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Abstract

Effective communication in Multi-Agent Reinforcement Learning (MARL) can signif-1
icantly enhance coordination and collaborative performance in complex and partially2
observable environments. However, reliance on communication can also introduce vul-3
nerabilities when agents are misaligned, potentially leading to adversarial interactions4
that exploit implicit assumptions of cooperative intent. Prior work has addressed ad-5
versarial behavior through power regularization by controlling the influence one agent6
exerts over another, but has largely overlooked the role of communication in these dy-7
namics. This paper introduces communicative power regularization (CPR), which ex-8
tends power regularization specifically to communication channels. By explicitly quan-9
tifying and constraining agents’ communicative influence during training, CPR actively10
mitigates vulnerabilities arising from misaligned or adversarial communications. Eval-11
uations in the Grid Coverage benchmark environment demonstrate that our approach12
significantly enhances robustness to adversarial communication while preserving coop-13
erative performance, offering a practical framework for secure and resilient cooperative14
MARL systems.15

1 Introduction16

Effective coordination among agents in Multi-Agent Reinforcement Learning (MARL) is crucial17
for achieving collective goals. Communication, as an explicit exchange of information, is often em-18
ployed to facilitate this coordination, particularly in Cooperative MARL (CoMARL), where agents19
collaborate. However, common CoMARL approaches emphasizing parameter sharing for training20
efficiency can lead to joint policies vulnerable to issues such as agent free-riding (Ueshima et al.,21
2023) or over-reliance on learned conventions (Köster et al., 2020). Such vulnerabilities are exac-22
erbated when agents are misaligned or face adversarial interactions, especially if policies implicitly23
assume cooperative intent.24

Objective misalignment, where agents pursue self-interested goals, makes public communication25
channels susceptible to sabotage, particularly against cooperative agents. Resilience against such26
misalignment is critical for deploying autonomous agent teams, requiring evaluation under non-27
standard conditions, considering both team and individual contexts.28

Communication remains a key research area in MARL (OroojlooyJadid & Hajinezhad, 2021), often29
modeled with protocol controllers like CommNet (Sukhbaatar et al., 2016) and IC3Net (Singh et al.,30
2018). When agents learn communication and environment policies concurrently, they may develop31
uncontrolled regularization against misaligned messages, whether from co-learning errors or inten-32
tional adversarial actions. Such self-learned communication, however, can create vulnerabilities if33
naive agents are targeted. We define misaligned communication as any message negatively affecting34
a recipient’s performance, irrespective of explicit adversarial intent. Fostering resilience requires35
policies robust enough for mixed settings, differing from adversarial attacks that inject malicious36
payloads (Tu et al., 2021; Dong et al., 2022).37
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Power, one agent’s influence over another’s utility and decisions, offers a mechanism to enhance pol-38
icy robustness when incorporated into training. While agents typically do not explicitly optimize for39
power, decomposing utility functions, akin to intrinsic rewards (Du et al., 2019), could offer greater40
control. This paper introduces Communicative Power Regularization (CPR), extending the concept41
of power regularization (Li & Dennis, 2024) specifically to communication channels. By quan-42
tifying and constraining communicative influence, CPR mitigates vulnerabilities from misaligned43
communication.44

Our contributions are: (1) We propose CPR as a technique to control power dynamics within learned45
communication policies. (2) We evaluate CPR in the Grid Coverage benchmark, demonstrating sig-46
nificantly enhanced robustness to adversarial communication while preserving cooperative perfor-47
mance. CPR thus offers a practical framework for more secure and resilient cooperative MARL.48

This paper is organized as follows: Section 2 reviews related work. Section 3 covers preliminaries.49
Section 4 details our CPR approach. Section 5 presents experimental results, followed by conclu-50
sions in Section 6.51

2 Related Work52

Adversarial communication in MARL settings is often highlighted by its emergence in non-53
cooperative settings (Blumenkamp & Prorok, 2020), which may be the product of misaligned agents.54
Adversarial attacks in MARL settings are diverse in their methodology, ranging from sparse tar-55
geted attacks (Hu & Zhang, 2022) to attacks that exploit vulnerabilities in mechanism design, such56
as consensus-based mechanisms (Figura et al., 2021) and adversarial minority influence (Li et al.,57
2024).58

Adversarial training, an approach to mitigating against adversarial interests, is an umbrella-term59
for incorporating adversarial interactions into training for hardening and better resilience against60
adversarial opponents. In support, there are works on the robustness of CoMARL, such as Lin61
et al. (2020) and Guo et al. (2022). There are diverse defenses against adversarial communication,62
including works that consider test-time settings with theory of mind inspired mechanisms (Piazza &63
Behzadan, 2023). In our work, adversarial training is used to address misaligned communication.64

Many CoMARL works that address credit assignment between global reward and local reward can65
be viewed as a means for regularizing agent behaviors and dynamics. For example, a reward-shaping66
mechanism was proposed by Ibrahim et al. (2020) to portion out the team reward based on individual67
contributions in order to address free-riders. Foerster et al. (2018) proposed COMA, Counterfactual68
Multi Agent Policy Gradients, which marginalizes out single agent actions and also addresses credit69
assignment with the incentive that agents will maximize their contribution to the global reward. The70
motivation behind COMA is complementary in the sense that it quantifies how much influence an71
individual agent’s action has on the joint action, whereas this work quantifies how much influence72
other agents’ actions have upon an individual agent’s policy.73

Additionally, investigative work by Jaques et al. (2019), for example, explores causal relationships74
among agents in MARL through counterfactual reasoning. While promoted for more efficient com-75
munication and coordination, this approach can also quantify the contribution of other agents to a76
self-agent’s return.77

Some other related works on explicit regularization in MARL originate from maximum-entropy78
MARL, which reconstructs the return as the reward and the entropy of the policy distribution,79
weighed by a temperature parameter. An example would be FOP (Zhang et al., 2021), an actor-80
critic method that factorizes the optimal joint policy from maximum-entropy MARL. The existing81
work on quantifying power in MARL by Li & Dennis (2024) studies adversarial power, defined as82
power associated with an adversarial opponent. The authors discuss various fine-tune parameters83
for implementing power and measuring power in multi-opponent settings. This work investigates84
power in settings with communication.85
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3 Preliminaries86

3.1 Communicative MARL87

Multi-Agent Reinforcement Learning (MARL) provides a framework for sequential decision-88
making problems involving multiple interacting agents. Cooperative MARL scenarios are often89
formalized as Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs), rep-90
resentable by the tuple:91

⟨N ,S, {Ai}i∈N , {Oi}i∈N , P, {Ri}i∈N , γ⟩

Here, N denotes the set of N agents, S is the global state space, Ai is the action space for agent92
i, and Oi is its observation space. The function P (s′|s,a) defines the state transition dynamics,93
where a = {ai}i∈N is the joint action assembled from individual agent actions sampled from their94
policies, ai ∼ πi(·|oi). Each agent i receives a local observation oi and a reward ri = Ri(s,a).95
In fully cooperative settings, agents typically share a common team reward, ri = R(s,a). The96
collective goal is to learn policies that maximize the expected discounted return G =

∑T
t=0 γ

trt97
where γ ∈ [0, 1] is the discount factor.98

A prevalent paradigm for training MARL agents is Centralized Training with Decentralized Execu-99
tion (CTDE). During the training phase, CTDE algorithms utilize global information, such as the100
full state or the actions of all agents, to facilitate learning. However, during execution, each agent101
must operate solely based on its local observation history. For instance, Value Decomposition Net-102
works (VDN) (Sunehag et al., 2017) learn decentralized policies by decomposing the global team103
Q-function Qtot(s, a) into a sum of individual agent Q-functions Qi(oi, ai), as shown in Equation 1:104

Qtot(s, a) =
∑
i∈N

Qi(oi, ai) (1)

Such methods often employ parameter sharing across agent networks to improve learning efficiency.105

To further enhance coordination, particularly under partial observability, agents can utilize explicit106
communication. Communication channels allow agents to exchange information directly. Typically,107
agent j generates a message mj based on its internal state or history hj via a learned communication108
policy mj ∼ Cj(·|hj). Agent i’s effective input siinput for decision-making can then incorporate109
received messages m−i from other agents alongside its own local observation siinput = f(oi,m−i).110
Various architectures facilitate this exchange, such as those employing shared network modules for111
message processing (e.g., CommNet) or learning selective communication via gating mechanisms112
(e.g., IC3Net). The structure of communication, dictating which agents can exchange messages, is113
frequently modeled using graph representations.114

3.2 Implicit Communication via Graph Neural Networks115

Communication can also be learned implicitly through structured feature aggregation. As ex-116
plored in Li et al. (2020) and utilized in our experiments, Graph Neural Networks (GNNs) offer117
a powerful mechanism for this. Instead of learning explicit messages, agents first process their118
local observations oit to generate feature embeddings xi

t ∈ RF . These are stacked into a matrix119
Xt = [x1

t , . . . , x
N
t ]T ∈ RN×F . The GNN operates over a dynamic communication graph repre-120

sented by an adjacency matrix (or Graph Shift Operator) St ∈ RN×N , where [St]ij = 1 if agent j121
can transmit to agent i at time t. (typically based on proximity).122

The core mechanism is a graph convolution layer. For a single layer GNN transforming input fea-123
tures Xin ∈ RN×F to output features Xout ∈ RN×G, the operation can be defined as shown in124
Equation 2:125

Xout = σ

(
K−1∑
k=0

Sk
t XinAk

)
(2)
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Here, Sk
t Xin represents features aggregated from the k-hop neighborhood, effectively requiring k126

rounds of message passing or communication exchanges. K is the maximum communication hop127
count (filter size) defining the spatial receptive field of the graph convolution. Ak ∈ RF×G are128
learnable weight matrices specific to hop k, transforming and combining features across hops and129
dimensions. σ(·) is a non-linear activation function applied element-wise. For multi-layer GNNs (L130
layers), this operation is cascaded, as described by Equation 3:131

Xl = σ[Al(Xl−1;St)] for l = 1, . . . , L (3)

where X0 is the input to the first layer and Al denotes the graph convolution operation at layer l.132

This GNN architecture learns what information is relevant to share and aggregate from the local133
neighborhood defined by St and K. The resulting aggregated feature vector for agent i, denoted134
[XL]i ∈ RGL (the i-th row of the final layer’s output), captures context from its communicative135
neighbors and serves as the input to its decentralized policy network πi(ai|[XL]i).136

3.3 Power137

The concept of power refers to the influence one agent has over another agent’s decision-making138
and utility. In shared environments, power dynamics play a critical role in determining how agents139
interact and coordinate. Li & Dennis (2024) introduced power as a formal measure, redefining the140
optimization criterion as a combination of expected task return and power utility. By incorporating141
power regularization into the training process, agents can learn policies that are more resilient to142
states where power imbalances make them vulnerable. Specifically, power quantifies the expected143
difference between the current joint policy and a hypothetical joint policy where other agents take144
adversarial actions over k steps.145

Power is closely related to the concept of game security, which evaluates the expected return when146
facing adversarial opponents. In sequential games, the minimax strategy is often used to select the147
best action among the worst possible outcomes. When power dynamics naturally emerge or are148
necessary for completing team tasks, power regularization provides designers with a mechanism to149
control the autonomous behaviors of agents, ensuring they remain robust to adversarial influences.150

The original formulation of power by Li and Dennis, referred to as standard power in this paper,151
estimates the influence agent j has over agent i as follows (Equation 4):152

ρstandard
i:j (πi, πj , s) = Qπi,πj

i (s, ai)− min
aj∈Aj

Qπi,πj

i (s, aj) (4)

Here, Qπi,πj

i (s, ai) represents the expected return for agent i under the joint policy πi, πj , while153

minaj∈Aj Qπi,πj

i (s, aj) represents the worst-case return if agent j takes an adversarial action. In154
cooperative settings, the joint policy π differs from adversarial policies, stabilizing the estimation of155
power.156

To incorporate power into the learning process, the state-value function for agent i is modified to157
include a power regularization term, as shown in Equation 5:158

Vi(s, a) = V π
i (s, a) + λV

π,ρi:j

i (s, a) (5)

Here, V π
i (s, a) is the original state-value function of agent i, and V

π,ρi:j

i (s, a) represents the power159
component, which penalizes states where agent j exerts high influence over agent i. This regular-160
ization can be viewed as a form of reward shaping, where the power measure is used to guide agents161
toward policies that are less vulnerable to adversarial influence.162

4 Power Regularization Over Communication163

Learning communication in cooperative settings can lead to more efficient coordination and strong,164
mutually dependent relationships among agents. However, misaligned agents can exploit these de-165
pendencies through sensory manipulation over the communication medium. Given the potential166
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misuse of the communication medium, it is important to address how much dependency an agent167
delegates to other agents through the communication channel or protocol. Furthermore, it is im-168
perative to ask how much dependency an agent should delegate to the communication medium,169
regardless of who uses the communication medium. In our work, we train policies to be more170
resilient to misaligned communication and miscommunication through adversarial training. Adver-171
sarial training is the practice of incorporating a variety of adversarial experiences and adversarial172
communication into training. We propose Communicative Power Regularization (CPR) to improve173
robustness against adverse impacts from misaligned communication by incorporating adversarial174
messages during training. Unlike standard power, which keeps the agent state constant, the com-175
munication message affects the perceived agent state and, therefore, can be viewed as a form of176
state regularization where the proximity of other states consisting of adversarial messages affects its177
perceived utility, similar to that of stochastic transitions by an environment.178

4.1 Communicative Power Regularization (CPR)179

We define communicative power as the decomposition of power into two components: standard180
power and power of communication. Standard power is the power delegated to other agents without181
leveraging the communication channel or protocol. In contrast, the power of communication is the182
power delegated to other agents over the communication channel or protocol. The total power ρCPR

ij183
that agent j has over agent i is defined as the sum of these two components (Equation 6):184

ρCPR
ij (πi, πj , si,mj) = ρStandard

ij (πi, πj , si)

+ ρCommunication
ij (πi, πj , si,mj)

(6)

Here, ρStandard
ij (πi, πj , si) represents the standard power, which quantifies the influence agent j has185

over agent i through actions alone, and ρCommunication
ij (πi, πj , si,mj) represents the power of com-186

munication, which quantifies the influence agent j has over agent i through communication.187

The communicative power ρCPR
ij is defined as shown in Equation 7:188

ρCPR
ij (πi, πj , si,mj) =Qπi,πj

i (s,mj , ai, si
′
,mj′)

− min
aj∈Aj

Qπi,πj

i (si,mj
adv, a

i, si
′
,mj′)

(7)

This measures the difference in agent i’s expected return when agent j takes an adversarial action189
and sends an adversarial message mj

adv compared to when agent j follows the joint policy.190

Standard power can directly regulate misaligned communication in scenarios where communications191
are considered actions in the action space. However, its effectiveness in regularizing state-related192
misaligned communication assumes that appropriate variance is introduced into training, such as si-193
multaneously learning a communication policy with an environment policy. Communicative power194
incorporates adversarial messages, whether they are individually sent or aggregated. This is par-195
ticularly important in cases where individual messages are not misaligned but the aggregation of196
messages is misaligned.197

In the traditional approach, the methodology does not provide direct defense mechanisms against198
adversarial attacks that specifically exploit model parameterization. Adversaries perform adversar-199
ial attacks to craft and inject adversarial samples, which usually target a model’s parameterization200
(e.g., a neural network’s decision boundary). However, some state-actions performed by certain201
agent roles contribute more to the environment’s expected utility than others, which finite-budget202
adversaries often consider. To address these challenges, we propose a framework that explicitly203
accounts for the influence of communication on power dynamics, ensuring robustness against both204
misaligned communication and adversarial exploitation of model parameterization.205

The subsequent expressions are adapted from Li & Dennis (2024) to align with our proposed setting.206
To incorporate power into the learning process, the state-value function for agent i is modified to207
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include a power regularization term, as shown in Equation 8:208

Vi(s, a) = V π
i (s, a) + λV

π,ρij

i (s, a) (8)

Here, V π
i (s, a) is the original state-value function for the task, and V

π,ρij

i (s, a) represents the power209
component, which penalizes states where other agents exert influence over agent i through both ac-210
tions and communication. The parameter λ is a scalar that controls the degree of power regulariza-211
tion over the expected return.212

Another approach involves applying both standard power and power of communication separately to213
enable individualized penalization of states where other agents exert greater control and penalization214
for states where there is excessive reliance on communicated messages.215

The power regularization term V
π,ρij

i (s, a) is defined as the sum of power rewards Rpower
i (st, π)216

over states starting from s reached by unrolling the policy π, as given by Equation 9:217

V
π,ρij

i (s, a) =

T∑
t=0

Rpower
i (st, π) (9)

In the 2-agent setting, the power reward Rpower
i (s, π) is defined as shown in Equation 10:218

Rpower
i (s, π) = −ρCPR

ij (πi, πj , si,mj) (10)

This indicates that the power reward penalizes the influence agent j has over agent i through both219
actions and communication in the state s. In settings with more than two agents, the power reward220
captures the strongest individual influence that any other agent j exerts on agent i, as defined in221
Equation 11:222

Rpower
i (s, π) = −max

j ̸=i
ρCPR
ij (πi, πj , si,mj) (11)

By applying a maximization, this formulation emphasizes the worst-case dependency, making the223
regularization more sensitive to the most dominant external influence.224

Our definition of communicative power is to further specify how power is allocated in the presence225
of a communication medium. This is in contrast to standard power, which makes no distinction226
over how power is distributed over coordinating devices or mechanisms. It is within the designer’s227
discretion whether communication is appropriate for a cooperative task.228

5 Experiment Results229

We evaluate CPR in the Grid Coverage (Blumenkamp & Prorok, 2020) (GC) environment. This set-230
ting allows us to assess CPR’s effectiveness in a scenario where cooperative agents must coordinate231
effectively while being resilient to misaligned communication from adversarial entities.232

Grid Coverage. To evaluate the effectiveness of Communicative Power Regularization (CPR) in233
mitigating the effects of adversarial communication, we conducted experiments within the non-234
Convex Coverage map from the Adversarial Comms repository (Blumenkamp & Prorok, 2020).235
This environment challenges a team of cooperative agents to maximize area coverage on a grid236
map while contending with explicit adversarial agents designed to disrupt cooperative performance237
through the communication channel. Agents operate with limited local observations and commu-238
nication ranges, utilizing a CNN-GNN-MLP architecture to process environmental input, exchange239
messages via the GNN, and select actions using the MLP. Detailed experimental configuration pa-240
rameters for this environment are provided in Appendix A (Table 2).241

Our evaluation directly compares the performance of cooperative MARL agents trained with CPR242
against baseline agents trained without CPR. Both sets of agents were evaluated over 100 trials in243
scenarios featuring varying numbers of cooperative and adversarial agents, where all agents, includ-244
ing adversaries, actively communicated throughout the episodes. This setup isolates the impact of245
CPR on the robustness of the cooperative strategy against communication-based attacks.246
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Table 1: Grid Coverage: Cooperative agents’ scores (mean (± std.) over 100 trials), comparing
performance with and without CPR across various [adversarial, cooperative] agent compositions.
Asterisked (*) configurations denote training and evaluation with the same number of agents; others
are scaled in evaluation.

# of agents Cooperative agents’ scores Improvement (%)

With CPR Without CPR

[1, 5]
∗ 257.74 (± 45.93) 218.82 (± 66.40) 18

[2, 4]
∗ 204.92 (± 59.84) 93.56 (± 77.53) 119

[3, 3]
∗ 188.85 (± 88.50) 33.53 (± 39.69) 463

[6, 30] 294.65 (± 31.21) 285.40 (± 43.90) 3

[4, 8] 242.25 (± 53.18) 116.27 (± 83.21) 108

[8, 16] 262.29 (± 46.94) 134.22 (± 86.52) 95

[12, 24] 273.94 (± 39.33) 142.86 (± 89.00) 92

[18, 18] 232.66 (± 77.85) 61.89 (± 64.19) 276

The comprehensive results presented in Table 1 quantitatively demonstrate the significant advan-247
tage conferred by CPR across various team compositions and evaluation scales. We first established248
baseline performance in configurations where training and evaluation agent counts were identical249
([1,5], [2,4], [3,3]). In these scenarios, cooperative agents employing CPR consistently achieved250
substantially higher mean scores, often with reduced variance as indicated by the standard devia-251
tions, compared to baseline agents without CPR. For instance, with 1 adversary and 5 cooperative252
agents ([1,5]), CPR-trained agents achieved a mean score of 257.74, while baseline agents scored253
218.82. This performance gap widened as the proportion of adversarial agents increased; in the chal-254
lenging [3,3] scenario, agents with CPR maintained a strong cooperative score of 188.85, whereas255
the performance of baseline agents severely degraded to 33.53.256

To assess the scalability of the learned policies, models trained on these starred configurations were257
then evaluated on significantly larger teams without retraining. Remarkably, CPR-trained agents258
consistently maintained robust performance levels even in these scaled-up scenarios. For example,259
when scaling from the [2,4] training setup, agents with CPR achieved mean scores of 242.25 for260
[4,8] and 262.29 for [8,16], substantially outperforming baseline agents whose scores were 116.27261
and 134.22, respectively. This trend continued with further scaling; for instance, in the [12,24] setup262
(also scaled from [2,4]), CPR agents scored 273.94 against the baseline’s 142.86. Even in the highly263
scaled [18,18] scenario (from [3,3] training), CPR-enabled agents achieved a mean score of 232.66,264
a stark contrast to the 61.89 achieved by baseline agents. While the score difference in the [6,30]265
configuration (294.65 with CPR vs. 285.40 without, scaled from [1,5]) was more modest, likely266
due to the very low adversary-to-cooperative agent ratio, CPR still provided a clear benefit. The267
overall trend strongly indicates that CPR facilitates the learning of robust coordination strategies268
that generalize effectively and preserve a high level of performance when deployed in larger, more269
complex multi-agent systems.270

Figure 1 provides a more granular view, illustrating the average coverage percentage achieved by271
cooperative agents over episode time steps for [1,5], [2,4], and [3,3] configurations, respectively.272

In all depicted scenarios, the agents trained with CPR (blue curves) consistently outperform the273
baseline agents (red curves). They not only reach a higher final coverage percentage but also exhibit274
faster convergence towards their optimal performance early in the episode. Furthermore, the tighter275
variance bands (shaded regions) associated with the CPR agents suggest that CPR contributes to276
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Figure 1: Grid coverage, average cooperative coverage percentage (over 100 trials) across varying
team compositions, comparing agents trained with CPR (blue) vs without CPR (red).

more stable and reliable performance across trials, reducing the detrimental impact of adversarial277
interference.278

Synthesizing these findings, both the aggregate scores and the temporal coverage dynamics unequiv-279
ocally show that CPR enhances the ability of cooperative agents to maintain effective coordination280
and achieve superior performance in the presence of adversarial communication. By regularizing281
the power or influence of messages, CPR fosters more robust communication strategies that are less282
susceptible to manipulation. This validation in the complex Grid Coverage task, featuring decentral-283
ized control and explicit adversaries, underscores the practical value of CPR for developing resilient284
multi-agent systems.285

A key concern is that CPR might inadvertently lead agents to avoid communication to prevent penal-286
ties. To investigate this, we conducted an ablation study and evaluated 5 CPR-trained cooperative287
agents, comparing their performance with active communication versus communication explicitly288
disabled. The results (detailed in Appendix B, Figure 2) clearly refute this concern. Agents uti-289
lizing communication (blue triangles) significantly outperform the same agents operating without290
it (orange circles), achieving faster score accumulation and a higher final score. This confirms that291
CPR-trained agents do not abandon communication but learn to use it robustly, leveraging it for292
improved coordination and performance, thus demonstrating that CPR encourages resilient commu-293
nication strategies rather than avoidance.294

6 Conclusion295

This work tackled the inherent vulnerability of communicating MARL systems where reliance on296
information exchange can be exploited by misaligned agents. We argued that prior work on power297
regularization, focused on action-based influence, inadequately captures the risks associated with298
delegating control through communication protocols. To address this, we introduced Communica-299
tive Power Regularization (CPR), a method to enhance MARL system robustness against misaligned300
communication by penalizing over-reliance on communication channels and increasing the self-301
autonomy of agents. Evaluations in the Grid Coverage environment demonstrated CPR’s ability to302
significantly improve cooperative performance and resilience in adversarial communication scenar-303
ios, without sacrificing communication when beneficial. While CPR involves a trade-off between304
robustness and optimal cooperative performance, it provides a practical framework for developing305
more secure and reliable cooperative MARL systems. Future work could focus on developing adap-306
tive CPR frameworks, for instance by employing an adaptive Power Regularization Factor (λ), and307
on addressing heterogeneous trust dynamics. CPR offers a valuable step towards deploying resilient308
multi-agent systems in challenging real-world environments.309

8



Robust Coordination under Misaligned Communication via Power Regularization

A Grid Coverage: Experimental Configuration Parameters310

This appendix details the experimental configuration parameters used for the Grid Coverage envi-311
ronment, as referenced in Section 5.312

Table 2: Grid Coverage: Experimental Configuration Parameters

Description Value
Episode max timestep 345
Communication range 16

Observation range 8

Reward
+1 for visiting a previously
uncovered cell; 0 otherwise

Agent actions up, down, left, right, stay
World shape 24× 24

Cooperative training 20 million time steps
Adversarial training 20 million time steps

Power regularization factor (λ) 0.3

B Grid Coverage: Ablation Study on Communication313

To address the concern that Communicative Power Regularization (CPR) might inadvertently incen-314
tivize agents to cease communication, we conducted an ablation study. This study, referenced in315
Section 5, compared the performance of five CPR-trained cooperative agents in the Grid Coverage316
environment under two conditions: (1) with their standard learned communication enabled, and (2)317
with their ability to send or receive messages explicitly disabled.318

Figure 2 presents the cumulative average scores over 100 trials for these two conditions. The results319
demonstrate that agents actively utilizing their learned communication protocols achieve signifi-320
cantly better performance than when communication is unavailable.321
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Figure 2: Grid coverage, cumulative average score of CPR-trained agents (5 cooperative, 100 trials),
comparing performance with (blue triangles) and without (orange circles) communication.
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