
WaterPark: A Robustness Assessment of Language Model Watermarking

Anonymous ACL submission

Abstract001

Various watermarking methods (“watermark-002
ers”) have been proposed to identify LLM-003
generated texts; yet, due to the lack of uni-004
fied evaluation platforms, many critical ques-005
tions remain under-explored: i) What are the006
strengths/limitations of various watermarkers,007
especially their attack robustness? ii) How do008
various design choices impact their robustness?009
iii) How to optimally operate watermarkers in010
adversarial environments? To fill this gap, we011
systematize existing LLM watermarkers and012
watermark removal attacks, mapping out their013
design spaces. We then develop WATERPARK,014
a unified platform that integrates 10 state-of-015
the-art watermarkers and 12 representative at-016
tacks. More importantly, by leveraging WA-017
TERPARK, we conduct a comprehensive assess-018
ment of existing watermarkers, unveiling the019
impact of various design choices on their at-020
tack robustness. We further explore the best021
practices to operate watermarkers in adversar-022
ial environments. We believe our study sheds023
light on current LLM watermarking techniques024
while WATERPARK serves as a valuable testbed025
to facilitate future research.1026

1 Introduction027

The recent advances in large language models028

(LLMs), including GPT (Openai) and Llama (Tou-029

vron et al., 2023), have significantly enhanced our030

capabilities of general-purpose text generation and031

complex problem-solving, but also raised concerns032

about misuse through disinformation (Izacard et al.,033

2022), phishing (Bender et al., 2021), and academic034

dishonesty (Compilatio). There is thus a press-035

ing need for the capability of identifying LLM-036

generated content.037

A simple approach is to train classifiers to038

distinguish between LLM- and human-generated039

texts (Lütkebohle). However, as LLMs improve,040

1All the source code and data are publicly available: http
s://anonymous.4open.science/r/WaterPark

Adversary

LLM

Watermark Generator

<latexit sha1_base64="HzfN/V7zfT4DgBJJAf4PaxQpmUk=">AAAChHicbZFNbxMxEIadBdoSvtJy5GKRIBUJRbtFKRwQqsqFY5FIW1FHK6930lixvSt7tuzK7F/hSv8S/wbnQ4KkjGTp1cwzo/E7Wamkwzj+3Ynu3X+ws7v3sPvo8ZOnz3r7B+euqKyAsShUYS8z7kBJA2OUqOCytMB1puAim39a1C9uwDpZmK/YlDDR/NrIqRQcQyrtHQzKwzpF+oPWqf9AsX09SHv9eBgvg94VyVr0yTrO0v3ON5YXotJgUCju3FUSlzjx3KIUCtouqxyUXMz5NVwFabgGN/HL5Vv6KmRyOi1seAbpMvtvh+fauUZngdQcZ26jVq+GbPML8L98pjdZh5rbxuZbO+L0/cRLU1YIRqxWnFaKYkEXHtJcWhComiC4sDL8kooZt1xgcLrLDHwXhdbc5J4JIa1oPZuDNfFwBDW7EcEmsJ7NsqL2A+bChBIdNgrYAh607V+67YZrJNve3xXnR8PkeDj6ctQ/OV3fZY+8IC/JIUnIO3JCPpMzMiaC1OQn+UVuo53oTfQ2Gq3QqLPueU42Ivr4Bzc/xiE=</latexit>

p(xt|x<t)

<latexit sha1_base64="2TCYDj9LMDphmKEZnAEsFSCZTT8=">AAACiHicbZFLb9NAEMc35lXMoylIXLisSJA4lMiuVFpuVblwLBJpK7qRtV5PmlX2Ye2OW1vGX4YrfCG+DZuHBEkZaaW/Zn47mvlPXirpMUl+96J79x88fLTzOH7y9Nnz3f7ei3NvKydgLKyy7jLnHpQ0MEaJCi5LB1znCi7y+adF/eIGnJfWfMWmhInm10ZOpeAYUln/1bDO0n3KVGHR79M6a/F92g2z/iAZJcugd0W6FgOyjrNsr/eNFVZUGgwKxb2/SpMSJy13KIWCLmaVh5KLOb+GqyAN1+An7XKBjr4NmYJOrQvPIF1m//3Rcu19o/NAao4zv1GrV022+QX4Xz7Xm6xHzV3jiq0ZcXo8aaUpKwQjViNOK0XR0oWPtJAOBKomCC6cDFtSMeOOCwxux8zArbBac1O0TAjpRNeyOTiTjA6hZjci2ASuZbPc1u2Q+dChRI+NAraAh133l+7icI102/u74vxglH4YHX45GJycru+yQ16TN+QdSckROSGfyRkZE0G+kx/kJ/kVxVESHUUfV2jUW/95STYiOv0DrwfHpQ==</latexit>x1, . . . , xt�1

<latexit sha1_base64="kh+yBYhFJjtU2ezJMEOYYLdHyzE=">AAACdXicbZFNb9NAEIY3htISCm3hiJAsYhCnYFdq4VjBhWORSFvRjaL1eNKssh/W7rjEsvwbuNKf1l/SazcfEiRlpJVezTwzmn0nL5X0lKa3nejR460n2ztPu892n7/Y2z94eeZt5QAHYJV1F7nwqKTBAUlSeFE6FDpXeJ5Pv87r59fovLTmB9UlDrW4MnIsQVBIDZLZiJLRfi/tp4uIH4psJXpsFaejg85PXlioNBoCJby/zNKSho1wJEFh2+WVx1LAVFzhZZBGaPTDZrFtG78LmSIeWxeeoXiR/bejEdr7WueB1IImfq02Ww7Z5Ofgf/lcr7OetHC1KzZ2pPHnYSNNWREaWK44rlRMNp6bFhfSIZCqgxDgZPhlDBPhBFCwtssN/gKrtTBFwwGkg7bhU3Qm7R/hjF9DsAldwye5nTUJ92FCSZ5qhXwOJ237l2674RrZpvcPxdlhPzvuH30/7J18Wd1lh71mb9kHlrFP7IR9Y6dswIBJ9pv9YTedu+hNlETvl2jUWfW8YmsRfbwHUa3CUQ==</latexit>xt A A

LLM Watermarking

watermarked
text

modified
text

previous
tokens

next-token
distribution

next
token

Watermark
Detector

Figure 1: Illustration of LLM watermarking and water-
mark removal attacks.

this distinction becomes less clear. Watermarking 041

has emerged as an alternative solution, embedding 042

statistical signals (“watermarks”) during genera- 043

tion to verify LLM-produced texts. Various water- 044

marking methods (“watermarkers") have been de- 045

veloped (Aaronson and Kirchner; Liu et al., 2023a; 046

Liu et al., 2024; Kirchenbauer et al., 2023a; Hu 047

et al., 2024; Zhao et al., 2023; Kuditipudi et al., 048

2023), each with unique design choices and desir- 049

able properties, raising a set of intriguing questions: 050

RQ1 – What are the strengths and limitations of 051

various watermarkers, especially their robustness 052

against manipulations? 053

RQ2 – How do different design choices impact 054

the attack robustness of watermarkers? 055

RQ3 – What are the best practices for operating 056

watermarkers in adversarial environments? 057

Despite recent efforts to benchmark LLM wa- 058

termarkers, existing research is limited in address- 059

ing these questions. WaterBench (Tu et al., 2023) 060

primarily focuses on watermarking effectiveness; 061

MarkMyWords (Piet et al., 2023) mainly evaluates 062

the robustness of a specific watermarker (Kirchen- 063

bauer et al., 2023a); MarkLLM (Pan et al., 2024) 064

focuses on providing a platform to compare wa- 065

termark detectability, basic robustness, and text 066

quality. Zhao et al. (2024) provides a comprehen- 067

sive overview of watermarking techniques. More- 068

over, these studies lack an in-depth analysis of how 069

a watermarker’s design choices impact its robust- 070

ness. Consequently, the aforementioned questions 071

remain largely unexplored. 072

1

https://anonymous.4open.science/r/WaterPark
https://anonymous.4open.science/r/WaterPark

Previous Conclusion Refined Conclusion Explanation Consistency

UG (Zhao et al., 2023) is not robust
due to its context-free design (Piet
et al., 2023).

UG shows higher resilience than other
watermarkers to paraphrasing attacks.

UG’s context-free design ensures
consistency between detection and
generation, avoiding issues in text-
dependent designs.

#

UPV (Liu et al., 2023a) has a fairly
low false positive rate.

UPV is more prone to false positive
cases compared to TGRL.

While model-based detection incurs
higher uncertainty compared to
score-based detection, it fails to
offer higher flexibility in countering
paraphrasing attacks.

G#

UPV shows strong robustness to
rewriting and outperforms TGRL
under paraphrasing attacks.

Both UPV and TGRL struggle against
GPT-based paraphrasing attacks. G#

RDF (Kuditipudi et al., 2023) signif-
icantly outperforms TGRL against
substitution attacks.

RDF shows strong robustness against
synonym substitution and other lexical
editing attacks.

RDF’s distribution-transform strat-
egy is more robust than the
distribution-shift strategy against
lexical editing.

RDF’s (Kuditipudi et al., 2023) edit
score-based detection is insensitive
to local misalignment caused by to-
ken insertion (Piet et al., 2023).

RDF (edit score) shows higher resilience
against lexical editing attacks compared
to GO (Aaronson and Kirchner) (plain
score) when token length is fixed. How-
ever, this advantage diminishes as token
length varies.

The edit score-based detection is ro-
bust to lexical editing but sensitive
to varying token length.

G#

SIR (Liu et al., 2024) shows strong
resilience against paraphrasing at-
tacks.

SIR’s effectiveness decreases as the
intensity of paraphrasing attacks in-
creases.

SIR’s distribution-reweight strategy
introduces higher uncertainty, mak-
ing it sensitive to the intensity of
paraphrasing attacks.

G#

UB (Hu et al., 2024) is more robust
than TGRL to substitution attacks.

UB and TGRL are comparably robust to
synonym substitution attacks; yet, UB is
more vulnerable to paraphrasing attacks.

The distribution-reweight strategy is
not superior to the distribution-shift
strategy.

#

Table 1: Conclusions in prior work and WATERPARK (# – inconsistent; G# – partially inconsistent; – consistent).

To bridge this gap, this work conducts a system-073

atic study of state-of-the-art LLM watermarkers,074

focusing on their attack robustness. We aim to un-075

derstand how various design choices affect attack076

resilience and identify best practices for operating077

watermarkers in adversarial environments.078

We develop WATERPARK, the first open-source079

platform dedicated to evaluating the attack robust-080

ness of LLM watermarkers in a unified and compre-081

hensive manner. As of 12/15/2024, WATERPARK082

integrates 10 state-of-the-art watermarkers, 12 rep-083

resentative watermark removal attacks, and 8 key084

metrics. Moreover, WATERPARK offers a com-085

prehensive suite of tools for in-depth robustness086

assessment, including next-token distribution com-087

parisons, attack combination analyses, and what-if088

scenario evaluations. Leveraging WATERPARK, we089

empirically evaluate the attack resilience of repre-090

sentative LLM watermarkers, leading to many in-091

teresting findings, which challenge the conclusions092

in prior work, as summarized in Table 1. We also093

explore how a watermarker’s design choices impact094

its attack robustness, unveiling critical trade-offs095

between different types of robustness.096

2 LLM Watermarking097

A large language model (LLM) is typically an auto-098

regressive model that generates the next token xt099

based on previous tokens x<t ≜ x1, . . . , xt−1 (in-100

cluding its prompt), modeled as sampling from a 101

conditional distribution p(xt∣x<t). 102

Conceptually, a watermark is a pattern embed- 103

ded in a given signal (e.g., text) for identifying 104

the signal’s source. In the context of LLMs, wa- 105

termarks can be used to prove that a given text 106

is LLM-generated (or even generated by specific 107

LLMs). An LLM watermarking method (“water- 108

marker”) comprises three components: the LLM, 109

watermarking procedure (generator), and detection 110

procedure (detector), as shown in Figure 1. 111

Typically, the generator produces watermarked 112

texts iteratively. At each iteration, with access to 113

a secret key k, the previous tokens x<t, and the 114

LLM’s next-token distribution p(xt∣x<t), the gen- 115

erator generates a perturbed distribution p̃(xt∣x<t), 116

from which the next token xt is sampled. Mean- 117

while, with access to a secret key k′, the detector 118

determines whetherM generates a given text. Note 119

that in symmetric schemes, k = k′, while in asym- 120

metric schemes (Fairoze et al., 2023), k ≠ k′. This 121

study mainly focuses on symmetric watermarking 122

schemes due to their widespread adoption. 123

The current watermarkers can be categorized 124

based on the information carried by the watermarks 125

(e.g., one-bit versus multi-bit) and their key design 126

choices, including context dependency, generation 127

strategy, and detection method. The key design 128

factors of each category are deferred to §B . 129

2

3 Platform130

3.1 Threat Model131

One critical property of LLM watermarkers is their132

robustness against potential attacks. We assume133

a threat model similar to prior work (Piet et al.,134

2023; Zhao et al., 2023; Sankar Sadasivan et al.,135

2023; Kirchenbauer et al., 2023b), as shown in136

Figure 1. We assume the adversary has access to137

sample watermarked and non-watermarked texts,138

but cannot reproduce the watermarking procedure139

or interact with the detection procedure. The adver-140

sary modifies the watermarked text T̃ as the altered141

text T ′ such that the following objectives are met:142

effectiveness – T ′ evades the watermark detector143

(i.e., detected as non-watermarked) and quality –144

T ′ preserves T̃ ’s original semantics.145

3.2 Metrics146

Effectiveness. At a high level, WATERPARK evalu-147

ates the watermark detector’s accuracy in detecting148

watermarked texts mainly using two metrics: true149

positive rate (TPR) and false positive rate (FPR).150

TPR measures the fraction of watermarked texts151

detected as watermarked, while FPR measures the152

fraction of non-watermarked samples wrongly de-153

tected as watermarked. Formally, let S+ and S′+ re-154

spectively be the sets of ground-truth and detected155

watermarked texts (S− and S′− correspondingly).156

TPR = ∣S+ ∩ S
′+∣

∣S+∣
FPR = ∣S− ∩ S

′+∣
∣S−∣

(1)157

In WATERPARK, we plot the receiver operating158

characteristic (ROC) curve that measures TPR159

against FPR across varying settings of detection160

thresholds. In particular, the area under the ROC161

curve (AUC) evaluates the overall effectiveness of162

each watermarker. Moreover, to compare two wa-163

termarkers under specific settings, we may also164

measure their TPRs under a fixed FPR (e.g., 1%).165

Fidelity. To evaluate the impact of watermarking166

on text quality, WATERPARK employs the follow-167

ing metrics to measure the difference between the168

original text T and the watermarked text T̃ . We169

employ WER (word error rate), BLEU (Papineni170

et al., 2002), BERTScore (Zhang et al., 2020) and171

P-SP (Wieting et al., 2022) as metrics to assess fi-172

delity. Detailed descriptions of these metrics can be173

found in §C. Note that these metrics are also used174

to measure the impact of watermark removal at-175

tacks on the quality of the modified text T̃ ′, relative176

to the watermarked text T̃ .177

Attack Category Resource
Lowercasing

Linguistic variation
/

Contracting /
Expanding /

Misspelling

Lexical editing

Common misspellings
Typoing /

Synonymizing WordNet
Swapping /

Copy-pasting Text-mixing Non-watermarked text
Deep-paraphrasing

Paraphrasing
LLM-based paraphraser

Translating LLM-based translator
Black-box adversarial attack Generic detector

Table 2: A taxonomy of watermark removal attacks.

Robustness. To evaluate a watermarker’s at- 178

tack resilience, WATERPARK measures the attack’s 179

impact on the watermarking effectiveness. Specif- 180

ically, let T̃ and T̃ ′ respectively denote the water- 181

marked text before and after the attack. WATER- 182

PARK compares the detector’s TPR, FPR, and AUC 183

with respect to T̃ and T̃ ′. Intuitively, a smaller 184

difference indicates that the watermarker is less 185

attack-sensitive. 186

4 Evaluation 187

We leverage WATERPARK to empirically assess 188

representative LLM watermarkers, focusing on 189

their attack robustness and other related criteria. 190

4.1 Experimental Setting 191

Our evaluation considers all the watermarkers in 192

Table 6 and attacks in Table 2. We employ two 193

LLMs OPT-1.3B and Llama2-7B-chat-hf to repre- 194

sent small and large models respectively. We use 195

two datasets C4 and HC3 to simulate diverse tasks 196

such as question-answering and text completion. 197

We implement and configure all watermarkers 198

and attacks in accordance with their official docu- 199

mentation. Table 5 summarizes the default param- 200

eter settings. To validate our implementation, we 201

assess their effectiveness and fidelity, as reported 202

in §E and §F, corroborating results from existing 203

literature. A detailed description of each attack can 204

be found in §D. We measure the TPRs of different 205

watermarkers against each attack (with their FPRs 206

fixed as 1%). 207

4.2 Robustness – Observational Study 208

We systematically assess the resilience of existing 209

LLM watermarkers against representative water- 210

mark removal attacks. All the results are shown in 211

Table 3. 212

3

Water
marker CLEAN

Linguistic variation Lexical editing Text-mixing Paraphrasing

Contra Expan LowCase Swap Typo Syno Missp CP1-10 CP3-10 CP1-25 CP3-25 DP-20 DP-40 Trans

TGRL 0.992 0.994 0.994 0.984 0.874 0.788 0.996 0.992 0.034 0.176 0.126 0.836 0.952 0.858 0.652
UG 0.964 0.963 0.965 0.879 0.956 0.884 0.965 0.956 0.131 0.219 0.192 0.534 0.940 0.916 0.658
UPV 0.776 0.772 0.814 0.685 0.667 0.355 0.764 0.695 0.050 0.073 0.242 0.450 0.296 0.057 0.006
RDF 0.996 0.993 0.993 0.983 0.951 0.961 0.990 0.993 0.094 0.396 0.430 0.974 0.988 0.962 0.154
UB 1.000 1.000 1.000 0.946 0.030 0.088 0.992 0.996 0.002 0.009 0.048 0.410 0.461 0.149 0.306
SIR 0.954 0.954 0.954 0.886 0.932 0.566 0.936 0.904 0.138 0.210 0.178 0.466 0.902 0.814 0.818
GO 0.998 0.998 0.998 0.988 0.920 0.852 0.996 1.000 0.181 0.589 0.620 0.992 0.971 0.847 0.928

Table 3: Attack resilience of LLM watermarkers. The intensity of red shading indicates higher values, while the
intensity of blue shading indicates lower values, with 0.5 serving as the threshold between the two color gradients.

4.2.1 Linguistic Variation Attack213

This attack perturbs the linguistic features of the214

watermarked text, without changing its semantics.215

i) Overall, most watermarkers show strong re-216

silience against linguistic variation attacks. For217

instance, TGRL reaches close to 100% TPRs under218

all three attacks. ii) UPV is the only watermarker219

marginally susceptible to such attacks. This can be220

explained by the fact that its neural network-based221

detector primarily depends on implicit textual fea-222

tures, which appear to be sensitive to changes in223

linguistic characteristics.224

4.2.2 Lexical Editing Attack225

This attack modifies individual words while main-226

taining the watermarked text’s semantics.227

i) TRGL, UB, SIR and GO tend to be more vul-228

nerable to lexical editing attacks, compared with229

RDF and UG watermarkers. Intuitively, as text-230

dependent watermarkers (e.g., TRGL, UB, and GO)231

use previous tokens as the context for the next to-232

ken in both the watermark generator and detector,233

the lexical editing thus causes a mismatch between234

the generator and detector. ii) UB exhibits much235

higher vulnerability to such attacks, compared with236

the others. For example, its TPR drops near zero237

under the typoing and swapping attacks. This may238

be explained as follows. Recall that, to achieve un-239

biasedness, UB applies “hard” perturbation on the240

next-token distribution (e.g., by rejecting half of241

the vocabulary); thus the disruption to the previous242

tokens tends to cause a more significant mismatch243

between the generator and detector, compared with244

other watermarkers that employ “soft” perturba-245

tion (e.g., distribution shift and transform). iii)246

The SIR shows notably inferior performance, espe-247

cially when subjected to typoing attacks. While it248

employs a neural network to predict token-specific249

logit perturbations that are designed to be unbi-250

ased (no preference for particular tokens) and bal-251

anced (with perturbations summing to zero), its 252

results are suboptimal, suggesting that it is funda- 253

mentally challenging to make accurate predictions 254

under such perturbations. iv) The typoing attack 255

is particularly effective, as it may cause significant 256

tokenization errors. 257

4.2.3 Text-Mixing Attack 258

This class of attacks “dilutes” the watermark 259

by mixing the watermarked text with non- 260

watermarked text fragments. Here, to evaluate 261

the resilience of different watermarkers against 262

text-mixing attacks, we use the copy-pasting at- 263

tack (Kirchenbauer et al., 2023b) as the concrete 264

attack, which embeds the watermarked text into 265

the context of non-watermarked, human-written 266

text (generated under the same prompt). We use 267

CP-n-m to denote the attack in which the modi- 268

fied text T ′ consists of n segments of watermarked 269

texts, each of length m% of ∣T ′∣, and the rest as 270

non-watermarked text. 271

i) Overall, most watermarkers experience sig- 272

nificant TPR drops, especially under CP-1-10 that 273

only preserves 10% of the watermarked text. ii) 274

Among all the watermarkers, GO and RDF show 275

significantly higher attack resilience. This can be 276

attributed to their sampling strategy: both employ 277

distribution transform, which generates the next 278

token deterministically conditional on a given ran- 279

dom permutation. Thus, GO and RDF tend to 280

have stronger per-token signals than the other wa- 281

termarkers that sample the next token from a given 282

pool (e.g., green list). This observation is consis- 283

tent with that in §E.2. iii) Meanwhile, UB and 284

UPV are the most vulnerable to the copy-pasting 285

attack, with close to zero TPRs under CP-1-10 and 286

CP-1-25. This can be explained as follows. The 287

model-assisted detector of UPV determines the 288

given text as watermarked based on its aggregated 289

features (rather than per-token statistics), while the 290

4

injected non-watermarked segments may greatly291

disrupt such features. Meanwhile, UB applies hard292

perturbation on the next-token distribution (e.g.,293

by rejecting half of the vocabulary); thus the dis-294

ruption to the previous tokens causes a significant295

mismatch between the generator and detector.296

4.2.4 Paraphrasing Attack297

This class of attacks employs an additional LLM298

(i.e., paraphraser) to re-write the given water-299

marked text T̃ (while preserving its semantics) to300

evade the detector. Here, we consider Dipper (Kr-301

ishna et al., 2023) as the paraphraser that rewrites302

T̃ in one shot. Further, we also consider the trans-303

lating attack uses a translator model Seamless-m4t-304

v2-large (Communication et al., 2023) that first305

translates T̃ to French and then translates it back.306

i) UPV and UB exhibit higher vulnerability to307

the Dipper attack, compared to other watermark-308

ers. UPV’s TPR drops to around zero under DP-40,309

which aligns with our analysis in §4.2.3: the para-310

phrased text segments may greatly disrupt the ag-311

gregated textual features for UPV’s model-assisted312

detector, while the disruption to the previous to-313

kens may cause a substantial mismatch between314

UB’s generator and detector, due to its rigid pertur-315

bation to the next-token distribution (e.g., rejecting316

half of the vocabulary). ii) In contrast, RDF and317

UG are especially robust against the Dipper attack.318

This can be attributed to their index-dependent and319

context-free designs, which are less sensitive to320

the change of previous tokens than text-dependent321

watermarkers (e.g., TGRL, SIR, and GO). iii) Inter-322

estingly, RDF is more vulnerable to the translating323

attack than the Dipper attack. This susceptibility324

arises from RDF’s detection mechanism, which is325

highly sensitive to text length variations, a weak-326

ness readily exploited by the translating attack’s327

tendency to produce shorter output text.328

4.2.5 Fidelity Preservation329

Recall that besides their attack effectiveness, an-330

other key metric for watermark removal attacks is331

whether they can preserve the quality of original332

texts. We thus compare the semantics of water-333

marked text T̃ and modified text T ′ using the met-334

rics in §3.2. Figure 2 illustrates the quality preserva-335

tion of different attacks on GO, with similar results336

on other watermarkers, with more results in §G.3.337

Observe that most attacks preserve the semantics338

of the watermarked text T̃ in the modified text T̃ ′,339

as measured by BERTScore and P-SP scores. In340

0.0 0.2 0.4 0.6 0.8 1.0

Contra
Expan

LowCase
Syno

Missp
Typo
Swap

CP1-10
CP3-10
CP1-25
CP3-25

Trans
DP-20
DP-40

DP-40-20
DP-60-0

DP-60-20
DP-60-40

BERTScore

0.0 0.2 0.4 0.6 0.8 1.0

P-SP

0.0 0.2 0.4 0.6 0.8 1.0

WER

0.0 0.2 0.4 0.6 0.8 1.0

BLEU1

Figure 2: Quality preservation of different attacks.

comparison, the copy-pasting (CP) attack causes 341

more significant text-quality degradation than other 342

attacks, in that it may disrupt the orders of water- 343

marked and non-watermarked segments and insert 344

duplicate segments. Also, note that most attacks 345

emphasize the semantic similarity between T̃ and 346

T̃ ′ rather than their lexical similarity (as measured 347

by WER and BLEU scores). 348

4.3 Robustness – Causal Analysis 349

In addition to the observational studies, we further 350

consider conducting causal analysis to understand 351

the impact of individual design choices (e.g., sam- 352

plers). However, this is challenging in our con- 353

text because the various components of a water- 354

marker are often highly interconnected and difficult 355

to decouple. For example, the distribution-reweight 356

strategy and the difference-based detection of UB 357

are closely linked and cannot be easily replaced 358

by other designs. To address this challenge, we se- 359

lect two watermarkers with their only difference in 360

the design of one specific component (e.g., context 361

dependency). The results are shown in Figure 3. 362

a) Context Dependency b) Generation Strategy c) Detection Method

Figure 3: Watermarker robustness to multi-attacks.
a) Context dependency: TGRL (text-dependent) and
UG (context-free); b) Generation strategy: TGRL
(distribution-shift) and GO (distribution-transform); c)
Detection method: UPV (Model-based) and UPV-key
(Score-based).

4.3.1 Context Dependency 363

We select TGRL and UG to represent text- 364

dependent and context-free designs respectively. 365

TGRL uses the previous k tokens as a random- 366

ness seed to divide the vocabulary into red/green 367

lists for the current token, whereas UG uses fixed 368

red/green lists in generating all the tokens. In gen- 369

5

eral, UG performs similarly to TGRL. However,370

when subjected to the Dipper attack at varying in-371

tensity levels, UG consistently outperforms TGRL.372

For instance, as we increase the attack intensity (e.g.373

DP-60-20, DP-60-40), which involves rearranging374

the text, UG maintains a relatively stable TPR with375

only minor reductions. In contrast, TGRL’s TPR376

significantly drops, particularly at DP-60-20. Re-377

call that the Dipper attack extensively paraphrases378

and reorders the text, leading to substantial changes379

in consecutive tokens. Due to its text-dependent380

design, TGRL struggles to maintain consistency in381

random seeds between detection and generation. In382

contrast, UG’s context-free design avoids this is-383

sue. This aligns with the results in UG (Zhao et al.,384

2023), showing that when subjected to paraphras-385

ing attacks, UG consistently outperforms TGRL.386

4.3.2 Generation Strategy387

TGRL and GO are both context-dependent water-388

markers. As it relies on distribution shift genera-389

tion, TGRL tends to be less robust against copy-390

paste attacks. In contrast, although copy-paste at-391

tacks can significantly disrupt detection and dilute392

the watermark by inserting large amounts of text,393

due to its distribution transform design, GO can394

better maintain the watermark’s concentration. As395

a result, GO achieves a higher detection rate of396

watermarked text after such attacks.397

4.3.3 Detection Method398

UPV employs model-based detection to detect wa-399

termarks. Alternatively, it can also use score-based400

detection similar to TGRL. The original paper401

claims that model-based detection is more resistant402

to paraphrasing attacks than score-based detection.403

However, our results indicate that this advantage404

is not significant. Furthermore, score-based UPV405

demonstrates stronger robustness against weaker406

attacks (e.g., misspelling and swapping attacks).407

Using model-based detection introduces higher un-408

certainty compared to score-based detection and409

does not provide watermarkers with greater flexi-410

bility in resisting paraphrasing attacks.411

Both RDF and GO utilize distribution-transform412

generation and rely on score-based detection, with413

RDF specifically employing edit score. RDF shows414

marginally higher robustness against lexical editing415

attacks with fixed token length compared to GO.416

However, it exhibits lower resilience against high-417

intensity text-mixing attacks (e.g., CP-3-10), where418

token length varies considerably.419

5 Discussion 420

Next, we examine the current practices of operat- 421

ing watermarkers in adversarial environments and 422

explore potential improvements. 423

5.1 Specific vs. Generic Detector 424

Figure 4: Detection of watermarked texts by
watermarker-specific and generic detectors (‘1’ or ‘0’
indicate that the detector detects the given watermarked
text as watermarked or non-watermarked).

For each watermarker, we mainly use its spe- 425

cific detector to detect watermarked texts. Here, 426

we explore a generic, neural network-based detec- 427

tor as an alternative. To this end, we employ a 428

pre-trained RoBERTa model and fine-tune it as 429

a binary classifier using watermarked and non- 430

watermarked texts. We use OPT-1.3B as the under- 431

lying LLM and C4 as the reference dataset. The 432

watermarked text is generated by the LLM and the 433

watermarker jointly, whereas the non-watermarked 434

text is produced by ChatGPT-3.5-Turbo using the 435

same prompt to mimic human response. Table 4 436

shows the TPRs of watermarkers with generic de- 437

tectors (with FPRs fixed as 1%). 438

Watermarker TGRL RDF UB UG UPV SIR GO
TPR 0.985 0.981 0.989 0.999 0.997 0.996 0.970

Table 4: TPRs of watermarkers with generic detectors
(with FPRs fixed as 1%).

We compare the attack resilience of watermarker- 439

specific and generic detectors. For each water- 440

marker, we apply the Dipper-40 attack and examine 441

whether two detectors can effectively detect water- 442

marked texts after the paraphrasing attack. Figure 4 443

depicts the confusion matrices of both detectors. 444

We have the following findings. i) The specific 445

and generic detectors jointly achieve a high detec- 446

tion rate. Across all the watermarkers, the chance 447

that both detectors fail to detect the watermarked 448

texts (0-0) is below 0.07. ii) For RDF, the generic 449

detector seems less effective than the specific de- 450

tector, while for UB and UPV, the generic detector 451

outperforms the specific detector by a large margin. 452

6

Recall that UB and UPV are highly sensitive to453

the Dipper attack (see §4.2.4. Thus, employing a454

generic detector alongside a watermarker-specific455

detector can be an effective strategy for enhancing456

the security of vulnerable watermarkers. However,457

note that given the availability of generic detectors,458

it is also feasible for the adversary to leverage such459

detectors as an attack checker to adapt their attacks,460

which we will discuss in §5.2.3.461

5.2 Advanced Attack462

In addition to the previous simple attacks, we inves-463

tigate the effectiveness of more advanced attacks.464

5.2.1 Varying Attack Intensity465

DP-20

DP-40DP-40-20

DP-60

DP-60-20 DP-60-40

DP-20

0.5
0.9

TGRL

UG

UPV

RDF

UB

GO

SIR

Figure 5: Resilience of watermarkers against increas-
ingly intensive Dipper attacks.

One straightforward way to improve an attack’s466

effectiveness is to increase its intensity, potentially467

at the cost of other metrics (e.g., text quality). Here,468

we consider the Dipper attack (Krishna et al., 2023)469

under varying intensity settings, denoted as DP-l-o,470

where lexical change (l) indicates that l% of the471

given text is paraphrased and order change (o) indi-472

cates that o% of the text is re-ordered. We compare473

the watermarkers’ resilience under varying attack474

intensity, as shown in Figure 5.475

i) As expected, most watermarkers observe TPR476

drops as the attack intensity increases. ii) Among477

these, UG demonstrates the most consistent re-478

silience under varying attack intensity. This can be479

attributed to its context-free design: the same per-480

turbation is applied to the next-token distribution481

across all the tokens, which is thus immune to the482

change of previous tokens. iii) Compared with text-483

dependent watermarkers (e.g., TGRL and GO), an484

index-dependent watermarker (e.g., RDF) shows485

stronger resilience, especially under high attack486

intensity (e.g., DP-60-20), due to its weaker depen-487

dency on previous tokens. iv) UPV’s performance488

is inconsistent; it struggles with low-intensity at-489

tacks (e.g., DP-20) but shows resilience to high-490

strength ones (e.g., DP-60). This inconsistency can491

be attributed to UPV’s model-assisted detector and492

the inherent instability of its neural network, as493

confirmed by repeated experiments.494

Contra

LowCaseMissp

Typo

Swap Syno

Contra

0.5
0.9

Contra+LowCase

Contra+Typo

Contra+Swap
Swap+LowCase

Swap+Missp

Swap+Typo

Syno+LowCase
Syno+Typo

Syno+Swap

Contra+LowCase

0.5
0.9

TGRL

UG

UPV

RDF

UB

GO

SIR

Figure 6: Resilience of watermarkers against individual
(left) and combined (right) attacks.

5.2.2 Combining Simple Attacks 495

We first explore whether combining two attacks im- 496

proves the attack’s effectiveness. Here, considering 497

the most feasible combinations, we only combine 498

two simple attacks from the “weak” linguistic vari- 499

ation and lexical editing attacks. Figure 6 illustrates 500

the effectiveness of such combined attacks. 501

We have a set of interesting observations. i) 502

UPV and SIR, which demonstrate resilience against 503

all simple attacks, are highly vulnerable to all the 504

combined attacks. For instance, the TPR of SIR 505

drastically drops to below 0.3 under the contract- 506

ing+typoing attack. ii) UB, which is vulnerable to 507

the typoing and swapping attacks, is consequently 508

vulnerable to all the combined attacks that involve 509

typoing or swapping. iii) TGRL and GO, which 510

are robust against all the simple attacks (including 511

typoing and swapping), show significant vulnera- 512

bility to the typoing+swapping attack. This can be 513

explained by that as typoing and swapping respec- 514

tively disrupt the tokenization and token-indexing, 515

their combination may substantially amplify such 516

effects. iv) RDF and UG are especially robust 517

against the combined attacks. This can be attributed 518

to their “weaker” context dependencies, which is 519

consistent with the findings in §4.2.4. 520

5.2.3 Adaptive Attack 521
watermarked

text

A

Adversary

modified
text

A

Generic
Detector

Watermark-Specific
Detectorchecking

perturbation

Figure 7: Attacks leveraging surrogate detectors.

Given the availability of generic detectors, it is 522

possible for the adversary to exploit such detec- 523

tors to adapt their attacks. We consider a scenario 524

as shown in Figure 7: the adversary performs a 525

gradient-based attack (Guo et al., 2021) that itera- 526

7

tively modifies the watermarked text to evade the527

generic detector, and then forwards the modified528

text to the target, watermark-specific detector.529

Figure 8: Watermark detection by watermarker-specific
and generic detectors on gradient-based attacked sam-
ples (‘1’ or ‘0’ indicate that the detector detects the given
watermarked text as watermarked or non-watermarked).

We evaluate this attack’s effectiveness using 500530

watermarked texts from the C4 dataset. We use531

GBDA (Guo et al., 2021) as the adversarial at-532

tack and limit the steps of perturbations to 100.533

Compared to Dipper, GBDA makes more substan-534

tial textual modifications. The results are summa-535

rized in Figure 8. i) Leveraging the surrogate de-536

tector significantly improves the attack effective-537

ness: with the BERTScore and BLEU-1 between538

T̃ and T̃ ′ is about 0.764 and 0.188, respectively,539

slightly lower than the Dipper attack, the detection540

rates of most watermarkers drop below 10%. ii)541

Although some samples do not evade the generic542

detector, they evade the specific detector success-543

fully (e.g., TGRL, UG, and UB). iii) UG and RDF544

exhibit greater robustness than the other watermark-545

ers. Specifically, for RDF, 42% of the samples546

evade the generic detector but are still detected by547

the RDF-specific detector. This superior robustness548

is likely due to their weaker context dependencies.549

Rounds of paraphrasing

D
et

ec
ti

on
 r

at
e

of
 w

at
er

m
ar

ke
d

te
xt

s

Figure 9: Effectiveness of paraphrasing attacks with
ChatGPT-3.5-Turbo as the paraphraser.

5.2.4 Leveraging Expert LLMs550

We explore the question of “What if the adversary551

has access to highly capable LLMs?” Specifically,552

we implement another paraphrasing attack that em-553

ploys ChatGPT-3.5-Turbo as the paraphraser. For554

each watermarker, we randomly sample 100 wa- 555

termarked texts that are successfully detected, and 556

query the ChatGPT API with the prompt: “Para- 557

phrase the following text and keep the length simi- 558

lar to the original text\n [the watermarked text]”, 559

and then forward the paraphrased text to the de- 560

tector. To further evaluate the impact of the para- 561

phrasing strength, we also measure the attack ef- 562

fectiveness under multiple rounds of paraphrasing 563

as suggested in (Zhang et al., 2023). Notably, the 564

attack described in (Zhang et al., 2023) employs 565

the T5 model to paraphrase the entire text up to 300 566

times. In contrast, our study limits paraphrasing to 567

a maximum of 5 iterations. The difference between 568

these threat models is due to the distinct objectives 569

of the two studies: while (Zhang et al., 2023) aims 570

to understand the lower bound of watermark robust- 571

ness, we focus on evaluating watermark robustness 572

against practical, resource-limited adversaries. The 573

results are summarized in Figure 9. 574

We have the following findings. i) The detection 575

rates of all the watermarkers drop below 0.3 after 576

one round of GPT paraphrasing, indicating that 577

using highly capable LLMs to paraphrase water- 578

marked texts is a dominant attack that effectively 579

nullifies most watermarkers. However, as specified 580

in our threat model (§3.1), access to highly capable 581

LLMs may fall outside the scope of our robustness 582

assessment, as their availability negates the need 583

for watermark removal attacks. ii) For watermark- 584

ers that survive the first round of paraphrasing (e.g., 585

UG and GO), their detection rates quickly drop be- 586

low 0.15 as the adversary applies multiple rounds 587

of paraphrasing. This observation corroborates the 588

findings in (Zhang et al., 2023). 589

6 Conclusion 590

In this paper, we systematize the existing LLM 591

watermarkers and watermark removal attacks, map- 592

ping out the design space for various watermarking 593

and attacking techniques. We then design and im- 594

plement WATERPARK, the first open-source plat- 595

form devoted to assessing the attack robustness of 596

LLM watermarkers in a unified and comprehensive 597

manner. Leveraging WATERPARK, we conduct a 598

systematic evaluation of the robustness of exist- 599

ing watermarkers, addressing unresolved questions, 600

revealing design trade-offs, and identifying oppor- 601

tunities for further improvement. Our findings shed 602

light on the current LLM watermarking techniques, 603

while WATERPARK serves as a valuable benchmark 604

aiding future research. 605

8

Limitations606

We now examine the limitations of our study and607

identify promising directions for future research.608

Watermarkers. This study primarily focuses on609

training-free, pre-generation watermarking, which610

is applicable to any given LLM and offers flexible611

control over multiple criteria (e.g., quality, effec-612

tiveness, and robustness). While we have included613

peer-reviewed watermarking methods to the best614

of our ability, many methods, such as training-time615

watermarking and post-generation watermarking,616

are not covered in this paper.617

Threat Model. Notably, our evaluation is based618

on the following assumptions about adversary ca-619

pabilities: i) the adversary can modify the water-620

marked text in a computationally efficient manner621

(e.g., synonym substitution), ii) the adversary uses622

LLMs less capable than the target LLM, and/or iii)623

the adversary can train a detector using given wa-624

termarked and non-watermarked texts. We argue625

that these assumptions are realistic and practical.626

Otherwise, using more capable LLMs could eas-627

ily generate high-quality, non-watermarked texts to628

evade detection, while launching computationally629

expensive attacks would significantly increase the630

adversary’s cost. Future research directions include631

exploring alternative threat models to expand the632

scope of our analysis.633

Causal Analysis of Design Choices. While our634

watermarker taxonomy provides a clear classifica-635

tion framework, we focus on analyzing the holistic636

design choices of each watermarked (rather than637

individual design modules) to elucidate the under-638

lying factors driving our experimental observations.639

This limitation stems from the relatively small num-640

ber of watermarkers within each taxonomic cate-641

gory, precluding definitive conclusions about the642

vulnerability of specific taxonomic elements based643

on current experimental evidence.644

A more granular assessment of specific design645

choices would ideally involve comprehensive ab-646

lation studies, systematically modifying individual647

design elements and comparing their performance648

against baseline configurations. However, this ap-649

proach faces significant practical challenges due650

to the intricate inter-dependencies and tight cou-651

pling among watermarker components. To partially652

address this challenge, in §4.3, we strategically653

compare two watermarkers that differ only in the654

design of one specific component (e.g., context de-655

pendency), enabling the examination of the effects656

of specific design variations. We consider a more 657

systematic causal analysis as future research. 658

Parameter Tuning. Our comparative analysis 659

employs AUC curves based on default parameter 660

settings across watermarkers. For benchmarking 661

purposes, we evaluate True Positive Rate (TPR) 662

at a fixed False Positive Rate (FPR) of 1%, align- 663

ing with established practices in comparative stud- 664

ies. This standardized approach enables systematic 665

assessment of watermark detection effectiveness 666

while maintaining consistent false positive control. 667

While this approach provides a pragmatic frame- 668

work for comparative evaluation, it underscores the 669

importance of future research into comprehensive 670

parameter optimization. Such studies could reveal 671

the full performance potential of each method and 672

yield deeper insights into their relative strengths 673

and limitations. 674

Ethics Consideration 675

In this paper, we conduct a systematic study of 676

state-of-the-art LLM watermarkers, focusing on 677

their robustness against watermark removal attacks. 678

We aim to understand how various design choices 679

affect watermarkers’ resilience and identify best 680

practices for operating watermarkers in adversarial 681

environments. 682

Stakeholder Considerations. The primary 683

stakeholders affected by this research include users 684

and developers of LLM watermarkers, as well as 685

the broader community relying on these techniques. 686

By identifying the strengths/limitations of various 687

watermarkers, our work could influence the per- 688

ceived reliability and deployment of LLM water- 689

markers in critical applications. Conversely, ex- 690

posing these vulnerabilities allows for the improve- 691

ment of the current techniques, ultimately contribut- 692

ing to more secure and robust systems. 693

Potential Harms and Benefits. Exposing vul- 694

nerabilities in widely adopted security mechanisms 695

can yield contrasting outcomes. Initially, it may 696

erode trust in LLM watermarkers as reliable safe- 697

guards, potentially leading to their underuse and 698

leaving systems exposed to unchecked risks. How- 699

ever, by illuminating these weaknesses, our re- 700

search catalyzes the development of more robust 701

techniques and fosters a nuanced comprehension 702

of their constraints, ultimately fortifying the long- 703

term security ecosystem. 704

Future Research and Mitigation. Our study 705

has identified several potential countermeasures to 706

9

address the vulnerabilities we uncovered. These707

recommendations are designed to steer future re-708

search and assist developers in bolstering the secu-709

rity of LLM watermarkers.710

References711

Scott Aaronson and Hendrik Kirchner. Watermarking712
gpt outputs. https://www.scottaaronson.com/713
talks/watermark.ppt.714

Sahar Abdelnabi and Mario Fritz. 2021. Adversarial wa-715
termarking transformer: Towards tracing text prove-716
nance with data hiding. In 2021 IEEE Symposium on717
Security and Privacy (SP), pages 121–140. IEEE.718

Emily M. Bender, Timnit Gebru, Angelina McMillan-719
Major, and Shmargaret Shmitchell. 2021. On the720
dangers of stochastic parrots: Can language models721
be too big? In Proceedings of the ACM Confer-722
ence on Fairness, Accountability, and Transparency723
(FAccT).724

Miranda Christ, Sam Gunn, and Or Zamir. 2023. Unde-725
tectable watermarks for language models. Cryptol-726
ogy ePrint Archive, Paper 2023/763.727

Seamless Communication, Loïc Barrault, Yu-An Chung,728
Mariano Cora Meglioli, David Dale, Ning Dong,729
Paul-Ambroise Duquenne, Hady Elsahar, Hongyu730
Gong, Kevin Heffernan, John Hoffman, Christopher731
Klaiber, Pengwei Li, Daniel Licht, Jean Maillard,732
Alice Rakotoarison, Kaushik Ram Sadagopan, Guil-733
laume Wenzek, Ethan Ye, Bapi Akula, Peng-Jen734
Chen, Naji El Hachem, Brian Ellis, Gabriel Mejia735
Gonzalez, Justin Haaheim, Prangthip Hansanti, Russ736
Howes, Bernie Huang, Min-Jae Hwang, Hirofumi In-737
aguma, Somya Jain, Elahe Kalbassi, Amanda Kallet,738
Ilia Kulikov, Janice Lam, Daniel Li, Xutai Ma, Rus-739
lan Mavlyutov, Benjamin Peloquin, Mohamed Ra-740
madan, Abinesh Ramakrishnan, Anna Sun, Kevin741
Tran, Tuan Tran, Igor Tufanov, Vish Vogeti, Carleigh742
Wood, Yilin Yang, Bokai Yu, Pierre Andrews, Can743
Balioglu, Marta R. Costa-jussà, Onur Celebi, Maha744
Elbayad, Cynthia Gao, Francisco Guzmán, Justine745
Kao, Ann Lee, Alexandre Mourachko, Juan Pino,746
Sravya Popuri, Christophe Ropers, Safiyyah Saleem,747
Holger Schwenk, Paden Tomasello, Changhan Wang,748
Jeff Wang, and Skyler Wang. 2023. Seamlessm4t:749
Massively multilingual & multimodal machine trans-750
lation.751

Compilatio. Cheating in the age of chatgpt: findings and752
solutions for preserving academic integrity. https:753
//www.compilatio.net/en/blog/cheating-cha754
tgpt.755

Prithiviraj Damodaran. 2021. Parrot: Paraphrase gener-756
ation for NLU.757

Jacoband Devlin, Ming-Weiand Chang, Kentonand Lee,758
and Kristina Toutanova. 2019. BERT: Pre-training of759

deep bidirectional transformers for language under- 760
standing. In Proceedings of the Annual Meeting of 761
the Association for Computational Linguistics (ACL). 762

Jaiden Fairoze, Sanjam Garg, Somesh Jha, Saeed 763
Mahloujifar, Mohammad Mahmoody, and Mingyuan 764
Wang. 2023. Publicly detectable watermarking for 765
language models. ArXiv e-prints. 766

Jaiden Fairoze, Sanjam Garg, Somesh Jha, Saeed 767
Mahloujifar, Mohammad Mahmoody, and Mingyuan 768
Wang. 2023. Publicly detectable watermarking for 769
language models. arXiv preprint arXiv:2310.18491. 770

Pierre Fernandez, Antoine Chaffin, Karim Tit, Vivien 771
Chappelier, and Teddy Furon. 2023. Three bricks to 772
consolidate watermarks for large language models. 773
In 2023 IEEE International Workshop on Information 774
Forensics and Security (WIFS), pages 1–6. IEEE. 775

Eva Giboulot and Furon Teddy. 2024. Watermax: 776
breaking the llm watermark detectability-robustness- 777
quality trade-off. arXiv preprint arXiv:2403.04808. 778

Chuan Guo, Alexandre Sablayrolles, Hervé Jégou, and 779
Douwe Kiela. 2021. Gradient-based adversarial at- 780
tacks against text transformers. ArXiv e-prints. 781

Abe Bohan Hou, Jingyu Zhang, Tianxing He, 782
Yichen Wang, Yung-Sung Chuang, Hongwei Wang, 783
Lingfeng Shen, Benjamin Van Durme, Daniel 784
Khashabi, and Yulia Tsvetkov. 2023. Semstamp: A 785
semantic watermark with paraphrastic robustness for 786
text generation. arXiv preprint arXiv:2310.03991. 787

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu, 788
Hongyang Zhang, and Heng Huang. 2024. Unbiased 789
watermark for large language models. In Proceed- 790
ings of the International Conference on Learning 791
Representations (ICLR). 792

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas 793
Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi- 794
Yu, Armand Joulin, Sebastian Riedel, and Edouard 795
Grave. 2022. Atlas: Few-shot learning with retrieval 796
augmented language models. ArXiv e-prints. 797

Nikola Jovanović, Robin Staab, and Martin Vechev. 798
2024. Watermark stealing in large language mod- 799
els. arXiv preprint arXiv:2402.19361. 800

John Kirchenbauer, Jonas Geiping, Yuxin Wen, 801
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023a. 802
A watermark for large language models. In Proceed- 803
ings of the IEEE Conference on Machine Learning 804
(ICML). 805

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli 806
Shu, Khalid Saifullah, Kezhi Kong, Kasun Fernando, 807
Aniruddha Saha, Micah Goldblum, and Tom Gold- 808
stein. 2023b. On the reliability of watermarks for 809
large language models. ArXiv e-prints. 810

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, 811
John Wieting, and Mohit Iyyer. 2023. Paraphras- 812
ing evades detectors of ai-generated text, but retrieval 813

10

https:// www.scottaaronson.com/talks/watermark.ppt
https:// www.scottaaronson.com/talks/watermark.ppt
https:// www.scottaaronson.com/talks/watermark.ppt
https://arxiv.org/abs/arXiv:2308.11596
https://arxiv.org/abs/arXiv:2308.11596
https://arxiv.org/abs/arXiv:2308.11596
https://arxiv.org/abs/arXiv:2308.11596
https://arxiv.org/abs/arXiv:2308.11596
https://www.compilatio.net/en/blog/cheating-chatgpt
https://www.compilatio.net/en/blog/cheating-chatgpt
https://www.compilatio.net/en/blog/cheating-chatgpt
https://www.compilatio.net/en/blog/cheating-chatgpt
https://www.compilatio.net/en/blog/cheating-chatgpt

is an effective defense. In Proceedings of the Ad-814
vances in Neural Information Processing Systems815
(NeurIPS).816

Rohith Kuditipudi, John Thickstun, Tatsunori817
Hashimoto, and Percy Liang. 2023. Robust818
distortion-free watermarks for language models.819
ArXiv e-prints.820

John Kudo, Takuand Richardson. 2018. SentencePiece:821
A simple and language independent subword tok-822
enizer and detokenizer for neural text processing. In823
Proceedings of the Conference on Empirical Methods824
in Natural Language Processing (EMNLP).825

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong,826
Hwaran Lee, Sangdoo Yun, Jamin Shin, and Gunhee827
Kim. 2023. Who wrote this code? watermarking for828
code generation. arXiv preprint arXiv:2305.15060.829

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting830
Wang. 2019. Textbugger: Generating adversarial text831
against real-world applications. In Proceedings of the832
Network and Distributed System Security Symposium833
(NDSS).834

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris835
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian836
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-837
mar, Benjamin Newman, Binhang Yuan, Bobby Yan,838
Ce Zhang, Christian Alexander Cosgrove, Christo-839
pher D Manning, Christopher Re, Diana Acosta-840
Navas, Drew Arad Hudson, Eric Zelikman, Esin841
Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren,842
Huaxiu Yao, Jue WANG, Keshav Santhanam, Laurel843
Orr, Lucia Zheng, Mert Yuksekgonul, Mirac Suzgun,844
Nathan Kim, Neel Guha, Niladri S. Chatterji, Omar845
Khattab, Peter Henderson, Qian Huang, Ryan An-846
drew Chi, Sang Michael Xie, Shibani Santurkar,847
Surya Ganguli, Tatsunori Hashimoto, Thomas Icard,848
Tianyi Zhang, Vishrav Chaudhary, William Wang,849
Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta Ko-850
reeda. 2023. Holistic evaluation of language models.851
Transactions on Machine Learning Research.852

Aiwei Liu, Leyi Pan, Xuming Hu, Shu’ang Li, Lijie853
Wen, Irwin King, and Philip S Yu. 2023a. An un-854
forgeable publicly verifiable watermark for large lan-855
guage models. In Proceedings of the International856
Conference on Learning Representations (ICLR).857

Aiwei Liu, Leyi Pan, Xuming Hu, Shiao Meng, and858
Lijie Wen. 2024. A semantic invariant robust water-859
mark for large language models. In Proceedings of860
the International Conference on Learning Represen-861
tations (ICLR).862

Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming863
Hu, Lijie Wen, Irwin King, and Philip S Yu. 2023b.864
A survey of text watermarking in the era of large865
language models. arXiv preprint arXiv:2312.07913.866

Yixin Liu, Hongsheng Hu, Xuyun Zhang, and Lichao867
Sun. 2023c. Watermarking text data on large lan-868
guage models for dataset copyright protection. arXiv869
preprint arXiv:2305.13257.870

Nils Lukas, Edward Jiang, Xinda Li, and Florian Ker- 871
schbaum. 2021. Sok: How robust is image clas- 872
sification deep neural network watermarking? In 873
Proceedings of the IEEE Symposium on Security and 874
Privacy (S&P). 875

Ingo Lütkebohle. Gptzero. https://gptzero.me/. 876

George A. Miller. 1995. Wordnet: a lexical database for 877
english. Commun. ACM, 38(11):39–41. 878

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, 879
Christopher D. Manning, and Chelsea Finn. 2023. 880
Detectgpt: Zero-shot machine-generated text detec- 881
tion using probability curvature. 882

Travis Munyer and Xin Zhong. 2023. Deeptextmark: 883
Deep learning based text watermarking for detec- 884
tion of large language model generated text. arXiv 885
preprint arXiv:2305.05773. 886

Openai. Openai chatgpt blog. https://openai.com 887
/blog/chatgpt. 888

Leyi Pan, Aiwei Liu, Zhiwei He, Zitian Gao, Xuandong 889
Zhao, Yijian Lu, Binglin Zhou, Shuliang Liu, Xum- 890
ing Hu, Lijie Wen, et al. 2024. Markllm: An open- 891
source toolkit for llm watermarking. arXiv preprint 892
arXiv:2405.10051. 893

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 894
Jing Zhu. 2002. Bleu: a method for automatic evalu- 895
ation of machine translation. In Proceedings of the 896
Annual Meeting of the Association for Computational 897
Linguistics (ACL). 898

Julien Piet, Chawin Sitawarin, Vivian Fang, Norman 899
Mu, and David Wagner. 2023. Mark my words: An- 900
alyzing and evaluating language model watermarks. 901
ArXiv e-prints. 902

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, 903
John Thickstun, Sean Welleck, Yejin Choi, and Zaid 904
Harchaoui. 2021. MAUVE: Measuring the gap be- 905
tween neural text and human text using divergence 906
frontiers. In Proceedings of the Advances in Neural 907
Information Processing Systems (NeurIPS). 908

Jie Ren, Han Xu, Yiding Liu, Yingqian Cui, Shuaiqiang 909
Wang, Dawei Yin, and Jiliang Tang. 2023. A 910
robust semantics-based watermark for large lan- 911
guage model against paraphrasing. arXiv preprint 912
arXiv:2311.08721. 913

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Bala- 914
subramanian, Wenxiao Wang, and Soheil Feizi. 2023. 915
Can ai-generated text be reliably detected? ArXiv 916
e-prints. 917

Ryoma Sato, Yuki Takezawa, Han Bao, Kenta Niwa, 918
and Makoto Yamada. 2023. Embarrassingly simple 919
text watermarks. arXiv preprint arXiv:2310.08920. 920

Karanpartap Singh and James Zou. 2023. New evalu- 921
ation metrics capture quality degradation due to llm 922
watermarking. arXiv preprint arXiv:2312.02382. 923

11

https://gptzero.me/
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt

Zhensu Sun, Xiaoning Du, Fu Song, and Li Li. 2023.924
Codemark: Imperceptible watermarking for code925
datasets against neural code completion models. In926
Proceedings of the 31st ACM Joint European Soft-927
ware Engineering Conference and Symposium on the928
Foundations of Software Engineering, pages 1561–929
1572.930

Zhensu Sun, Xiaoning Du, Fu Song, Mingze Ni, and931
Li Li. 2022. Coprotector: Protect open-source code932
against unauthorized training usage with data poi-933
soning. In Proceedings of the ACM Web Conference934
2022, pages 652–660.935

Ruixiang Tang, Qizhang Feng, Ninghao Liu, Fan Yang,936
and Xia Hu. 2023. Did you train on my dataset? to-937
wards public dataset protection with cleanlabel back-938
door watermarking. ACM SIGKDD Explorations939
Newsletter, 25(1):43–53.940

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-941
bert, Amjad Almahairi, Yasmine Babaei, Nikolay942
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti943
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton944
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,945
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,946
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-947
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan948
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,949
Isabel Kloumann, Artem Korenev, Punit Singh Koura,950
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-951
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-952
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-953
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-954
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,955
Ruan Silva, Eric Michael Smith, Ranjan Subrama-956
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-957
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,958
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,959
Melanie Kambadur, Sharan Narang, Aurelien Ro-960
driguez, Robert Stojnic, Sergey Edunov, and Thomas961
Scialom. 2023. Llama 2: Open foundation and fine-962
tuned chat models. ArXiv e-prints.963

Shangqing Tu, Yuliang Sun, Yushi Bai, Jifan Yu, Lei964
Hou, and Juanzi Li. 2023. Waterbench: Towards965
holistic evaluation of watermarks for large language966
models. arXiv preprint arXiv:2311.07138.967

Lean Wang, Wenkai Yang, Deli Chen, Hao Zhou,968
Yankai Lin, Fandong Meng, Jie Zhou, and Xu Sun.969
2024. Towards codable text watermarking for large970
language models. In Proceedings of the International971
Conference on Learning Representations (ICLR).972

Johnand Wieting, Kevinand Gimpel, Grahamand Neu-973
big, and Taylor Berg-kirkpatrick. 2022. Paraphrastic974
representations at scale. In Proceedings of the Con-975
ference on Empirical Methods in Natural Language976
Processing (EMNLP).977

Yihan Wu, Zhengmian Hu, Junfeng Guo, Hongyang978
Zhang, and Heng Huang. 2024. A resilient and ac-979
cessible distribution-preserving watermark for large980
language models. In Forty-first International Confer-981
ence on Machine Learning.982

Xiaojun Xu, Yuanshun Yao, and Yang Liu. 2024. Learn- 983
ing to watermark llm-generated text via reinforce- 984
ment learning. arXiv preprint arXiv:2403.10553. 985

Xi Yang, Kejiang Chen, Weiming Zhang, Chang Liu, 986
Yuang Qi, Jie Zhang, Han Fang, and Nenghai Yu. 987
2023. Watermarking text generated by black-box 988
language models. arXiv preprint arXiv:2305.08883. 989

KiYoon Yoo, Wonhyuk Ahn, and Nojun Kwak. 2023. 990
Advancing beyond identification: Multi-bit wa- 991
termark for language models. arXiv preprint 992
arXiv:2308.00221. 993

KiYoon Yoo, Wonhyuk Ahn, and Nojun Kwak. 2024. 994
Advancing beyond identification: Multi-bit water- 995
mark for language models. In Proceedings of the 996
Annual Conference of the North American Chap- 997
ter of the Association for Computational Linguistics 998
(NAACL). 999

Hanlin Zhang, Benjamin L. Edelman, Danilo Francati, 1000
Daniele Venturi, Giuseppe Ateniese, and Boaz Barak. 1001
2023. Watermarks in the sand: Impossibility of 1002
strong watermarking for generative models. ArXiv 1003
e-prints. 1004

Ruisi Zhang, Shehzeen Samarah Hussain, Paarth 1005
Neekhara, and Farinaz Koushanfar. 2023. Remark- 1006
llm: A robust and efficient watermarking framework 1007
for generative large language models. ArXiv e-prints. 1008

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. 1009
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval- 1010
uating text generation with bert. In Proceedings of 1011
the International Conference on Learning Represen- 1012
tations (ICLR). 1013

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu- 1014
Xiang Wang. 2023. Provable robust watermarking 1015
for ai-generated text. ArXiv e-prints. 1016

Xuandong Zhao, Sam Gunn, Miranda Christ, Jaiden 1017
Fairoze, Andres Fabrega, Nicholas Carlini, Sanjam 1018
Garg, Sanghyun Hong, Milad Nasr, Florian Tramer, 1019
et al. 2024. Sok: Watermarking for ai-generated 1020
content. arXiv preprint arXiv:2411.18479. 1021

12

A Parameter Setting1022

Table 5 lists the default setting of the parameters1023

of each watermarker in our evaluation. Note that1024

γ and δ are the gamma and delta used in the water-1025

marker, and n denotes the window size.1026
Watermarker Parameter Setting

TGRL γ 0.25
δ 2.0

UG γ 0.5
δ 2.0

CTWL

δ 1.5
n 10

message code length 20
encode ratio 10.0

message strategy vanilla

UPV

γ 0.5
δ 2.0
n 3

bit number 16
layers 9

UB watermark type delta

SIR
δ 1.0
n 10

watermark type context
GO n 3

RDF number of random sequences 50
Table 5: Default parameter setting of watermarkers.

B Taxonomies1027

We present a taxonomy of LLM watermarkers, as1028

summarized in Table 6. The current watermarkers1029

can be categorized based on the information car-1030

ried by the watermarks (e.g., one-bit versus multi-1031

bit) and their key design choices, including con-1032

text dependency, generation strategy, and detection1033

method. Next, we mainly focus on the key design1034

factors.1035

B.1 Context Dependency1036

The watermarker applies a perturbation ∆t to1037

the LLM’s next-token distribution p(xt∣x<t) as1038

p̃(xt∣x<t) = p(xt∣x<t) +∆t, from which the next1039

token xt is generated. The perturbation ∆t often1040

depends on the given context. Three types of con-1041

text dependencies are typically used in the existing1042

watermarkers.1043

Index-dependent watermark. The water-1044

marker produces a pseudo-random number rt by1045

applying a keyed hash function1046

rt = fk(t), (2)1047

that only depends on the index t of the next to-1048

ken; rt is then used to generate the perturbation1049

∆t (Kuditipudi et al., 2023).1050

Text-dependent watermark. The watermarker1051

considers the previous tokens x<t as the context1052

window to generate ∆t (Kirchenbauer et al., 2023a; 1053

Aaronson and Kirchner; Hu et al., 2024). For in- 1054

stance, GO (Aaronson and Kirchner) computes the 1055

hash of the concatenation of previous w tokens as 1056

rt: 1057

rt = fk(xt−w∥ . . . ∥xt−1), (3) 1058

while TGRL (Kirchenbauer et al., 2023a) sug- 1059

gests using the min hash of the previous token: 1060

rt =min(fk(xt−w), . . . , fk(xt−1)) (4) 1061

Similarly, UB (Hu et al., 2024) concatenates the 1062

previous w tokens to generate the context code for 1063

reweighting the logits. UPV (Liu et al., 2023a) 1064

and SIR (Liu et al., 2024) use neural networks to 1065

generate ∆t based on the previous tokens. 1066

Context-free watermark. The watermarker ap- 1067

plies a universal perturbation ∆t across the next- 1068

token distributions of all the tokens without consid- 1069

ering their contexts (Zhao et al., 2023). 1070

B.2 Generation Strategy 1071

By applying the perturbation ∆t to the LLM’s next- 1072

token distribution p(xt∣x<t), the watermarker gen- 1073

erates the new distribution p̃(xt∣x<t) to sample the 1074

next token xt. The existing sampling strategies can 1075

be categorized as follows. 1076

Distribution shift. TGRL (Kirchenbauer et al., 1077

2023a) modifies p(xt∣x<t) by adding a shift δ to 1078

the logits of “green-list” tokens (the remaining 1079

as “red-list” tokens) as the modified distribution 1080

p̃(xt∣x<t). A token x is considered as green listed 1081

if πrt(x) < γd where πrt is a permutation seeded 1082

by rt, γ is a parameter to control the size of the 1083

green list, and d is the number of vocabulary size. 1084

Similarly, UG (Zhao et al., 2023) uses a fixed red- 1085

green split over the vocabulary, showing greater ro- 1086

bustness than TGRL against edit-distance-bounded 1087

attacks due to its “hard” split. UPV (Liu et al., 1088

2023a) selects the top-k tokens from p(xt∣x<t), ap- 1089

plies a neural network to predict the green-list to- 1090

kens from these tokens, and adds δ to the logits of 1091

green-list tokens. Unlike the other strategies, the 1092

distribution-shift strategy preserves the diversity 1093

of generated tokens; however, it can not be made 1094

indistinguishable, as p̃(xt∣x<t) and p(xt∣x<t) are 1095

inherently distinguishable. 1096

Distribution reweight. Similar to distribution 1097

shift, this strategy alters the next-token distribu- 1098

tion but uniquely perturbs the logit of each token. 1099

For instance, SIR (Liu et al., 2024) trains a neu- 1100

ral network to predict the perturbation to logit of 1101

13

Water
marker

Infor
mation

Context Dependency Generation Strategy Detection Method
Index-dep. Text-dep. Context-free Dist.-shift Dist.-reweight Dist.-transform Score- Diff.- Model-based

TGRL

one-bit

Ë Ë Ë

UG Ë Ë Ë

UPV Ë Ë Ë

SIR Ë Ë Ë

RDF Ë Ë Ë

UB Ë Ë Ë

DIP Ë Ë Ë

GO Ë Ë Ë

CTWL
multi-bit

Ë Ë Ë

MPAC Ë Ë Ë

Table 6: A taxonomy of LLM watermarkers. References: TGRL (Kirchenbauer et al., 2023a), UG (Zhao et al.,
2023), UPV (Liu et al., 2023a), SIR (Liu et al., 2024), RDF (Kuditipudi et al., 2023), UB (Hu et al., 2024), DIP (Wu
et al., 2024), GO (Aaronson and Kirchner), CTWL (Wang et al., 2024), MPAC (Yoo et al., 2024).

each token, which is unbiased (no preference over1102

specific tokens) and balanced (with total pertur-1103

bation summing up to 0). UB (Hu et al., 2024)1104

advocates unbiased watermarking such that the ex-1105

pectation of the reweighted distribution agrees with1106

the original distribution. It proposes two reweight-1107

ing schemes: δ-reweighting uniformly samples a1108

token from p(xt∣x<t) and changes its probability1109

to 1; γ-reweighting shuffles all the tokens, rejects1110

the first half, and double the probabilities of the1111

remaining half. DIP (Wu et al., 2024) also uses1112

a distribution-reweight generation strategy similar1113

to UB but does not need to access the LM during1114

detection.1115

Distribution transform. Another line of water-1116

markers apply randomized transform on p(xt∣x<t)1117

to sample xt. For instance, RDF-EXP (Kuditipudi1118

et al., 2023) and GO (Aaronson and Kirchner) use1119

the Gumbel-max trick and apply the exponential1120

transform. Let p(xt∣x<t) = {pi}di=1 be the distribu-1121

tion over the next token xt. Then xt is sampled1122

as:1123

xt = argmax
i≤d

r
1/pi
i (5)1124

where ri is generated by the pseudo-random func-1125

tions in Eq. 2 and Eq. 3. Similarly, RDF-IST (Ku-1126

ditipudi et al., 2023) applies inverse transform1127

over p(xt∣x<t). With πk as a random permutation1128

seeded by the secret key k, the next token xt is1129

selected as:1130

xt = πk
⎛
⎝
min
j≤d

j

∑
i=1
pπk(i) ≥ rt

⎞
⎠

(6)1131

which is the smallest index in the inverse permu-1132

tation such that the CDF of the next token dis-1133

tribution exceeds rt. The distribution-transform1134

strategy does not alter the next-token distribution,1135

thus preserving the original text distribution (i.e.,1136

indistinguishability).1137

B.3 Detection Method 1138

The watermarker’s detector determines whether a 1139

given text T = (x1, . . . , xn) is watermarked or not. 1140

Next, we categorize the existing detection methods 1141

as follows. 1142

Score-based detection. The detector computes 1143

the random value ri for each position, the per-token 1144

statistics s(xi, ri), and a score over such statis- 1145

tics, which is then subjected to a one-tailed statis- 1146

tical test to determine whether the text is water- 1147

marked. The per-token statistics vary with the con- 1148

crete generators. For instance, GO (Aaronson and 1149

Kirchner) defines s(xi, ri) = − log(1 − hri(xi)), 1150

while TGRL (Kirchenbauer et al., 2023a) defines 1151

s(xi, ri) = 1 if xi is in the green list and 0 other- 1152

wise. One simple way to aggregate the per-token 1153

statistics is to compute their sum (Aaronson and 1154

Kirchner; Kirchenbauer et al., 2023a; Zhao et al., 1155

2023; Liu et al., 2024): 1156

S =
n

∑
i=1
s(xi, ri) (7) 1157

However, as the random values may be misaligned 1158

with the tokens (e.g., due to editing), a more robust 1159

way is to compute the alignment score (e.g., edit 1160

score (Kuditipudi et al., 2023; Wang et al., 2024)): 1161

S = sψ(n,n) 1162

s.t. sψ(i, j) =min

⎧⎪⎪⎪⎨⎪⎪⎪⎩

sψ(i − 1, j − 1) + s(xi, rj),
sψ(i, j − 1) + ψ,
sψ(i − 1, j) + ψ

(8)

1163

where ψ is the “edit-cost” parameter. 1164

Differential-based detection. This line of de- 1165

tectors also relies on the score of a given text. How- 1166

ever, the score is computed by comparing the given 1167

text with the non-watermarked text generated by 1168

14

the same LLM. For instance, UB (Hu et al., 2024)1169

computes the log-likelihood ratio (LLR) score:1170

s(i) = log p̃(xi∣x<i)
p(xi∣x<i)

(9)1171

and its more robust maximin variant. However,1172

note that these detectors naturally require accessing1173

the original LLM, which is not always feasible.1174

Model-assisted detection. Instead of comput-1175

ing the per-token statistics, which are often sub-1176

ject to watermark removal attacks, one may also1177

train a model to predict whether the given text is1178

watermarked. UPV (Liu et al., 2023a) trains a1179

neural network, which shares the same embedding1180

layers with its generator, to detect watermarked1181

texts. Similarly, one may develop a generic detec-1182

tor by training it to distinguish watermarked and1183

non-watermarked texts. We explore this option in1184

§4.1185

C Fidelity Metrics1186

In this paper, to evaluate the impact of watermark-1187

ing on text quality, we employs the following met-1188

rics to measure the difference between the original1189

text T and the watermarked text T̃ . Below, we1190

provide a detailed description of each metric.1191

WER (word error rate) measures the percentage1192

of mismatched tokens between T̃ and T relative to1193

the total number of tokens in T . This is a lexical1194

metric used to measure the fraction of tokens that1195

have been modified.1196

BLEU (Papineni et al., 2002) measures the lexi-1197

cal similarity of T and T̃ by calculating the propor-1198

tion of n-grams matched in T̃ and T .1199

BERTScore (Zhang et al., 2020) measures the1200

token-level similarity of T and T̃ by leverag-1201

ing the pre-trained contextual embeddings from1202

BERT (Devlin et al., 2019) and matching tokens in1203

T and T̃ using cosine similarity.1204

P-SP (Wieting et al., 2022) evaluates the seman-1205

tic similarity of T and T̃ using the cosine similarity1206

of their encodings. In particular, the encoding of1207

T (or T̃) is calculated by averaging the embed-1208

dings of its subword units generated by Sentence-1209

Piece (Kudo, 2018).1210

MAUVE (Pillutla et al., 2021) compares the dis-1211

tributions of T and T̃ by computing an information1212

divergence curve within a quantized embedding1213

space. The area under this divergence curve pro-1214

vides a scalar summary of the trade-off between1215

Type I (T places high mass in areas where T̃ has1216

low mass) and Type II (vice versa) errors.1217

Note that these metrics are also used to mea- 1218

sure the impact of watermark removal attacks on 1219

the quality of the modified text T̃ ′, relative to the 1220

watermarked text T̃ . 1221

D Details of Watermark Removal Attacks 1222

We also present a taxonomy of existing watermark 1223

removal attacks according to their underlying per- 1224

turbation and required resources, as summarized in 1225

Table 2. 1226

Linguistic variation attack. This class of at- 1227

tacks perturb the linguistic features of the water- 1228

marked text, without changing its semantics. We 1229

consider the set of perturbations in HELM (Liang 1230

et al., 2023), which simulate natural linguistic vari- 1231

ations encountered in human interactions with text 1232

typing interfaces: i) Lowercasing converts all the 1233

words to lower-cases, which potentially affects the 1234

interpretation of proper nouns or emphases. ii) 1235

Contracting/expanding replaces phrases with their 1236

contracted/expanded forms (e.g., “I am” to “I’m” 1237

and vice versa), which may impact the tokenizer. 1238

Lexical editing attack. This class of attacks 1239

modifies individual words, aiming to maintain the 1240

original text’s semantics. Specifically, we consider 1241

the following editing operations: i) Misspelling, 1242

similar to text-bugger (Li et al., 2019), replaces 1243

words with their common misspellings (plural 1244

forms also considered); ii) Typoing replaces cer- 1245

tain letters in a word with others; iii) Synonymizing 1246

replaces words with their synonyms using Word- 1247

Net (Miller, 1995); and iv) Swapping randomly 1248

exchanges the positions of two words within the 1249

text, which alters the text structure while potentially 1250

preserving the overall semantics. 1251

Text-mixing attack. This class of attacks aims 1252

to “dilute” the watermark by mixing the water- 1253

marked text with non-watermarked text fragments. 1254

Specifically, the copy-pasting attack (Kirchenbauer 1255

et al., 2023b) embeds the watermarked text into the 1256

context of non-watermarked, human-written text. 1257

Note that the influence of non-watermarked text 1258

can be controlled by setting the fractions of water- 1259

marked and non-watermarked text fragments (i.e., 1260

the mixing weights). 1261

Paraphrasing attack. This class of attacks re- 1262

lies on an additional LLM (i.e., paraphraser) to 1263

re-write the given watermarked text to evade the 1264

detector. For instance, a light paraphraser (Sankar 1265

Sadasivan et al., 2023) (e.g., T5-based para- 1266

phraser (Damodaran, 2021)) can paraphrase the 1267

15

watermarked text sentence-by-sentence, while a1268

more capable paraphraser (e.g., DIPPER (Krishna1269

et al., 2023)) paraphrases the watermarked text in1270

one-shot, also enabling to control lexical diversity1271

and token order diversity.1272

Similar to paraphrasing, the translating attack1273

uses a translator LLM (e.g., Seamless (Communi-1274

cation et al., 2023)) to cycle the watermarked text1275

through multiple languages (e.g., from English to1276

French and back to English). This process can sig-1277

nificantly alter the sentence structure and phrasing.1278

In this class of attacks, we assume the adversary1279

has access to a generic detector that is trained to dis-1280

tinguish watermarked and non-watermarked texts.1281

The adversary then perturbs the watermarked text1282

based on this surrogate detector. We explore this1283

attack type in §5.1284

E Watermark Effectiveness1285

We first evaluate the effectiveness of different wa-1286

termarkers. Following prior work (Kirchenbauer1287

et al., 2023a; Piet et al., 2023; Kuditipudi et al.,1288

2023), for each watermarker, we sample 1,0001289

prompts and use the LLM in combination with1290

the watermarker to generate the watermarked texts;1291

meanwhile, we select human responses to the same1292

prompts as the non-watermarked texts. We then1293

measure the accuracy of the watermarker’s detec-1294

tor in distinguishing the watermarked and non-1295

watermarked texts.1296

E.1 Overall Effectiveness1297

We measure the overall effectiveness of each1298

method through the lens of the ROC curve. Fig-1299

ure 10 (a-d) summarizes the overall effectiveness1300

of existing watermarkers across different models1301

and datasets. We have the following interesting1302

observations.1303

Most watermarkers are highly effective in gen-1304

erating and subsequently detecting watermarked1305

texts on OPT-1.3B as shown in Figure 10 (a-b). For1306

instance, RDF, UB, and GO all attain AUC scores1307

above 0.99 over both C4 and HC3. Recall that1308

C4 and HC3 represent the text completion and1309

question-answering tasks respectively. The obser-1310

vation indicates that most watermarkers tend to be1311

highly effective for relatively less capable LLMs1312

such as OPT-1.3B, while the concrete dataset/task1313

have a limited impact on their performance. We1314

further validate this hypothesis under the setting1315

of a fixed FPR. As shown in Figure 10 (e-f), we fix1316

the FPRs of all the methods to be 0.01 and measure 1317

their TPRs. Observe that all the methods achieve 1318

above 0.9 TPR, with a marginal difference across 1319

C4 and HC3. 1320

Meanwhile, most methods observe marginal per- 1321

formance drops on Llama2-7B, as shown in Fig- 1322

ure 10 (c-d). For instance, compared with its per- 1323

formance on OPT-1.3B, the AUC of SIR drops by 1324

0.11 and 0.08 on C4 and HC3 respectively. This 1325

observation aligns with previous research (Kudi- 1326

tipudi et al., 2023), indicating that watermarkers 1327

are more effective on OPT compared with Llama2. 1328

This phenomenon can be partly understood through 1329

the following explanation. In contrast of less capa- 1330

ble LLMs (e.g., OPT-1.3B), Llama2-7B typically 1331

produces texts of lower perplexity. Since most wa- 1332

termarkers inject watermarks by slightly altering 1333

the next-token distribution, the lower perplexity 1334

in Llama2’s outputs hampers the effectiveness of 1335

such perturbations. Moreover, it is observed that 1336

the performance of various methods varies signifi- 1337

cantly across different datasets. For instance, UG’s 1338

AUC differs by 0.28 between C4 and HC3, while 1339

UB’s AUC differs by 0.11. This observation is fur- 1340

ther supported by the TPR measures at fixed FPRs 1341

(fixed as 1%), as shown in Figure 10 (e-f). Our find- 1342

ings suggest that the concrete dataset/task tends to 1343

have a larger impact on watermarkers over more 1344

capable LLMs. 1345

E.2 Impact of Text Length 1346

We evaluate how the (non-)watermarked text length 1347

(i.e., the number of tokens) impacts the perfor- 1348

mance of different methods. Specifically, we mea- 1349

sure the TPR of each method with its FPR fixed 1350

as 1%. In the following, we set OPT-1.3B and C4 1351

as the default LLM and dataset. Figure 11 summa- 1352

rizes the results. 1353

Observe that as expected, the TPRs of all the 1354

methods improve as the text length grows from 1 to 1355

200 tokens. As the text length exceeds 100 tokens, 1356

most methods reach TPRs close to 100%. Mean- 1357

while, different methods show varying sensitivity 1358

to the text length. For instance, GO and RDF attain 1359

100% TPRs with only 20 tokens, while UG reaches 1360

only around 50% TPR under the same setting. This 1361

can be explained as follows. Both GO and RDF 1362

use distribution transform-based samplers, which, 1363

conditional on given randomness (e.g., random per- 1364

mutation), generate the next token deterministically. 1365

Meanwhile, other methods randomly sample the 1366

next token from a given pool (e.g., green lists). 1367

16

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e
(T

PR
)

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate (FPR)

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(a) (b) (c) (d)

(e) (f)

Figure 10: Overall effectiveness of different watermarkers in generating and detecting watermarked texts: ROC of
(a) OPT-C4, (b) OPT-HC3, (c) Llama2-C4, and (d) Llama2-HC3; TPR (with FPR fixed as 0.01) on (e) C4 and (f)
HC3.

Text window size

TP
R

 (
w

it
h

FP
R

 =
 0

.0
1)

Figure 11: TPRs of watermarkers with respect to text
length (with FPRs fixed as 1%).

Thus, GO and RDF tend to have stronger signals1368

per token for watermark detection.1369

E.3 Impact of Temperature1370

The temperature τ is a key parameter that affects a1371

watermarker’s generative dynamics: intuitively, a1372

higher τ makes the sampling over the next-token1373

distribution p̃(xt∣x<t) more random. Here we eval-1374

uate how the setting of τ in each watermaker’s1375

generator may impact its effectiveness. Note that,1376

unlike other watermarkers, RDF and GO do not1377

generate the next-token distribution p̃(xt∣x<t) ex-1378

plicitly, we thus exclude them from the evaluation.1379

TP
R

 (
w

it
h

FP
R

 =
 0

.0
1)

Figure 12: TPRs of watermarkers with respect to the
temperature setting (with FPRs fixed as 1%).

Figure 12 compares how the TPRs of different1380

watermarkers vary with the setting of τ = 0.7, 1.0,1381

and 1.3 (with FPRs fixed as 1%). Observe that the1382

performance of most watermarkers marginally im- 1383

proves with τ , which corroborates prior work (Piet 1384

et al., 2023). For instance, the TPR of TGRL in- 1385

creases by about 0.05 as τ varies from 0.7 to 1.3. In- 1386

terestingly, in contrast, the TPR of UPV decreases 1387

as τ grows. This can be explained as follows. UPV 1388

employs a neural network as the detector that de- 1389

pends on general textual features, which tends to 1390

be more sensitive to increasing randomness, com- 1391

pared with other watermarkers that rely on specific 1392

watermark signals (e.g., green/red-listed tokens). 1393

F Watermark Fidelity 1394

Sc
or

e

BERTScore
MAUVE
P-SP

Figure 13: Fidelity preservation of different watermark-
ers.

We evaluate the impact of different watermark- 1395

ers on the text quality. We compare the original text 1396

T and watermarked text T̃ using the metrics (de- 1397

tailed in §3.2) of BERTScore (Zhang et al., 2020), 1398

P-SP (Wieting et al., 2022), and MAUVE (Pillutla 1399

et al., 2021). The results are summarized in Fig- 1400

ure 13. 1401

i) A majority of watermarkers well preserve the 1402

semantics of original texts, as indicated by their 1403

high BERTScore and MAUVE scores. Note that 1404

the P-SP scores of all the watermarkers are rela- 1405

tively lower than their BERTScore and MAUVE 1406

scores. This is due to their different emphases: 1407

17

P-SP measures the average similarity between the1408

tokens in T and T̃ , while BERTScore calculates the1409

maximum similarity between the tokens in T and T̃ .1410

ii) Meanwhile, RDF, GO, and UB are less effective1411

in preserving the quality of original texts, which1412

can be attributed to their additional constraints of1413

indistinguishability: the expectation of the water-1414

marker’s next-token distribution is identical to the1415

LLM’s next-token distribution (i.e., indistinguisha-1416

bility). This observation suggest that there exists an1417

inherent trade-off between the desiderata of quality1418

and indistinguishability.1419

G Additional Results1420

G.1 Multi-bit Watermarking1421

While our study focuses on one-bit watermarkers,1422

for completeness, we also evaluate CTWL (Wang1423

et al., 2024), a multi-bit watermarker. In contrast1424

of one-bit watermarkers that encode only a single1425

bit of information (i.e., whether a given text is wa-1426

termarked), a multi-bit watermarker can encode1427

multiple bits of information into the watermarked1428

text, such as the generating model, the date of gen-1429

eration, and other details. However, despite its1430

larger information capacity, we find that a multi-bit1431

watermarker is typically less robust compared to1432

one-bit watermarkers, as illustrated in Figure 141433

and 15.1434

OPT_C4 OPT_HC3 LLAMA_C4 LLAMA_HC3
0.0

0.2

0.4

0.6

0.8

1.0

TP
R

 (w
ith

 F
PR

 =
 0

.0
1)

TPR

FPR

Figure 14: TPRs of CTWL (with FPRs fixed as 0.01)
on different LLMs (OPT and Llama2) and datasets (C4
and HC3).

Sy
n

o

M
is

sp

Ty
p

o

Sw
ap

C
P1

-1
0

C
P3

-1
0

C
P1

-2
5

C
P3

-2
5

C
o

n
tr

a

Ex
p

an

Lo
w

C
as

e

Tr
an

s

D
P-

20

D
P-

40

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

 (w
ith

 F
PR

 =
 0

.0
1)

Figure 15: TPRs of CTWL (with FPRs fixed as 0.01)
against various attacks.

The test results in the basic encoding and detec-1435

tion scenario highlight the sensitivity of CTWL to1436

different language models. Although it performs 1437

well with the OPT model across both C4 and HC3 1438

datasets, its TPR on Llama2 is extremely low, and 1439

it becomes completely ineffective when tested on 1440

Llama2 using the HC3 dataset. This is due to the 1441

lower model perplexity of Llama2. We conduct 1442

additional experiments to compare the model per- 1443

plexity on the same WikiText dataset, and the re- 1444

sults show that Llama2 has a perplexity about 6.15, 1445

while OPT has about 12.43. Lower model per- 1446

plexity results to larger fluctuations in the logits 1447

produced by the model, makes it more challeng- 1448

ing for watermark injection (e.g., increase smaller 1449

logits to exceed larger ones). 1450

When facing the attacks, CTWL is more vul- 1451

nerable than one-bit methods. It is particularly 1452

vulnerable to the copy-pasting attack, which can 1453

nearly disable the method as the TPR drops to near 1454

zero. Additionally, CTWL is highly susceptible to 1455

typoing, swapping, translating, lowercasing, and 1456

Dipper attacks, which generally do not affect many 1457

one-bit methods as severely. Despite the capacity 1458

of multi-bit methods to embed more information, 1459

their high sensitivity to language model variations 1460

and various attacks is a crucial limitation that needs 1461

to be addressed in future research. 1462

G.2 Robustness of Watermarkers on Llama2 1463

Our evaluation in §4 mainly uses OPT-1.3B as the 1464

underlying LLM. Here, we present the results on 1465

Llama2-7B, a more capable LLM. The results can 1466

be found at Table 7 1467

G.2.1 Linguistic Variation Attack 1468

Comparing with the OPT results, most of the water- 1469

markers show TPR drops on Llama2. One excep- 1470

tion is GO, which still maintains resilience across 1471

all three attacks. 1472

G.2.2 Lexical Editing Attack 1473

We have the following observation in Llama2: i) 1474

Context-free watermarkers (e.g., UG) show signif- 1475

icantly higher attack resilience against swapping 1476

attacks. This may be due to the fact that the at- 1477

tack alters the word and sentence order, which 1478

affects the detection of both text-dependent and 1479

index-dependent watermarkers. ii) Similar to OPT, 1480

text-dependent, (hard) distribution-reweighting wa- 1481

termarkers tend to be more vulnerable to lexical 1482

editing attacks. iii) The typoing and swapping at- 1483

tacks show significantly higher attack effectiveness 1484

on Llama2, similar to our observations on OPT. 1485

18

Water
marker CLEAN

Linguistic Variation Textual Integrity Content Manipulation Paraphrase

Contra Expan LowCase Swap Typo Syno Missp CP1-10 CP3-10 CP1-25 CP3-25 DP-20 DP-40 Trans

TGRL 0.896 0.864 0.892 0.75 0.408 0.34 0.818 0.78 0.014 0.074 0.088 0.348 0.536 0.334 0.196
UG 0.814 0.791 0.823 0.697 0.843 0.357 0.75 0.755 0.025 0.054 0.050 0.190 0.771 0.633 0.344
UPV 0.588 0.502 0.598 0.494 0.388 0.018 0.512 0.392 0.005 0.002 0.002 0.007 0.362 0.355 0.042
RDF 0.790 0.735 0.725 0.622 0.333 0.888 0.738 0.824 0.021 0.045 0.045 0.307 0.471 0.303 0.010
UB 0.946 0.926 0.940 0.512 0.016 0.030 0.614 0.650 0.000 0.000 0.000 0.022 0.143 0.036 0.094
SIR 0.566 0.066 0.078 0.078 0.076 0.010 0.064 0.050 0.034 0.026 0.042 0.048 0.040 0.081 0.100
GO 0.996 0.996 0.996 0.959 0.643 0.556 0.989 0.987 0.058 0.228 0.286 0.825 0.900 0.623 0.814

Table 7: Resilience of LLM watermarkers against attacks on Llama2.

G.2.3 Text-mixing Attacks1486

With the exception of watermarkers based on distri-1487

bution transform (e.g., RDF and GO), which shows1488

greater resilience to text-mixing attacks, the other1489

methods are virtually undetectable, which is con-1490

sistent with the observations in OPT1491

G.2.4 Paraphrasing Attack1492

All methods show a significant TPR decrease, only1493

GO presents a remarkable resilience. RDF per-1494

forms well in OPT and does not present a signifi-1495

cant resilience on Llama2.1496

G.3 Fidelity Preservation of attacks1497

Figure 16 illustrates the quality preservation of dif-1498

ferent attacks on GO, with similar results on other1499

watermarkers,1500

Figure 16: Quality preservation of different attacks on
GO.

H Additional Related Work1501

We survey the relevant literature in the following1502

categories: i) detection of LLM-generated texts,1503

ii) LLM watermarking, iii) attacks on LLM water-1504

marking, and iv) evaluation of LLM watermarkers.1505

Detection of LLM-generated texts. The ad- 1506

vances in LLMs also give rise to their possible 1507

misuses. There is thus a pressing need for the capa- 1508

bility of distinguishing LLM- and human-generated 1509

texts. Initial work attempts to either train classifiers 1510

using LLM- and human-generated texts(Mitchell 1511

et al., 2023) or to leverage intrinsic characteris- 1512

tics of LLM-generated texts (e.g., perplexity and 1513

variability in length, complexity, and information 1514

density)(Lütkebohle). Yet, with LLMs becoming 1515

increasingly capable, the difference between LLM- 1516

and human-generated texts is narrowing, making 1517

such approaches less effective. 1518

LLM watermarking In response, LLM water- 1519

marking emerges as a promising alternative, which 1520

instruments the LLM generative process with sta- 1521

tistical signals that can be subsequently detected. 1522

The existing LLM watermarking techniques can 1523

be categorized based on the stages in which they 1524

are applied(Liu et al., 2023b): i) training-time wa- 1525

termarking(Liu et al., 2023c; Tang et al., 2023; 1526

Sun et al., 2022, 2023; Xu et al., 2024), ii) wa- 1527

termarking during logit-generation(Kirchenbauer 1528

et al., 2023a; Zhao et al., 2023; Hu et al., 2024; Liu 1529

et al., 2023a; Liu et al., 2024; Fairoze et al., 2023; 1530

Ren et al., 2023; Fernandez et al., 2023; Wang et al., 1531

2024; Yoo et al., 2023; Lee et al., 2023; Giboulot 1532

and Teddy, 2024), iii) watermarking during token- 1533

sampling (Kuditipudi et al., 2023; Aaronson and 1534

Kirchner; Hou et al., 2023), and iv) post-generation 1535

watermarking(Zhang et al., 2023; Yoo et al., 2024; 1536

Yang et al., 2023; Munyer and Zhong, 2023; Sato 1537

et al., 2023; Abdelnabi and Fritz, 2021). This study 1538

mainly focuses on training-free, pre-generation wa- 1539

termarking, which applies to any given LLMs and 1540

provides flexible control over multiple criteria (e.g., 1541

quality, effectiveness, and robustness). 1542

The primary focus of the previous studies is to 1543

distinguish between human-written text and text 1544

generated by LLMs. In this paper, we assume that 1545

19

the attacker lacks access to non-watermarked text1546

produced by recent LLM. Instead, the attacker can1547

only utilize other LLMs to generate text that mim-1548

ics human responses and get the watermarked texts1549

from recent LLM. The generic detector, which is1550

within the adversary’s capability, is specifically de-1551

signed to distinguish between watermarked and1552

non-watermarked texts(e.g., other LLMs’ texts or1553

human writing texts).1554

Attacks on LLM watermarking. One critical1555

property of an LLM watermarker is its robustness1556

against potential attacks. A variety of attacks can1557

be applied to LLM watermarking, ranging from re-1558

moving the embedded watermark to uncovering the1559

green/red lists. For instance, Dipper(Krishna et al.,1560

2023) is a widely used paraphrasing attack to evalu-1561

ate the robustness of LLM watermarkers (Kirchen-1562

bauer et al., 2023a; Zhao et al., 2023) against wa-1563

termark removal attacks; the watermark stealing1564

attack(Jovanović et al., 2024) is proposed to iden-1565

tify green-list tokens and to replace them with red-1566

list tokens, targeting TGRL(Kirchenbauer et al.,1567

2023a) and UG(Zhao et al., 2023) to further launch1568

spoofing or removal attacks. This study primar-1569

ily focuses on watermark removal attacks as they1570

can target any LLM watermarkers and have pro-1571

found implications in practice (e.g., disinformation,1572

academic cheating, and automated phishing).1573

Evaluation of LLM watermarkers. As LLM1574

watermarkers become prevalent, recent work at-1575

tempts to benchmark the performance of vari-1576

ous watermarkers. However, current studies ei-1577

ther focus solely on the effectiveness of water-1578

marking or have limited assessments of robust-1579

ness. For instance, WaterBench(Tu et al., 2023)1580

compares the effectiveness of TGRL(Kirchenbauer1581

et al., 2023a) and UG(Zhao et al., 2023) under1582

varying hyper-parameter settings (e.g., prompt1583

length); LLM-judger(Singh and Zou, 2023) uses1584

GPT-3.5-Turbo as a judge to evaluate the ef-1585

fectiveness of RDF(Kuditipudi et al., 2023) and1586

TGRL(Kirchenbauer et al., 2023a) and employs1587

a binary classifier based on MLP to distin-1588

guish between watermarked and non-watermarked1589

texts; MarkMyWords(Piet et al., 2023) compares1590

the effectiveness of four watermarkers including1591

TGRL(Kirchenbauer et al., 2023a), GO(Aaronson1592

and Kirchner), RDF(Kuditipudi et al., 2023), and1593

UW(Christ et al., 2023) and only evaluates the ro-1594

bustness of TGRL against watermark removal at-1595

tacks.1596

To our best knowledge, this is the first study1597

dedicated to the robustness of LLM watermarkers 1598

against watermark removal attacks. We aim to 1599

understand how different design choices impact 1600

watermarkers’ attack robustness and to identify best 1601

practices for operating watermarkers in adversarial 1602

environments. 1603

I Evaluation Guidelines for Future LLM 1604

Watermarking Research 1605

Next, we propose a set of guidelines for evaluat- 1606

ing the robustness of LLM watermarkers. These 1607

guidelines incorporate our findings in §4 and §5, 1608

providing a minimal checklist to claim the robust- 1609

ness of an LLM watermarker. 1610

LLMs and tasks. Our experiments show that the 1611

referenced watermarkers show varying robustness 1612

across different LLMs and datasets. We speculate 1613

that there exists an intricate interplay between the 1614

watermarking mechanism, the LLM’s capability, 1615

and the task’s complexity. We thus recommend 1616

experimenting on i) LLMs with varying capability 1617

(e.g., as measured by perplexity), ii) datasets for 1618

different tasks (e.g., summarization and question- 1619

answering), and iii) their combinations. 1620

Attacks. Notably, using highly capable LLMs or 1621

applying computationally expensive rewriting can 1622

easily generate highly-quality, non-watermarked 1623

texts to evade detection; however, such attacks 1624

negate the need for watermark removal attacks 1625

in the first place. We thus recommend focusing 1626

on computationally efficient attacks such as lin- 1627

guistic variation, lexical editing, and lightweight 1628

paraphrasing, as well as their combinations, which 1629

reflects the risks of watermark removal attacks in 1630

practical settings. 1631

Robustness. It is often critical to properly set 1632

the decision threshold for a watermarker (and also 1633

the attacks) to fully assess its robustness(Lukas 1634

et al., 2021), which unfortunately is often missing 1635

in the original papers. To overcome this issue, we 1636

recommend i) measuring the overall effectiveness 1637

(TPR) in terms of ROC (across different thresh- 1638

old settings), ii) measuring the TPR under a fixed 1639

FPR (e.g., 0.01), and iii) considering varying attack 1640

intensity. 1641

Fidelity. It is notoriously challenging to mean- 1642

ingfully measure the quality of text data(Pillutla 1643

et al., 2021). We recommend employing a variety 1644

of metrics (e.g., BERTScore, P-SP, MAUVE) to 1645

comprehensively measure the quality retention of 1646

watermarkers as well as attacks. In addition, one 1647

20

may also leverage external tools (e.g., more ad-1648

vanced LLMs such as GPT-4) or human evaluation1649

to provide a more accurate assessment if feasible.1650

21

	Introduction
	LLM Watermarking
	Platform
	Threat Model
	Metrics

	Evaluation
	Experimental Setting
	Robustness – Observational Study
	Linguistic Variation Attack
	Lexical Editing Attack
	Text-Mixing Attack
	Paraphrasing Attack
	Fidelity Preservation

	Robustness – Causal Analysis
	Context Dependency
	Generation Strategy
	Detection Method

	Discussion
	Specific vs. Generic Detector
	Advanced Attack
	Varying Attack Intensity
	Combining Simple Attacks
	Adaptive Attack
	Leveraging Expert LLMs

	Conclusion
	Parameter Setting
	Taxonomies
	Context Dependency
	Generation Strategy
	Detection Method

	Fidelity Metrics
	Details of Watermark Removal Attacks
	Watermark Effectiveness
	Overall Effectiveness
	Impact of Text Length
	Impact of Temperature

	Watermark Fidelity
	Additional Results
	Multi-bit Watermarking
	Robustness of Watermarkers on Llama2
	Linguistic Variation Attack
	Lexical Editing Attack
	Text-mixing Attacks
	Paraphrasing Attack

	Fidelity Preservation of attacks

	Additional Related Work
	Evaluation Guidelines for Future LLM Watermarking Research

