the following sections, we outline the
core concepts of our research and highlight the innovative
aspects of our approach to achieving high resolution.

3.1. Hypergraphs

The hypergraph combines spatial and feature-based clus-
tering strategies to capture both local and global structures
in the I’m age. Formally represented as G = (V,E,W ), it
comprises a set of vertices V = {v1, ..., vn} and hyperedges
E = {e1, ..., en} , where each hyperedge can connect two
or more vertices. The diagonal matrix W ∈ RM×M holds
the weight of each hyperedge. Additionally, the structure
of the hypergraph G can also be characterized by an inci-
dence matrix H ∈ RN×M , where the link is illustrated in
Equation 1.

h(v, e) =

{
1 if v ∈ e
0 if v /∈ e

(1)

Simple graphs can be seen as a special case of hyper-
graphs, with each hyperedge connecting only two nodes.
They can easily represent the pairwise data relationships,
but it is difficult to represent the spatial features and their re-
lationship in an image. Hence, hypergraphs are used instead
of graphs. To transform the spatial features F l ∈ Rhw×c

into a graph-like structure by treating each spatial feature as
a node with dimension c, and a feature vector, X l ∈ Rhw×c.

For the incidence matrix H , instead of using the Eu-
clidean distance between features of images [16,39], cross-



correlation of the spatial features is used to calculate the
contribution of each node to the hyperedge. As a result,

H = Ψ(X)Λ(X)Ψ(X)TΩ(X) (2)

where Ψ(X) ∈ RN×C represents the linear embedding of
the input features followed by the ReLU activation, and
Ĉ denoting the dimension of the vector of features post-
embedding. λ(X) ∈ RĈ×Ĉ is a diagonal matrix that helps
to learn a better distance metric among the nodes for the in-
cidence matrix H , and Ω(X) ∈ RN×M helps to determine
the contribution of each node to every hyperedge, where
m is the number of hyperedges in the hypergraphs. Imple-
menting Ψ(X) involves a 1×1 convolution on the input fea-
tures. Meanwhile, Λ(X) is implemented by channel-wise
global average pooling followed by a 1 × 1 convolution as
stated in [22], and Ω(X) is implemented using the 7 × 7
filter. Consequently, we arrive at:

H l = Ψ(X l)Λ(X l)Ψ(X l)TΛ(X l)T (3)
Ψ(X l) = conv(X l,W l

Ψ) (4)
Λ(X l) = diag(conv(X̂ l,W l

Λ)) (5)
Ω(X l) = conv(X l,W l

Ω) (6)

where, x̂l ∈ R1×1×Ĉ is the feature map produced after
global pooling of the input features, and W l

Ψ,W
l
Λ,W

l
Ω are

the learnable parameters for linear embedding. Absolute
values are used in the incident matrix to avoid imaginary
values in the degree matrices. Hence, the hypergraphs con-
volution layer on spatial features can be written in Equation
7 as,

X l+1 = σ(∆X lΘ) (7)

where Θ ∈ RCl×Cl+1 is the learnable parameter and σ is
the ELU [9] non-linear activation function.

3.2. SwinIR

SwinIR comprises three main modules: shallow feature
extraction, deep feature extraction, and high-quality im-
age reconstruction. Initially, the shallow feature extraction
module uses a 3 × 3 convolution layer, HSF (.) to extract
stable features F0 from input image of low quality, ILQ.
This process effectively maps the input image to a higher-
dimensional feature space. Following this, the deep feature
extraction phase uses K residual Swin transformer blocks
(RSTB) along with a 3 × 3 convolutional layer to extract a
series of intermediate features from F1 to Fk, leading to the
final deep feature FDK . Each RSTB applies self-attention
and feed-forward layers to the image patches, adhering to
the core deep learning principles.

For the reconstruction of the high-quality image, IRHQ

the model aggregates shallow and deep features, utilizing a

function HREC(.) to combine F0 and FDF . This process
aims to capture low-frequency details through shallow fea-
tures while retrieving high-frequency details lost in the orig-
inal low-quality image using deep features. The reconstruc-
tion module employs sub-pixel convolutional layers for up-
sampling and utilizes residual learning to reconstruct the
residual between the low-quality and the high-quality im-
ages.

SwinIR parameters are optimized by minimizing the L1

pixel loss between the reconstructed high-quality image,
IRHQ, and the ground truth high-quality image, IHQ. Each
RSTB (shown in Fig. 1) comprises Swin transformer layers
(STL) and convolutional layers. The Swin transformer layer
differs from the standard transformer layer by incorporating
local attention and a shifted window mechanism. It com-
putes query, key, and value matrices for a local window
feature X , which are then used in the self-attention mecha-
nism. Additional feature transformations are performed us-
ing the multi-head self-attention and multi-layer perception
(MLP) modules, each with LayerNorm and residual con-
nections.

3.3. Dataset setup and training strategy

In our study, we used SAM with a 50 MHz transducer
to generate a collection of 33 high-resolution images, each
enhanced to four times their original resolution. The acqui-
sition process involved a step size of 50 µm on both axes,
resulting in images of varying sizes and aspect ratios. Each
image is cropped into several 96 × 96 pixels sub-images
starting from the image’s upper left corner and strides in the
G-direction and H-direction. This was done to maintain a
uniform size for training while also ensuring that the overall
semantics of the images are somewhat preserved.

The dataset comprised 402 such 96 × 96 images, nor-
malized to a range [0-1] during training. For every high-
resolution crop, a corresponding low-resolution (20 MHz
transducer) crop was created by masking 3 pixels in a 2× 2
window with a stride size of 2, retaining only the upper left
pixel in each of these windows. The mask is inspired by the
fact that the SAM operates at two different step sizes. The
low-resolution images are recorded to have a step size of
200µm, while the higher-resolution images used for model
training have a step size of 50µm.

This dataset of 402 images is split into two subsets: 306
training (set A) and 96 testing images (set B), respectively.
Set A with 24× 24 low-resolution images, is used for train-
ing the first model of the pipeline in a two-step iterative
process, focusing on hypergraph-based image inpainting.
Its performance is assessed using set B. This trained hy-
pergraphs model is executed on set B to generate set C of
images as output (consisting of 4× upscaled images, mea-
suring 96×96) in two steps. These images were then down-
scaled by half using the Lanczos resampling algorithm, and



passed through a denoising model to mitigate any artifacts
from downscaling, resulting in set D. After this refinement
step, a selection of 66 images from set D underwent geo-
metric data augmentation to produce 330 images (48× 48),
serving as the training set for the SwinIR model. The
trained SwinIR was subsequently evaluated on the remain-
ing images to achieve high-resolution output.

To demonstrate the effectiveness of combining the two
models (see Fig. 1) for high-resolution imaging, each model
was trained independently on the entire dataset and on a
subset of the pipeline. The hypergraphs model was specif-
ically trained on set A for two-step 4× upscaling in two
steps and evaluated on set B. The training was done from
scratch, with a batch size of 1 for 200 epochs. We ap-
plied transfer learning, using a base model initially trained
on the CelebA-HQ dataset. For the SwinIR model, one in-
stance was trained on set D (48× 48 images) and evaluated
on the remaining images. Another instance was directly
tasked with 4× upscaling on set A to underline our pro-
posed framework’s efficiency compared to using SwinIR
or hypergraphs independently. Training for both SwinIR
instances involved transfer learning from the model pre-
trained on DIV2K [1] + Flickr2K [28] dataset with a batch
size of 8 over 3500 epochs, using L1 loss with an exponen-
tial moving average of 0.96. Adam optimizer was used with
a learning rate 2× 10−4 and no weight decay.

3.4. Experimental setup

The SAM functions in both reflection and transmission
modes, with a labeled diagram of the SAM setup for image
acquisition shown in Figure 2. The intricacies of these op-
erational modes that can be found in existing literature are
beyond the scope of this paper. We focus primarily on the
reflection mode for scanning the samples, where acoustic
energy is channeled through a coupling medium, typically
water, using a concave spherical sapphire lens rod, which
facilitates the examination of samples. The process involves
generating ultrasound signals that interact with the sample,
with the reflections captured and digitized, termed the A-
scan, or amplitude scan. By replicating this step across var-
ious points on the XY plane, we aggregate these A-scans to
produce a detailed two-dimensional C-scan image, offering
a nuanced view of the sample’s acoustic properties.

Data for this study were collected using a custom-
designed SAM system, featuring a high-precision scanning
stage from Standa (8MTF-200-Motorized XY Microscope
Stage) and operated through a LabVIEW program. This
setup, mirroring the one used in previous research by Ku-
mar et al. [26] to correct for samples at an angle, incor-
porates acoustic imaging capabilities using National In-
struments’ PXIe FPGA modules and FlexRIO hardware,
housed within a PXIe chassis (PXIe-1082), and includes
an arbitrary waveform generator (AT-1212). The transduc-

Digitizer

Signal generator

CPU

RF amplifier (Tx)

X Y stage controller
Amplifier (Rx)
Z-axis motor

Z-axis motor
controller

Transducer
Sample
holder

Figure 2. This labeled illustration presents a detailed overview
of the SAM system employed for image acquisition, effectively
outlining and describing each essential component within the ex-
perimental setup

ers were excited with Mexican hat signals and amplified
by an RF (radio frequency) amplifier (AMP018032-T) to
strengthen the ultrasonic signals. Reflected acoustic waves
from the sample are then amplified through a tailor-made
amplifier, further improved by a custom pre-amplifier, and
digitized with a high-speed 12-bit (1.6 GS/s) digitizer (NI-
5772).

A 50 MHz focused transducer from Olympus with a
12.5 mm focal length and a 6.35 mm aperture, provided
the standard for accuracy. This transducer was used to scan
both a coin and a biological specimen, concentrating the
acoustic energy on the sample’s top surface. Scanning was
performed in the x and y-directions with 50µm steps. Low-
resolution images were captured using a 20 MHz transducer
with a 50 mm focal length. All experiments were carried
out in distilled water at a steady room temperature of ap-
proximately 22°C. A discarded reindeer antler served as the
biological sample for imaging evaluation. Before scanning,
the antler was cleaned of moss with lukewarm water and
96% ethanol, then boiled in distilled water at 100°C to re-
move any residual biological substances. The sample was
then placed on the sample holder to dry before scanning.

The performance of HDL-SAM is validated against
other models such as SwinIR, hypergraphs, and AOT-GAN
for 4× resolution enhancement. This validation is con-
ducted through extensive training and testing on the dataset.

4. Results and Discussion
After the initial training phase, the hypergraphs module

was assessed using the CelebA-HQ dataset [24] shown in
Figure 3. A PSNR score of 22.94 and an SSIM score of 0.79
were obtained. Following the application of transfer learn-
ing techniques, the hypergraphs module underwent further
evaluation on set B, as detailed in Section 3.3, achieving a
PSNR score of 25.68 and an SSIM score of 0.78.

When SwinIR was specifically trained for 4× upscaling



Figure 3. This randomly sampled result illustrates the effective-
ness of the hypergraphs model when utilized for enhancing image
resolution on the CelebAHQ dataset. Specifically, the model aims
to upscale the image resolution by a factor of 4×, demonstrating
its capability to generate high-quality images with improved reso-
lution.

Figure 4. Training progression for SwinIR instance within the
HDL-SAM framework, specifically for the task of 2× upscaling.
The graph presents the average PSNR (displayed in red) and SSIM
(depicted in blue) throughout a training period of 500 epochs.

directly, its performance on Set B obtained a PSNR of 28.15
and an SSIM of 0.84 after 220 epochs. In contrast, HDL-
SAM achieved a peak PSNR of 31.17 and an SSIM of 0.92
in just 119 epochs. Across other benchmarked models on

Figure 5. Training progression for SwinIR instance in HDL-SAM,
particularly highlighting its effectiveness in achieving a 4× up-
scaling task. The graph presents the average PSNR (depicted in
red) and SSIM (represented in blue color) throughout a training
period of 500 epochs.

Swift-SRGAN Hypergraphs SwinIR AOT-GAN HDL-SAM

PSNR 14.57 25.68 28.15 27.81 31.60±1.18
SSIM 0.60 0.78 0.84 0.75 0.92±0.01

Table 1. Average SSIM & PSNR scores of several models includ-
ing HDL-SAM when applied independently on the testing set.

the entire testing dataset, AOT-GAN reported a PSNR score
of 27.81 and SSIM of 0.75, while Swift-SRGAN showed
comparatively lower performance, with an average PSNR
of 14.57 and an SSIM of 0.60. Training progress plots for
both SwinIR instances are shown in Figures 4 and 5, with a
summary of these findings presented in Table 1.

Using the visual Turing test (VTT), it is observed that
the images upscaled by 4× using HDL-SAM significantly
outperform the results obtained by other benchmarked mod-
els, as shown in Figure 6. The quantitative improvement
achieved by HDL-SAM over all other models (averaged)
across each randomly sampled test image is presented in
the figure, providing a clear basis for comparison.

4.1. Resource-efficient learning through proposed
hybrid deep learning approaches

The rapid rise of deep learning capabilities has unsur-
prisingly resulted in groundbreaking advancements in var-
ious domains, including image processing. However, the
environmental impact and resource-intensive training of
SOTA deep neural networks from scratch have raised se-
rious concerns regarding sustainable AI development. This
paper introduces a novel hybrid model that makes an ef-
fort to address these concerns by prioritizing resource ef-
ficiency and lowering the carbon footprint associated with
deep learning model training.

The approach values the use of existing SOTA models



Figure 6. Randomly sampled result (PSNR: orange; SSIM: white) showcases the outputs of benchmarked models trained on acoustic image
dataset for visual comparison. The quantitative improvement of HDL-SAM over the combined average performance of other models for
each sample is highlighted in the second to last column.

from different image processing tasks to improve perfor-
mance accuracy on the SAM images. By integrating hy-
pergraphs and SwinIR strategically, HDL-SAM allows us
to meet and exceed standard performance criteria such as
PSNR and SSIM throughout while ensuring that the im-
provements are contextually relevant and contribute to the
overarching goal of achieving high-quality results with min-
imal resource investment. Furthermore, it can be seen
from the results above that the proposed technique achieves
faster convergence on SwinIR instances for the specified
task while maintaining high prediction confidence (ref. Fig-
ures 4 and 5). This hybrid model capitalizes on the strengths
of both architectures, where hypergraphs facilitate detailed
image inpainting with a high degree of interpretability, and
SwinIR contributes to superior image restoration quality.

More research in this field is important to solve the chal-
lenges of handling big image processing tasks and creat-
ing strong, reliable solutions that work well and are eco-
friendly. By employing transfer learning, we demonstrate
sustainable AI practices, reusing pre-trained models to re-
duce computational resources. This aligns with the goals
of decreasing environmental impact and advancing energy-
efficient learning. Leveraging hypergraphs and SwinIR, we
set a new standard for responsible AI innovation. Further
research is critical for overcoming obstacles in large-scale
image processing and achieving high-performing, environ-
mentally friendly solutions.

5. Conclusion

In this paper, a hybrid deep learning model named HDL-
SAM was introduced, integrating Hypergraphs and SwinIR
architectures for image inpainting and restoration tasks, re-
spectively. The model exhibited superior performance, sur-
passing the current state-of-the-art on the challenging 4×
upscaling task. Through extensive experimentation, the ef-
ficacy of HDL-SAM was demonstrated by comparing it
against individual applications of its component models,
as presented in Table 1. The results highlight the sig-
nificant improvement achieved by this proposed approach.
Additionally, Furthermore, HDL-SAM was benchmarked
against a range of other models, confirming its superior per-
formance in both quantitative assessments and visual qual-
ity. This validation highlights the successful integration of
Hypergraphs and SwinIR, leveraging their combined bene-
fits. Overall, this study advances the field of image inpaint-
ing and restoration forward, while emphasizing the impor-
tance of synergistic integration of diverse deep-learning ar-
chitectures. HDL-SAM not only sets a new standard for
image upscaling tasks, but it also opens up new possibilities
for the development of hybrid models in future research.
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[31] Ákos Makra, Wolfgang Bost, Imre Kalló, András Horváth,
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