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ABSTRACT

Open-Vocabulary Object Detection (OVOD) aims to leverage the generalization
capabilities of pre-trained vision language models for detecting objects beyond the
trained categories. Existing methods mostly focus on supervised learning strate-
gies based on available training data, which might be suboptimal for data-limited
novel categories. To tackle this challenge, this paper presents a Hierarchical
Multimodal Knowledge Matching method (HMKM) to better represent novel
categories and match them with region features. Specifically, HMKM includes a
set of object prototype knowledge that is obtained using limited category-specific
images, acting as off-the-shelf category representations. In addition, HMKM also
includes a set of attribute prototype knowledge to represent key attributes of cat-
egories at a fine-grained level, with the goal to distinguish one category from its
visually similar ones. During inference, two sets of object and attribute prototype
knowledge are adaptively combined to match categories with region features. The
proposed HMKM is training-free and can be easily integrated as a plug-and-play
module into existing OVOD models. Extensive experiments demonstrate that our
HMKM significantly improves the performance when detecting novel categories
across various backbones and datasets.

1 INTRODUCTION

Object detection is a core computer vision task that involves localizating and classifying objects in
images (Ren et al., 2015; Lin et al., 2017; He et al., 2017; Cai & Vasconcelos, 2018). Traditional
methods are limited to predefined categories, which makes them less practical in real-world setting.
Open-Vocabulary Object Detection (OVOD) models (Kamath et al., 2021; Li et al., 2022; Cai et al.,
2022) expand the range of detectable categories using pre-trained Vision Language Models (VLMs)
to align visual region features with textual category features.

Existing OVOD methods are mostly training-based, focusing on knowledge distillation from
VLMs (Gu et al., 2022; Wang et al., 2023b; Wu et al., 2023a), incorporating learned prompts
into classifiers (Du et al., 2022; Feng et al., 2022; Wu et al., 2023b), improving region-text align-
ment (Zhong et al., 2022; Lin et al., 2023; Ma et al., 2024a), and generating detailed textual descrip-
tions of categories (Kaul et al., 2023; Jin et al., 2024; Kim et al., 2024). The key to their success is
the supervised learning on large-scale image-text pair datasets, which can better match region fea-
tures and textual category features. However, these methods might have the following limitations, as
shown in Figure 1a. 1) They struggle to learn effective representations for novel categories, resulting
in lower performance compared to the average performance on base categories, due to the limited
number of pairwise samples. 2) Even with additionally generated textual descriptions, detection of
novel categories remains much lower than the average on base categories, as these descriptions fail
to capture fine-grained visual details. How to deal with these problems is very important but rarely
investigated.

In contrast to existing methods, human brains do not need such a large number of pair samples for
supervised learning. They learn and comprehend novel concepts mainly using multimodal knowl-
edge stored in the long-term memory, in which visual objects and attributes representations are
associated with linguistic categories in a prototypical manner (Tulving, 1972; Bi, 2021). As shown
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(a) F1 Scores for novel categories on COCO dataset.
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(b) Illustration of OVOD and brain mechanisms.

Figure 1: Limitations of OVOD in detecting novel categories and and a comparative illustration with
the learning mechanisms of the human brains. (a) Presents the F1 score statistics across different
settings for novel categories, based on the recent OVOD method VLDet (Lin et al., 2023). (b)
Compares the mechanisms of OVOD and human brains for learning novel categories.

in Figure 1b, human brains can use multimodal knowledge to represent novel categories from lim-
ited images, and accurately detect them off-the-shelf. Although there are works (Wang et al., 2020a;
Zhang et al., 2021; Ding et al., 2022) attempt to model the knowledge for other tasks, their knowl-
edge modeling has the following limitations that are not suitable for OVOD. 1) Their knowledge can
only be used during the training process of other supervised learning models, which is unsuitable for
data-limited novel categories. 2) Their knowledge aligns each category to multiple object samples
in a one-to-many manner, which could lead to confusion when dealing with objects with similar
appearances.

To deal with the issues, this work proposes a Hierarchical Multimodal Knowledge Matching method
(HMKM), which can be used as an off-the-shelf module for representing novel categories and then
matching them with region features. Initially, it selects a few images per category to build a ob-
ject prototype knowledge set acting as off-the-shelf category representations for object-level match-
ing. To further distinguish categories with similar appearances, the HMKM additionally creates an
attribute prototype knowledge set by randomly cropping category images and clustering their at-
tributes. In this way, attribute-level matching is performed to uncover fine-grained visual details. In
summary, the proposed HMKM is a hierarchical matching strategy: object-level and attribute-level.
This hierarchical multimodal knowledge can effectively represent categories and supplement textual
descriptions. By combining the matching scores from two-level matchings, the detection capability
for novel categories could be improved. Our HMKM as a plug-and-play module allows training-free
integration into existing OVOD models during inference, which can consistently improve their per-
formance. We validate our HMKM on the COCO and LVIS datasets, extensive experiments clearly
demonstrate its effectiveness.

Our contributions are summarized as follows. 1) We develop a hierarchical multimodal knowledge
matching method named HMKM, which can not only detect novel categories in a training-free man-
ner, but also be easily integrated into existing OVOD models for further performance improvements.
2) We propose using object prototype knowledge for object-level feature alignment and attribute
prototype knowledge for fine-grained matching. 3) Extensive experiments on the COCO and LVIS
datasets demonstrate that our method consistently improves the performance when detecting novel
categories across various backbones and datasets.

2 RELATED WORKS

Few-Shot Object Detection. Few-shot object detection aims to enhance a model’s detection capa-
bilities using only a few samples with annotated bounding box. Various methods have been proposed

2
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to push forward research in this direction (Li et al., 2021; Lee et al., 2022; Wu et al., 2021). Current
methods (Wang et al., 2020b; Qiao et al., 2021; Sun et al., 2021; Kaul et al., 2022) mainly improve
detection performance of few-shot categories by fine-tuning the detector’s parameters. These meth-
ods differ from our work focusing on the open-vocabulary object detection, where samples with
bounding box annotations for novel categories are not used to update the model’s parameters during
training.

Open-Vocabulary Object Detection. Open-vocabulary object detection leverages the generaliza-
tion capabilities of pre-trained VLMs to enhance object detection, allowing it to identify a wide range
of novel categories and reduce laborious human annotations. Recent research in OVOD focuses on
several directions as follows. Knowledge distillation methods (Gu et al., 2022; Wang et al., 2023b;
Wu et al., 2023a) align region features with VLMs-derived features, seeking to transfer VLMs’ mul-
timodal representation capabilities to the model. Prompting modeling approaches (Du et al., 2022;
Feng et al., 2022; Jin et al., 2024; Kaul et al., 2023) refine the textual embedding space of VLMs to
better match with region features, incorporating richer prompts to transfer its knowledge to down-
stream tasks more easily. Region-text alignment methods (Zareian et al., 2021; Zhong et al., 2022;
Li et al., 2022; Lin et al., 2023; Ma et al., 2024a; Wang et al., 2023a) use large-scale image-text
datasets under weak supervision to expand their detection vocabulary. Unlike the above training-
based methods, our research aims to leverage hierarchical multimodal knowledge to improve the
ability to detect novel categories without extra training.

Multimodal Knowledge. Currently, several studies explore to model multimodal knowledge for
various vision and language understanding tasks. Ding et al. (Ding et al., 2022) retrieve related mul-
timodal knowledge from existing knowledge graphs, effectively linking visual objects with factual
answers in the task of fact-based visual question answering. Wang et al. (Wang et al., 2020a) extract
useful knowledge from multimodal data to identify discriminative parts of objects in the task of
few-shot learning. Zhang et al. (Zhang et al., 2021) propose a concept-relation graph, composed of
recursively combined semantic concepts, for the task of visual grounding. Different from above us-
ing image-word multimodal knowledge, Huang et al. further introduces more accurate region-word
multimodal knowledge to improve image-text matching (Huang et al., 2022). Unlike these meth-
ods, we employ multimodal knowledge to a different task as OVOD. What’s more, the multimodal
knowledge we constructed is hierarchical including both object-level and attribute-level and could
be easily integrated into the existing OVOD models in a training-free manner.

3 METHOD

In this section, we will explain the proposed HMKM for the task of OVOD. Before we dive into
HMKM, we briefly introduce the OVOD task in Section 3.1.

The overall pipeline of the proposed HMKM is illustrated in Figure 2. HMKM comprises two-level
matchings: 1) object prototype matching (OPM), which acts as off-the-shelf category representa-
tions and can match them with region features, and 2) attribute prototype matching (APM), which
represents key attributes of categories at a fine-grained level and enhances the matching of visually
similar categories. During inference, the proposed HMKM can also be used to improve the per-
formance of OVOD models in a plug-and-play manner. The details of matchings are presented in
Section 3.2 and Section 3.3, respectively.

3.1 PRELIMINARIES

Given an image I ∈ R3×h×w, object detection aims to locate objects, represent each with bounding-
box coordinates bj ∈ R4 and assign a class label cj ∈ Ctest. Traditional models train and test on
the same category set, i.e., Ctest = Cbase, while open-vocabulary object detection expands the
test set to include both base and novel categories, i.e., Ctest = Cbase ∪ Cnovel. Most recent open-
vocabulary object detectors use a two-stage architecture. Initially, a learned region proposal network
(RPN) is used to generate M region proposals {zm}Mm=1 = ΦRPN (I) from an image I , where each
zm ∈ RD is a D-dimensional region-of-interest (RoI) feature embedding. Subsequently, a bounding
box regressor predicts location coordinates for each region as b̂m = ΦREG(zm). Finally, the open-
vocabulary classifier ΦCLS(·) computes classification scores using the cosine similarity, denoted as
sm(c, zm) = ⟨wc, zm⟩, where each wc is encoded by a VLM text encoder such as CLIP (Radford

3
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(c) Inference pipeline with HMKM.

Figure 2: Overall pipeline of HMKM. (a) OPM: It sequentially collects category names and their
corresponding images, uses a frozen OVOD detector to extract image features, and obtains a ob-
ject prototypical representation for each category by feature averaging. The object-similarity is
computed through matrix multiplication between the category’s prototype and the image’s region
features. (b) APM: It sequentially computes the similarity between each region feature and the cat-
egory’s attribute cluster features, selects the top-k most similar attributes, weights these attributes
by their similarity, and multiplies them by the category’s object prototype to determine the attribute
matching similarity score. (c) Inference pipeline with HMKM. First, inputing an image into the
OVOD detector to extract multiple region features. Then, processing each region feature through
OPM and APM to calculate object-similarity and attribute-similarity scores. Finally, combining
these scores to assign the highest similarity category as the prediction for each region.

et al., 2021), representing class name embeddings in Ctest. For the m-th region, the final predicted
category ŷm can be obtained using:

ŷm = arg max
c∈Ctest

⟨wc, zm⟩ (1)

The overall open-vocabulary detection process can be formulated as follows:

{ŷ1, . . . , ŷn} = ΦCLS ◦ ΦREG ◦ ΦRPN ◦ ΦENC(Ii) (2)

where Ii denotes the i-th input image and {ŷ1, . . . , ŷn} represents the set of predicted outputs. Our
work primarily focuses on enhancing the classification process of the open-vocabulary classifier
ΦCLS(·).

3.2 OBJECT PROTOTYPE MATCHING

As illustrated in Figure 2a, we sequentially introduce the collection of category word and image, the
representation of category object prototype, and the matching of category object prototype.

Category Word and Image Collection. Assuming object detection test set contains Ctest cate-
gories, we align each category with the ImageNet-21k repository (Deng et al., 2009) using WordNet
synsets (Miller, 1995). For each category in Ctest, we randomly select T images. Intuitively, com-
mon categories like “dog” and “cat” have many images to form effective object prototypes due to
their diverse subtypes. Conversely, less common categories such as “banjo”, which have fewer im-
ages, posing challenges to object prototype representation. However, our experiments show that
even using limited images can still generate effective object prototypes.

Category Object Prototype Representation. For each category, semantically related objects in
various regions usually have diverse visual appearances, potentially causing confusion. Instead
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of linking each category to multiple related regions in a one-to-many manner, we represent each
category as an object prototype to alleviate appearance variation issues. As illustrated in Figure 2a,
for category i, we obtain its object prototype representation pi by averaging all related image features
derived from the frozen OVOD backbone Φdet:

pi =
1

T

T∑
j=1

Φdet(Ij) (3)

where Ij refers to the j-th image of the category, and T denotes the number of images. As a result,
we obtain the paired object prototype knowledge {(ci, pi)}Si=1 where ci is the name of the i-th
category in Ctest, pi is the corresponding object prototype representation, and S is the number of
categories in Ctest.

Category Object Prototype Matching. For the m-th region feature zm in an image I , the cor-
responding object prototype representation for each detected category is extracted from the object
prototype knowledge set using its category name, and the object-level similarity for all categories is
computed. The formula for category object prototype matching is as follows:

Sprot(pc, zm) = ⟨pc, zm⟩ (4)

where ⟨·, ·⟩ denotes cosine similarity.

3.3 ATTRIBUTE PROTOTYPE MATCHING

The aforementioned object prototype matching primarily focuses on object-level matching, which
might struggle to distinguish visually similar categories. To address this issue, we introduce at-
tribute prototype matching to enhance the fine-grained matching. As illustrated in Figure 2b, we
sequentially introduce the representation of category attribute prototype and the matching of cate-
gory attribute prototype.

Category Attribute Prototype Representation. After collecting images for each category, we can
further construct attribute prototype knowledge based on them. Unlike creating object prototypes,
finding multiple informative attributes for each category, is more complex and requires more ref-
erence images. It is because a single image often fails to display all the necessary attributes of an
object. Therefore, we increase the number of images M used for generating attribute prototypes for
each category. In particular, by performing N random croppings on each image within a category,
N attribute regions are extracted per image. Consequently, for a category with M images, a total of
M × N attribute regions are obtained. Subsequently, using the visual backbone Φdet, features for
these M ×N attribute regions are extracted individually. Finally, by employing a clustering method
and specifying the number of clusters W , cluster centers among the W attribute region features are
identified, serving as the categorical attribute prototypes. Note that we empirically demonstrate that
the attribute prototypes obtained through clustering are more stable and effective than those con-
structed using the individual attribute regions directly. The attribute prototype representation ai for
category i is defined as follows:

ai = Cluster
(
{Φdet (Crop(Im,n))}M,N

m=1,n=1

)
(5)

where ai is a 2D vector consisting of W separate 1D vectors for attribute prototype representations,
denoted by {ai1, ai2, . . . , aiW }. The hierarchical multimodal knowledge, including attribute proto-
type knowledge, can further be formulated as a set of triples: {(ci, pi, ai)}Si=1 where ci is the name
of the i-th category in Ctest, pi is the corresponding object prototype representation, and S is the
number of categories in Ctest.

Category Attribute Prototype Matching. Due to each category containing multiple attribute pro-
totypes with different importances, it is challenging to achieve matching results directly using simple
cosine similarity. To address this, we propose a top-K attribute prototype matching method. First,
computing the similarity between the region feature zm and the category’s multiple attribute pro-
totypes as {⟨ac,1, zm⟩, ⟨ac,2, zm⟩, . . . , ⟨ac,w, zm⟩}Ww=1. Then, selecting the top-K similar attribute
prototypes, assuming that these K attribute prototypes can approximately represent the major at-
tribute features of the region, and weighting these top-K attribute prototypes based on their sim-
ilarity as

∑K
k=1⟨ac,k, zm⟩ · ac,k. Finally, the weighted similarities of each attribute prototype is
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multiplied by the object prototype of the category pc to evaluate the importance of each attribute
prototype in relation to the category’s prototype representation. The final result is used as the at-
tribute prototype matching similarity score. The similarity score between the m-th region feature
zm and the attribute prototypes of category c can be expressed as follows:

Sattr(pc, ac, zm) =

(
K∑

k=1

⟨ac,k, zm⟩ · ac,k

)
· pc (6)

The final matching strategy for the m-th region feature zm in the image I , combining object proto-
type and attribute prototype matching, is as follows:

ŷm = arg max
c∈Ctest

(⟨wc, zm⟩+ λpSprot(pc, zm) + λaSattr(pc, ac, zm)) (7)

where λp and λa control the relative importance of the object prototype matching score and the
attribute prototype matching score, respectively.

4 EXPERIMENTS

In this section, we briefly explain the experimental setup, including datasets and implementation
details. Next, we evaluate the performance of HMKM compared with various models.

Datasets. We evaluated HMKM on two widely adopted datasets, i.e., COCO (Lin et al., 2014)
and LVIS (Gupta et al., 2019). For the COCO dataset, we adopt the OVOD setting of OVR-
CNN (Zareian et al., 2021), splitting the object categories into 48 base categories and 17 novel
categories. It includes 118k images, with 107,761 designated for training and 4,836 for validation.
Following VLDet (Lin et al., 2023), we report mean Average Precision (mAP) at an IoU of 0.5. For
the LVIS dataset, following the OVOD setting of ViLD (Gu et al., 2022), we split the object cate-
gories into 866 base categories and 337 novel categories, and report the mask AP for all categories.
For brevity, we denote the open-vocabulary benchmarks based on COCO and LVIS as OV-COCO
and OV-LVIS.

Implementation Details. In our experiments, we employ models in recent studies as the baselines
and integrate our HMKM method on them in a training-free manner for evaluations. For each
OVOD model, we utilize its detector backbone to extract the corresponding object and attribute
prototypes, ensuring the alignment between the feature space of knowledge and that of the model.
The number of category images for generating object prototype knowledge T is empirically set to 10,
while M for attribute prototype knowledge is empirically set to 50. Following MM-OVOD (Kaul
et al., 2023), the primary source of category images is ImageNet-21k (Deng et al., 2009). If the
number is insufficient, we randomly selecting additional images from the training sets of Visual
Genome (Krishna et al., 2017) and LVIS. The random crop ratio employed for extracting attribute
regions from category images ranges from 0.4 to 0.6. The clustering method used for category
attribute prototype representation is K-means++ (Arthur & Vassilvitskii, 2006). The number of
clusters W in the production of attribute prototypes is set to 15. The λp and λa for object prototype
matching and attribute prototype matching are set to 0.25 and 0.3 for OV-COCO, 0.2 and 0.05 for
OV-LVIS, respectively. All expriments are conducted on 4 NVIDIA V100 GPUs. More details can
be found in the Appendix.

4.1 BENCHMARK RESULTS

We evaluate the proposed HMKM on COCO and LVIS datasets in the OVOD setting and compare
with various state-of-the-arts. The results are reported in Table 1 and Table 2.

OV-COCO Benchmark. As shown in Table 1, integrating HMKM can further improve the perfor-
mance of various open-vocabulary detectors by incorporating hierarchical multimodal knowledge at
both the object and attribute levels. For the Detic (Zhou et al., 2022), which uses weak supervision
from image classification data to expand the detector’s vocabulary, HMKM improves performance
by 1.7APnovel

50 . For Codet (Ma et al., 2024a), which explores object co-occurrence to find region-
word alignments in open-vocabulary detection, HMKM improves performance by 2.4APnovel

50 . For
BARON (Wu et al., 2023a), which develops a neighborhood sampling strategy to group contextually
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Table 1: Compared with existing OVOD models on COCO dataset with the RN50-C4 and RN50-
FPN backbones. The APnovel

50 is a primary indicator to reflect the performance. The best results are
highlighted in bold.

Method Supervision Backbone APnovel
50 APbase

50 APall
50

Detic (Zhou et al., 2022) Image RN50-C4 27.8 51.1 44.9
+ HMKM Image RN50-C4 29.5 50.8 45.3

CoDet (Ma et al., 2024a) Caption RN50-C4 30.6 52.5 46.8
+ HMKM Caption RN50-C4 33.0 52.3 47.3

VLDet (Lin et al., 2023) Caption RN50-C4 32.0 50.6 45.8
+ HMKM Caption RN50-C4 34.2 50.4 46.1

BARON (Wu et al., 2023a) CLIP RN50-FPN 34.0 60.4 53.5
+ HMKM CLIP RN50-FPN 35.7 60.2 53.8

Table 2: Compared with existing OVOD models on LVIS dataset with the ResNet50 and Swin-B
backbones. The APm

novel is a primary indicator to reflect the performance. The best results are
highlighted in bold.

Method Backbone APm
novel APm

c APm
f APm

all

Detic (Zhou et al., 2022) RN50 21.3 30.9 35.5 31.0
+ HMKM RN50 22.1 30.7 35.3 31.0

VLDet (Lin et al., 2023) RN50 21.7 29.8 34.3 30.1
+ HMKM RN50 23.2 29.6 34.1 30.3

CoDet (Ma et al., 2024a) RN50 23.7 30.6 35.4 31.3
+ HMKM RN50 24.3 30.3 35.1 31.1

MM-OVOD (Kaul et al., 2023) RN50 27.2 33.2 35.6 33.1
+ HMKM RN50 28.0 33.1 35.4 33.1

VLDet (Lin et al., 2023) Swin-B 26.3 39.4 41.9 38.1
+ HMKM Swin-B 29.2 39.1 41.7 38.4

Detic (Zhou et al., 2022) Swin-B 33.8 41.3 42.9 40.7
+ HMKM Swin-B 35.4 41.0 42.7 40.7

related regions and uses contrastive learning to align these with pre-trained CLIP, HMKM improves
performance by 1.7APnovel

50 . After integrating HMKM, these OVOD models exhibit a slight perfor-
mance decline on base categories due to overfitting during training. However, they still adequately
recognize base categories while significantly enhance detection of novel categories, which is crucial
in the OVOD setting and leads to an improvement in the overall APall

50 . Our HMKM consistently
enhances the performance across various training schemes and supervision types, demonstrating its
general applicability to OVOD models.

OV-LVIS Benchmark. Table 2 presents performance comparisons on the LVIS dataset, demon-
strating that our method improves performance in various cases. For models using ResNet50 as the
backbone, our method consistently achieves an improvement of approximately 1.0APm

novel. Specif-
ically, MM-OVOD (Kaul et al., 2023), which builds multimodal classifiers using image exemplars
and text descriptions, still gains an additional 0.8APm

novel with our HMKM. For models using Swin-
B as the backbone, integrating our approach with VLDet (Lin et al., 2023) and Detic (Zhou et al.,
2022) increases accuracy for novel categories by 2.9APm

novel and 1.6APm
novel, respectively. The in-

tegration of HMKM into OVOD models significantly enhances the essential APm
novel, while largely

preserving recognition performance for base categories. The results show that our method is able
to improve the performance of existing state-of-the-art models across multiple datasets and various
backbones, further demonstrating its effectiveness and generalizability.

4.2 ABLATION STUDY

Effectiveness of Different Components. We conduct ablation studies on OPM and APM, by inte-
grating them into various baselines on the LVIS dataset to assess each matching’s effectiveness. As
shown in Table 3, both matching strategies consistently improve novel categories detection while

7
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Table 3: Ablation study of HMKM on LVIS dataset.

Method OPM APM APm
novel APm

c APm
f APm

all

VLDet (Lin et al., 2023)

26.3 39.4 41.9 38.1
✓ 27.2 39.3 41.8 38.2

✓ 28.7 39.2 41.8 38.4
✓ ✓ 29.2 39.1 41.7 38.4

Detic (Zhou et al., 2022)

33.8 41.3 42.9 40.7
✓ 34.4 41.1 42.7 40.6

✓ 35.1 41.1 42.8 40.7
✓ ✓ 35.4 41.0 42.7 40.7

preserving accuracy for base categories. Specifically, OPM and APM increase the APm
novel for

VLDet (Lin et al., 2023) and Detic (Zhou et al., 2022) by 2.4/0.9 and 1.3/0.6, respectively. OPM
enhances the detection of novel categories through object prototype matching to overcoming chal-
lenges in visual representation learning, while APM complements this by focusing on attribute pro-
totype matching for novel categories, together improving the detection performance. Our method,
HMKM, which integrates OPM and APM, is able to surpass the performance of either matching
strategy used independently.

Figure 3: Comparing model performance on
novel AP using object prototypes with differ-
ent numbers of images.

Object Prototypes with Different Numbers of Im-
ages. As shown in Figure 3, increasing the number
of images for object prototype representation shows
a similar trend across several models. With just a
single image, there is a noticeable improvement, in-
dicating that one-image object prototype is already
effective. Using more than 5 or 10 images, the novel
AP becomes saturated, and further increasing the
number to 50 or 100 images does not lead to addi-
tional improvement. This suggests that 5 to 10 im-
ages are sufficient for the model to effectively recog-
nize novel categories.

Effectiveness of Attribute Clustering. As shown
in Table 4, using individual local regions as attribute
prototypes even slightly reduces 0.1APnovel

50 com-
pared with not using attribute prototype matching.
However, employing cluster centers as attribute pro-
totypes increases 0.7APnovel

50 . This indicates that in-
dividual local regions as attribute prototypes might
introduce noise, while cluster centers are more ro-
bust and representative.

Top-k in APM. Top-k is a key parameter in attribute prototype matching, determining how many of
the most similar attribute prototypes are selected for attribute-level similarity measurement. Based
on the CoDet model, we conduct experiments on the COCO dataset, as shown in Table 5. The
experiments show that performance initially increases with k and then decreases, reaching a peak at
k = 2 for COCO, which we have adopted as the default setting.

Table 4: Effectiveness of Attribute Clustering.

Strategy APnovel
50 APbase

50 APall
50

w/o 32.3 52.5 47.2
individual 32.2 52.4 47.2

cluster 33.0 52.3 47.3

Table 5: Top-k in APM.

Top-k APnovel
50 APbase

50 APall
50

w/o 32.3 52.5 47.2
1 32.8 52.4 47.3
2 33.0 52.3 47.3
5 32.8 54.3 47.2
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Table 6: Comparison with other methods using images in open-vocabulary detection under the same
training-free setting.

Method APm
novel APm

all

Baseline (Zhou et al., 2022) 33.8 40.7

MM-OVOD* (Kaul et al., 2023) 34.0 40.7
OVMR (Ma et al., 2024b) 34.4 40.9
HMKM 35.4 40.7

Table 7: Comparison of mean inference time per image.

Method Backbone Time (s) APnovel
50

Detic (Zhou et al., 2022) RN50-C4 0.1397 27.8
+ HMKM RN50-C4 0.1415 29.5
CoDet (Ma et al., 2024a) RN50-C4 0.1429 30.6
+ HMKM RN50-C4 0.1439 33.0
VLDet (Lin et al., 2023) RN50-C4 0.1432 32.0
+ HMKM RN50-C4 0.1505 34.3
BARON (Wu et al., 2023a) RN50-FPN 0.1084 34.0
+ HMKM RN50-FPN 0.1095 35.7

4.3 FURTHER ANALYSIS

Training-Free Methods Comparison. In the same training-free setting, we compare our HMKM
with two image-based OVOD models, using the Swin-B version of Detic as a baseline. Notably,
since MM-OVOD is not training-free, we use its classifier as an auxiliary, weighted to Detic’s train-
ing classifier, similar to our HMKM. Results for OVMR are sourced from its original publication.
Table 6 shows that HMKM is able to improve APm

novel by matching representational knowledge
from the model itself with region features, outperforming adaptations like MM-OVOD and OVMR
that modify VLMs classifiers.

Analysis of Inference Time. In our setup, we analyze four OVOD models on the COCO dataset
to determine the impact of integrating HMKM on single-image inference time. Table 7 shows that
HMKM integration slightly increases the inference time by an average of 0.024s, yet it effectively
improve the performance by 2.0APnovel

50 when detecting novel categories.

Table 8: Transfer to other datasets. Evaluating
COCO-trained model on the PASCAL VOC test
set and LVIS validation set using mAP at IoU
0.5, without additional training.

Method PASCAL VOC LVIS

Detic (Zhou et al., 2022) 64.2 8.5
+ HMKM 65.2 9.0

CoDet (Ma et al., 2024a) 65.4 11.1
+ HMKM 66.7 11.6

VLDet (Lin et al., 2023) 65.3 11.5
+ HMKM 66.1 12.2

BARON (Wu et al., 2023a) 65.9 12.1
+ HMKM 66.8 12.7

Table 9: Analysis of multimodal knowledge in-
dependence on COCO dataset. HMKM-Base
denotes that HMKM uses hierarchical multi-
modal knowledge from the base method.

Method APnovel
50 APall

50

Base 1.3 39.3
+ HMKM-Base 3.9 40.0

Detic (Zhou et al., 2022) 27.8 44.9
+ HMKM-Base 29.9 45.3

CoDet (Ma et al., 2024a) 30.6 46.8
+ HMKM-Base 32.3 47.1

VLDet (Lin et al., 2023) 32.0 45.8
+ HMKM-Base 32.8 64.2

Transfer to Other Datasets. To evaluate the generalization ability of our HMKM, we conduct
experiments on transferring COCO-trained models to PASCAL VOC (Everingham et al., 2010) test
set and LVIS validation set without additional training. We replace the class embeddings in the
classifier head of the COCO-trained models with categories from these two datasets and integrate
our HMKM for matching region features. PASCAL VOC includes 20 object categories, of which 9
are absent in COCO, complicating model transfer due to missing supplementary images and domain
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CoDet

+HMKM

VLDet

+HMKM

(a) (b) (c) (d)

Figure 4: The visualization highlights HMKM’s enhancement of novel categories detection on the
COCO dataset compared to CoDet and VLDet. Grey boxes indicate base categories detections,
while other colors denote novel categories. White text signifies correct detections, and red text
indicates misclassifications.

gaps. Meanwhile, LVIS includes 1,203 categories, significantly expanding beyond COCO’s label
range. Experimental results in Table 8 show that integrating HMKM with existing models improves
performance by 1.0APm

50 on PASCAL VOC and 0.6APm
50 in average on LVIS. These evidences

demonstrate that the integrated HMKM effectively enhances the transfer learning performance of
existing models without additional training.

Analysis of Multimodal Knowledge Independence. To validate multimodal knowledge indepen-
dence, we employ a base method using Faster R-CNN (Ren et al., 2015), which is trained on the fully
supervised detection data for COCO base categories with CLIP embeddings as the classifier head.
We extract hierarchical multimodal knowledge from the base method and integrate it into multiple
OVOD models using HMKM, denoted as the HMKM-Base method. As shown in Table 9, HMKM-
Base not only improves the base model’s detection of novel categories but also enhances multiple
OVOD models in an unsupervised manner. For models like Detic and Codet, the improvement is
comparable to or even exceeds that achieved using knowledge from their respective visual back-
bones. This indicates that hierarchical multimodal knowledge can be model-independent to some
extent, further validating the effectiveness of our hierarchical multimodal knowledge representation
and matching approach.

4.4 QUALITATIVE VISUALIZATION

Figure 4 shows that HMKM’s hierarchical multimodal knowledge reasonably improves OVOD mod-
els’ ability by accurately detecting challenging novel categories. With HMKM integrated, CoDet
now can detect previously unnoticed objects, such as a cup and knife in scenario (a), and a keyboard
and cup in scenario (b). Similarly, with HMKM integrated, VLDet can now correctly recognize a
cup previously mistaken for a bowl and a knife previously mislabeled as a fork in scenario (c), and
it can also detect a previously undetected keyboard and cup in scenario (d).

5 CONCLUSION AND FUTURE WORK

In this paper, we have presented HMKM, a training-free method inspired by the learning processes
of human brains, leveraging hierarchical multimodal knowledge to represent novel categories and
improve the capability of existing OVOD models when detecting novel categories. We have built ob-
ject prototype knowledge for object-level matching, complementing the categories’ textual descrip-
tions. To better capture key visual features at the attribute level, we have also developed attribute
prototype knowledge for fine-grained matching. Thus, our method integrates both object-level and
attribute-level matching, significantly enhancing the performance of OVOD models without addi-
tional training, proving effective across various backbones and datasets. In the future, we aim to
explore more effective knowledge representation strategies to reduce reliance on the quantity of im-
ages. Additionally, we plan to investigate adaptive methods for combining matching scores from
object and attribute knowledge without adding extra hyperparameters.
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A APPENDIX

A.1 ANALYSIS OF λp AND λa SELECTION

In this section, we analyze the selection of λp and λa. Based on the ablation studies, object prototype
matching demonstrates a marginal advantage over attribute prototype matching, although the two
strategies share certain similarities. Consequently, in determining the values of λp and λa, we
initially set λa to 0 and systematically adjust λp to identify its optimal value. Once λp is fixed at this
optimal value, we subsequently adjust λa until its optimal value is obtained. Based on Figure 5a,
it can be observed that the impact of λp on Novel AP follows a trend of initially increasing and
then decreasing, with the maximum improvement occurring at λp = 0.25. By fixing λp = 0.25,
Figure 5b further shows that λa = 0.3 yields the highest improvement in Novel AP. Thus, the
optimal values for λp and λa are identified. The experiments are conducted with CoDet as the base
model on the COCO dataset, and similar trends in hyperparameter influence have been observed
across other OVOD models.

(a) λp on the COCO dataset. (b) λa on the COCO dataset.

Figure 5: Analysis of λp and λa selection.

A.2 ANALYSIS OF DIFFERENT ATTRIBUTE CLUSTERING METHODS

As shown in Table 10, the attribute prototype representation exhibits consistent performance across
different clustering methods, showing relatively minor variations in effectiveness. This demonstrates
that our attribute prototype representation is robust to some extent, as it does not rely on any spe-
cific clustering method. Therefore, for simplicity and consistency, we employ the commonly used
KMeans++ as the default attribute clustering method throughout this paper.

Table 10: Analysis of different attribute clustering methods.

Strategy APnovel
50 APbase

50 APall
50

w/o 30.6 52.5 46.8
GMM 31.8 52.5 47.0

KMeans 31.9 52.5 47.1
KMeans++ 32.0 52.5 47.1

Agglomerative 32.1 52.5 47.1

A.3 ANALYSIS OF DIFFERENT NUMBERS OF CLUSTERS

The data presented in Table 11 indicates a clear trend in APnovel
50 as the number of clusters increases.

Initially, from 5 to 15 clusters, there is a noticeable improvement in APnovel
50 , with values rising

from 31.5 to 32.0. However, further increasing the number of clusters beyond 15 does not result in
additional performance gains, as APnovel

50 remains stable at 32.0. Given that the computational cost
of clustering tends to increase with the number of clusters, it is both efficient and effective to select
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15 clusters as the default in this analysis, balancing performance improvement with computational
overhead.

Table 11: Analysis of different numbers of clusters.

Number APnovel
50 APbase

50 APall
50

w/o 30.6 52.5 46.8
5 31.5 52.5 47.0
10 31.8 52.5 47.1
15 32.0 52.5 47.1
20 32.0 54.5 47.1
25 32.0 52.5 47.1

A.4 ATTRIBUTE PROTOTYPES WITH DIFFERENT NUMBERS OF IMAGES

As shown in Table 12, when the number of images increases from 10 to 50, the attribute prototypes
result in an improvement in APnovel

50 . However, when the number of images increases from 50
to 100, there is no further noticeable improvement in APnovel

50 , and the performance even slightly
decline, potentially due to the introduction of noise. Therefore, we use 50 images per category by
default for constructing attribute prototypes.

Table 12: Attribute prototypes with different numbers of images.

Number APnovel
50 APbase

50 APall
50

w/o 30.6 52.5 46.8
10 31.7 52.5 47.0
50 32.1 52.5 47.1

100 31.9 52.5 47.1

A.5 ANALYSIS OF THE CROP RATIO FOR ATTRIBUTE REGIONS

We observed that while attribute prototypes are generally robust to variations in the crop ratio for
attribute regions, they are still affected to some extent. As shown in Table 13, when the crop ratio is
between (0.2, 0.4), the improvement in APnovel

50 is less than in the range of (0.4, 0.6), likely because
the cropped regions are too fine-grained to be distinguishable. Conversely, when the crop ratio is
between (0.6, 0.8), the attribute prototypes become more similar to object prototypes, failing to fully
capture the fine-grained details of attribute matching, resulting in less improvement compared to the
crop ratio range of (0.4, 0.6). Therefore, we adopt a crop ratio of (0.4, 0.6) as the default.

Table 13: Analysis of the crop ratio for attribute regions.

Crop Ratio APnovel
50 APbase

50 APall
50

w/o 32.5 52.5 47.2
(0.2, 0.4) 32.9 52.5 47.3
(0.4, 0.6) 33.1 52.5 47.3
(0.6, 0.8) 33.0 52.3 47.3

A.6 VISUALIZATION OF CATEGORIES IMAGES

In this section, we present a subset of category images used to construct our hierarchical multimodal
knowledge, as shown in Figure 6. It is evident that even within a single category, there are con-
siderable variations, such as differences in lighting, changes in object orientation, and variations in
background elements. However, our approach effectively represents the prototypes of categories in
a hierarchical manner, which can then be integrated into the OVOD models to enhance performance.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 6: Visualization of categories images.

A.7 FURTHER VISUALIZATION OF DETECTION COMPARISON RESULTS

In Figure 7, we visualize the improvements in novel categories detection after integrating HMKM.
In each image set, the left column displays the result from recent OVOD models (e.g., CoDet,
VLDet), while the right column shows the result after HMKM integration. Grey boxes indicate
base categories detections, while other colors denote novel categories. White text signifies correct
detections, and red text indicates misclassifications. Before HMKM integration, models miss many
novel objects, such as an airplane, sink, and skateboard, and misclassify items like a keyboard as a
bench. With HMKM integration, these detection issues are noticeably reduced.

Figure 7: Further visualization of detection comparison results.
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