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Abstract

Many real-world machine learning applications are characterized by a huge number of fea-
tures, leading to computational and memory issues, as well as the risk of overfitting. Ideally,
only relevant and non-redundant features should be considered to preserve the complete in-
formation of the original data and limit the dimensionality. Dimensionality reduction and
feature selection are common preprocessing techniques addressing the challenge of efficiently
dealing with high-dimensional data. Dimensionality reduction methods control the number
of features in the dataset while preserving its structure and minimizing information loss.
Feature selection aims to identify the most relevant features for a task, discarding the less
informative ones. Previous works have proposed approaches that aggregate features depend-
ing on their correlation without discarding any of them and preserving their interpretability
through aggregation with the mean. A limitation of methods based on correlation is the
assumption of linearity in the relationship between features and target. In this paper, we
relax such an assumption in two ways. First, we propose a bias-variance analysis for gen-
eral models with additive Gaussian noise, leading to a dimensionality reduction algorithm
(NonLinCFA) which aggregates non-linear transformations of features with a generic aggre-
gation function. Then, we extend the approach assuming that a generalized (non-)linear
model regulates the relationship between features and target. A deviance analysis leads to
a second dimensionality reduction algorithm (GenLinCFA), applicable to a larger class of
regression problems and classification settings. Finally, we test the algorithms on synthetic
and real-world datasets, performing regression and classification tasks, showing competitive
performances.

1 Introduction

Dimensionality reduction is an essential technique in machine learning (ML), employed to limit the number
of features or dimensions of datasets. It has been successfully applied in a large variety of fields where high-
dimensional data needs to be analyzed, classified, visualized, or interpreted. For instance, in computer vision
and in natural language processing, data is often represented as high-dimensional vectors; in bioinformatics,
high-throughput biological data like DNA sequences are often represented as high-dimensional data; in earth
sciences, meteorological variables have high-dimensional measurements in different locations. In these con-
texts, datasets are often characterized by a large number of highly correlated features. Projecting them into
a lower dimensional space is crucial to simplify data representation and enhance the performance of models,
mitigating overfitting, and limiting the computational complexity. However, dimensionality reduction may
lead to loss of information and interpretability.

Another method to reduce the dimension of the feature space is feature selection, which aims to identify the
most relevant features from a dataset. The importance of feature selection lies in its ability to improve model
performance, reduce computational resources, and simplify the model’s interpretation. Its main desirable
property compared to dimensionality reduction is interpretability, since the reduced features are simply a
subset of the original ones. However, these techniques usually discard features that may be exploited to
reduce the variance.
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In Bonetti et al. (2023), the authors propose a dimensionality reduction approach that aggregates subsets of
features with their mean, if this is convenient in terms of bias-variance tradeoff. In this way, the algorithm
preserves the interpretability of the transformed features, while exploiting the information of each feature.
Assuming linearity in the underlying data generation process and applying linear regression, the asymptotic
analysis on which the algorithm is based on suggests aggregating two features with their mean if their
correlation is sufficiently large. Compared to other dimensionality reduction techniques, the aggregation
based on the mean preserves the interpretability of the newly generated feature, since the mean function is
a transformation that a domain expert can understand without any additional explanation by ML experts
(see Kovalerchuk et al. (2021) for the definition of interpretability in these terms).

Contributions In this work, after introducing the notation and formulation of the problem and reviewing
the main dimensionality reduction methods (Section 2), we design principled algorithms that generalize
this approach in two ways (Section 3). First, we relax the assumption of linearity of the relationship
between the features and the target. In Section 4, we propose a dimensionality reduction technique that still
considers linear regression as a supervised learning technique, but we allow the inputs to be generic non-
linear transformations of the original features and the aggregation function to be a generic non-linear function
(instead of the mean as in Bonetti et al. (2023)). This way, we allow the designer to ponder the suitable
balance between the interpretability of the result (e.g., preferring simple feature and aggregation function)
and the incorporation of complex non-linear relationships. Second, we analyse generalized non-linear models,
assuming the expected value of the target to be a generic transformation of the features mapped through
the link function (Section 5). We extend the proposed algorithm in this context, which is particularly useful
when the Gaussianity assumption of the noise model is unrealistic or in the case of classification problems.
Finally, we apply the two algorithms to classification and regression datasets, showing competitive results
w.r.t. state-of-the-art methods (Section 6). We conclude the paper in Section 7 summarising its contributions
and possible future developments. The paper is accompanied by an appendix. In particular, Appendix A and
Appendix C respectively contain proofs and technical results related to Section 4 and Section 5. Appendix
B shows an additional bi-variate analysis for generalized linear models, which is the starting point of the
analysis that leads to the algorithm presented in the main paper. Finally, Appendix D presents additional
experiments and gives more details on the experiments discussed in the main paper.

2 Preliminaries

Notation Given N samples and D features, let X ∈ RN×D and y ∈ RN (resp. y ∈ {0, 1}N for
classification) be the feature matrix and target vector, where PX,Y denotes the joint probability distribution.
The j-th row of the matrix X is denoted with xj , while its i-th element is denoted with xi, and it is called
feature. Similarly, yj is the j-th element of the target vector y. σ2

a, cov(a, b), ρa,b and σ̂2
a, ˆcov(a, b), ρ̂a,b

denote the variance of a random variable a, its covariance, and correlation with the random variable b and
their estimators, respectively. Finally, Ea[f(a)] and vara(f(a)) are the expected value and the variance of a
function f(·) of the random variable a w.r.t. its distribution.

Data Generation Processes We consider three scenarios for describing the data generation processes.

• Non-linear model: we consider a general non-linear relationship f between the features x and the
target y, with additive Gaussian noise:

y = f(x) + ϵ, ϵ ∼ N (0, σ2). (1)

• Generalized linear model: we assume the distribution of the target to be part of the canonical
exponential family:

Y |X ∼ exp
(

yθ − b(θ)
ϕ

)
+ c(y, ϕ), (2)

where θ = Xw is the parameter of the family, ϕ, b(·) and c(·) are respectively a known scale
parameter, a function of the parameter θ characterizing the assumed distribution and a normalizing
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function independent from θ. In this setting, the expected value of the target is Eθ[y] = b′(θ),
where we denote with b′(·) the first derivative of the function b(·). Moreover, in generalized linear
models, the expected value of the target given the features is a nonlinear transformation of the linear
combination of their values:

µ(x) := E[y|x] = g−1(x⊺w) ⇐⇒ g(µ(x)) = x⊺w, (3)

where g(·) is the canonical link function. A complete analysis of generalized linear models can be
found in (McCullagh, 2019).

• Generalized non-linear model: to further generalize the approach, we consider a generic non-linear
transformation f(·) inside the link function (θ = f(x)), such that the parameter θ is not constrained
to be a linear transformation of the features:

µ(x) := E[y|x] = g−1(f(x)) ⇐⇒ g(µ(x)) = f(x). (4)

Dimensionality Reduction via Aggregation A dimensionality reduction algorithm maps the original
D-dimensional feature matrix X into a reduced dataset U = ψ(X) ∈ RN×d with d < D, being ψ a
transformation function designed to maximize a specific performance measure. In this paper we consider D
fixed non-linear transformations of the original features ϕi(X) : RD → R,∀i ∈ {1, . . . , D} as inputs of the
proposed dimensionality reduction approaches, known as basis functions (Bishop, 2006)1. Then, a generic
aggregation function h(·) : R2 → R is considered, and we aggregate couples of inputs through the aggregation
function h(ϕi(X), ϕj(X)).

The choice to consider both non-linear transformation of the original features ϕi(·) as inputs and a generic
user-defined aggregation function h(·) is made to produce theoretical results that hold in a general setting.
Some considerations follow:

• In line with the work of (Bonetti et al., 2023), the main applicative interest is to consider the
D features {x1, . . . , xD} as inputs and the mean as aggregation function. This way, the original
(continuous) features are aggregated via a simple transformation, preserving the interpretability of
the reduced features. However, in some applications, a non-linear relationship between some features
and the target may be known, and the proposed algorithms can handle this situation as well. In
the experimental section we will provide an example of this with synthetic data, where a quadratic
relationship between the features and the target holds, by considering quadratic inputs ϕi(X) = x2

i

and the mean as aggregation function h.

• The choice to firstly consider non-linear transformations of the features and then an aggregation
function may be replaced by a unique function that aggregates the original features, non-linearly
combining them (e.g., when a quadratic relationship holds it is possible to directly consider the
sum of squares as unique transformation function ψ). However, this choice is made to underline
the two distinct meanings of these functions. Firstly, the non-linear transformations ϕi(·) of the
inputs are user-defined modifications of the original features that allow a linear regression model to
handle non-linear relationships, and are not aimed to reduce the dimension. Then, the aggregation
function h(·) is a characteristic of the proposed algorithms that is responsible to perform the di-
mensionality reduction via aggregation. Indeed, since the aggregation function h(·) is an input of
the algorithms, they allow the user to decide the aggregation function that is more meaningful for
a specific application, or to test multiple aggregation functions to select the best performing one.

In this context, we assume ϵ to be a noise signal, independent of X, and we denote with ŵi and ŷ the estimated
coefficients and the predicted target. Finally, to simplify the computations, we assume each expected value
to be zero: E[ϕi(X)] = E[Y ] = E[h(ϕ(X))] = E[f(X)] = 0.

1We consider a number of basis functions D equal to the number of the original features to simplify the notation, however
a general set of M basis functions can be considered.
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Performance Indexes The Mean Squared Error (MSE), that is usually adopted as loss measure in
regression problems that assume Gaussianity, can be decomposed into three terms (bias-variance decompo-
sition (Hastie et al., 2009)):

Ex,y,T [(MT (x)− y)2]︸ ︷︷ ︸
MSE

= Ex,T [(MT (x)− M̄(x))2]︸ ︷︷ ︸
variance

+Ex[(M̄(x)− ȳ(x))2]︸ ︷︷ ︸
bias

+Ex,y[(ȳ(x)− y)2]︸ ︷︷ ︸
noise

,
(5)

with x, y features and target of a test sample, T training set, MT (·) ML model trained with T , M̄(·) its
expected value w.r.t. T and ȳ expected value of the test target y w.r.t. the input features x. We will consider
the MSE to guarantee that the advantage in terms of reduction of variance (due to the dimensionality
reduction) is larger than the disadvantage in terms of increase of bias.

The deviance is a measure of goodness of fit, usually considered in generalized linear models to extend the
MSE to non-Gaussian settings (McCullagh, 2019). Recalling that in our setting θ = f(X) (or θ = Xw
assuming linearity), the deviance measures how the likelihood of the estimated model deviates from the best
one:

D∗(θ, θ̂) := D(θ, θ̂)
ϕ

= −2
[
ℓ(θ̂)− ℓ(θ)

]
= 2

ϕ
[y(θ − θ̂)− (b(θ)− b(θ̂))], (6)

where D is the deviance, D∗ is the scaled deviance, ℓ(θ), ℓ(θ̂) are the log-likelihood of the model and of the
estimated one, ϕ and b(·) are the known scale parameter and specific function of the distribution assumed.
The last equation holds only if the distribution of the target belongs to the canonical exponential family,
which will be assumed throughout the paper. When dealing with generalized (non-)linear models we will
therefore consider the expected value of the scaled deviance to compare two different models. Performing
dimensionality reduction, the deviance decreases when the reduction of variance due to the aggregation is
convenient w.r.t. the loss of information.

2.1 Dimensionality Reduction Methods

This section contains a literature survey on dimensionality reduction. More extensive surveys can be found
in (Van Der Maaten et al., 2009; Sorzano et al., 2014; Ayesha et al., 2020) and applicative results in (Zebari
et al., 2020; Espadoto et al., 2021).

Linear Dimensionality Reduction Principal Components Analysis (PCA) (Pearson, 1901; Hotelling,
1933) is a popular linear dimensionality reduction method that embeds high dimensional data into a linear
subspace, trying to preserve the variance of the original dataset. This method performs linear projections of
possibly all the original features with different coefficients: interpretability can be difficult and it may suffer
from the curse of dimensionality. Several linear dimensionality reduction approaches have been proposed
to overcome the issues of PCA or to perform particular projections. Among these, svPCA (Ulfarsson &
Solo, 2011) forces most of the weights of the projection to be zero, improving the interpretability but
discarding the contribution of many features. Similar to feature selection, this does not lead to a loss of
information in sparse environments but it may result in a loss of information when all features are informative.
Independent Component Analysis (ICA) (Hyvarinen, 1999) is an information-theoretic approach that looks
for independent components designed for multichannel data. Locality Preserving Projections (LPP) (He &
Niyogi, 2003) is an unsupervised linear method that tries to preserve the local structure of the original data.
Linear Discriminant Analysis (LDA) (Fisher, 1936) is a supervised technique that finds a linear combination
of features that identifies the projection that separates the target classes. A broader overview of linear
dimensionality reduction techniques can be found in (Cunningham & Ghahramani, 2015) and applicative
results of linear methods in (Reddy et al., 2020).

Non-linear Dimensionality Reduction The limits of linear projections have been overcome by resorting
to non-linear methods. Kernel PCA (Shawe-Taylor & Cristianini, 2004) is a variation of PCA that allows non-
linearity by combining PCA with a kernel. Sammon Mapping (Sammon, 1969) is an unsupervised algorithm
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that maps the data trying to preserve pairwise distance among data globally, similarly to Multidimensional
scaling (Kruskal & Wish, 1978). Isomap (Tenenbaum et al., 2000) is an extension of MDS aimed to preserve
the geodesic distance among features. Locally Linear Embedding (LLE) (Roweis & Saul, 2000) is a method
aimed at preserving the distance among data, focusing on local similarity. More recently, many applications
have embedded the dimensionality reduction phase in the learning process of a neural network, typically
applying convolutional neural networks or autoencoders (Hinton & Salakhutdinov, 2006; Zebari et al., 2020).
Among supervised methods (Chao et al., 2019), Supervised PCA (Bair et al., 2006) projects the data onto
a subspace where the features are uncorrelated, simultaneously maximizing the dependency between the
reduced dataset and the target. NMF-based algorithms (Jing et al., 2012; Lu et al., 2017) focus on the non-
negativity property of features, which is not a general property of applicative problems. Finally, manifold-
based methods perform supervised non-linear projections, usually adjusting an unsupervised approach to
take into consideration the target (Neighborhood Components Analysis (NCA) (Goldberger et al., 2004),
supervised Isomap (Ribeiro et al., 2008; Zhang et al., 2018) and supervised LLE (Zhang, 2009) are examples
of these approaches). Additionally, similarly to the algorithms proposed in this paper, some dimensionality
reduction algorithms optimize general non-linear dependency measures such as HSIC (Fukumizu et al., 2004;
Masaeli et al., 2010; Wu et al., 2019; Barshan et al., 2011) or mutual information (Suzuki & Sugiyama, 2010),
rather than simple correlation. However, in the most general case, these approaches produce a set of reduced
features that are a combination of possibly all the original features, with different coefficients. This is
in contrast with the main motivation of the work in (Bonetti et al., 2023) and its extensions provided in
this paper. Indeed, the focus of the proposed algorithms is to identify a partition of the original features
to aggregate with a user-defined function, which preserves the interpretability, for example in the sense
of (Kovalerchuk et al., 2021).

Group Regularization Methods We conclude the literature overview provided in this section by dis-
cussing feature grouping algorithms ((Park et al., 2007; She, 2008; Bondell & Reich, 2008; Kamkar et al.,
2016)) in the context of sparse learning. These methods identify groups of variables and assign the same
coefficient to variables belonging to the same group, which is similar to aggregating them with their mean.
Additionally, some theoretical guarantees resemble the ones proposed in (Bonetti et al., 2023). However,
these approaches are designed in a regularization setting, where the main motivation is to regularize a sparse
linear problem by adding a penalty on the number of non-zero coefficients and another penalty term that
focuses on assigning similar weights to groups of features, to further regularize the supervised learning task.
This way, these group regularization methods are designed as multi-objective algorithms that simultaneously
try to optimize the regression error, the coefficient sparsity and their similarity. On the contrary, the algo-
rithm proposed in (Bonetti et al., 2023) is specifically designed for dimensionality reduction through feature
aggregation, with the final purpose of obtaining a set of reduced features that preserves the majority of the
information on the target, without discarding the contribution of each feature but reducing their dimensions
in an interpretable way (the mean). In this context, this method is specifically focused in a single task
(aggregating two features) providing some guarantees on the mean squared error after the aggregation, with
no explicit regularization involved.

3 Proposed Algorithms: a Methodological Perspective

Non-Linear Correlated Features Aggregation Starting from the dimensionality reduction algorithm
proposed in Bonetti et al. (2023), we introduce a similar approach relaxing the linearity assumptions, named
Non-Linear Correlated Features Aggregation (NonLinCFA). Let the relationship between the D features
xi and the target y be non-linear (y = f(x)), with additive Gaussian noise (Equation 1). We iteratively
compare, in terms of Mean Squared Error (MSE), two linear regression models. Given two non-linear
transformations of the original features ϕ1(x), ϕ2(x) : RD → R, that allow to account for non-linearities in
the linear regression, the first model considers them as separate inputs, while the second aggregates them
with a generic aggregation function h(·) : R2 → R:{

ŷ = ŵ1ϕ1(x) + ŵ2ϕ2(x)
ŷ = ŵh(ϕ1(x), ϕ2(x)) = ŵh(ϕ(x)),

(7)
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where all the estimated coefficients ŵ, ŵ1, ŵ2 are least squares estimators. Intuitively, the second model has
similar or better performances if the correlation between each input ϕ1(x), ϕ2(x) and the function f(x) that
generates the target (ρϕ1,f , ρϕ2,f ) is not much larger than the one between their aggregation h(ϕ1(x), ϕ2(x))
and f(x) (ρh(ϕ1,ϕ2),f ). In this case, it is convenient to reduce the dimensionality of the inputs by aggregating
them through the function h(·).
Remark 1 (About linear features ϕ). Considering the case ϕ1(x) = xi, ϕ2(x) = xj , h(ϕ1, ϕ2) = ϕ1+ϕ2

2 , the
algorithm aggregates the two variables xi, xj with their means if it is convenient in terms of MSE. In this
case, the performance is preserved, and the aggregation keeps the reduced feature interpretable. Generally,
the algorithm allows any zero-mean non-linear transformation of the input features and aggregation function,
to balance the complexity and interpretability of the dimensionality reduction to be adapted to the specific
problem.
Remark 2 (About considering two features at a time). Considering two inputs at a time can be convenient
for huge-dimensional input spaces. The proposed algorithm iteratively compares couples of inputs, identifies
a couple to aggregate and considers that aggregation as a single feature for the subsequent iterations.

Generalized-Linear Correlated Features Aggregation The second algorithm we propose, Generalized-
Linear Correlated Features Aggregation (GenLinCFA), can be applied to problems where the target does
not follow Gaussian distributions, including some classification problems. We assume the target to follow a
distribution in the canonical exponential family, and we consider generalized linear models with canonical link
function. Firstly, we compare the expected deviance of two models in the bivariate setting. Assuming that
the expected value of the target is a linear combination of the two features, transformed by the canonical
link (E[y|x] = g−1(w1x1 + w2x2)), the first model considers the two features x1, x2 separately, while the
second model considers their aggregation with the mean x1+x2

2 :

{
ŷ = g−1(ŵ1x1 + ŵ2x2)
ŷ = g−1(ŵ · x1+x2

2 ),
(8)

where ŵ1, ŵ2, ŵ are the coefficients estimated from data by the two models.

Then, we generalize this approach assuming a non-linear relationship between D features and the expected
value of the target (E[y|x] = g−1(f(x))). We analyse again the performances of two models, in terms of
expected deviance:

{
ŷ = g−1(ŵ1ϕ1(x) + ŵ2ϕ2(x))
ŷ = g−1(ŵ · h(ϕ1(x), ϕ2(x))).

(9)

As discussed for the first algorithm, we consider two nonlinear transformations ϕ1(·), ϕ2(·) of the features as
inputs and we compare a model that considers them separately with a model that aggregates them through a
nonlinear function h(·). Again, the algorithm allows choosing different non-linear transformations of features
and aggregation depending on the problem, and it iteratively compares couples of inputs.

4 Non-Linear Correlated Features Aggregation

This section describes the first proposed algorithm, NonLinCFA, designed to aggregate features in regression
problems. We consider a problem with D features and a non-linear relationship between the features and
the target (Equation 1).

Given a training dataset with N samples, X ∈ RN×D, we compare the MSE of the two models described in
Equation 7. As discussed in Section 3, we, therefore, compare a bivariate with a univariate linear regression,
where the two nonlinear functions of features ϕ1(x), ϕ2(x) are aggregated through a function h(·). The
variance decreases due to the reduction of the dimension of the hypothesis space and the bias increases
due to the aggregation. Therefore, we analyse these two quantities, that together with the irreducible error
compose the MSE (Equation 5), to guarantee that it does not increase significantly after the aggregation.
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4.1 Theoretical Analysis

We firstly show the decrease of variance due to the aggregation in the asymptotic case. The asymptotic
analysis is performed to identify an expression of the increase of variance that is manageable, without
considering confidence intervals of each statistical estimator, as the sample size increases. The finite sample
result and the proofs can be found in Appendix A.
Theorem 1. Let the relationship between the features and the target be nonlinear with additive Gaussian
noise (Equation 1). Let also each estimator to converge in probability to the quantity that it estimates. In
the asymptotic case, let ∆n→∞

var be the decrease of variance between a bivariate linear regression and the
univariate case where the two features are aggregated (Equation 7), it is equal to:

∆n→∞
var = σ2

(n− 1) . (10)

Remark 3. The asymptotic result of Equation 10 follows the intuition that there is more variability in the
prediction of a bivariate regression than in the univariate case if there is a small number of samples n or a
high variability of the noise σ2.

As a second result, we show the asymptotic increase of bias due to aggregation. A finite-sample result and
related proofs are reported in Appendix A.
Theorem 2. Let the relationship between features and target be nonlinear with additive Gaussian noise
(Equation 1) and each estimator converge in probability. The asymptotic increase of bias ∆n→∞

bias between
bivariate and univariate linear regression, with the two features aggregated with a function h(·) (Equation 7),
is equal to:

∆n→∞
bias = −cov(f, h(ϕ1, ϕ2))2

σ2
h(ϕ1,ϕ2)

+
σ2

ϕ1
cov(ϕ2, f)2 + σ2

ϕ2
cov(ϕ1, f)2 − 2cov(ϕ1, f)cov(ϕ2, f)cov(ϕ1, ϕ2)

σ2
ϕ1

σ2
ϕ2
− cov(ϕ1, ϕ2)2 .

(11)

Remark 4. Intuitively, the asymptotic result of Equation 11 suggests that it is convenient to aggregate
the two features ϕ1(x), ϕ2(x) if there is large covariance (cov(f, h(ϕ1, ϕ2))) between their aggregation and
the target f(x), or the covariance between the two features and the target (cov(ϕ1, f), cov(ϕ2, f)) is small,
considering them singularly.

We can now introduce the main theoretical result of this section: the asymptotic guarantee that ensures the
MSE to not worsen after the aggregation.
Theorem 3. Let the relationship between features and target be nonlinear with additive Gaussian noise
(Equation 1) and each estimator converge in probability. The asymptotic MSE of a bivariate linear regression
is not greater than the univariate case with the two inputs ϕ1(x), ϕ2(x) aggregated with a function h(·)
(Equation 7) if and only if:

σ2

σ2
f (n− 1) ≥

ρ2
ϕ1,f + ρ2

ϕ2,f − 2ρϕ1,f ρϕ2,f ρϕ1,ϕ2

1− ρ2
ϕ1,ϕ2

− ρ2
f,h(ϕ1,ϕ2) = R2

f,ϕ1ϕ2
−R2

f,h(ϕ1,ϕ2). (12)

Proof. The result follows imposing ∆n→∞
var ≥ ∆n→∞

bias from Equation 10 and 11.

Remark 5. Intuitively, the aggregation is convenient if:

• there is much noise in the model or a small number of samples (first term);

• real model and aggregated feature share a lot of information (third term);

• the two features do not share much information with the real model (small second term). Indeed,
R2

f,ϕ1ϕ2
is the coefficient of multiple correlation, indicating how well the target can be linearly pre-

dicted with a set of features (Keith, 2019).
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Remark 6. In the bivariate linear case, where ϕ1 = x1, ϕ2 = x2, h(ϕ1, ϕ2) = x1+x2
2 , f(x) = w1x1 + w2x2,

Equation 7 becomes ρx1,x2 ≥ 1− 2σ2

(n−1)(w1−w2)2 . This is in line with the result found in Bonetti et al. (2023)
with linearity assumptions.
Remark 7. Assuming unitary variances σ2

ϕ1
= σ2

ϕ2
= 1 and uncorrelated combinations of features ρϕ1,ϕ2 = 0,

the right hand side of Equation 12 becomes ρ2
ϕ1,f + ρ2

ϕ2,f − ρ2
f,h(ϕ1,ϕ2). This follows the intuition that the

correlation between the real model and the aggregation should not be worse than the correlation between the
real model and each individual transformation of features ϕi(x).

4.2 Proposed algorithm: NonLinCFA

Starting from the result of Equation 12, this section introduces the algorithm proposed in this paper to
perform dimensionality reduction in regression settings. The algorithm focuses on identifying if it is pos-
sible to add one feature in an aggregation, iteratively comparing a bivariate with a univariate approach.
Algorithm 1 shows the pseudo-code of the proposed algorithm Non-Linear Correlated Features Aggregation
(NonLinCFA). The main function of the algorithm (NonLinCFA) generates d partitions of the D inputs
ϕ1, . . . , ϕD: at each iteration, it calls an auxiliary function (compute_threshold) to evaluate the performance
in terms of coefficient of determination (R2score) of two models.
Firstly, the bivariate model is composed aggregating inputs already assigned to the current partition h(ϕP)
and a feature not already assigned to any partition ϕj . Then, the univariate linear regression considers the
aggregation of the already selected inputs and the one under analysis (h(ϕP , ϕj)) as a single feature. Their
difference is an estimate of the right hand side of Equation 12: if it is sufficiently small, the algorithm adds
the input ϕj to the current cluster. The hyperparameter ϵ regulates the propensity of the algorithm to ag-
gregate features: when is large the algorithm is prone to aggregate, while small values are more conservative.
This hyperparameter substitutes the left hand side term of Equation 12, which is difficult to be estimated in
practice since it depends on the variance of the real model. Finally, the algorithm computes the aggregations
of each element of the identified partition P, returning the set of aggregated features {h̄1

ϕ, . . . , h̄d
ϕ}.

As discussed in the previous sections, a particularly meaningful version of the algorithm can be obtained
considering as inputs the D features {x1, . . . , xD} and the mean as aggregation. This way, the algorithm
identifies groups of features to aggregate with their mean, preserving the interpretability.

5 Generalized-Linear Correlated Features Aggregation

This section describes a second algorithm, GenLinCFA, that relaxes the Gaussianity assumption. We con-
sider D features and we assume the model in the canonical exponential family (Equation 2). The expected
value of the target is a general function of the features f(x), transformed by the linking function g(·) (Equa-
tion 4). In a first analysis we assume the function f(·) to be linear, modeling the expected value of the target
as in Equation 3, and we compare the bivariate case with separate features and the univariate case with their
aggregation (Equation 8). The bivariate analysis and some additional results are shown in Appendix B. As a
second more general approach, given a training dataset with N samples X ∈ RN×D, we compare the expected
deviance of the two models described in Equation 9. We therefore compare a bivariate with a univariate
regression, where two nonlinear functions of features ϕ1(x), ϕ2(x) are aggregated through a function h(·).
The main difference is the additional nonlinear transformation of the predicted linear model through the
linking function g(·) (Equation 9), which characterizes the generalized non-linear model under analysis.

5.1 Theoretical analysis

Starting from Equation 6, given two estimators θ̂, θ̄ of the parameter θ, the increase of expected deviance
between the two models is:

Ex,y,T [D∗(θ, θ̂)−D∗(θ, θ̄)] = 2
ϕ
Ex,y,T [y(θ̄ − θ̂)− (b(θ̄)− b(θ̂))]. (13)

Considering the two models under analysis (Equation 9), recalling that we defined θ = f(x) and that the
two estimators of θ in the two cases are θ̂ = ŵh(ϕ1, ϕ2) and θ̄ = ŵ1ϕ1 − ŵ2ϕ2, the expected increase of

8
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Algorithm 1 NonLinCFA: Non-Linear Correlated Features Aggregation
Input: D combinations of features {ϕ1(x), . . . , ϕD(x)}; target y; N samples, aggregation function h(·),

tolerance ϵ
Output: reduced features {h̄1

ϕ, . . . , h̄d
ϕ}, with d ≤ D

function Compute_threshold(h, ϕP , ϕj , y, ϵ) ▷ Threshold from Equation 12
R1← R2score(h(ϕP), ϕj , y)
R2← R2score(h(ϕP , ϕj), y)

return R2−R1− ϵ
end function
function NonLinCFA(Input) ▷ Main function

P ← {} ▷ Partition of the features
V ← {} ▷ Set of already considered features
for each i ∈ {1, . . . , D} do

if i ̸∈ V then
P ← {i}
V ← V ∪ {i}
for each j ∈ {i + 1, . . . , D} do

threshold← Compute_threshold(h, ϕP , ϕj , y, ϵ)
if threshold <= 0 then ▷ Aggregate the features
P ← P ∪ {j}
V ← V ∪ {j}

end if
end for
P ← P ∪ {P}

end if
end for
d← |P |
for each k ∈ {1, . . . , d} do

h̄k
ϕ = h(ϕPk

)
end for

return {h̄1
ϕ, . . . , h̄d

ϕ}
end function

deviance becomes:
2
ϕ

{
Ex,y [y · (ET [ŵ1]ϕ1 + ET [ŵ2]ϕ2 − ET [ŵ]h(ϕ1, ϕ2))]

− Ex,y,T [b (ŵ1ϕ1 + ŵ2ϕ2)− b(ŵh(ϕ1, ϕ2))]
}

.

(14)

The following theorem provides the main theoretical result of this setting: a second-order approximated
upper bound of the quantity under analysis, whose derivation can be found in Appendix C.
Theorem 4. Let M, m be the largest and smallest absolute value of the following expected values of coef-
ficients: ET [ŵ1], ET [ŵ2], ET [ŵ], ET

[
ŵ2

1
]
, ET

[
ŵ2

2
]
, ET [ŵ1ŵ2], ET [ŵ2]. Let the real model belong to the

canonical exponential family, denoting with b′′(·) the second derivative of the function b(·) that characterizes
the distribution (Equation 2). Considering a second order approximation, the expected increase of deviance
∆(D∗) due to the aggregation of the two transformed features ϕ1(x), ϕ2(x) through an aggregation function
h(·) is bounded by:

∆(D∗) ⪅ 2
ϕ

{[
M · (| cov(ϕ1, y)|+ | cov(ϕ2, y)|)−m · | cov(h(ϕ1, ϕ2), y)|

]
− 1

2b′′ (0) ·
(

m · σ2
ϕ1+ϕ2

−M · σ2
h(ϕ1,ϕ2)

)}
.

(15)

9
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Remark 8. Theorem 4 follows the intuition that it is convenient to aggregate two inputs when the variance
of their sum is large or the variance of their aggregation h(ϕ1, ϕ2) is small. Moreover, it is convenient
to aggregate when the absolute value of the covariance between each feature and the target is small or the
absolute value between the aggregated feature and the target is large.

Remark 9. Assuming a Gaussian distribution of the target given the features, the asymptotic increase of
the expected deviance is equal to the asymptotic increase of MSE due to the aggregation. The proof of this
considerations and additional technical results can be found in Appendix C.

5.2 Proposed algorithm: GenLinCFA

Following the theoretical analysis performed, the second algorithm proposed in this paper is GenLinCFA:
similarly to NonLinCFA, it iteratively compares tuples of inputs to decide if it is convenient, in terms of
expected deviance, to substitute them with their aggregation through a user-defined function h(·).
The proposed algorithm is a variation of Algorithm 1. Its peculiarity is the different way to compute the
threshold that suggests that it is convenient to aggregate two inputs. Algorithm 2 shows the pseudo-code of
the function compute_threshold, which is the only difference w.r.t. Algorithm 1. Indeed, starting from the
result of Equation 15, the algorithm aggregates two features if the upper bound of the increase of expected
deviance due to the aggregation is smaller than 0. The variance and covariance of the quantities that appear
in the upper bound are estimated from data, while the constant m

M is replaced by an hyperparameter ϵ, which
regulates the propensity of the algorithm to aggregate. Large values give to the algorithm more propensity
to aggregate, while small values require more information provided by the aggregation or more noise in the
original features to perform the aggregation.

As for NonLinCFA, a specific version of the algorithm that preserves interpretability is to consider the inputs
equal to the D features {x1, . . . , xD} and the mean as aggregation function h(x) = 1

|x|
∑

xi∈x xi.

Algorithm 2 GenLinCFA: Generalized-Linear Correlated Features Aggregation
Input: D combinations of features {ϕ1(x), . . . , ϕD(x)}; target y; N samples, aggregation function h(·),

parameter ϵ
Output: reduced features {h̄1

ϕ, . . . , h̄d
ϕ}, with d ≤ D

function Compute_threshold(h, ϕP , ϕj , y, ϵ) ▷ Threshold from Equation 15
L← | ˆcov(ϕP , y)|+ | ˆcov(ϕj , y)|+ 1

2 b′′ (0) σ̂2
h(ϕ)

R← | ˆcov(h(ϕ), y)|+ 1
2 b′′ (0) σ̂2

ϕP +ϕj

return L− ϵR
end function
function GenLinCFA(Input) ▷ Main function

Equal to NonLinCFA function in Algorithm 1
The only difference is the renewed Compute_threshold function

return Reduced features as described in Algorithm 1
end function

6 Experiments

This section describes the experiments performed on synthetic and real-world datasets to empirically val-
idate the proposed algorithms. Additional details on datasets, methodologies and results can be found in
Appendix D. Code and datasets can be found at the following anonimous link https://www.dropbox.com/
s/eoqyrs3o0ymh4o4/nonlinearFeatureAggregation.zip?dl=0 and they will be made publicly available
on github upon acceptance.
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(a) R2 score with σ = 10
and D = 100 features.

(b) R2 score with σ = 100
and D = 1000.

(c) Accuracy score, setting
of Figure 1a, binary target.

(d) Accuracy score, setting
of Figure 1b, binary target.

Figure 1: Application of NonLinCFA and GenLinCFA in regression and classification. Confidence intervals
show test performances with different numbers of reduced features considering different hyperparameters.

6.1 Synthetic experiments

In this subsection, we validate the proposed algorithms with synthetic experiments. We design two regression
problems with n = 3000 samples (randomly considering 2000 samples for training and 1000 samples for
testing) and we repeat the experiments ten times to produce confidence intervals. In the first regression
setting, D = 100 linearly correlated features are considered, designing a target that linearly depends on each
of them, with additive Gaussian noise with standard deviation σ = 10. In the second linear regression setting,
more features are considered (D = 1000) and a more variable noise is added to the target (σ = 100). To
validate GenLinCFA also in classification settings, we repeat the two experiments applying the sign function
to the target, which transforms it into a binary variable. More details can be found in Appendix D.

Figure 1 shows the results of the application of the methods in terms of R2 score on the test set. In both
settings, NonLinCFA and GenLinCFA have been applied, considering the mean as an aggregation function.
Then, linear regression was performed on the reduced features to evaluate the performances. As a baseline,
a wrapper forward feature selection has been applied, with a number of features up to the maximum number
of features extracted by the two methods. The experiments were repeated 10 times to produce confidence
intervals. From Figure 1a, it is possible to see that the two algorithms extract a comparable number of
features, and the performance is already satisfactory with a small number of reduced features, while many
features are needed for the wrapper method to reach similar results. Figure 1b reports the results in a more
noisy environment with more features. With the same hyperparameters, NonLinCFA and GenLinCFA are
respectively less and more prone to aggregate. As an additional comparison, LinCFA algorithm has been
applied, since in this setting we are assuming the linearity of the model. The two proposed algorithms
have similar performances w.r.t. LinCFA, but with the advantage to be more prone to further reduce the
dimension.

To test the GenLinCFA algorithm also in a classification setting, the same two experiments are repeated,
applying the sign function to the target and evaluating performances in terms of test accuracy (compared
again with a wrapper forward feature selection). From Figure 1c-1d, it is possible to conclude that, again,
the performances are similar or better w.r.t. the wrapper baseline and that, considering the same values
of the hyperparameter, the algorithm is more prone to aggregate in a more complex and noisy context.
Appendix D reports detailed results and confidence intervals of the four experiments performed as well
as additional synthetic experiments showing that the two proposed algorithms can deal with non-linear
transformations of the input features and with nonlinear aggregations (in particular, a quadratic relationship
between the features and the target is analysed, both considering the original features and the sum of squares
as aggregation function or the squared features and the mean as aggregation function).

6.2 Real World Experiments

To conclude the empirical analysis of the proposed algorithms, this section reports some experiments on
real datasets. This analysis has been conducted evaluating test performances in terms of the coefficient
of determination of the linear regression (or accuracy of the logistic regression for classification tasks),
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considering the reduced features as inputs. Additionally, although the theoretical analysis has been performed
considering linear methods, support vector machines for regression and classification have been considered
to further empirically validate the approaches with non-linear supervised approaches. The related results in
terms of coefficient of determination and accuracy can be found in Table 9 and 10 of Appendix D.

The two dimensionality reduction methods introduced in this paper have been performed with different
hyperparameters, considering the original features as inputs (ϕi(x) = xi) and performing the mean as
aggregation function, which preserves the intepretability of the reduced features. The results are compared
with different state-of-the-art dimensionality reduction methods with different characteristics (discussed in
Section 2.1): linear unsupervised (PCA), linear supervised (LDA, LinCFA), nonlinear unsupervised (kernel
PCA, Isomap, LLE, UMAP, t-SNE, autoencoders) and nonlinear supervised (supervised PCA, NCA). For
all the approaches, the first 66% of the samples of each dataset has been considered to for training and
validation purposes and the remaining 33% to test the results. Confidence intervals on the test performances
have been obtained bootstrapping the training and validation set with five different seeds.

Four datasets from Kaggle and the UCI ML repository and four datasets extracted by the authors from
meteorological data have been considered. In particular, The Finance dataset has been retrieved from
Kaggle2, while the Bankruptcy3, Parkinson4 and GeneExprssion5 datasets have been retrieved from the UCI
ML repository. The first climate dataset (Climate, Climate(Class.)) considers temperature, precipitation
(retrieved from (Didan, 2015; Cornes et al., 2018)) and the state of vegetation (retrieved from (Zellner,
2022)) of neighbouring basins as features to predict the state of vegetation of a sub-basin of the Po River.
The second dataset only focuses on temperature and precipitation features. For each climate dataset, two
versions are considered: the original regression problem and a binary classification task obtained considering
the values below and above the average respectively as class 0 and 1, representing conditions of water
scarcity and abundance. These dataset are an example of the main applicative interest of the authors, which
is to aggregate features representing measurements of the same variables at different locations through their
mean, which remains interpretable (e.g., the mean of temperature measurements over a sub-region has a
clear meaning for a climatologist) and significantly reduces the dimension and the autocorrelation among
the reduced features. Additionally, the GeneExpression dataset is further relevant to empirically validate
the algorithms, since it is composed by a very small number of sample (801) w.r.t. the number of features
(19966).

Table 1 and 2 respectively report test performances of the four datasets from Kaggle and the UCI ML
repository and meteorological data. In both tables are reported the number of reduced dimensions and the
performance test score, considering the best validation hyperparameter for NonLinCFA and GenLinCFA as
well as the performance of LinCFA and of the best performing algorithm among the aforementioned state-
of-the-art methods considered. Additionally, the test score obtained from the initial full set of features is
reported for comparison (row name Full). Some NA values associated with NonLinCFA and LinCFA are
due to the fact that the two algorithms cannot be applied on classification tasks, which are considered to
further investigate the GenLinCFA algorithm. The complete results related to all the baseline algorithms
and to the different choices of hyperparameters can be found in Table 7 and 8 of Appendix D.

From the results it is possible to conclude that the proposed algorithms have competitive performances, with
the advantage of preserving the interpretability of the reduced features, that are aggregated with the mean.
In some cases (Finance, Climate, Climate (Class.), GeneExpression) the proposed algorithms outperform
the compared methods, while in other situations they perform similarly (Bankruptcy, Parkinson). In the
second meteorological case (Climate II, Climate II (class.)) the Kernel PCA algorithm (and the autoencoder
with continuous target considering support vector regression) has better performances, showing that in some
settings it is necessary to balance between the loss of information and the interpretability of the reduced
features.

2https://www.kaggle.com/datasets/dgawlik/nyse
3https://archive.ics.uci.edu/ml/datasets/Polish+companies+bankruptcy+data
4https://archive.ics.uci.edu/dataset/470/parkinson+s+disease+classification
5https://archive.ics.uci.edu/dataset/401/gene+expression+cancer+rna+seq
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Table 1: Experiments on real world datasets from Kaggle and UCI ML repository. Total number of samples
n splitted into train (66%) and test (33%) sets.

Quantity Finance Bankruptcy (class.) Parkinson (class.) GeneExpression
# samples n 1299 1084 384 801
# features D 75 65 753 19966

Reduced Dimension
NonLinCFA 7.4± 0.4 NA NA 14.4± 0.9
GenLinCFA 8.0± 1.4 27.6± 5.6 23.4± 1.1 35.4± 4.1

LinCFA 11.4± 0.7 NA NA 138.7± 11.5
Best baseline 36.0± 10.8 12.0± 9.5 28.2± 15.3 19.3± 7.4

Test performance R2 score Accuracy score Accuracy score
NonLinCFA 0.8136± 0.0036 NA NA 0.6089± 0.0220
GenLinCFA 0.8119± 0.0010 0.7503± 0.0012 0.8016± 0.0069 0.6209± 0.0210

LinCFA 0.8010± 0.0128 NA NA 0.3135± 0.1033
Best baseline 0.7764± 0.0118 0.7637± 0.0079 0.7952± 0.0181 0.5639± 0.0266

Full −5.9514± 3.7166 0.7446± 0.0033 0.7520± 0.0258 0.5385± 0.0170

Table 2: Experiments on climate datasets. The total number of samples n has been splitted into train (66%
of data) and test (33% of data) sets.

Climate Climate (Class.) Climate II Climate II (class.)
# samples n 981 981 867 867
# features D 1991 1991 2408 2408

Reduced Dimension
NonLinCFA 16.0± 0.8 NA 7.0± 0.9 NA
GenLinCFA 13.8± 3.0 17.5± 3.3 7.2± 1.1 26.0± 6.1

LinCFA 38.2± 1.6 NA 222.0± 2.7 NA
Best baseline 41.8± 2.5 37.0± 6.6 21.8± 9.5 11.1± 2.3

Test performance R2 score Accuracy score R2 score Accuracy score
NonLinCFA 0.9395± 0.0125 NA 0.2949± 0.0156 NA
GenLinCFA 0.9275± 0.0004 0.9107± 0.0022 0.2841± 0.0051 0.7127± 0.0159

LinCFA 0.9007± 0.0310 NA −1.2861± 0.2322 NA
Best baseline 0.8454± 0.0049 0.8827± 0.0098 0.3889± 0.0199 0.7640± 0.0062

Full 0.7429± 0.0228 0.8428± 0.0128 −4.3511± 0.9161 0.6429± 0.0205

7 Conclusions

In this paper, we have deepened the study of dimensionality reduction to account for non-linear effects,
focusing on preserving both information and interpretability. The non-linearity has been accounted for
in both the deterministic mapping function and the noise model, considering the exponential family of
distributions. The resulting algorithms aggregate, in the most general case, non-linear aggregation of non-
linear features. Theoretical results have been provided to investigate the performance of the aggregation
either in terms of MSE or increase of deviance. The experimental validation illustrates that our algorithms
outperform the proposed baselines both in synthetically generated environments and in a real-world domain,
or they have competitive results, with the advantage of letting the user define the most suitable aggregation
function that, in most cases, has been selected as the mean to preserve the interpretability of the reduced
features. Future works will include the consideration of additional indexes of statistical dependence, other
than the correlation and covariance, to perform the aggregation (e.g., mutual information). Additionally,
the proposed algorithms will be further applied to investigate their impact on the detection of the state of
vegetation of European river basins.
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A Non-Linear Correlated Features Aggregation:
additional proofs and results

This section contains additional results and proofs related to Section 4 of the main paper.

Firstly, we introduce the finite-sample increase of variance due to the aggregation, of which we reported the
asymptotic version in Theorem 1 of the main paper.
Theorem 5. Let the relationship between the features and the target be nonlinear with additive Gaussian
noise (Equation 1 of the main paper). The decrease of variance ∆var between a bivariate linear regression
and the univariate case where the two features are aggregated (Equation 7 of the main paper) is:

∆var = σ2

(n− 1)

[
σ2

ϕ1
σ̂2

ϕ2
+ σ2

ϕ2
σ̂2

ϕ1
− 2cov(ϕ1, ϕ2) ˆcov(ϕ1, ϕ2)

(σ̂2
ϕ1

σ̂2
ϕ2
− ˆcov(ϕ1, ϕ2)2) −

σ2
h(ϕ1,ϕ2)

σ̂2
h(ϕ1,ϕ2)

]
. (16)

Proof of Theorem 5

Recalling the result:

∆var = σ2

(n− 1)

[
σ2

ϕ1
σ̂2

ϕ2
+ σ2

ϕ2
σ̂2

ϕ1
− 2cov(ϕ1, ϕ2) ˆcov(ϕ1, ϕ2)

(σ̂2
ϕ1

σ̂2
ϕ2
− ˆcov(ϕ1, ϕ2)2) −

σ2
h(ϕ(x))

σ̂2
h(ϕ(x))

]
,

we will compute the variance for the bivariate case and for the univariate case, and then compute their
difference. To do so, we need to start by computing the variance of the estimators (varD(ŵ|X)).
Lemma 1. In the one dimensional case ŷ = ŵh(ϕ(x)):

varD(ŵ|X) = σ2

(n− 1)σ̂2
h(ϕ(x))

.

In the two dimensional case ŷ = ŵ1ϕ1(x) + ŵ2ϕ2(x):

varD(ŵ|X) = σ2

(n− 1)(σ̂2
ϕ1

σ̂2
ϕ2
− ˆcov(ϕ1, ϕ2)2)

[
σ̂2

ϕ2
− ˆcov(ϕ1, ϕ2)

− ˆcov(ϕ1, ϕ2) σ̂2
ϕ1

]
.

Proof. For the one dimensional result, denoting with h(ϕ) the N dimensional vector of aggregated samples
[h(ϕ1(x1), ϕ2(x1)), ..., h(ϕ1(xN ), ϕ2(xN ))]:

varD(ŵ|X) = varD((h(ϕ)⊺h(ϕ))−1h(ϕ)⊺y|X) = (h(ϕ)⊺h(ϕ))−1σ2

=
[
h(ϕ(x1)) ... h(ϕ(xn))

] h(ϕ(x1))
...

h(ϕ(xn))

σ2

= σ2∑N
i=1 h(ϕ(xi))2

= σ2

(n− 1)σ̂2
h(ϕ(x))

.

In the first equality it is exploited the closed formula to estimate the linear regression coefficients in linear
regression, the second equality exploits the property of the variance to extract the constant matrices and
the definition of variance of the target y. Finally, the third and fourth equalities are simple algebraic
computations.

In the two dimensional setting, denoting with Φ =

ϕ1(x1) ϕ2(x1)
... ...

ϕ1(xn) ϕ2(xn)

 the N × 2 matrix of samples:

varD(ŵ|X) = (Φ⊺Φ)−1σ2 =
([

ϕ1(x1) ... ϕ1(xn)
ϕ2(x1) ... ϕ2(xn)

]ϕ1(x1) ϕ2(x1)
... ...

ϕ1(xn) ϕ2(xn)

)−1

σ2
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=
([

ϕ1(x1)2 + ... + ϕ1(xn)2 ϕ1(x1)ϕ2(x1) + ... + ϕ1(xn)ϕ2(xn)
ϕ1(x1)ϕ2(x1) + ... + ϕ1(xn)ϕ2(xn) ϕ2(x1)2 + ... + ϕ2(xn)2

])−1

σ2

= σ2

(n− 1)(σ̂2
ϕ1

σ̂2
ϕ2
− ˆcov(ϕ1, ϕ2)2)

[
σ̂2

ϕ2
− ˆcov(ϕ1, ϕ2)

− ˆcov(ϕ1, ϕ2) σ̂2
ϕ1

]
.

The first equivalence follows again from the closed form solution of linear regression and from the variance
of the target, while the others follow from algebraic computations.

We are now ready to derive the expression of variance of the model (E[(hD(x)− h̄(x))2|X]) in the two cases.
Theorem 6. In the one dimensional case ŷ = ŵg(ϕ(x)):

E[(hD(x)− h̄(x))2|X] = σ2

(n− 1) ·
σ2

h(ϕ(x))

σ̂2
h(ϕ(x))

.

In the two dimensional case ŷ = ŵ1ϕ1(x) + ŵ2ϕ2(x):

E[(hD(x)− h̄(x))2|X] = σ2

(n− 1) ·
σ2

ϕ1
σ̂2

ϕ2
+ σ2

ϕ2
σ̂2

ϕ1
− 2cov(ϕ1, ϕ2) ˆcov(ϕ1, ϕ2)

(σ̂2
ϕ1

σ̂2
ϕ2
− ˆcov(ϕ1, ϕ2)2) .

Proof. One dimensional, exploiting the independence between training, test samples and the definition of
model variance and the assumption of expected values equal to zero of h(ϕ(x)):

EX,Y,D[(MD(x)− M̄(x))2] = EX,Y,D[(ŵh(ϕ(x))− ED[ŵh(ϕ(x))])2]
= EX,Y,D[(h(ϕ(x))(ŵ − ED[ŵ]))2]
= EX,Y [h(ϕ(x))2]ED[(ŵ − ED[ŵ])2]
= varX(h(ϕ(x))) · varD(ŵ).

Conditioning on the features training set:

EX,Y,D[(MD(x)− M̄(x))2|X] = σ2
h(ϕ(x)) ·

σ2

(n− 1)σ̂2
h(ϕ(x))

.

Two dimensional, exploiting again the independence between train and test set and the assumption of
expected values equal to zero of ϕ1(x) and ϕ2(x):

EX,Y,D[(MD(x)− M̄(x))2] = EX,Y,D[(ŵ1ϕ1 + ŵ2ϕ2 − ED[ŵ1ϕ1 + ŵ2ϕ2])2]
= EX,Y,D[(ϕ1(ŵ1 − ED[ŵ1]) + ϕ2(ŵ2 − ED[ŵ2]))2]
= EX,Y,D[(ϕ1(ŵ1 − ED[ŵ1])2] + EX,Y,D[(ϕ2(ŵ2 − ED[ŵ2]))2]
+ 2EX,Y,D[ϕ1ϕ2(ŵ1 − ED[ŵ1])(ŵ2 − ED[ŵ2])]
= varX(ϕ1)varD(ŵ1) + varX(ϕ2)varD(ŵ2) + 2covX(ϕ1, ϕ2)covD(ŵ1, ŵ2).

Conditioning on the features training set:

EX,Y,D[(MD(x)− M̄(x))2|X]
= varX(ϕ1|X)varD(ŵ1|X) + varX(ϕ2|X)varD(ŵ2|X)
+ 2covX(ϕ1, ϕ2|X)covD(ŵ1, ŵ2|X)

= σ2

(n− 1) ·
σ2

ϕ1
σ̂2

ϕ2
+ σ2

ϕ2
σ̂2

ϕ1
− 2cov(ϕ1, ϕ2) ˆcov(ϕ1, ϕ2)

(σ̂2
ϕ1

σ̂2
ϕ2
− ˆcov(ϕ1, ϕ2)2) .
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In conclusion, Theorem 5 trivially follows by computing the difference between the two results of the theorem,
i.e., between the variance of the two and the one dimensional settings.

Moreover Theorem 1, in the main paper, follows from this result substituting each estimator with the quantity
that it estimates, since it is assume to be convergent in probability to its value.

Proof of Theorem 2

Recalling the asymptotic result of the theorem:

∆n→∞
bias = −cov(f, h(ϕ(x)))2

σ2
h(ϕ(x))

+
σ2

ϕ1
cov(ϕ2, f)2 + σ2

ϕ2
cov(ϕ1, f)2 − 2cov(ϕ1, f)cov(ϕ2, f)cov(ϕ1, ϕ2)

σ2
ϕ1

σ2
ϕ2
− cov(ϕ1, ϕ2)2 ,

we firstly need to derive the expected value of the estimators (ED[ŵ|X]).
Lemma 2. The expected value of the coefficient of the one dimensional regression is:

ED[ŵ|X] = ˆcov(h(ϕ(x)), f(x))
σ̂2

h(ϕ(x))
.

For the two dimensional regression:

ED[ŵ|X] = 1
(σ̂2

ϕ1
σ̂2

ϕ2
− ˆcov(ϕ1, ϕ2)2)

[
σ̂2

ϕ2
ˆcov(ϕ1, f)− ˆcov(ϕ1, ϕ2) ˆcov(ϕ2, f)

σ̂2
ϕ1

ˆcov(ϕ2, f)− ˆcov(ϕ1, ϕ2) ˆcov(ϕ1, f)

]
.

Proof. In the one-dimensional case, exploiting the closed form solution of the estimate of the linear regression
coefficient:

ED[ŵ|X] = (h(Φ)⊺h(Φ))−1h(Φ)⊺f(X)

= 1
(n− 1)σ̂2

h(ϕ(x))

[
h(ϕ(x1)) ... h(ϕ(xn))

] f(x1)
...

f(xn)


= ˆcov(h(ϕ(x)), f(x))

σ̂2
h(ϕ(x))

.

In the two dimensional case, substituting the expression of the estimated coefficients:

ED(ŵ|X) =
= (Φ⊺Φ)−1Φ⊺f(X)

=
([

ϕ1(x1) ... ϕ1(xn)
ϕ2(x1) ... ϕ2(xn)

]ϕ1(x1) ϕ2(x1)
... ...

ϕ1(xn) ϕ2(xn)

)−1

Φ⊺f(X)

= 1
(n− 1)(σ̂2

ϕ1
σ̂2

ϕ2
− ˆcov(ϕ1, ϕ2)2)

×
[

σ̂2
ϕ2

− ˆcov(ϕ1, ϕ2)
− ˆcov(ϕ1, ϕ2) σ̂2

ϕ1

] [
ϕ1(x1) ... ϕ1(xn)
ϕ2(x1) ... ϕ2(xn)

]f(x1)
...

f(xn)


= 1

(n− 1)(σ̂2
ϕ1

σ̂2
ϕ2
− ˆcov(ϕ1, ϕ2)2)

×
[

σ̂2
ϕ2

∑
i f(xi)ϕ1(xi)− ˆcov(ϕ1, ϕ2)

∑
i f(xi)ϕ2(xi)

− ˆcov(ϕ1, ϕ2)
∑

i f(xi)ϕ1(xi) + σ̂2
ϕ1

∑
i f(xi)ϕ2(xi)

]
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= 1
(σ̂2

ϕ1
σ̂2

ϕ2
− ˆcov(ϕ1, ϕ2)2)

[
σ̂2

ϕ2
ˆcov(ϕ1, f)− ˆcov(ϕ1, ϕ2) ˆcov(ϕ2, f)

σ̂2
ϕ1

ˆcov(ϕ2, f)− ˆcov(ϕ1, ϕ2) ˆcov(ϕ1, f)

]
.

The next step of the proof is to derive the expression of (squared) bias of the two linear regression settings
(E[(M̄(x)− ȳ)2|X]).
Theorem 7. Let h = h(ϕ(x)), f = f(x).
In the one dimensional linear regression ŷ = ŵh the squared bias is:

E[(M̄(x)− ȳ)2|X] = σ2
f + σ2

h ˆcov(f, h)2 − 2cov(f, h) ˆcov(f, h)σ̂2
h

σ̂4
h

.

In the two dimensional case ŷ = ŵ1ϕ1 + ŵ2ϕ2 the squared bias is:

E[(M̄(x)− ȳ)2|X] = σ2
ϕ1
ED[ŵ1|X]2 + σ2

ϕ2
ED[ŵ2|X]2

+ 2cov(ϕ1, ϕ2)ED[ŵ1|X]ED[ŵ2|X] + σ2
f

− 2cov(ϕ1, f)ED[ŵ1|X]− 2cov(ϕ2, f)ED[ŵ2|X].

Proof. In the one dimensional case, exploiting the independence between the train and test set:

EX,Y,D[(M̄(x)− ȳ)2|X] = EX,Y,D[(ED[ŵh(ϕ(x))]− f(x))2|X]
= EX [(h(ϕ(x))ED[ŵ|X]− f(x))2]
= EX [h(ϕ(x))2]ED[ŵ|X]2 + EX [f(x)2]− 2EX [f(x)h(ϕ(x))]ED[ŵ|X]

= σ2
h

σ̂4
h

ˆcov(f, h)2 + σ2
f − 2cov(f, h) ˆcov(f, h)

σ̂2
h

,

where the last equation follows substituting the expected value of the coefficient with its expression derived
in the previous lemma and exploiting the assumption of null expected value of the aggregation function h.

In the two dimensional setting, exploiting again the independence between train and test set and
the null assumption of the expected value of the two functions of features ϕ1, ϕ2:

EX,Y,D[(M̄(x)− ȳ)2|X] = EX,Y [(ϕ1(x)ED[ŵ1] + ϕ2(x)ED[ŵ2]− f(x))2|X]
= σ2

ϕ1
ED[ŵ1|X]2 + σ2

ϕ2
ED[ŵ2|X]2 + 2cov(ϕ1, ϕ2)ED[ŵ1|X]ED[ŵ2|X]

+ σ2
f − 2E[f(x)(ϕ1ED[ŵ1] + ϕ2ED[ŵ2])|X]

= σ2
ϕ1
ED[ŵ1|X]2 + σ2

ϕ2
ED[ŵ2|X]2 + 2cov(ϕ1, ϕ2)ED[ŵ1|X]ED[ŵ2|X]

+ σ2
f − 2cov(ϕ1, f)ED[ŵ1|X]− 2cov(ϕ2, f)ED[ŵ2|X].

Remark 10. In the two dimensional result of Theorem 7 the expected values of the coefficients, found in
Lemma 2, are not explicitly inserted, to improve readability. The full expression of squared bias, in the
bivariate case, would be:

E[(M̄(x)− ȳ)2|X]

= σ2
ϕ1

(
σ̂2

ϕ2
ˆcov(ϕ1, f)− ˆcov(ϕ1, ϕ2) ˆcov(ϕ2, f)

(σ̂2
ϕ1

σ̂2
ϕ2
− ˆcov(ϕ1, ϕ2)2)

)2

+ σ2
ϕ2

(
σ̂2

ϕ1
ˆcov(ϕ2, f)− ˆcov(ϕ1, ϕ2) ˆcov(ϕ1, f)

(σ̂2
ϕ1

σ̂2
ϕ2
− ˆcov(ϕ1, ϕ2)2)

)2
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+ 2cov(ϕ1, ϕ2)

×

(
(σ̂2

ϕ2
ˆcov(ϕ1, f)− ˆcov(ϕ1, ϕ2) ˆcov(ϕ2, f))(σ̂2

ϕ1
ˆcov(ϕ2, f)− ˆcov(ϕ1, ϕ2) ˆcov(ϕ1, f))

(σ̂2
ϕ1

σ̂2
ϕ2
− ˆcov(ϕ1, ϕ2)2)2

)
+ σ2

f

− 2cov(ϕ1, f)
(

σ̂2
ϕ2

ˆcov(ϕ1, f)− ˆcov(ϕ1, ϕ2) ˆcov(ϕ2, f)
(σ̂2

ϕ1
σ̂2

ϕ2
− ˆcov(ϕ1, ϕ2)2)

)

− 2cov(ϕ2, f)
(

σ̂2
ϕ1

ˆcov(ϕ2, f)− ˆcov(ϕ1, ϕ2) ˆcov(ϕ1, f)
(σ̂2

ϕ1
σ̂2

ϕ2
− ˆcov(ϕ1, ϕ2)2)

)
.

That, after algebraic computations, is equal to:

E[(M̄(x)− ȳ)2|X]

= σ2
f + 1

(σ̂2
ϕ1

σ̂2
ϕ2
− ˆcov(ϕ1, ϕ2)2)2 ×

{
σ2

ϕ1
σ̂4

ϕ2
ˆcov(ϕ1, f)2 + σ2

ϕ1
ˆcov(ϕ1, ϕ2)2 ˆcov(ϕ2, f)2

− 2σ2
ϕ1

σ̂2
ϕ2

ˆcov(ϕ1, f) ˆcov(ϕ2, f) ˆcov(ϕ1, ϕ2)
+ σ2

ϕ2
σ̂4

ϕ1
ˆcov(ϕ2, f)2 + σ2

ϕ2
ˆcov(ϕ1, ϕ2)2 ˆcov(ϕ1, f)2

− 2σ2
ϕ2

σ̂2
ϕ1

ˆcov(ϕ1, f) ˆcov(ϕ2, f) ˆcov(ϕ1, ϕ2)
+ 2cov(ϕ1, ϕ2)σ̂2

ϕ1
σ̂2

ϕ2
ˆcov(ϕ1, f) ˆcov(ϕ2, f)

+ 2cov(ϕ1, ϕ2) ˆcov(ϕ1, f) ˆcov(ϕ2, f) ˆcov(ϕ1, ϕ2)2

− 2cov(ϕ1, ϕ2)σ̂2
ϕ2

ˆcov(ϕ1, f)2 ˆcov(ϕ1, ϕ2)
− 2cov(ϕ1, ϕ2)σ̂2

ϕ1
ˆcov(ϕ2, f)2 ˆcov(ϕ1, ϕ2)

− 2cov(ϕ1, f)σ̂2
ϕ1

σ̂4
ϕ2

ˆcov(ϕ1, f)
+ 2cov(ϕ1, f)σ̂2

ϕ2
ˆcov(ϕ1, f) ˆcov(ϕ1, ϕ2)2

+ 2cov(ϕ1, f)σ̂2
ϕ1

σ̂2
ϕ2

ˆcov(ϕ2, f) ˆcov(ϕ1, ϕ2)
− 2cov(ϕ1, f) ˆcov(ϕ2, f) ˆcov(ϕ1, ϕ2)3

− 2cov(ϕ2, f)σ̂2
ϕ2

σ̂4
ϕ1

ˆcov(ϕ2, f)
+ 2cov(ϕ2, f)σ̂2

ϕ1
ˆcov(ϕ2, f) ˆcov(ϕ1, ϕ2)2

+ 2cov(ϕ2, f)σ̂2
ϕ1

σ̂2
ϕ2

ˆcov(ϕ1, f) ˆcov(ϕ1, ϕ2)
− 2cov(ϕ2, f) ˆcov(ϕ1, f) ˆcov(ϕ1, ϕ2)3}

.

Lemma 3. In the asmyptotic case, considering each estimator convergent in probability to the quantity that
it estimates, the (squared) bias for the univariate (biasn→∞

1D ) and bivariate (biasn→∞
2D ) linear regression under

analysis is respectively:

biasn→∞
1D = σ2

f −
cov(f, h)2

σ2
h

,

biasn→∞
2D = σ2

f +
2cov(ϕ1, f)cov(ϕ2, f)cov(ϕ1, ϕ2)− σ2

ϕ1
cov(ϕ2, f)2 − σ2

ϕ2
cov(ϕ1, f)2

σ2
ϕ1

σ2
ϕ2
− cov(ϕ1, ϕ2)2 .

Proof. To prove the two results it is enough to start from the results of Theorem 7 and Remark 10 and
substitute each estimator with the quantity that it estimates, to which it converges in probability.
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Theorem 2, that is reported in the main paper, is finally proved from the two asymptotic quantities derived
in Lemma 3, subtracting the univariate to the bivariate result.

B Generalized-Linear Correlated Features Aggregation:
bivariate analysis

In this section we show a first bivariate result related to generalized linear models. As in the general case,
we assume the conditional distribution of the target given the feature to belong to the canonical exponential
family:

fθ(y) = exp(yθ − b(θ)
ϕ

) + c(y, ϕ).

Moreover, we assume that the expected value of the target is a linear combination of the inputs, subsequently
transformed with the canonical link function:

E[y|x] = g−1(w1x1 + w2x2).

In this setting we compare a bivariate model with the univariate one that substitutes the two features with
their aggregation through a zero-mean function h(·):

{
ŷ = g−1(ŵ1x1 + ŵ2x2)
ŷ = g−1(ŵ · x1+x2

2 ).

As a first result, we prove the following lemma that justifies the adoption of the expected deviance as a
goodness of fit measure.

Lemma 4. Assuming a bivariate generalized linear model and considering a Gaussian distribution of the
target given the features y ∼ N(µ, σ2) =⇒ fθ(y) = exp{yθ−θ2/2

ϕ2 + c(y, ϕ)},θ = µ, ϕ = σ the difference of
performance in terms of MSE between the bivariate linear regression and the univariate one that aggregates
the two input features with their mean is equivalent to the difference of deviance between the two models.

Proof. Recalling the definition of deviance:

D∗(θ, θ̂) := D(θ, θ̂)
ϕ

= −2
[
ℓ(θ̂)− ℓ(θ)

]
= 2

ϕ
[y(θ − θ̂)− (b(θ)− b(θ̂))],

in the Gaussian setting the parameter θ = µ = w1x1 + w2x2 represents the mean of the distribution of the
target y. Defining θ̂ = µ̂1 the mean of the target estimated with the univariate regression and θ̄ = µ̂2 the
one of the bivariate case, the increase of expected deviance between the two models is:

Ex,y,T [D∗(θ, θ̂)−D∗ (θ, θ̄
)
] = Ex,y,T [D∗ (µ, µ̂1)−D∗ (µ, µ̂2)].

Moreover, assuming Gaussianity we have b(θ) = θ2

2 and the link function g(·) is the identity function (indeed,
in the bivariate linear regression we just compare the prediction ŷ = ŵ1x1 + ŵ2x2 with the univariate
ŷ = ŵ x1+x2

2 ).
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Therefore, the expected increase of deviance becomes:

Ex,y,T [D∗ (µ, µ̂1)−D∗ (µ, µ̂2)] = 2
ϕ
Ex,y,T [y(µ̂2 − µ̂1)− (b(µ̂2)− b(µ̂1))]

= 2
σ2Ex,y,T

[
y(ŵ1x1 + ŵ2x2 − ŵ

x1 + x2

2 )− (ŵ1x1 + ŵ2x2)2

2 − (ŵx̄)2

2

]
= 2

σ2

{
Ex,y

[

y ·

(
w1x1 + w2x2 −

2
(
w1σ̂2

x1
+ w2σ̂2

x2
+ (w1 + w2) ˆcov (x1, x2)

)
σ̂2

x1
+ σ̂2

x + 2 ˆcov (x1, x2) · x1 + x2

2

)]

−Ex,yET

[
(ŵ1x1 + ŵ2x2)2

2 − (ŵx̄)2

2

]}
.

The last equation follows from the independence of train and test set and the expression of the expected
value of the regression coefficients (Equation A2,A3 of Bonetti et al. (2023)).

Asymptotically, the first expected value is:

Ex,y

[
y ·

(
w1x1 + w2x2 −

2
(
w1σ2

x1
+ w2σ2

x2
+ (w1 + w2) cov (x1, x2)

)
σ2

x1
+ σ2

x2
+ 2cov (x1, x2) · x1 + x2

2

)]

= Ex,y

[
y ·

(
w1x1 + w2x2 −

(
w1σ2

x1
+ w2σ2

x2
+ (w1 + w2) cov (x1, x2)

)
σ2

x1
+ σ2

x2
+ 2 cov (x1, x2) · (x1 + x2)

)]
= w1Ex,y [x1y] + w2Ex,y [x2y]

−
(
w1σ2

x1
+ w2σ2

x2
+ (w1 + w2) cov (x1x2)

)
σ2

x1
+ σ2

x2
+ 2 cov (x1, x2) · (Ex,y [x1y] + Ex,y [x2y]) .

Recalling the definition of covariance and the zero-mean assumption of the expected values:

Ex,y [x1y] = cov (x1, y)− Ex [x1]Ey[y]
= cov (x1, w1x1 + w2x2 + ε)− 0 = w1σ2

x1
+ w2 cov (x1, x2) .

A similar argumentation holds for Ex,y [x2y], therefore the expected value under analysis becomes:

w2
1σ2

x1
+ w2

2σ2
x2

+ 2w1w2 cov (x1, x2)

−
(
w1σ2

x1
+ w2σ2

x2
+ (w1 + w2) cov (x1, x2)

)2

σ2
x1

+ σ2
x2

+ 2 cov (x1x2) .

The second expected value that appears in the equation representing the increase of deviance is asymptoti-
cally equal to:

Ex,yET

[
(ŵ1x1 + ŵ2x2)2

2 − (ŵx̄)2

2

]
= 1

2Ex,yET
[
ŵ2

1x2
1 + ŵ2

2x2
2 + 2w1w2x1x2 − ŵ2x̄2]

= ET
[
ŵ2

1
]
Ex

[
x2

1
]

+ ET
[
ŵ2

2
]
Ex

[
x2

2
]

+ 2ET [ŵ1ŵ2]Ex [x1x2]− ET
[
ŵ2]Ex

[
x̄2]

= σ2
x1

(
w2

1 +
σ2σ2

x2

(n− 1)
(
σ2

x1
σ2

x2
− cov2 (x1, x2))

)

+ σ2
x2

(
w2

2 +
σ2σ2

x1

(n− 1)
(
σ2

x1
σ2

x2
− cov2 (x2, x2)

))
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+ 2cov (x1, x2)
(

w1w2 −
σ2cov (x1, x2)

(n− 1)
(
σ2

x1
σ2

x2
− cov2 (x1x2)

))

− 1
4

[ (
σ2

x1
+ σ2

x2
+ 2cov (x1, x2)

)
×

(
σ2

(n− 1) · 1
4
(
σ2

x1
+ σ2

x2
+ 2cov (x1, x2)

)
+
(

2
(
w1σ2

x1
+ w2σ2

x2
+ (w1 + w2) cov (x1, x2)

)
σ2

x1
+ σ2

x2
+ 2cov (x1, x2)

)2)]

= w2
1σ2

x1
+ w2

2σ2
x2

+ 2 cov (x1x2) w1w2 +
2σ2 (σ2

x1
σ2

x2
− cov2 (x1x2)

)
(n− 1)

(
σ2

x1
σ2

x2
− cov2 (x1, x2)

)
−

[
σ2

n− 1 +
(
w1σ2

x1
+ w2σ2

x2
+ (w1 + w2) · cov (x1, x2)

)2

σ2
x1

+ σ2
x2

+ 2 cov (x1, x2)

]

= w2
1σ2

x1
+ w2

2σ2
x2

+ 2 cov (x1, x2) w1w2 + σ2

n− 1

−
(
w1σ2

x1
+ w2σ2

x2
+ (w1 + w2) cov (x1, x2)

)2

σ2
x1

+ σ2
x2

+ 2 cov (x1, x2) ,

where the last two equalities follow again from the expression of expected value and variance of the regression
coefficients.

Combining the two asymptotic terms, the expected increase of deviance becomes:

Ex,y,T [D∗ (µ, µ̂1)−D∗ (µ, µ̂2)] = 2
σ2

(
w2

1σ2
x1

+ w2
2σ2

x2
+ 2w1w2 cov (x1, x2)

−

(
w1σ2

x1
+ w2σ2

x2
+ (w1 + w2) cov (x1, x2)

)2
)

σ2
x1

+ σ2
x2

+ 2 cov (x1, x2)


− 1

σ2

(
w2

1σ2
x1

+ w2
2σ2

x2
+ 2 cov (x1, x2) w1w2 + σ2

n− 1

−

(
w1σ2

x1
+ w2σ2

x2
+ (w1 + w2) cov (x1x2)

)2
)

σ2
x1

+ σ2
x2

+ 2 cov (x1x2)

)

= 1
σ2

(
w2

1σ2
x1

+ w2
2σ2

x2
+ 2w1w2 cov (x1, x2)

−
(
w1σ2

x1
+ w2σ2

x2
+ (w1 + w2) cov (x1, x2)

)2

σ2
x1

+ σ2
x2

+ 2 cov (x1x2) − σ2

n− 1

)

= 1
σ2(σ2

x1
+ σ2

x2
+ 2 cov (x1x2))

(
w2

1σ2
x1

σ2
x2

+ w2
2σ2

x1
σ2

x2

− w2
1 cov2 (x1, x2)− w2

2 cov2 (x1, x2)− 2w1w2σ2
x1

σ2
x2

+ 2w1w2 cov2 (x1, x2)
)

− 1
σ2 ·

σ2

n− 1 .
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Recalling that the asymptotic increase of bias in the linear bivariate setting is:

σ2
x1

σ2
x2

(1− ρ2
x1,x2

)(w1 − w2)2

σ2
x1+x2

,

and the asymptotic decrease of variance is σ2

n−1 (respectively Equation 9 and 13 of Bonetti et al. (2023)), the
first is equal to the first term found comparing the deviance and the second one is equal to the second one,
proving the equivalence.

After having verified that, in linear contexts, the analysis of deviance is tight w.r.t. the mean squared error,
we are now ready to introduce the main result of this section.
Theorem 8. Let M be the maximum between the following differences: ET [ŵ1]− 1

2ET [ŵ], ET [ŵ2]− 1
2ET [ŵ],

ET
[
ŵ2

1
]
− 1

4ET [ŵ2], ET
[
ŵ2

2
]
− 1

4ET [ŵ2], ET [ŵ1ŵ2] − 1
4ET [ŵ2], and let m be the minimum of the same

quantities. Moreover, let the real model belong to the canonical exponential family.
Defining ∆(D∗) as the expected increase of deviance due to the aggregation of the two features x1, x2 with
their mean in the bivariate setting, it is equal to:

∆(D∗) ≤ 2
ϕ

{
M · (| cov(x1, y)|+ | cov(x2, y)|)− 1

2m · b′′ (0) · (σ2
x1+x2

)
}

. (17)

Proof. In the bivariate setting, the expected increase of deviance under analysis is equal to:

2
ϕ
{Ex,y [y · (ET [ŵ1] x1 + ET [ŵ2] x2 − ET [ŵ]x̄)]

− (Ex,yET [b (ŵ1x1 + ŵ2x2)− b(ŵx̄)])}.

First expected value The first expected value of the previous equation can be rewritten as:

Ex,y [y · (ET [ŵ1] x1 + ET [ŵ2] x2 − ET [ŵ]x̄)]

=Ex,y [yx1]ET [ŵ1] + Ex,y [yx2]ET [ŵ2]− Ex,y

[
y

x1 + x2

2

]
ET [ŵ]

= cov (x1, y)ET [ŵ1] + cov (x2, y)ET [ŵ2]− 1
2 cov(x1, y)ET [ŵ]− 1

2 cov(x2, y)ET [ŵ]

= cov(x1, y)
(
ET [ŵ1]− 1

2ET [ŵ]
)

+ cov(x2, y)
(
ET [ŵ2]− 1

2ET [ŵ]
)

.

Second expected value The second expected value that appears in the expected increase of deviance
under analysis, Ex,yET [b (ŵ1x1 + ŵ2x2)− b(ŵx̄)] , depends on the function b(·), that is a specific parameter
of the distribution. In order to derive a result that holds for any distribution belonging to the canonical
exponential family, we use a second order Taylor approximation of the function, centered in θ0 = 0.

{
b (ŵ1x1 + ŵ2x2) ≃ b (0) + b′ (0) · (ŵ1x1 + ŵ2x2) + 1

2 b′′ (0) · (ŵ1x1 + ŵ2x2)2

b(ŵx̄) ≃ b (0) + b′ (0) · (ŵx̄) + 1
2 b′′ (0) · (ŵx̄)2

.

Since the first-order terms vanish because of the zero-mean assumption, the approximated expected value is
therefore:

Ex,y,T [b (ŵ1x1 + ŵ2x2)− b(ŵx̄)] ≃ 1
2b′′ (0) · Ex,y,T

[(
(ŵ1x1 + ŵ2x2)2 − (ŵx̄)2

)]
= 1

2b′′ (0) ·
[
σ2

x1
· ET [ŵ2

1 −
ŵ2

4 ] + σ2
x2
· ET [ŵ2

2 −
ŵ2

4 ]
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+ 2 cov(x1, x2) · ET [ŵ1ŵ2 −
ŵ2

4 ]
]
,

⇐⇒ 1
2b′′ (0) · [var(ŵ1x1 + ŵ2x2)− var(ŵx̄)] .

Expected increase of deviance We are now ready to combine the two expressions:

∆(D∗) = 2
ϕ

{
Ex,y [y · (ET [ŵ1] x1 + ET [ŵ2] x2 − ET [ŵ]x̄)]

− (Ex,yET [b (ŵ1x1 + ŵ2x2)− b(ŵx̄)])
}

= 2
ϕ

{
cov(x1, y)

(
ET [ŵ1]− 1

2ET [ŵ]
)

+ cov(x2, y)
(
ET [ŵ2]− 1

2ET [ŵ]
)

− 1
2b′′ (0)

[
σ2

x1

(
ET [ŵ2

1]− 1
4ET [ŵ2]

)
+ σ2

x2

(
ET [ŵ2

2]− 1
4ET [ŵ2]

)

+ 2 cov(x1, x2)
(
ET [ŵ1ŵ2]− 1

4ET [ŵ2]
)]}

.

Finally, substituting with: M the maximum difference of the expected value of the coefficients that appear
in the equation (ET [ŵ1]− 1

2ET [ŵ], ET [ŵ2]− 1
2ET [ŵ], ET

[
ŵ2

1
]
− 1

4ET [ŵ2], ET
[
ŵ2

2
]
− 1

4ET [ŵ2], ET [ŵ1ŵ2]−
1
4ET [ŵ2]), and with m the minimum of the same quantities, the result follows.

We conclude this bivariate analysis with a justification of the choice to center in 0 the Taylor expansion in
the proof above and providing an intuitive interpretation of the result of the theorem.
Remark 11. Considering the center in zero (θ0 = 0) for the second-order Taylor expansion of the function
b(·) in the analysis of deviance, in the linear asymptotic case, the second order Taylor expansion is an exact
approximation of the term.

Proof. In the linear case, recalling that b(θ) = θ2

2 , the expected value that contains the function b(·) in the
proof, is:

E [b (ŵ1x1 + ŵ2x2)− b(ŵx̄)] = 1
2E
[
(ŵ1x1 + ŵ2x2)2 − (ŵx̄)2

]
= 1

2E
[
ŵ2

1x2
1 + ŵ2

2x2
2 + 2ŵ1ŵ2x1x2 −

ŵ2x2
1

4 − ŵ2x2
2

4 − ŵ2x1x2

2

]
= 1

2

[
σ2

x1
· ET

[
ŵ2

1 −
ŵ2

4

]
+ σ2

x2
· ET

[
ŵ2

2 −
ŵ2

4

]

+ 2 cov (x1x2) · ET

[
ŵ1ŵ2 −

ŵ2

4

]]
.

Moreover, b′′ (0) = 1. Therefore, this quantity is equal to the general expression of the second order Taylor
expansion centered in 0.
Remark 12. The result of the theorem suggests that it is convenient to aggregate two variables when the
variance of the sum between the two variables is large or the absolute value of the covariance between each
feature and the target is small. Indeed, this implies respectively that there is much noise or that each feature
shares a lot of information with the target individually.
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C Generalized-Linear Correlated Features Aggregation:
additional proofs and results

Proof of Theorem 4

Recalling the expression of the expected increase of deviance:
2
ϕ

{
Ex,y [y · (ET [ŵ1]ϕ1 + ET [ŵ2]ϕ2 − ET [ŵ]h(ϕ1, ϕ2))]

− Ex,y,T [b (ŵ1ϕ1 + ŵ2ϕ2)− b(ŵh(ϕ1, ϕ2))]
}

,

(18)

we analyse the two expected values separately.

Exploiting the zero-mean assumption, the first expected value is equal to:

Ex,y [y · (ET [ŵ1] ϕ1 + ET [ŵ2] ϕ2 − ET [ŵ]h(ϕ1, ϕ2))]
=Ex,y [yϕ1]ET [ŵ1] + Ex,y [yϕ2]ET [ŵ2]− Ex,y [yh(ϕ1, ϕ2)]ET [ŵ]
= cov(ϕ1, y)ET [ŵ1] + cov(ϕ2, y)ET [ŵ2]− cov(h(ϕ1, ϕ2), y)ET [ŵ].

The second expectation, on the other hand, is:

Ex,y,T [b (ŵ1ϕ1 + ŵ2ϕ2)− b(ŵh(ϕ1, ϕ2))] .

In order to obtain an expression that holds for any distribution in the canonical exponential family, similarly
to the bivatiate case of the previous section, we perform a second order Taylor approximation of the function
b(·): {

b (ŵ1ϕ1 + ŵ2ϕ2) ≃ b (0) + b′ (0) · (ŵ1ϕ1 + ŵ2ϕ2) + 1
2 b′′ (0) · (ŵ1ϕ1 + ŵ2ϕ2)2

b(ŵh(ϕ1, ϕ2)) ≃ b (0) + b′ (0) · (ŵh(ϕ1, ϕ2)) + 1
2 b′′ (0) · (ŵh(ϕ1, ϕ2))2

.

The expected value under analysis therefore becomes:
Ex,y,T [b (ŵ1ϕ1 + ŵ2ϕ2)− b(ŵh(ϕ1, ϕ2))]

≃1
2b′′ (0) · Ex,y,T

[
(ŵ1ϕ1 + ŵ2ϕ2)2 − (ŵh(ϕ1, ϕ2))2

]
=1

2b′′ (0) · [σ2
ϕ1
ET [ŵ2

1] + σ2
ϕ2
ET [ŵ2

2]

+ 2 cov(ϕ1, ϕ2)ET [ŵ1ŵ2]− σ2
h(ϕ1,ϕ2)ET [ŵ2]]

=1
2b′′ (0) · [var(ŵ1ϕ1 + ŵ2ϕ2)− var(ŵh(ϕ1, ϕ2))] .

Merging the two expected values, the expected increase of deviance finally becomes:

∆(D∗) = 2
ϕ

{
cov(ϕ1, y)ET [ŵ1] + cov(ϕ2, y)ET [ŵ2]− cov(h(ϕ1, ϕ2), y)ET [ŵ]

−1
2b′′ (0) · [σ2

ϕ1
ET [ŵ2

1] + σ2
ϕ2
ET [ŵ2

2]

+ 2 cov(ϕ1, ϕ2)ET [ŵ1ŵ2]− σ2
h(ϕ1,ϕ2)ET [ŵ2]]

}
≤ 2

ϕ

{[
M · (| cov(ϕ1, y)|+ | cov(ϕ2, y)|)−m · | cov(h(ϕ), y)|

]
− 1

2b′′ (0) ·
(

m · σ2
x1+x2

−M · σ2
h(ϕ)

)}
,

where M, m are respectively the maximum and minimum absolute values of the expected values of the
coefficients and their squared values. This concludes the proof, since the second expression of the theorem
follows by rearranging the terms.
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C.1 Additional Gaussian considerations

In this section we prove the statement of Remark 9, assuming that the generalized linear model under analysis
follows a Gaussian distribution.
Lemma 5. Let a generalized linear model have Gaussian distribution of the target given the features (Y |X ∼
N(µ, σ2)) and compare the bivariate linear regression having as inputs two zero-mean transformations of the
features ϕ1(x), ϕ2(x) with a univariate linear regression having as input the aggregation of ϕ1, ϕ2 through a
function h(·) (Equation 7 of the main paper). The increase of expected MSE due to the aggregation is equal
to the increase of the expected deviance.

Proof. Recalling that, with the Gaussianity assumption, the link function g(·) is the identity and the function
b(·) = θ2

2 , the expression of the expected increase of deviance (Equation 18) becomes:

2
σ2

{
Ex,y [y · (ET [ŵ1]ϕ1 + ET [ŵ2]ϕ2 − ET [ŵ]h(ϕ1, ϕ2))]

− 1
2Ex,y,T

[
(ŵ1ϕ1 + ŵ2ϕ2)2 − (ŵh(ϕ1, ϕ2))2

]}
=
{
Ex,y

[
y ·

(
ϕ1(σ2

ϕ2
cov(ϕ1, f)− cov(ϕ1, ϕ2)cov(ϕ2, f)) + ϕ2(σ2

ϕ1
cov(ϕ2, f)− cov(ϕ1, ϕ2)cov(ϕ1, f))

σ2
ϕ1

σ2
ϕ2
− cov2(ϕ1, ϕ2)

−cov (h (ϕ1, ϕ2) , f)
σ2

h (ϕ1, ϕ2) · h (ϕ1, ϕ2)
)]

−1
2Ex,y,T

[
ŵ2

1ϕ2
1 + ŵ2

2ϕ2
2 + 2ŵ1ŵ2ϕ1ϕ2 − ŵ2ĥ2 (ϕ1, ϕ2)

]}
,

where the equation holds substituting the expression of the expected value of the linear regression coefficients.

First expected value.
Exploiting the independence between train and test data and the zero mean assumption, the first expected
value in the equation above becomes:

cov (ϕ1, y) ·
[
σ2

ϕ2
cov (ϕ1, f)− cov (ϕ1, ϕ2) cov (ϕ2, f)

]
+ cov (ϕ2, y) ·

[
σ2

ϕ1
cov (ϕ2, f)− cov (ϕ1, ϕ2) cov (ϕ1, f)

]
σ2

ϕ1
σ2

ϕ2
− cov2 (ϕ1, ϕ2)

− cov (h (ϕ1, ϕ2) , f)
σ2

h(ϕ1,ϕ2)
· cov (h (ϕ1, ϕ2) , y)

σ2
ϕ2

cov2 (ϕ1, f)− cov (ϕ1, ϕ2) cov (ϕ1, f) cov (ϕ2, f) + σ2
ϕ1

cov2 (ϕ2, f)− cov (ϕ1, ϕ2) cov (ϕ1, f) cov (ϕ2, f)
σ2

ϕ1
σ2

ϕ2
− cov2 (ϕ1, ϕ2)

− cov2 (h (ϕ1, ϕ2) , f)
σ2

h(ϕ1,ϕ2)

=
σ2

ϕ2
cov2 (ϕ1, f) + σ2

ϕ1
cov2 (ϕ2, f)− 2 cov (ϕ1, ϕ2) cov (ϕ1, f) cov (ϕ2, f)

σ2
ϕ1

σ2
ϕ2
− cov2 (ϕ1, ϕ2) − cov2 (h (ϕ1, ϕ2) , f)

σ2
h(ϕ1,ϕ2)

= ∆n→∞
bias ,

where the last expression is exactly the increase of (squared) asymptotic bias found in Equation 11.

Second expected value
Substituting the expected values of the estimates of the regression coefficients and their variances, the second
expected value of the expression of the increase of deviance becomes:

ET
[
ŵ2

1
]

σ2
ϕ1

+ ET
[
ŵ2

2
]

σ2
ϕ2

+ 2ET [ŵ1ŵ2] cov (ϕ1, ϕ2)− ET
[
ŵ2]σ2

h(ϕ1,ϕ2)

=
(

var (ŵ1) + ET [ŵ1]2
)

σ2
ϕ1

+
(

var (ŵ2) + ET [ŵ2]2
)

σ2
ϕ2
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+ 2 (cov (ŵ1, ŵ2) + ET [ŵ1]ET [ŵ2]) cov (ϕ1, ϕ2)−
(
var(ŵ) + ET [ŵ]2

)
σ2

h(ϕ1,ϕ2)

=

 σ2 · σ2
ϕ2

(n− 1)
(

σ2
ϕ1

σ2
ϕ2
− cov2 (ϕ1, ϕ2)

) +
(

σ2
ϕ2

cov (ϕ1, f)− cov (ϕ1, ϕ2) cov (ϕ2, f)
σ2

ϕ1
σ2

ϕ2
− cov2 (ϕ1, ϕ2)

)2
σ2

ϕ1

+

 σ2 · σ2
ϕ1

(n− 1)
(

σ2
ϕ1

σ2
ϕ2
− cov2 (ϕ1, ϕ2)

) +
(

σ2
ϕ1

cov (ϕ2, f)− cov (ϕ1, ϕ2) cov (ϕ1, f)
σ2

ϕ1
σ2

ϕ2
− cov2 (ϕ1, ϕ2)

)2
σ2

ϕ2

+ 2 cov (ϕ1, ϕ2)

 −σ2 · cov (ϕ1, ϕ2)
(n− 1)

(
σ2

ϕ1
σ2

ϕ2
− cov2 (ϕ1ϕ2)

)
+


(

σ2
ϕ2

cov (ϕ1, f)− cov (ϕ1, ϕ2) cov (ϕ2, f)
)
·
(

σ2
ϕ1

cov (ϕ2, f)− cov (ϕ1, ϕ2) cov (ϕ1, f)
))

(
σ2

ϕ1
σ2

ϕ2
− cov2 (ϕ1, ϕ2)

)2




−

 σ2

n− 1 ·
1

σ2
h(ϕ1,ϕ2)

+
(

cov (h (ϕ1, ϕ2) , f)
σ2

h(ϕ1,ϕ2)

)2
σ2

h(ϕ1,ϕ2).

Considering the terms with n− 1 in the denominator, they are equal to the asymptotic decrease of variance
found in Equation 10:

σ2

n− 1 ·
[

σ2
ϕ2

σ2
ϕ1
− σ2

ϕ1
σ2

ϕ2
− 2 cov2 (ϕ1, ϕ2)

σ2
ϕ1

σ2
ϕ2
− cov2 (ϕ1, ϕ2) −

σ2
h(ϕ1,ϕ2)

σ2
h(ϕ1,ϕ2)

]

= σ2

n− 1 · (2− 1) = σ2

n− 1 = ∆n→∞
var .

The remaining terms are:

σ2
ϕ1

(
σ2

ϕ2
cov (ϕ1, f)− cov (ϕ1, ϕ2) cov (ϕ2, f)

σ2
ϕ1

σ2
ϕ2
− cov2 (ϕ1, ϕ2)

)2

+ σ2
ϕ2

(
σ2

ϕ1
cov (ϕ2, f)− cov (ϕ1, ϕ2) cov (ϕ1, f)

σ2
ϕ1

σ2
ϕ2
− cov2 (ϕ1, ϕ2)

)2

+ 2 cov (ϕ1, ϕ2)


(

σ2
ϕ2

cov (ϕ1, f)− cov (ϕ1, ϕ2) cov (ϕ2, f)
)
·
(

σ2
ϕ1

cov (ϕ2, f)− cov (ϕ1, ϕ2) cov (ϕ1, f)
))

(
σ2

ϕ1
σ2

ϕ2
− cov2 (ϕ1, ϕ2)

)2


− cov2 (h (ϕ1, ϕ2) , f)

σ2
h(ϕ1,ϕ2)

.

The first three terms of this expression have the same denominator, therefore we can focus on their numer-
ators:

σ2
ϕ1

(
σ4

ϕ2
cov2 (ϕ1, f) + cov2 (ϕ1, ϕ2) cov2 (ϕ2,, f)− 2σ2

ϕ2
cov (ϕ1, f) cov (ϕ2,f) cov (ϕ1, ϕ2)

)
+σ2

ϕ2

(
σ4

ϕ1
cov2 (ϕ2, f) + cov2 (ϕ1, ϕ2) cov2 (ϕ1, f)− 2σ2

ϕ1
cov (ϕ1, f) cov (ϕ2, f) cov (ϕ1, ϕ2)

)
+2 cov (ϕ1, ϕ2)

(
σ2

ϕ1
σ2

ϕ2
cov (ϕ1, f) cov (ϕ2, f)− σ2

ϕ2
cov2 (ϕ1, f) cov (ϕ1, ϕ2)

+ cov2 (ϕ1, ϕ2) cov (ϕ1, f) cov (ϕ2, f)− σ2
ϕ1

cov2 (ϕ2, f) cov (ϕ1, ϕ2)
)

=σ2
ϕ1

σ4
ϕ2

cov2 (ϕ1, f) + σ4
ϕ1

σ2
ϕ2

cov2 (ϕ2, f)− σ2
ϕ1

cov2 (ϕ2, f) cov2 (ϕ1, ϕ2)
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−σ2
ϕ2

cov2 (ϕ1, f) cov2 (ϕ1, ϕ2)− 2σ2
ϕ1

σ2
ϕ2

cov (ϕ1, f) cov (ϕ2, f) cov (ϕ1, ϕ2)
+2 cov3 (ϕ1, ϕ2) cov (ϕ1, f) cov (ϕ2, f)
=σ2

ϕ1
cov2 (ϕ2, f) ·

[
σ2

ϕ1
σ2

ϕ2
− cov2 (ϕ1, ϕ2)

]
+ σ2

ϕ2
cov2 (ϕ1, f) ·

[
σ2

ϕ1
σ2

ϕ2
− cov2 (ϕ1, ϕ2)

]
−2 cov (ϕ1, f) cov (ϕ2, f) cov (ϕ1ϕ2) ·

[
σ2

ϕ1
σ2

ϕ2
− cov2 (ϕ1, ϕ2)

]
=
(
σ2

ϕ1
cov2 (ϕ2, f) + σ2

ϕ2
cov2 (ϕ1, f)− 2 cov (ϕ1, f) cov (ϕ2, f) cov (ϕ1, ϕ2)

)
·
(
σ2

ϕ1
σ2

ϕ2
− cov2 (ϕ1, ϕ2)

)
.

The full term is therefore:(
σ2

ϕ1
cov2 (ϕ2, f) + σ2

ϕ2
cov2 (ϕ1, f)− 2 cov (ϕ1, f) cov (ϕ2, f) cov (ϕ1, ϕ2)

)
(

σ2
ϕ1

σ2
ϕ2
− cov2 (ϕ1, ϕ2)

)2

×
(
σ2

ϕ1
σ2

ϕ2
− cov2 (ϕ1, ϕ2)

)
− cov2 (h (ϕ1, ϕ2) , f)

σ2
h(ϕ1,ϕ2)

= ∆n→∞
bias .

Summing up, the expected deviance is therefore equal to:

2
ϕ

(
∆n→∞

bias −
1
2(∆n→∞

var + ∆n→∞
bias )

)
= 1

ϕ
(∆n→∞

bias −∆n→∞
var ) ,

that is exactly the increase of MSE in terms of increase of bias and reduction of variance due to the aggregation
found in the analysis of the NonLinCFA algorithm.

A second result assuming Gaussianity justifies the choice of centering the second order Taylor expansion in
θ0 = 0 to approximate the function b(·) for any generalized linear model.
Lemma 6. Considering the center in zero (θ0 = 0), in the Gaussian asymptotic case, the second order
Taylor expansion leads to an exact approximation of the function b(·).

Proof. The function b(·) appears in the increase of deviance analysis performed in the previous subsection
in the following equation:

Ex,y,T [b (ŵ1ϕ1 + ŵ2ϕ2)− b(ŵh(ϕ1, ϕ2))] .

In the linear case, recalling that b(θ) = θ2

2 , the expected value under analysis is equal to:

1
2 · Ex,y,D

[
(ŵ1ϕ1 + ŵ2ϕ2)2 − (ŵh(ϕ1, ϕ2))2

]
=1

2 ·
[
σ2

ϕ1
ED[ŵ2

1] + σ2
ϕ2
ED[ŵ2

2] + 2 cov(ϕ1, ϕ2)ED[ŵ1ŵ2]− σ2
h(ϕ1,ϕ2)ED[ŵ2]

]
.

Moreover, b′′ (0) = 1. Therefore, this quantity is equal to the general expression of the second order Taylor
expansion centered in 0 (Equation C).

D Experiments

D.1 Synthetic experiments

This subsection provides more details on the synthetic experiments introduced in the main paper. The first
synthetic problem that we designed is composed of D = 100 features and standard deviation of the noise
σ = 10. The first independent variable x1 follows a uniform distribution in the interval [0, 1]. Any other
feature xi, i ∈ {2, .., 100}, is a linear combination between a randomly chosen previous features xj , j < i and
a random variable that follows a uniform distribution in the interval [0, 1] (specifically xi = 0.7xj +0.3u, u ∼
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U([0, 1])). The target variable y is finally a linear combination between the D features x1, .., x100, randomly
sampling the coefficients from a uniform distribution in [0, 1]. Moreover, a Gaussian noise with standard
deviation σ is added to the target. The same experiment is repeated in a more complex setting, considering
D = 1000 features and σ = 100 as standard deviation of the additive noise.

To test the GenLinCFA algorithm in classification settings, the same two experiment described in this section
have been repeated applying the sign function to the target, in order to transform the two problems into
classification tasks.

In Table 3 and Table 4 it is possible to find the detailed results of the experiments performed respectively
with continuous and binary target. As discussed in the main paper, also LinCFA algorithm has been applied
to compare the regression results. Since it has no hyperparameters to tune, it is not reported in the tables.
In the setting with D = 100 features it leads to d = 39± 1.52 features and an R2score = 0.8659± 0.0049. In
the setting with D = 1000 features, it produces d = 193.2±2.37 features with an R2score = 0.7070±0.0074.

Table 3: 95% confidence intervals, linear synthetic setting: different hyperparameters, continuous target.

Noise variance σ = 10, number of features D = 100
NonLinCFA

Hyperparameter ϵ = 0.01 ϵ = 0.001 ϵ = 0.0001 ϵ = 0.00001 ϵ = 0.000001
Number reduced features d 1.0± 0.0 8.0± 0.88 11.4± 1.45 14.4± 1.28 14.7± 1.21

R2 test score 0.8655± 0.0051 0.8664± 0.0048 0.8661± 0.0049 0.8659± 0.0050 0.8664± 0.0043
GenLinCFA

Hyperparameter ϵ = 0.76 ϵ = 0.77 ϵ = 0.78 ϵ = 0.79 ϵ = 0.80
Number reduced features d 21.6± 1.47 16.6± 0.63 13.6± 1.31 5.4± 1.15 2.0± 0.39

R2 test score 0.8656± 0.0047 0.8663± 0.0046 0.8660± 0.0046 0.8659± 0.0049 0.8657± 0.0049
Noise variance σ = 100, number of features D = 1000

NonLinCFA
Hyperparameter ϵ = 0.01 ϵ = 0.001 ϵ = 0.0001 ϵ = 0.00001 ϵ = 0.000001

Number reduced features d 1.0± 0.0 3.1± 0.65 18.0± 1.92 21.9± 2.10 22.3± 1.90
R2 test score 0.7332± 0.0069 0.7318± 0.0071 0.7274± 0.0079 0.7265± 0.0072 0.7267± 0.0076

GenLinCFA
Hyperparameter ϵ = 0.76 ϵ = 0.77 ϵ = 0.78 ϵ = 0.79 ϵ = 0.80

Number reduced features d 7.3± 1.08 3.4± 0.63 1.0± 0.0 1.0± 0.0 1.0± 0.0
R2 test score 0.7326± 0.0069 0.7325± 0.0072 0.7332± 0.0069 0.7332± 0.0069 0.7332± 0.0069

Table 4: 95% confidence intervals, linear synthetic setting: different hyperparameters, binary target.

Noise variance σ = 10, number of features D = 100
GenLinCFA

Hyperparameter ϵ = 0.71 ϵ = 0.72 ϵ = 0.73 ϵ = 0.75 ϵ = 0.77
Number reduced features d 25.2± 1.59 19.4± 1.69 15.6± 1.39 4.3± 1.21 1.0± 0.0

Accuracy test score 0.8928± 0.0064 0.8947± 0.0066 0.8956± 0.0065 0.8958± 0.0069 0.8975± 0.0054
Noise variance σ = 100, number of features D = 1000

GenLinCFA
Hyperparameter ϵ = 0.71 ϵ = 0.72 ϵ = 0.73 ϵ = 0.75 ϵ = 0.77

Number reduced features d 20.0± 3.54 11.1± 2.06 5.7± 0.88 1.0± 0.0 1.0± 0.0
Accuracy test score 0.8462± 0.0067 0.8453± 0.0075 0.8429± 0.0064 0.8520± 0.0048 0.8520± 0.0048

The two regression and the two classification synthetic experiments that have been described in this section
have been repeated considering a nonlinear relationship between the features and the target. In particular,
the datasets have been generated exactly in the same way, with the only difference to define the target
variable as a linear combination of the squared value of the input features, with additive Gaussian noise. In
this setting, a wrapper feature selection has been again considered as baseline, considering the squared of
the inputs as candidate features to select. NonLinCFA and GenLinCFA have been applied in two different
ways: considering as features the squared values of the original features (ϕi(x) = x2

i ) and selecting the
mean as aggregation function, or considering the original features as inputs (ϕi(x) = xi) and performing the
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(a) Results considering standard deviation σ = 10, D =
100 features, squared inputs and mean aggregations.

(b) Results considering standard deviation σ = 100, D =
1000 features, squared inputs and mean aggregations.

(c) Results considering standard deviation σ = 10,
D = 100 features, linear inputs and sum of square ag-
gregations.

(d) Results considering standard deviation σ = 100,
D = 1000 features, linear inputs and sum of square ag-
gregations.

Figure 2: Application of the two proposed algorithm. Test performances and number of reduced features
considering different hyperparameters, transformations of features and aggregation functions in a quadratic
setting.

squared sum as aggregation function. In this way, the two methods have been tested considering nonlinear
transformations of features or nonlinear aggregation functions.

Figure 2 shows the results in terms of coefficient of determination for the two regression problems with
low and high number of features and variance. In all the four cases the hyperparaneter ϵ of NonLinCFA
has been considered in the range {0.01, 0.001, 0.0001, 1e − 05, 1e − 06}. Moreover, for GenLinCFA it has
been considered in the range {0.68, 0.7, 0.72, 0.74, 0.76}. All experiments have been repeated ten times to
produce confidence intervals. Figure 2a and Figure 2c show the test regression performance considering
respectively squared input features and the mean and aggregation function and linear input features and the
squared sum as aggregation function, in the low dimensional and low variance scenario. The same results
obtained with the same hyperparameters are reported in Figure 2b and Figure 2d for the high dimensional
with high variance regression setting. As already discussed in the main paper for linear settings, the linear
regression applied on the features aggregated by the two algorithms perform better than the linear regression
performed on the features selected by the wrapper approach, that needs more features to obtain similar
performances. Moreover, it is possible to observe that GenLinCFA is more prone to aggregate features in
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high dimensional and noisy problems. On the contrary, NonLinCFA, is less prone to aggregate the features
in high dimensional and noisy problems. Finally, considering linear inputs and squared sum aggregation or
squared inputs and linear aggregations the two algorithms have similar performances, showing that they can
be applied in both contexts. As a further comparison, LinCFA algorithm has also been applied, considering
the square of the features as inputs. The linear regression on the reduced features have similar performances
in the two settings, with a test score respectively of 0.7503 ± 0.0080 and 0.3619 ± 0.0186 for the low and
high dimensional problems, but a larger number of reduced features (d = 34.3± 0.91 and d = 120.5± 1.69).

To further analyse GenLinCFA algorithm in classification contexts, the two experiments that con-
sider a quadratic relationship between the features and the target have been repeated in classification,
applying the sign function to the target. Again, mean aggregations of the squared features and squared
sums of the features have been considered. The accuracy scores and number of reduced features are reported
in Figure 3. The figure compares again the performance of the algorithm with a wrapper feature selection,
logistic regression is the supervised model applied to produce the scores. Again, the performances of the
proposed algorithm are similar or better w.r.t. the wrapper baseline and, considering the same values of
hiperparameters in the two settings, the algorithm is more prone to aggregate in the more complex and
noisy setting. The detailed results and confidence intervals for different hyperparameters that have been
discussed in this setting can be found in Table 5 and Table 6, respectively for regression and classification.
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(a) Classification results with standard deviation σ = 10,
D = 100 features, squared inputs and mean aggrega-
tions.

(b) Classification results with standard deviation σ =
100, D = 1000 features, squared inputs, mean aggrega-
tions.

(c) Classification results with standard deviation σ = 10,
D = 100 features, linear inputs, sum of square aggrega-
tions.

(d) Classification results with standard deviation σ =
100, D = 1000 features, linear inputs, sum of square
aggregations.

Figure 3: Application of GenLinCFA in classification. Test performances and number of reduced features
considering different hyperparameters, transformations of features and aggregation functions.

D.1.1 Real-World experiments

Table 7 and Table 8 report the confidence intervals associated to five different repetitions of the ex-
periments, in terms of coefficient of determination for regression and accuracy for classification with
linear and logistic regression. The same results are reported in Table 9 and Table 10, consider-
ing support vector machines for regression and classification as supervised learning methods. The
Finance dataset has been retrieved from Kaggle (https://www.kaggle.com/datasets/dgawlik/nyse).
The Bankruptcy and Parkinson datasets have been retrieved from the UCI ML
repository (https://archive.ics.uci.edu/ml/datasets/Parkinson%27s+Disease+Classification,
https://archive.ics.uci.edu/ml/datasets/Polish+companies+bankruptcy+data). To further test
the proposed algorithms on a dataset with a huge number of features and a small number
of samples, also a gene expression dataset from the UCI ML repository has been considered
(https://archive.ics.uci.edu/dataset/401/gene+expression+cancer+rna+seq.)
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Table 5: 95% confidence intervals for quadratic synthetic experiments: different hyperparameters, continuous
target.

Noise variance σ = 10, number of features D = 100
NonLinCFA, squared input, mean aggregation

Hyperparameter ϵ = 0.01 ϵ = 0.001 ϵ = 0.0001 ϵ = 0.00001 ϵ = 0.000001
Number reduced features d 1.0± 0.0 7.1± 0.85 10.3± 1.64 12.9± 1.58 12.4± 1.39

R2 test score 0.7436± 0.0096 0.7469± 0.0097 0.7483± 0.0099 0.7479± 0.0099 0.7475± 0.0096
GenLinCFA, squared input, mean aggregation

Hyperparameter ϵ = 0.68 ϵ = 0.70 ϵ = 0.72 ϵ = 0.74 ϵ = 0.76
Number reduced features d 17.6± 0.85 14.5± 1.64 7.2± 1.58 4.9± 1.39 3.0± 1.39

R2 test score 0.7462± 0.0104 0.7459± 0.0101 0.7453± 0.0093 0.7455± 0.0094 0.7455± 0.0096
NonLinCFA, linear input, square sum aggregation

Hyperparameter ϵ = 0.01 ϵ = 0.001 ϵ = 0.0001 ϵ = 0.00001 ϵ = 0.000001
Number reduced features d 1.0± 0.0 2.8± 0.46 3.8± 1.37 4.1± 1.43 4.1± 1.43

R2 test score 0.7457± 0.0090 0.7450± 0.0091 0.7460± 0.0094 0.7442± 0.0096 0.7435± 0.0096
GenLinCFA, linear input, square sum aggregation

Hyperparameter ϵ = 0.68 ϵ = 0.70 ϵ = 0.72 ϵ = 0.74 ϵ = 0.76
Number reduced features d 15.4± 0.46 10.9± 0.37 6.3± 0.41 3.3± 0.43 2.1± 0.43

R2 test score 0.7462± 0.0104 0.7459± 0.0101 0.7453± 0.0093 0.7455± 0.0094 0.7455± 0.0096
Noise variance σ = 100, number of features D = 1000

NonLinCFA, squared input, mean aggregation
Hyperparameter ϵ = 0.01 ϵ = 0.001 ϵ = 0.0001 ϵ = 0.00001 ϵ = 0.000001

Number reduced features d 1.0± 0.0 5.9± 0.75 11.6± 0.69 13.2± 0.61 13.7± 0.62
R2 test score 0.4044± 0.0130 0.3873± 0.0184 0.3735± 0.0179 0.3627± 0.0201 0.3649± 0.0199

GenLinCFA, squared input, mean aggregation
Hyperparameter ϵ = 0.68 ϵ = 0.70 ϵ = 0.72 ϵ = 0.74 ϵ = 0.76

Number reduced features d 5.5± 0.76 3.5± 0.69 2.0± 0.60 1.2± 0.63 1.1± 0.69
R2 test score 0.3772± 0.0156 0.3760± 0.0148 0.3986± 0.0127 0.4037± 0.0128 0.4043± 0.0130

NonLinCFA, linear input, square sum aggregation
Hyperparameter ϵ = 0.01 ϵ = 0.001 ϵ = 0.0001 ϵ = 0.00001 ϵ = 0.000001

Number reduced features d 1.0± 0.0 6.3± 0.78 15.5± 1.55 17.7± 1.92 18.0± 1.84
R2 test score 0.4043± 0.0130 0.4006± 0.0134 0.3843± 0.0140 0.3785± 0.0156 0.3772± 0.0166

GenLinCFA, linear input, square sum aggregation
Hyperparameter ϵ = 0.68 ϵ = 0.70 ϵ = 0.72 ϵ = 0.74 ϵ = 0.76

Number reduced features d 12.7± 0.78 7.2± 1.55 4.1± 1.92 2.4± 1.83 1.7± 1.61
R2 test score 0.3995± 0.0122 0.4020± 0.0126 0.4037± 0.0129 0.4043± 0.0130 0.4042± 0.0130

The climate datasets are composed of continuous climatological features and a scalar target which represents
the state of vegetation of a basin of Po river. The first one (Climate, Climate(Class.)) also considers the state
of the vegetation of neighbouring basins as inputs, while the second one is a more difficult problem since it
tries to predict it only from temperature and precipitation features. These datasets have been composed by
the authors merging different sources for the vegetation index, temperature and precipitation over different
basins (see (Didan, 2015; Cornes et al., 2018; Zellner, 2022)), and they are available in the repository of this
work.

The two tables show the performances of the NonLinCFA algorithm, considering five different hyperparam-
eters (ϵ ∈ {0.01, 0.001, 0.0001, 0.00001, 0.000001}). The same holds for the GenLinCFA algorithm, where
the hyperparameters have been selected in order to show some aggregations that are not too small (every-
thing is aggregated) or is too large (more than 50 reduced features). The proposed algorithms are shown in
comparison with the LinCFA method, that they generalize. Additionally, state of the art methods (PCA,
LDA, Kernel PCA, Isomap, LLE, Supervised PCA, NCA, UMAP, t-SNE) have been applied to compare the
proposed methods, reporting in the related tables the best validation performance between 1 and 50 reduced
features, considering default hyperparameters. Given the huge amount of features, for the GeneExpression
dataset, the number of reduced components tested are the following set: {5, 10, 15, 20, 25, 30, 40, 50, 100, 200}.
Additionally, Autoencoders have been also considered as baselines, testing lantent space dimensions in the
following set: {2, 4, 8, 16, 32, 64} (and also considering {128, 256} for the GeneExpression dataset). The au-
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Table 6: 95% confidence intervals for quadratic synthetic experiments: different hyperparameters, binary
target.

Noise variance σ = 10, number of features D = 100
GenLinCFA, squared input, mean aggregation

Hyperparameter ϵ = 0.77 ϵ = 0.79 ϵ = 0.81 ϵ = 0.85 ϵ = 0.95
Number reduced features d 30.2± 1.97 22.9± 2.01 18.5± 0.84 13.0± 1.17 1.0± 0.0

Accuracy test score 0.8412± 0.0061 0.8403± 0.0060 0.8436± 0.0045 0.8431± 0.0061 0.8450± 0.0057
GenLinCFA, linear input, square sum aggregation

Hyperparameter ϵ = 0.77 ϵ = 0.79 ϵ = 0.81 ϵ = 0.85 ϵ = 0.95
Number reduced features d 8.8± 1.38 5.5± 1.57 3.2± 1.03 1.4± 0.41 1.0± 0.0

Accuracy test score 0.8440± 0.0065 0.8457± 0.0066 0.8452± 0.0057 0.8459± 0.0061 0.8455± 0.0060
Noise variance σ = 100, number of features D = 1000

GenLinCFA, squared input, mean aggregation
Hyperparameter ϵ = 0.77 ϵ = 0.79 ϵ = 0.81 ϵ = 0.85 ϵ = 0.95

Number reduced features d 9.4± 1.15 5.9± 0.65 3.5± 0.50 1.6± 0.41 1.0± 0.0
Accuracy test score 0.7051± 0.0056 0.7093± 0.0068 0.7091± 0.0078 0.7152± 0.0083 0.7186± 0.0083

GenLinCFA, linear input, square sum aggregation
Hyperparameter ϵ = 0.77 ϵ = 0.79 ϵ = 0.81 ϵ = 0.85 ϵ = 0.95

Number reduced features d 6.1± 2.22 3.7± 1.33 2.6± 0.63 1.6± 0.30 1.3± 0.28
Accuracy test score 0.6968± 0.0218 0.7114± 0.0084 0.7178± 0.0077 0.7189± 0.0081 0.7184± 0.0080

toencoders considered have two hidden layers both in the encoder and in the decoder, respectively with four
and two times the number of nodes w.r.t. the latent space dimension (for example, for the architecture with
latent dimension 2, the autoencoder is made of five layers of 8, 4, 2, 4, 8 nodes respectively).

The results, discussed also in the main paper, show better or competitive performances with respect to the
baselines. To further inspect the reduced features obtained, considering the climate dataset where the features
are temperature and precipitation measurements at different locations and with different time aggregations,
Figure 4 reports some interpretable reduced features in practice. Considering five different time aggregations
of features related to temperature and precipitation, we applied the NonLinCFA algorithm, constraining the
algorithm to aggregate features only if they are at neighboring locations and they represent the same variable
with the same time scale. In the figure is reported, represented with the same color, each set of variables
that is aggregated with the mean by the algorithm. This is clearly interpretable, since the resulting features
are averages of the original features, obtained by the algorithm through partitioning the geographical area
of interest into sub-regions, and averaging on them.
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Table 7: Experiments on climate datasets. The total number of samples n has been divided into train (66%
of data) and test (33% of data) sets.

Quantity Climate Climate (Class.) Climate II Climate II (class.)
# samples n 981 981 867 867
# features D 1991 1991 2408 2408

Reduced Dimension
NonLinCFA (ϵ = 0.01) 7.4± 1.3 NA 7.0± 0.9 NA
NonLinCFA (ϵ = 0.001) 16.0± 0.8 NA 11.4± 0.9 NA
NonLinCFA (ϵ = 0.0001) 19.4± 1.4 NA 12.2± 0.6 NA
NonLinCFA (ϵ = 0.00001) 19.6± 0.9 NA 12.4± 0.7 NA
NonLinCFA (ϵ = 0.000001) 19.6± 1.3 NA 12.4± 0.7 NA

GenLinCFA (ϵ = ϵ1) 31.6± 10.9 33.75± 11.5 13.6± 4.8 34.0± 6.1
GenLinCFA (ϵ = ϵ2) 26.0± 9.1 27.0± 8.2 7.2± 1.1 26.0± 6.1
GenLinCFA (ϵ = ϵ3) 18.6± 5.4 22.3± 5.7 4.6± 0.9 18.7± 5.4
GenLinCFA (ϵ = ϵ4) 15.0± 4.3 21.3± 5.2 2.4± 0.4 11.0± 4.5
GenLinCFA (ϵ = ϵ5) 13.8± 3.0 17.5± 3.3 2± 0 2.5± 0.4

LinCFA 38.2± 1.6 NA 222.0± 2.7 NA
PCA 18.2± 0.7 18.2± 0.7 29.4± 0.1 29.4± 0.4
LDA NA 1 NA 1

Kernel PCA 35.6± 7.9 27.0± 4.8 21.8± 9.5 11.2± 2.3
Isomap 2.6± 0.7 12.6± 10.8 42.4± 13.3 16.6± 9.2

LLE 15.4± 13.8 28.2± 12.9 35.0± 10.7 25.8± 13.1
Supervised PCA 41.8± 2.5 37.0± 6.6 7.4± 3.1 13.8± 4.9

NCA NA 24.2± 2.9 NA 7.0± 0.6
UMAP 14.6± 5.6 19.6± 16.2 19.5± 11.2 26.8± 13.1
t-SNE 2.2± 1.2 12.1± 11.9 7.8± 1.7 10.4± 3.3

Autoencoders 12.0± 9.8 30.8± 24.1 9.6± 4.7 10.4± 4.2
Test performance R2 score Accuracy score R2 score Accuracy score

NonLinCFA (ϵ = 0.01) 0.8524± 0.0407 NA 0.2949± 0.0156 NA
NonLinCFA (ϵ = 0.001) 0.9395± 0.0125 NA 0.2547± 0.0182 NA
NonLinCFA (ϵ = 0.0001) 0.9124± 0.0055 NA 0.2541± 0.0121 NA
NonLinCFA (ϵ = 0.00001) 0.9113± 0.0056 NA 0.2529± 0.0148 NA
NonLinCFA (ϵ = 0.000001) 0.9121± 0.0047 NA 0.2530± 0.0146 NA

GenLinCFA (ϵ = ϵ1) 0.9194± 0.0039 0.9068± 0.0037 0.2439± 0.0246 0.6820± 0.0199
GenLinCFA (ϵ = ϵ2) 0.9226± 0.0026 0.9075± 0.0029 0.2841± 0.0051 0.7127± 0.0159
GenLinCFA (ϵ = ϵ3) 0.9207± 0.0052 0.9056± 0.0039 0.2764± 0.0069 0.7094± 0.0181
GenLinCFA (ϵ = ϵ4) 0.9269± 0.0012 0.9062± 0.0036 0.2493± 0.0125 0.7061± 0.0105
GenLinCFA (ϵ = ϵ5) 0.9275± 0.0004 0.9107± 0.0022 0.2269± 0.0157 0.6776± 0.0159

LinCFA 0.9007± 0.031 NA −1.2861± 0.2322 NA
PCA 0.7536± 0.019 0.8515± 0.0054 0.1917± 0.0395 0.6868± 0.0147
LDA NA 0.7357± 0.0188 NA 0.5526± 0.0224

Kernel PCA 0.7990± 0.0061 0.8698± 0.0081 0.3889± 0.0199 0.7640± 0.0062
Isomap 0.1354± 0.0118 0.6443± 0.0041 0.3216± 0.0146 0.7360± 0.0145

LLE 0.1149± 0.0139 0.6444± 0.0052 0.3102± 0.0367 0.7456± 0.0140
Supervised PCA 0.8454± 0.0049 0.8827± 0.0098 0.3835± 0.0230 0.7482± 0.0067

NCA NA 0.8776± 0.0086 NA 0.7638± 0.0051
UMAP 0.1307± 0.0125 0.6540± 0.0118 0.2998± 0.0107 0.7008± 0.0078
t-SNE 0.1366± 0.0193 0.6791± 0.0508 0.3465± 0.0171 0.7403± 0.0028

Autoencoders 0.1363± 0.0234 0.6515± 0.0108 0.3637± 0.0043 0.7280± 0.0139
Full 0.7429± 0.0228 0.8428± 0.0128 −4.3511± 0.9161 0.6429± 0.0205
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Table 8: Experiments on real world datasets. The total number of samples n has been divided into train
(66% of data) and test (33% of data) sets.

Quantity Finance Bankruptcy (class.) Parkinson (class.) GeneExpression
# samples n 1299 1084 384 801
# features D 75 65 753 19966

Reduced Dimension
NonLinCFA (ϵ = 0.01) 5.6± 0.4 NA NA 14.4± 0.9
NonLinCFA (ϵ = 0.001) 7.2± 0.7 NA NA 31.0± 1.8
NonLinCFA (ϵ = 0.0001) 7.4± 0.4 NA NA 37.0± 1.6
NonLinCFA (ϵ = 0.00001) 7.4± 0.4 NA NA 37.8± 1.3
NonLinCFA (ϵ = 0.000001) 7.4± 0.4 NA NA 39.8± 0.9

GenLinCFA (ϵ = ϵ1) 15.2± 1.2 27.6± 5.6 53.4± 5.9 35.4± 4.1
GenLinCFA (ϵ = ϵ2) 8.0± 1.4 16.4± 3.4 26.4± 1.2 23.6± 2.5
GenLinCFA (ϵ = ϵ3) 4.8± 0.4 9.8± 1.5 23.4± 1.1 17.4± 2.3
GenLinCFA (ϵ = ϵ4) 4.2± 0.4 8.2± 0.4 20.2± 1.5 11.6± 1.8
GenLinCFA (ϵ = ϵ5) 3.8± 0.3 7.0± 0.6 14.2± 1.3 7.6± 0.8

LinCFA 11.4± 0.7 NA NA 138.7± 11.5
PCA 26.6± 0.4 4.8± 0.9 77.6± 3.8 200
LDA NA 1 1 NA

Kernel PCA 36.0± 10.8 13.8± 5.1 32.4± 7.7 180.0 +−35.1
Isomap 27.2± 6.8 21.2± 9.8 14.8± 9.3 20.0± 7.3

LLE 44.0± 7.3 1 39.6± 4.6 180.0± 35.1
Supervised PCA 31.0± 13.8 16.2± 7.5 21.7± 3.4 19.3± 7.4

NCA NA 12.0± 9.5 28.2± 15.3 NA
UMAP 44.8± 4.2 4.6± 3.4 26.2± 13.9 41.0± 9.6
t-SNE 2.6± 2.1 1.6± 0.7 6.4± 3.1 8.8± 3.8

Autoencoders 40.0± 18.8 51.2± 13.7 17.2± 11.3 57.6± 11.2
Test performance R2 score Accuracy score Accuracy score

NonLinCFA (ϵ = 0.01) 0.8131± 0.0032 NA NA 0.6089± 0.0220
NonLinCFA (ϵ = 0.001) 0.8061± 0.0076 NA NA 0.5902± 0.0157
NonLinCFA (ϵ = 0.0001) 0.8133± 0.0037 NA NA 0.5750± 0.0155
NonLinCFA (ϵ = 0.00001) 0.8133± 0.0037 NA NA 0.5716± 0.0105
NonLinCFA (ϵ = 0.000001) 0.8136± 0.0036 NA NA 0.5629± 0.0198

GenLinCFA (ϵ = ϵ1) 0.8104± 0.0015 0.7503± 0.0012 0.7984± 0.0112 0.6209± 0.0210
GenLinCFA (ϵ = ϵ2) 0.8119± 0.0010 0.7480± 0.0018 0.7647± 0.0130 0.6168± 0.0213
GenLinCFA (ϵ = ϵ3) 0.8101± 0.0003 0.7430± 0.0044 0.8016± 0.0069 0.6018± 0.0371
GenLinCFA (ϵ = ϵ4) 0.8114± 0.0003 0.7413± 0.0025 0.7808± 0.0071 0.5801± 0.0349
GenLinCFA (ϵ = ϵ5) 0.8107± 0.0009 0.7408± 0.0024 0.7712± 0.0095 0.4848± 0.0890

LinCFA 0.8010± 0.0128 NA NA 0.3153± 0.1033
PCA 0.7559± 0.0027 0.7413± 0.0037 0.7840± 0.0117 0.5380± 0.0099
LDA NA 0.7587± 0.0065 0.7632± 0.0489 NA

Kernel PCA 0.7764± 0.0118 0.7592± 0.0061 0.7920± 0.0177 0.5353± 0.0095
Isomap 0.2610± .0458 0.7463± 0.0039 0.7856± 0.0112 0.2307± 0.0586

LLE 0.7281± 0.0267 0.7402± 0 0.7696± 0.0525 0.3424± 0.0116
Supervised PCA 0.7731± 0.0126 0.7508± 0.0018 0.7913± 0.0069 0.5639± 0.0266

NCA NA 0.7637± 0.0079 0.7952± 0.0181 NA
UMAP 0.6268± 0.0248 0.7385± 0.0059 0.7535± 0.0240 0.2798± 0.0090
t-SNE 0.3258± 0.0167 0.7335± 0.0057 0.7504± 0.0174 0.2291± 0.1432

Autoencoders 0.5854± 0.0330 0.7435± 0.0039 0.7440± 0.0062 0.3922± 0.0173
Full −5.9514± 3.7166 0.7446± 0.0033 0.7520± 0.0258 0.5385± 0.0170
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Table 9: Experiments on climate datasets with Support Vector Machines. The total number of samples n
has been divided into train (66% of data) and test (33% of data) sets.

Quantity Climate Climate (Class.) Climate II Climate II (class.)
# samples n 981 981 867 867
# features D 1991 1991 2408 2408

Test performance R2 score Accuracy score R2 score Accuracy score
NonLinCFA (ϵ = 0.01) 0.8741± 0.0137 NA 0.3045± 0.0117 NA
NonLinCFA (ϵ = 0.001) 0.8649± 0.0135 NA 0.3027± 0.0263 NA
NonLinCFA (ϵ = 0.0001) 0.8587± 0.0084 NA 0.2869± 0.0211 NA
NonLinCFA (ϵ = 0.00001) 0.8623± 0.0058 NA 0.3004± 0.0242 NA
NonLinCFA (ϵ = 0.000001) 0.8620± 0.0056 NA 0.2902± 0.0333 NA

GenLinCFA (ϵ = ϵ1) 0.8964± 0.0011 0.8979± 0.0014 0.1932± 0.0501 0.6853± 0.0153
GenLinCFA (ϵ = ϵ2) 0.8974± 0.0012 0.8954± 0.0031 0.2129± 0.0470 0.6721± 0.0336
GenLinCFA (ϵ = ϵ3) 0.8988± 0.0017 0.8989± 0.0017 0.2253± 0.0487 0.6601± 0.0559
GenLinCFA (ϵ = ϵ4) 0.8975± 0.0012 0.8990± 0.0010 0.2422± 0.0541 0.6842± 0.0286
GenLinCFA (ϵ = ϵ5) 0.8986± 0.0024 0.9015± 0.0010 0.2681± 0.0644 0.6557± 0.0144

LinCFA 0.8566± 0.0031 NA −2.3201± 0.5375 NA
PCA 0.5267± 0.0292 0.7137± 0.0126 0.3018± 0.0257 0.7245± 0.0089
LDA NA 0.7301± 0.0174 NA 0.5359± 0.0196

Kernel PCA 0.5513± 0.0150 0.8698± 0.0081 0.3888± 0.0199 0.7760± 0.0061
Isomap 0.1202± 0.0067 0.6428± 0.0080 0.2905± 0.0230 0.7192± 0.0105

LLE 0.1225± 0.0192 0.6454± 0.0073 0.3085± 0.0229 0.7350± 0.0052
Supervised PCA 0.5137± 0.0091 0.8212± 0.0125 0.3721± 0.0148 0.7103± 0.0089

NCA NA 0.7689± 0.0150 NA 0.7482± 0.0052
UMAP 0.1219± 0.0118 0.6357± 0.0090 0.2890± 0.0086 0.7114± 0.0115
t-SNE 0.2036± 0.0735 0.6786± 0.0320 0.3623± 0.0563 0.7423± 0.0270

Autoencoders 0.1480± 0.0288 0.6510± 0.0117 0.3892± 0.0223 0.7325± 0.0114
Full 0.5572± 0.0172 0.7261± 0.0167 0.3253± 0.0132 0.7028± 0.0037
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Table 10: Experiments on real world datasets with Support Vector Machines. The total number of samples
n has been divided into train (66% of data) and test (33% of data) sets.

Quantity Finance Bankruptcy (class.) Parkinson (class.) GeneExpression
# samples n 1299 1084 384 801
# features D 75 65 753 19966

Test performance R2 score Accuracy score Accuracy score
NonLinCFA (ϵ = 0.01) 0.7489± 0.0127 NA NA 0.5799± 0.0512
NonLinCFA (ϵ = 0.001) 0.7558± 0.0091 NA NA 0.5649± 0.0178
NonLinCFA (ϵ = 0.0001) 0.7624± 0.0127 NA NA 0.5571± 0.0070
NonLinCFA (ϵ = 0.00001) 0.7624± 0.0127 NA NA 0.5589± 0.0033
NonLinCFA (ϵ = 0.000001) 0.7626± 0.0124 NA NA 0.5609± 0.0195

GenLinCFA (ϵ = ϵ1) 0.7396± 0.0010 0.7486± 0.0010 0.7344± 0.0082 0.5892± 0.0244
GenLinCFA (ϵ = ϵ2) 0.7702± 0.0203 0.7474± 0.0012 0.7424± 0.0174 0.5808± 0.0333
GenLinCFA (ϵ = ϵ3) 0.8079± 0.0073 0.7463± 0.0010 0.7552± 0.0215 0.5517± 0.0425
GenLinCFA (ϵ = ϵ4) 0.8205± 0.0073 0.7475± 0.0012 0.7376± 0.0240 0.5609± 0.0375
GenLinCFA (ϵ = ϵ5) 0.8239± 0.0012 0.7458± 0.0009 0.7375± 0.0210 0.4652± 0.1008

LinCFA 0.7780± 0.0060 NA NA 0.4223± 0.1131
PCA 0.7268± 0.0066 0.7508± 0.0039 0.7424± 0.0324 0.5282± 0.0150
LDA NA 0.7598± 0.0087 0.6624± 0.0288 NA

Kernel PCA 0.7763± 0.0117 0.7513± 0.0006 0.7360± 0.0496 0.5264± 0.0162
Isomap 0.6866± 0.0153 0.7519± 0.0023 0.7104± 0.0374 0.2761± 0.0166

LLE 0.6804± 0.0281 0.75139± 0 0.7440± 0.0221 0.3179± 0.0186
Supervised PCA 0.7521± 0.0079 0.7520± 0.0011 0.7616± 0.0128 0.5665± 0.0242

NCA NA 0.7626± 0.0122 0.7520± 0.0177 NA
UMAP 0.5578± 0.0458 0.7218± 0.0070 0.7152± 0.0196 0.1826± 0.0196
t-SNE 0.4432± 0.0881 0.7458± 0.0075 0.4768± 0.0361 0.2833± 0.0879

Autoencoders 0.7237± 0.0164 0.7514± 0.0008 0.7360± 0.0171 0.4299± 0.0115
Full 0.7510± 0.0035 0.7486± 0.0067 0.7552± 0.0130 0.4902± 0.0130
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Figure 4: Aggregations on the considered basin using the NonLinCFA algorithm on five different types of
variables related to temperature and precipitation, at different location. For each variable, reported in a
different plot, points (i.e., features) are represented with the same color if they have been aggregated with
their mean by the algorithm.
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