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Abstract

We consider the visual recognition problem in long-tailed data in which few classes dominate
the majority of the other classes. Most current methods employ contrastive learning to learn
a representation for long-tailed data. In this paper, first, we investigate k-positive sampling,
a popular baseline method widely used to build contrastive learning models for imbalanced
data. Previous works show that k-positive learning, which only chooses k positive samples
(instead of all positive images) for each query image, suffers from inferior performance in
long-tailed data. In this work, we further point out that k-positive learning limits the learn-
ing capability of both head and tail classes. Based on this perspective, we propose a novel
contrastive learning framework namely GloCo which improves the limitation in k-positive
learning by enlarging its positive selection space, so it can help the model learn more seman-
tic discrimination features. Second, we analyze how the temperature (the hyperparameter
used for tuning a concentration of samples on feature space) affects the gradients of each
class in long-tailed learning, and propose a new method that can mitigate inadequate gradi-
ents between classes, which can help model learning easier. Finally, we go on to introduce a
new prototype learning framework namely ProCo based on coreset selection, which can help
us create a global prototype for each cluster while keeping the computation cost within a
reasonable time and show that combining GloCo with ProCo can further enhance the model
learning ability on long-tailed data.

1 Introduction

Real-world data usually follows long-tail distribution, where only a few classes dominate the dataset (namely,
head classes). In contrast, most other classes have a small number of samples (namely, tail classes). This
long-tailed data poses a major inferential challenge to traditional deep learning models whose training is
biased by the head classes and whose performance quickly deteriorates when the data is imbalanced (Wang
et al., 2020; Cao et al., 2019; Zhang et al., 2021c). Various approaches have been proposed to address such
issues, with typical methods including class-balanced re-sampling (Shen et al., 2016; More, 2016; Zhang
et al., 2021c), class-level re-weighting (Alshammari et al., 2022; Lin et al., 2017; Zhang et al., 2021c) and
ensemble learning (Zhou et al., 2020; Wang et al., 2020; Zhang et al., 2021b). However, the prior approaches
rely on the classical cross-entropy losses which are sensitive to imbalanced data (Wang et al., 2020; Zhang
et al., 2021c).

Many studies have shown that contrastive learning is more robust to noisy or unbalanced data (Khosla et al.,
2020; Kang et al., 2020), therefore this algorithm is also widely applied to solve imbalanced data and achieves
impressive results (Chen & He, 2021; Li et al., 2022b; Zhu et al., 2022; Liu et al., 2021; Yang & Xu, 2020).
Its success is based on the contrastive loss function and a large number of negative samples (He et al., 2020),
which will help the model learn more robust and semantic discrimination feature (Liu et al., 2021; Yang &
Xu, 2020) thereby helping the model generalize well on the training data, and subsequently easily transfer to
the test data or other data domains (Chen et al., 2020a; Liu et al., 2021). Moreover, unsupervised contrastive
learning creates more balance feature space, even when the data is highly skewed (Kang et al., 2020), which
is the main factor that results in the failure of the previous methods. However, the model trained in an
unsupervised manner often does not perform well since it does not use label information; thus it fails to
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Figure 1: Overview of how GloCo and ProCo learn during training. GloCo learns to pull closer images of
the same class while pushing apart images of different classes across-batches. Meanwhile, ProCo builds a
prototype (center) for each class, by which points of the same class are pulled toward the class prototype
whereas points of the other classes are pushed away.

learn rich semantic discrimination features due to lack of label information. Different from unsupervised
contrastive learning, supervised contrastive learning can learn more semantic feature space (Kang et al.,
2020). Nonetheless, using the label during training makes features more imbalanced as compared with their
unsupervised counterpart. To overcome this problem in supervised contrastive learning, instead of using all
positive samples in the batch for training, Kang et al. (2020) proposes k-positive selection, a supervised
contrastive learning method in which we limit the number of positive samples to k, therefore, it can reduce
the imbalance effect. However, when the data is extremely long-tailed, using k-positive alone is not enough
to tackle the imbalance problem (Li et al., 2022b). Besides contrastive learning, prototype learning (Li et al.,
2022b; Cui et al., 2021; Zhu et al., 2022) is also widely used to tackle long-tailed problems. This method
constructs a prototype (center) for each class and pulls samples of the same class closer to the center while
pushing samples of other classes away. But it remains elusive as to how to build a good prototype and
efficient prototype loss function.

Motivated by the limitations of the prior approaches, in this paper, we propose a training method namely
Global-Adaptive Contrastive learning (GloCo), which constructs a more balanced feature space with better
semantic discrimination features. In GloCo, we first use label information to select k-positive samples
across batches for the query. This so-called k-global positive selection is in stark contrast with k-positive
selection (Kang et al., 2020) which selects positive samples only within a batch. Expanding the selection space
across batches helps the query connect to more positive samples; therefore the model can learn richer semantic
discrimination features. Besides, we analyze the gradient of our model when training with imbalanced data,
pointing out that the temperature value has an important role during the training. Based on the analysis,
we propose a new method namely Adaptive temperature. In this method, we view temperature as a
re-balanced parameter, which can help us reduce the imbalance effect between head and tail classes during
the training stage by balancing their gradients. Moreover, we propose a prototype learning approach namely
ProCo, which uses data distillation to efficiently construct prototypes. We empirically show that jointly
training ProCo with GloCo can further improve the model performance.

Our main contributions:

• Global-Adaptive Contrastive learning (GloCo): We introduce a new training strategy that
can adapt to any contrastive framework to improve its performance in long-tailed learning namely
k-global positive selection. After that, we analyze the model gradient and propose re-balanced
techniques namely Adaptive temperature to furtherly tackle the imbalance problem. We empir-
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ically evaluate with different settings and show that our model can outperform the state-of-the-art
model with a large gap.

• Prototype learning via coreset selection (ProCo): We propose a new prototype learning
method named ProCo which improves over the original prototype method from an aspect that
distills coreset from training data, then determines prototypes based on coreset to help constructed
prototypes efficiently and can represent global features for the original dataset without using all
training samples.

2 Related work

Long-tailed recognition is one of the challenging problems in computer vision. There are many studies
focusing on this problem with different solutions (Zhang et al., 2021c; Zhu et al., 2022; Shen et al., 2016;
More, 2016; Alshammari et al., 2022; Lin et al., 2017; Zhu et al., 2022; Kang et al., 2020; Li et al., 2022b).
The general idea is to try to re-balance the effect between head and tail classes during training from data
perspective or model perspective.

Data perspective The most obvious way to solve long-tailed problems is to create a balanced dataset,
where the samples of head and tail classes need to change to become more balance. There are two popular
approaches including over-sampling (Shen et al., 2016; Sarafianos et al., 2018), and under-sampling (More,
2016; Drummond et al., 2003; Buda et al., 2018). While the former simply creates more data for tail classes
by duplicating samples, average samples, or learning its distribution then generating more data. The latter
needs to reduce the samples of head classes by random removal procedures. However, the over-sampling
approaches easily lead to overfitting (Bunkhumpornpat et al., 2012; More, 2016); under-sampling loss data
information (More, 2016). To overcome the limitation of the two approaches, (Park et al., 2022) introduces
a new over-sampling method that creates larger tail samples by utilizing rich context features in head classes.
Besides, we can use other data augmentation techniques (Li et al., 2021; Zhang et al., 2021d) which can
give us a larger size for tail class, or data distillation techniques (Wang et al., 2018; Killamsetty et al., 2021;
Ghadikolaei et al., 2019; Zhang et al., 2021a) to extract a smaller set for head classes while ensuring it can
represent the distribution of the whole data.

Model perspective There are many techniques utilizing models to tackle long-tailed learning including
re-weighting (Alshammari et al., 2022; Lin et al., 2017; Khan et al., 2017), ensemble learning (Zhou et al.,
2020; Wang et al., 2020; Zhang et al., 2021b), or two stages training (Kang et al., 2019; Zhou et al., 2020). In
re-weighting methods, we set weights for each class, usually reducing head class dominating by setting it small
weight or enlarging the weight of tail classes to emphasize its contribution. The simplest way is to set weights
inverse to a number of samples in class. Besides, normalizing the weight of network (Alshammari et al., 2022)
also shows an impressive result, or extends focal loss to Equalized Focal Loss (Li et al., 2022a) for efficient
one-stage object detection. Along this direction, decoupling techniques use two stages of training, where
we need to learn a good representation in the first stage and fine-tune it in the second stage, this training
strategy shows that without carefully designing a model, we can also achieve good performance (Kang et al.,
2019). The final method usually used in long-tailed learning is ensemble (Zhou et al., 2020; Wang et al., 2020;
Zhang et al., 2021b), where we can join training a multiple branches network, each branch will contribute
and learn specific information during training, then we combine results of these branches together to predict
the final result for long-tailed data.

Contrastive learning Contrastive learning has got attention recently because of its success in training
for large unlabeled data (Chen et al., 2020a; He et al., 2020; Chen et al., 2020c; Doersch et al., 2015; Grill
et al., 2020; Caron et al., 2018; Chen et al., 2020b; 2021; Tian et al., 2020), and labeled data (Khosla et al.,
2020). In the decoupling method that we have mentioned above, the key problem is how can we train a
strong backbone model at the first stage then use it as a pre-trained and fine-tune the whole or top layer of
the model in the second stage. This is similar to the behavior of training contrastive model (He et al., 2020;
Chen et al., 2020c;a; Chen & He, 2021), where we use a large amount of unlabeled data to learn invariant
features from input data, then use those features to initiate for downstream tasks. Therefore, contrastive
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learning becomes a popular method in the first stage of training of decoupling. Recently, there are an
increasing number of studies trying to understand the behavior of contrastive learning on long-tailed data.
For example, (Kang et al., 2020) explore that self-supervised learning create balance but lacks semantic
feature space, and they propose k-positive learning which simply limits the number of positive for each
sample in batch not greater than k to ensure the balance between head and tail class. (Liu et al., 2021)
hypothesize that contrastive learning works better than supervised learning because it can transfer useful
features from head classes to tail classes. Then they analyze the gradient and propose a method following
theoretically-principled label-distribution-aware margin loss (LDAM)(Cao et al., 2019) to re-balance feature
space. (Zhu et al., 2022) show that supervised contrastive learning is not the optimal solution for long-tailed
data and introduce class averaging and class complement in the loss function to make SupCon possible when
training with long-tailed data. (Zhou et al., 2022; Jiang et al., 2021) utilize the memorization effect of deep
neural networks to recognize tail sample and enhance it in both data and model perspective.

Prototypical contrastive learning Training on self-supervised learning with long-tailed data generates
more balance feature space than the supervised counterpart. However, when the dataset is extremely skewed,
it is still dominated by head class. To overcome this issue, several works use prototype learning to re-balance
feature space(Cui et al., 2021; Li et al., 2022b; Zhu et al., 2022). The key idea is to generate a set of prototypes
(centers) for each class, then pull all samples of the same class closer to its prototypes and push samples
from other classes far away. However, how to efficiently construct such prototypes is an active research area.
Previous works (Li et al., 2020; 2022b) construct these prototypes by utilizing the large queue size in MoCo
to save computation times. Nonetheless, it can not adapt to another contrastive framework, and when the
dataset size is too large, data in the queue size can not representation the whole dataset distribution. In this
paper, we propose another approach that can generate prototypes to cover the training data distribution
without using all samples within an acceptable time.

3 Method

Give the input data X = {x1, x2, ...xN } and the label Y = {y1, . . . , yN } which have C classes where yi ∈
{1, 2, ..., c}. The training samples S = {(xj , yj)}N

j=1 ∈ P is the distribution over instance X and label Y .
Our goal is to learn a function f that map the input data space X to a label space Rc which minimizes the
misclassification error Px,y. Assuming i and j are the largest and smallest classes, respectively. Class Xi has
m samples and class Xj has n samples, m > n. We define:

• imb = m
n is the imbalance factor.

• B is the batch size of the data

• t = |S|
|B| is the ratio between total training samples and batch size, and Bi is the list samples of class

i in batch B.

Inspiration by previous works (Kang et al., 2020; Li et al., 2022b; Khosla et al., 2020), we propose a general
framework that can apply to contrastive learning model (e.g., MoCo (He et al., 2020), SimCLR (Chen et al.,
2020a)) to help it handle better with the imbalance in long-tailed learning. Our model can create rich
semantic features while reducing the dominating of head class during training. This framework includes two
modules namely GloCo and ProCo. In the first section, we introduce Global-Adaptive contrastive learning
(GloCo), a method that can help contrastive learning models learn easier in the long-tailed setting. Then,
we further improve Global contrastive learning by prototypical learning, where we propose another efficient
method for prototype learning via coreset selection (ProCo).

3.1 Global Contrastive learning

K-global positive selection SupCon (Khosla et al., 2020) and it improvement version for long-tailed
learning: k-positive learning (Kang et al., 2020; Li et al., 2022b) select a positive sample for each query
from the positives samples in the same batch. However, this selection strategy limits the learning ability
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of the model, especially for tail classes, where the class size is small. In the long-tailed setting, when we
choose positive samples inside the batch, it is hard to tail query samples that can meet other positives in the
same batch size, therefore not utilizing the information between other tail class samples to learn, reducing
the quality of learned features. To overcome this problem, we propose k-global positive selection, our
method expands the positive selection space for each query sample from inside the batch to across batches.To
implement the proposed k-global selection algorithm, we have redefined the DataLoader. Specifically, our
DataLoader will include an additional variable containing information about the index of samples with the
same labels in the training data. During training, for each sample x in batch B, we will randomly select
k positive samples with the same labels in training data(global selection) instead of choosing k positive
samples with the same labels in batch (batch selection). This simple modification helps the query sample
connect with all other positive samples inside that class, therefore enlarging its selection space, and helping
the model learn easier. Our formula for across-batches positive selection is defined as:

Lcontrastive = − 1
N(k + 1)

N∑
i=1

∑
v+

j
∈{v+

i
}∪P +

i,k

ℓ(i, j), (1)

where

ℓ(i, j) = log
exp (vi · v+

j /τ)
exp (vi · v+

j /τ) +
∑

vj∈Vi
exp (vi · vj/τ)

Here v+
i is the augmented view of query vi, P +

i,k is the k positive samples selected by k-global positive, and
Vi are examples in the current batch excluding vi.
This selection strategy is extremely helpful for tail classes because, in long-tailed data, the total number of
tail classes is usually small. Therefore if we can gather all the samples in tail classes together, each sample
can utilize information from all other samples to learn, then our approach can efficiently learn the feature
space of tail classes.

Selection space analysis In this section, we will provide a deeper analysis of k-positive selection, as well
as introduce a new concept namely: selection space to clarify the benefit of k-global positive learning over
the k-positive selection.
Definition 1. k-positive selection space in class i is the combination of choosing k positives samples from
the batch data Bi(in the case of k-positive selection):

ki
b = |Bi|!

k!(|Bi| − k)!
or from the whole dataset Xi (in the case of k-global positive selection).

ki
g = |Xi|!

k!(|Xi| − k)!

We can see that in k-positive learning, the positive selection space of each class represents its frequency
during the training. It means classes with more samples will have a larger selection space and vice versa.
Based on the k-positive selection space, we propose another way that can evaluate the imbalance of the
k-positive learning model.
Definition 2. The balance ratio between class i and j (|Xi| > |Xj |) in batch (or across-batches) data is a
ratio of positive selection space between two classes, where :

Bri,j
b = ki

b

kj
b

is a batch balance ratio and

Bri,j
g =

ki
g

kj
g

is a global balance ratio between class i and j in the whole dataset.

5



Under review as submission to TMLR

Similar to the imbalance factor, a small value of the balance ratio means more balance between class i and
j during the learning.
Proposition 1. K-global positive selection reduces the balance ratio more efficiently compared with k-
positive selection. So with all pairs of (i, j) that |Xi| ≥ |Xj |:

Bri,j
b ≥ Bri,j

g (2)

where |Xi|,|Xj | are the length of class i, j in the training data, and Bri,j
b , Bri,j

g are the balance ratio between
class (i, j) in the batch and on the whole data, respectively.

Proof. To prove the above theory, expanding the InEq. 2 we have:

|Bi|!
k!(|Bi|−k)!

|Bj |!
k!(|Bj |−k)!

≥
|Xi|!

k!(|Xi|−k)!
|Xj |!

k!(|Xj |−k)!

(3)

where:

M !
(M − k)! = M ∗ (M − 1) ∗ ... ∗ (M − k + 1)

Therefore, we need to solve with all k that:

|Bi| − k

|Bj | − k
≥ |Xi| − k

|Xj | − k
(4)

Replace Bi = |Xi|
t , Bj = |Xj |

t , |Xi| = m, |Xj | = n, m = xn, h = k − 1, we achieve a new form need to solve:
xn
t − h
n
t − h

≥ xn − h

n − h
(5)

Expanding the InEq. 5 we achieve:

nh(t − 1)(x − 1) ≥ 0 (6)

which is True.

3.2 Adaptive temperature

In this section, we discuss the gradient of the contrastive learning model, which has played an important
role in classical machine learning to mitigate the imbalance effects Tang et al. (2020); Ren et al. (2020).
However, this result has not been explored in the contrastive setting. Therefore, based on the previous work
by Wang & Liu (2021), we investigate its behavior in the context of the contrastive model, and introduce
a technique called adaptive temperature based on temperature value, which can effectively reduce the
magnitude difference of gradients between head and tail classes.

Gradient analysis Normalizing the gradient between head and tail classes has received much attention
in cross-entropy learning (Tan et al., 2021). However, in contrastive learning, this problem has not been
exploited much. As introduced in Khosla et al. (2020) with input xi and embedding function f(), the
gradient of embedding vector zi = f(xi) is defined:

∂Lsup
i

∂zi
= 1

τ

 ∑
p∈P (i)

zp

(
Pip − 1

|P (i)|

)
+

∑
n∈N(i)

znPin

 (7)
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Here, Lsup
i is the Lsup

out in (Khosla et al., 2020), which is defined:

Lsup
out = − 1

|P (i)|
∑

p∈P (i)

log exp zi · zp/τ∑
a∈A(i) exp zi · za/τ

τ is a temperature parameter, P (i) is a set of all positive samples of zi, N(i) is a set of all negative samples,
and Pip = exp (zi · zp/τ)/

∑
a∈A(i) exp (zi · za/τ) where A(i) is a set of all samples in the batch excluding zi.

In each batch, the gradient of a sample i will be equal to the gradient of a positive sample: P (i) plus the
gradient of negative samples N(i) and then divide by temperature τ . For easier analysis, set:

∂Lsup
i

∂z+
i

=
∑

p∈P (i)

zp

(
Pip − 1

|P (i)|

)
(8)

∂Lsup
i

∂z−
i

=
∑

n∈N(i)

znPin (9)

Now we can rewrite the Eq. 7 as the combination of positive gradient and negative gradient as:

∂Lsup
i

∂zi
= 1

τ

(
∂Lsup

i

∂z+
i

+ ∂Lsup
i

∂z−
i

)
(10)

Applying the above formulas to GloCo, we will have |P (i)| = k, which means that the number of positive
samples for each query xi is fixed. The gradient of positive samples in Eq. 8 will be recalculated as follows:

∂Lsup
i

∂z+
i

=
∑

p∈P (i,k)

zp

(
exp (zi · zp/τ)∑

a∈A(i) exp (zi · za/τ) − 1
k

)

where Pi,k is the set of k positive samples across batches of query xi. Thus, choosing only k positive samples
during training will make the positive gradient of samples between different classes more balanced. This is
another explanation for why KCL (Kang et al., 2020) works well on imbalanced data. However, as mentioned
in Eq. 10, the gradient of embedding zi is a combination of positive and negative gradients. Choosing k
positive samples helps to balance the positive gradient but does not balance the negative gradient. Expanding
Eq. 9 for the negative gradient we have:

∂Lsup
i

∂z−
i

=
∑

n∈N(i)

zn

(
exp (zi · zn/τ)∑

a∈A(i) exp (zi · za/τ)

)
(11)

From this formula, when the negative sample is similar to the query (hard negative), its gradient becomes
larger. Therefore the negative gradient will be contributed mainly from the hard negative samples. Besides,
we can divide hard negative samples into two types: false negative (samples have the same class as xi but
are considered negative) and true negative (similar samples of other classes). We have:

∂Lsup
i

∂z−
i

= ∂hardfalse
negative + ∂hardtrue

negative (12)

In Eq. 12, while the true negative does not depend on the imbalance of the data, the false negative will
be proportional to the imbalance factor, since classes with more samples (head class) will have more false
negatives ( because we just choose k positive samples for training, then the remained samples are considered
as negative samples), resulting in the negative gradient of the head class being much larger than that of the
tail classes, making training more difficult. Therefore, if we can remove the influence of false hard negatives,
it will help the learning become more stable and balanced.
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Figure 2: Feature space of four tail classes when using constant temperature (left) and adaptive temperature
(right). Adaptive temperature helps the model learn more separable feature space.

Adaptive temperature formulation Work by Wang & Isola (2020); Wang & Liu (2021) has shown
that when the value of τ is small, the model will focus only on points near xi (hard negative), and as
τ increases, the model will focus more on further points. Especially, when τ is large enough, the model
considers all points (normal negative and hard negative) to contribute equally. Therefore in head classes, to
reduce the influence of false-hard negative samples, we should increase the value of τ and vice versa, for tail
classes, because the number of false-hard negatives is not large, the reduction of τ will not affect the negative
gradient too much. Besides, τ can be viewed as a re-weighted parameter in Eq. 7, where tail classes with
small τ will enlarge their gradient and vice versa. Based on these observations, instead of using temperature
as a constant parameter. We can assign different temperature values to samples of different classes with the
property that head classes will have large τ values and tail classes will have smaller τ values. To ensure
the above property, we propose a formula where the temperature of each class will be proportional to the
number of samples of that class:

τi = γ + (1 − γ) · frequent(classi)
frequent(classmax) (13)

where τi is the temperature of class i, γ is the minimum value of temperature, frequent(classi) is the number
of samples in class i, and frequent(classmax) is the number of samples of largest class.

3.3 Prototype Learning via Coreset (ProCo)

Previous works (Li et al., 2020; Zhu et al., 2022) determine prototype as a mean representation of feature
space for each class. During the training, these prototypes are viewed as positive samples in the contrastive
loss. Therefore, prototype training is similar to clustering (Li et al., 2020), where it pulls samples in the same
class closer to its prototype(the role of a prototype here is like a centroid of class) while pushing samples from
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Figure 3: Prototype learning via coreset selection moves images closer to their centers. This will help the
samples in the same class be closer together, thus increasing semantic discrimination feature space.

another class far away. Recently, a few applications using prototype learning have been proposed to mitigate
imbalanced data problems. TSC (Li et al., 2022b) re-balance feature space by pre-define balanced targets,
then move samples in class close to their assigned balanced prototypes based on the matching algorithm.
BCL (Zhu et al., 2022) analyzes the behavior of supervised contrastive learning, then they propose two new
concepts named: class-averaging, and class-complement based on prototypes to mitigate the imbalance effect
in supervised contrastive learning. In this paper, we propose another approach of prototype learning. Firstly,
we tackle the trade-off between global prototype representation and computation cost (the total running time
for calculating prototype), our method achieves global mean representation for each class while saving a lot
of computation cost due to the estimation mean being conducted on the coreset (the set contains important
samples of the training data, where its size is significantly smaller than the training set). This makes our
prototypes globally represent the feature in data without using all training samples. Secondly, we propose
a new prototype loss function and empirically show our loss function can work well on imbalanced data and
improve the contrastive learning model a lot.

Coreset selection for calculating prototype The main challenge in prototype learning is how can
we efficiently calculate prototypes, both in computation time and representation ability. Previous works
determine prototypes from the momentum queue feature in MoCo (Li et al., 2020; 2022b), which can yield
consistent prototypes with low computation costs. However, this method can not adapt to another contrastive
learning model which does not use a large queue size (Chen et al., 2020a). Besides, when the dataset size
is extremely large (Krizhevsky et al., 2017), calculating the prototypes based on samples in the queue can
yield local prototypes. To solve the above limitations, we distill the original dataset to extract its most
important samples, then we will calculate prototypes according to this set. Our algorithm is as follows: we
first use coreset generation algorithm (Killamsetty et al., 2021) as a data distillation method to extract the
coreset. During the training, we update our prototypes based on the coreset at the beginning of each epoch.
Calculating prototypes from the coreset help centers globally represent their class, while can easily adapt to
any framework and dataset size.

Prototype loss function After having a coreset, we augment two views of it and calculate two prototype
sets for every two views. Then we define a symmetric prototype loss function, based on contrastive learning
loss. This loss function uses the calculated prototypes as the positive sample for a query having the same
class label. Assume each query vi augment two views v+

i,1, v+
i,2. We define our loss as the contrastive loss

between each pair of the query sample and its prototypes:

− 1
4N

N∑
i=1

∑
v+∈{v+

i,1,v+
i,2}

∑
q∈{1,2}

log e
v+×ci,q

τ

e
v+×ci,q

τ +
∑

c∈C−
q

e
v+×c

τ

,
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where ci,q is the prototype (center) of query i in coreset q, vi is calculated from coreset q, and C−
q are the

list prototypes from coreset q excluding ci,q. Our proposed prototype formulation is different from others
(Li et al., 2022b; Zhu et al., 2022) in its symmetric loss between different views of query and coreset, which
can help the model learn more stability.

Join training GloCo and ProCo The final loss function will be the weighted combination between
GloCo and Proco, which is defined as:

Lfinal = αLGloCo + (1 − α)LP roCo

where α is the hyperparameter control of the contribution between GloCo and ProCo during training, and
it needs to tune during the training.

4 Analysis

To further understand the benefit of our model, we extensively evaluate several aspects of the contrastive
learning model based on two most important characteristics: Alignment and Uniformity. Besides, we discuss
the limitations of the current formula for calculating Intra Alignment and Inter Uniformity, then introduce
an improved version that can calculate more efficiently. Finally, we evaluate these characteristics in our
models to further understand their behavior when learning on long-tailed data.

Intra Alignment This metric is the average distance between all samples in the same class on feature
space (Li et al., 2022b). It is similar to the variance of class, meaning when the value of alignment is small,
samples in class lie close together, and the sample extends larger when alignment is large. The alignment
formula is defined as:

Intra = 1
C

C∑
i=1

1
∥Fi∥2

∑
vj ,vk∈Fi

∥vj − vk∥2.

This formula is a good choice to estimate the spread out of samples in a class. However, it takes a lot of
time to calculate. When a class has n samples, the time complexity of Intra Alignment is O(n2), so when
the number of samples in a class is large, it is computationally expensive to calculate Intra Alignment. To
overcome this issue, we can use class Variance here, it is similar to Intra-Alignment in the measurement but
save computation cost from O(n2) to O(n). We first need to construct centers for each class, then calculate
the variance by:

Variance = 1
C

C∑
i=1

variancei

In this formula, variancei is the variance of class i and can be calculated by:

variancei = 1
Fi

∑
vj∈Fi

∥vj − ci∥2

where ci is the center of class i.

Inter Uniformity Different from Intra Alignment, Inter Uniformity is used to measure the distance be-
tween classes (Li et al., 2022b). It is the total distance between the centers of all classes. And when inter
uniformity is large, it means feature space is more separable, and vice versa, the original formula of inter
uniformity is defined as:

Inter = 1
C(C − 1)

C∑
i=1

C∑
j=1,j ̸=i

∥ci − cj∥2.
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Metric
CIFAR-10-LT CIFAR-100-LT

Imbalance factor
100 50 10 100 50 10

Intra KCL 0.43 0.42 0.42 0.55 0.57 0.45
Ours 0.41 0.41 0.39 0.44 0.43 0.41

Variance KCL 0.65 0.62 0.61 0.84 0.85 0.63
Ours 0.61 0.60 0.57 0.66 0.65 0.60

Inter KCL 0.70 0.75 0.83 0.90 0.95 0.93
Ours 0.73 0.79 0.85 0.98 1.00 0.98

Improved Inter KCL 1.10 1.25 2.03 1.91 2.00 2.31
Ours 1.20 1.29 2.20 2.23 2.36 2.41

Table 1: We compare different metrics on Cifar-10-LT and Cifar-100-LT. The first row shows the baseline
results (KCL) and the second row shows our model results. GloCo + ProCo improves alignment and
uniformity characteristics.

Model
CIFAR-10-LT CIFAR-100-LT

Imbalance factor
100 50 10 100 50 10

KCL 12.0 14.0 21.0 14.5 15.5 22.5
Global selection 28.5 34.0 50.5 34.0 37.5 57.5

Adaptive temperature 12.5 14.5 22.0 15.5 16.5 22.5
ProCo 22.0 25.0 35.0 26.0 27.5 36.0

Table 2: The running time (in seconds) of different settings for one training epoch. Global selection increases
the time proportionally to the number of k (we choose k=3 in our model) positives, while ProCo adds extra
time to update the class centers after each epoch and compute the prototype loss.

This formula still remains a problem: it does not use the alignment information, so sometimes the Inter
Uniformity measure is not correct. The obvious case to point that Inter Uniformity is wrong is when we have
two pairs of classes, which have the same center distance, but in the first pair each class has a large variance,
and in the second pair each class has a low variance. The Inter Uniformity of the second pair should be
larger because the boundary between classes is larger, but with the above formula, it will return the same
result. Therefore, we modify the original uniformity formula by adding variance information to solve the
above problem, the updated formula is:

Interimprove = 2
C(C − 1)

C∑
i=1

C∑
j=1,j ̸=i

∥ci − cj∥2

|variancei + variancej |
.

The above formula estimates the uniformity of data better when combined with alignment information. Table
1 shows the effectiveness of this formula, while the original uniformity formula indicates that GloCo will have
higher uniformity than GloCo + ProCo, its improved version yield a more consistent result that GloCo +
ProCo gives a higher uniformity. The results from the improved uniformity formula are more reasonable
because prototype learning helps the model learn more separable feature space, therefore increasing its
uniformity. We will provide a detailed example of this problem in the supplemental section.
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Table 3: The top-1% acc run on Cifar-10-LT and Cifar-100-LT with Resnet-32 backbone. In this table,
GloCo + ProCo dominates the accuracy on all experiments, and gives a large margin with the previous
state-of-the-art model, especially on Cifar-100, it increases 3% This impression result shows that our model
can be viewed as a new baseline for contrastive learning in long-tailed recognition.

Method
CIFAR-10-LT CIFAR-100-LT

Imbalance factor
100 50 10 100 50 10

CE 70.4 74.8 86.4 38.3 43.9 55.7
CB-CE (Cui et al., 2019) 72.4 78.1 86.8 38.6 44.6 57.1
Focal (Lin et al., 2017) 70.4 76.7 86.7 38.4 44.3 55.8

CE-DRW (Cao et al., 2019) 75.1 78.9 86.4 40.5 44.7 56.2
LDAM (Cao et al., 2019) 73.4 76.8 87.0 39.6 45.0 56.9

LDAM-DRW (Cao et al., 2019) 77.0 80.9 88.2 42.0 46.2 58.7
M2m-LDAM (Kim et al., 2020) 79.1 - 87.5 43.5 - 57.6

PCL (Cui et al., 2021) - - - 52.0 56.0 64.2
BCL (Zhu et al., 2022) 84.3 87.2 91.1 51.9 56.6 64.9

KCL (Kang et al., 2020) 77.6 81.7 88.0 42.8 46.3 57.6
TSC (Li et al., 2022b) 79.7 82.9 88.7 43.8 47.4 59.0

GloCo 81.4±0.1 84.5±0.4 88.9±0.1 45.4±0.1 49.5±0.1 60.7±0.1
GloCo + ProCo 81.6±0.3 85.5±0.1 89.4±0.2 46.0±0.2 50.4±0.2 60.8±0.1

Table 4: The top-1% acc run on Imagenet-LT. Here KCL† means the baseline model that we have reproduced
Method Many Medium Few All

OLTR (Liu et al., 2019) 35.8 32.3 21.5 32.2
LWS (Kang et al., 2019) 57.1 45.2 29.3 47.7
PCL (Cui et al., 2021) - - - 57.0
BCL (Zhu et al., 2022) - - - 56.0

KCL (Kang et al., 2020) 61.8 49.4 30.9 51.5
TSC (Li et al., 2022b) 63.5 49.7 30.4 52.4

KCL† 59.5 50.3 38.5 49.5
Ours 59.0 49.5 40.9 49.8

5 Experiments

5.1 Dataset and implementation details

We conduct experiments on long-tailed recognition with different datasets, including Cifar-10-LT and Cifar-
100-LT.1 Similar to TSC (Li et al., 2022b), we use Mocov2 here with the same configurations in TSC: batch
size 256, initial learning rate 0.1, SGD optimizer with momentum 0.9, and we train all the models for 1,000
epochs. The backbone is similar to other baseline models on Cifar data: ResNet32. After pre-training on
our framework, we fine-tune the top-classifier layer of the pre-trained model with LDAM loss and Reweight
for Cifar-10 and CE loss and Reweight for Cifar-100. Both of them use the same learning rate of 0.1 and
batch size of 256. The result shows that our model can outperform the current state-of-the-art model on all
datasets and imbalance factors by a large margin.

5.2 Result

1For each setting, we evaluate it with 3 seeds and report its accuracy and standard deviation. The results of other methods
extracted from TSC (Li et al., 2022b) do not have a standard deviation.
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Table 5: The accuracy of GloCo with different loss types. Unsupervised contrastive loss outperformance its
supervised counterparts

Loss type
CIFAR-100-LT

Imbalance factor
100 50 10

Supervised 43.7 ±0.1 48.6 ±0.2 57.9 ±0.1
K-positive(KCL) 44.3 ±0.1 47.8 ±0.1 58.7 ±0.2

Unsupervised 45.4 ±0.1 50.4 ±0.2 60.8 ±0.1

Cifar-10-LT and Cifar-100-LT Table 3 shows our model outperforms the current state-of-the-art model
on both datasets with different imbalance factors. In particular, on Cifar-100, the model increased by
approximately 3%, compared to the best model in the same group: TSC (Li et al., 2022b) (50.4% vs 47.4%).
This improvement comes from the efficient extraction of positive samples from the k-global positive selection
and unsupervised loss function, helping the model learn balance and semantic features. Besides, GloCo when
training alone can still outperformance TSC (Li et al., 2022b) (k-positive + prototype learning). This points
out that GloCo can become a stronger baseline in contrastive learning when solving long-tailed problems.

ImageNet-LT In table.4, We compare the performance of our model with other baselines on the ImageNet-
LT dataset. Our model achieves a slight improvement of 0.3% over the baseline (KCL). This modest gain
is due to the fact that we have not performed cross-validation to select the optimal hyperparameters for
the ImageNet-LT dataset. Instead, we use the same hyperparameters as on the CIFAR-100-LT dataset. We
expect that fine-tuning our model on ImageNet-LT will lead to a more significant improvement.

5.3 Ablation study

Running time of different setting Contrastive learning models can benefit from adding k-global selec-
tion or ProCo, but these modules also increase the running time. To better understand our architecture and
apply it to different scenarios, we measure the running time of the baseline model when trained jointly with
these modules. The detailed result is shown in Table.2

How each module contributes to the baseline We evaluate the contribution of each module by
combining it with the baseline model: k-global selection, adaptive temperature, and prototype learning.
Training with these modules individually improves learning accuracy. The table6. shows the detailed results.

How different loss functions change the model performance In the k-positive selection, sampling
positive samples in the queue of MoCo leads to a trade-off between equalizing positive samples across classes,
and semantic discrimination of the learned features. Reducing the value of k makes the model learn more
balanced features but reduces the quality of the model, and vice versa. In GloCo, to avoid this trade-off,
we construct two independent modules: while k-global positive selection has the role of learning semantic
discrimination features, an unsupervised contrastive loss is responsible that a learned space balanced between
classes. This learning strategy helps the model learn more efficiently. In table 5, we show the behavior of
GloCo when using three different loss functions: unsupervised, supervised, and supervised contrastive with
k-positive selection. While the model learns with unsupervised loss(the default loss function in GloCo) has
the best accuracy, combining it with k-positive loss yields an accuracy higher than the supervised setting.
Besides, GloCo + k-positive loss outperforms the original k-positive version with a large gap (1.3% - 1.5%).
This indicates that GloCo can become a strong baseline for other methods in long-tailed learning.

6 Conclusion and Future work

Conclusion In this paper, we have overviewed the current works on long-tailed data with contrastive
learning, both its achievements and limitations. After that, we introduced two new methods named GloCo
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Table 6: The accuracy of Adaptive temperature and Proco alone on Cifar-100-LT dataset. Each of these
modules independently improves the accuracy of the model. Therefore, it is possible to combine various
model architectures with one of these techniques: k-global selection, adaptive temperature, or Proco to
improve their performance.

Loss type
CIFAR-100-LT

Imbalance factor
100 50 10

Adaptive 43.7 ±0.1 48.6 ±0.2 57.9 ±0.1
Proco 44.3 ±0.1 47.8 ±0.1 58.7 ±0.2

and ProCo which can improve the training of contrastive learning models for long-tailed data in different
ways. In each method, we create a stronger model based on utilizing the advantages of the previous method
while improving its limitation. Then we conduct a variety of experiments to highlight the contribution of each
method. Finally, we reviewed the previous evaluation metric in contrastive learning, discuss its remaining
problems, and propose our improvement.

Future work Our model solely tackles data imbalance based on the general characteristics of contrastive
learning. It is necessary to build a robust baseline model like GloCo. However, combining contrastive
learning with other methods to mitigate data imbalance such as class sampling, class re-weighting, logit
adjustment, etc. has not been explored enough. Therefore, it is necessary to include the above methods in
GloCo to have both theoretical and experimental observations.
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