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Abstract

The Maximum Entropy (Max-Ent) framework has been effectively employed in a
variety of Reinforcement Learning (RL) tasks. In this paper, we first propose a novel
Max-Ent framework for policy evaluation in a distributional RL setting, named
Distributional Maximum Entropy Policy Evaluation (D-Max-Ent PE). We derive a
generalization-error bound that depends on the complexity of the representation
employed, showing that this framework can explicitly take into account the features
used to represent the state space while evaluating a policy. Then, we exploit these
favorable properties to drive the representation learning of the state space in a
Structural Risk Minimization fashion. We employ state-aggregation functions as
feature functions and we specialize the D-Max-Ent approach into an algorithm,
named D-Max-Ent Progressive Factorization, which constructs a progressively
finer-grained representation of the state space by balancing the trade-off between
preserving information (bias) and reducing the effective number of states, i.e., the
complexity of the representation space (variance). Finally, we report the results
of some illustrative numerical simulations, showing that the proposed algorithm
matches the expected theoretical behavior and highlighting the relationship between
aggregations and sample regimes.

1 Introduction

In Distributional Reinforcement Learning (D-RL) [Bellemare et al., 2023], an agent aims to estimate
the entire distribution of the returns achievable by acting according to a specific policy. This is
in contrast to and more complex than classic Reinforcement Learning (RL) [Szepesvári, 2010,
Sutton and Barto, 2018], where the objective is to predict the expected return only. In recent years,
several algorithms for D-RL have been proposed, both in evaluation and control settings. The push
towards distributional approaches was particularly driven by additional flavors they can bring into
the discourse, such as risk-averse considerations, robust control, and many regularization techniques
[Chow et al., 2015, Brown et al., 2020, Keramati et al., 2020]. Most of them varied in how the
distribution of the returns is modeled. The choice of the model was shown to have a cascading effect
on how such a distribution can be learned, how efficiently and with what guarantees, and how it can
be used for the control problem. Similarly to this tradition, this paper investigates the potential of
looking into the entire distribution of returns to address the representation learning of the state-action
spaces. In particular, it points to answer the following research question:

Q1: Does a distributional approach offer novel tools to address the representation
learning problem?
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In Section 3, we answer this methodological question, showing that it is possible to reformulate
Policy Evaluation in a distributional setting so that its performance index is explicitly intertwined
with the representation of the (state or action) spaces. More specifically, this work tackles Policy
Evaluation in a distributional setting as a particular case of a distribution estimation problem and
then applies the Maximum Entropy (Max-Ent) formulation of distribution estimation [Wainwright
and Jordan, 2007]. In this way, it is possible to derive a novel framework for PE, which we name
Distributional Max-Ent Policy Evaluation (D-Max-Ent PE), which inherits the many positives the
Max-Ent framework offers. In particular, it allows the inclusion of constraints that the distribution
needs to satisfy, usually called structural constraints, namely feature-based constraints acting over
the support of the distribution. Such constraints then appear in the generalization-error bound for the
Max-Ent problem, with a term related to the complexity of the family of features used. Unfortunately,
traditional derivations of this bound introduce quantities that are bounded but unknown. We develop
the analysis further to derive a more practical bound, containing quantities that are either estimated or
known. In this way, the generalization-error bound shows a usual bias-variance trade-off that can
be explicitly optimized by changing the feature functions adopted, while making the best use of the
available samples. Thus, PE in a distributional setting is directly linked to representation learning.

Now, the RL literature proved that reducing the state space size while preserving the important features
of the original state space is beneficial, namely with state-aggregation feature functions [Singh et al.,
1994, Van Roy, 2006, Dong et al., 2020]. This is particularly true when high dimensionality can
make learning slower and more unstable, as in classic RL in general, or when the learning process
is almost unfeasible in small-samples regimes, as for D-RL, where learning the entire distribution
of returns requires a large number of samples. Thus, motivated by these considerations, while
D-Max-Ent Policy Evaluation allows for the use of any type of structural constraint, this work focuses
on state-aggregation feature functions, and we exploit the first and more methodological result to
answer a second more algorithmic question:

Q2: Is it beneficial to drive the learning of a refined state-aggregated representation
based on the evaluation of the quality of a policy in a distributional setting?

To answer this question, in Section 4, we show that the generalization-error bound changes monotoni-
cally when the state-aggregation constraints are changed in a specific way, namely a finer-grained
representation of the space. This is indeed what happens in the Structural Risk Minimization theory
(SRM) [Vapnik, 1991]. Similarly, we develop a novel algorithm called D-Max-Ent Progressive
Factorization, which exploits the proposed evaluation method to learn a representation of the state
space soundly, i.e., trying to reduce a proxy of the generalization error bound in an SRM fashion,
and allowing us to answer positively to the second research question as well. Finally, in Section 5
we verify through an illustrative numerical simulation whether the proposed algorithm matches the
behaviors suggested by the theoretical analysis.

2 Preliminaries

2.1 Markov Decision Processes

A discrete–time finite Markov decision processes (MDP) [Puterman, 1994] is a tuple M :=
(S,A, PS , PR, µ, γ), where S is a finite state space (|S|= S), A is a finite action space (|A|= A),
PS : S×A → ∆(S) is the transition kernel, PR : S×A → ∆(R) is the reward distribution function,
µ ∈ ∆(S) is the initial-state distribution and γ ∈ [0, 1) is discount factor.1 A policy π : S → ∆(A)
defines the behavior of an agent interacting with an environment, which goes as follows: starting
from an initial state S0 ∼ µ, an agent interacts with the environment through the policy π, generating
a trajectory H = (St, At, Rt)

∞
t=0, which is a sequence of states, actions and rewards whose joint

distribution is determined by the transition kernel, reward distribution, and the policy itself, i.e.,
At ∼ π(·|St), Rt ∼ PR(·|St, At), and St+1 ∼ PS(·|St, At).

2.2 Value Functions and Distributions of Returns

Given an MDPM with discount factor γ, the Discounted Return is the sum of rewards received from
the initial state onwards, discounted according to their time of occurrence:

1∆(X ) denotes the simplex of a space X .
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Gπ(s) =
∞∑
t=0

γtRt|S0 = s. (1)

The Value Function of a given policy π is the expectation of this quantity under the policy itself:

V π(s) = E[G(s)] = E

[ ∞∑
t=0

γtRt|S0 = s

]
. (2)

The Return Distribution Function ηπ of a given policy π is a collection of distributions, one for each
state s ∈ S, where each element is the distribution of the random variable Gπ(s):

ηπ(s) = Dπ
(s)

[ ∞∑
t=0

γtRt|S0 = s

]
, (3)

where Dπ
(s) extracts the probability distribution of a random variable under the joint distribution of

the trajectory.

2.3 Maximum Entropy Estimation

Maximum Entropy (Max-Ent) methods [Dudík and Schapire, 2006, Wainwright and Jordan, 2007,
Sutter et al., 2017] are density estimation methods that select the distribution that maximizes the
uncertainty, i.e., the one with maximum entropy, where the entropy of a distribution with support X ,
namely p ∈ ∆(X ), is defined as H(p) := −EX∼p[log p(X)].2 Additionally, they assume that the
learner has access to a feature mapping F from X to RM . In the most general case, we may have
M = +∞. We will denote by Φ the class of real-valued functions containing the component feature
functions fj ∈ F with j ∈ [M ]. A distribution p is consistent with the true underlying distribution
p0 if

EX∼p[fj(X)] = µj , ∀j ∈ [M ], (4)
where

µj := EX∼p0
[fj(X)] (5)

In this case, we say that p satisfies (in expectation) the structural constraints imposed by the features
in F . In practice, p0 is not available and Max-Ent methods enforce empirical consistency over N
independent and i.i.d. observations D = {x1, . . . , xN} ∼ p0 with support in X by replacing the
definition in Eq. (5) with

µ̂j(D) :=
1

N

N∑
i=1

fj(xi), ∀j ∈ [M ]. (6)

The distribution p is said to be consistent with the data D if it matches the empirical expectations.
The empirical Max-Ent problem consists then of the following optimization problem

max
p∈∆(X )

H(p)

s.t. EX∼p[fj(X)] = µ̂j , ∀j ∈ [M ],
(7)

with the optimization problem in expectation differing just in the constraints (i.e., replacing constraint
from Eq. (6) with the ones from Eq. (5)). It is well known that the optimal solution to the empirical
Max-Ent problem in Eq. (7) is a distribution pλ ∈ ∆(X ) belonging to the class of exponential
distributions parametrized by the parameters λ, namely:

pλ(x) = Φλ exp

 ∑
j∈[M ]

λjfj(x)

 , (8)

2With little abuse of notation, we will use the same symbol for the probability distribution and its p.d.f.,
which we assume to exists w.r.t. a reference measure.
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where Φλ :=
∫
X exp

(∑
j∈[M ] λjfj(x

′)
)
dx′ is a normalization constant, which ensures that

p ∈ ∆(X ), and its log-transformation takes the name of log-partition function A(λ) :=
log
∫
X exp(

∑
j∈[M ] λjfj(x))dx. The log-partition function defines the set of well-behaved dis-

tributions Ω = {λ ∈ RM : A(λ) < +∞}. At optimality, the parameters are defined as λ̂ and
correspond to the optimal Lagrangian multipliers of the dual of the empirical Max-Ent problem in
Eq. (7). Now on, we will use p̂ to identify pλ̂ for simplicity.

3 Distributional Policy Evaluation: A Max-Ent Approach

Algorithm 1 Distributional Max-Ent Policy Evaluation

Require: (HN ,F) ▷ N trajectory samples, set of
features functions
η̂ =argmax

η
H(η)

s.t. EX∼η[fj(X)] = µ̂j(HN ) ∀j ∈ [M ]

η ∈ ∆(X )
return η̂

This section aims at answering the first
research question Q1. The proposed ap-
proach turns distributional PE into a pure
density estimation problem in a Max-Ent
framework, called Distributional Max-Ent
Policy Evaluation, as described in Algo-
rithm 1. For this translation, the algorithm
uses the distribution of returns η as p, N -
trajectory samplesHN = {H}Nn=0 as data,
and a fixed set of features functions F be-
longing to a function class Φ. Note that to
do this, we need to slightly change the notation concerning the D-RL framework: η will not be a
|S|-vector of distributions with support over R, but rather a joint distribution over the whole support
X = S × R. Turning PE into a Max-Ent problem has many upsides. First of all, the Max-Ent
principle allows us to deal with any kind of support X , unifying continuous and discrete cases under
the same framework; secondly, it does not require specifying a family of probability distributions to
choose from; moreover, it implicitly manages the uncertainty by seeking a distribution as agnostic as
possible, i.e., as close to the uniform distribution as possible. Finally, Max-Ent allows us to include
of structural constraints over the return distribution under many different flavors, both as in the
standard value-function approximation methods [Van Roy, 2006] and as in more recent works based
on statistical functionals acting over the return portion R of the support [Bellemare et al., 2023]. One
of the possible limitations might be the requirement to have access to a batch of i.i.d. samples, but
this is not necessarily restrictive: the result can be generalized for a single β-mixing sample path by
exploiting blocking techniques [Yu, 1994, Nachum et al., 2019].

3.1 Generalization Error Bound

As previously said, the inner properties of Max-Ent allow for translating the results from density
estimation methods to the distributional PE setting, and in particular, generalization-error bounds
defined as KL-divergences.3 Unfortunately, the generalization error bounds of traditional Max-Ent
theory contain a conservative term that compares the solutions of the expectation and empirical
Max-Ent problems, η̄, η̂ respectively, by taking the maximum between the 1-norm of the respective
multipliers, namely maxλ∈{λ̄,λ̂} ||λ||1. This quantity is bounded yet unknown, making the result
unpractical. In the following, we extend the previous results with a more practical bound containing
||λ̂||1 instead of the maximum, requiring some additional assumptions about the expressiveness of
the feature functions. This result is of independent interest and allows us to directly use the bound
from an algorithmic perspective.

Theorem 1 (Generalization Error Bound of D-Max-Ent PE). Assume that the set of features F
belong to the function class Φ, which it is such that supx∈X ,f∈F ||f(x)||∞ = F < +∞ and that the
minimum singular value σmin of the empirical covariance matrix of the features ˆCov(F) is strictly
positive, namely σmin( ˆCov(F)) > 0. Then, given a sample batch {x1, . . . , xN} ∈ XN of N i.i.d.
points drawn from the true distribution ηπ , for any δ ∈ (0, 1), it holds with probability at least 1− δ

3The KL-divergence between two distributions p, q is defined as KL(p||q) = EX∼p[log(p(X)/q(X))]
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that the solution to the sampled Max-Ent problem η̂ satisfies the following:

KL(ηπ||η̂) ≾ −H(ηπ) + L̃(η̂) +B(λ̂,F , N, δ) (9)

L̃(η̂) = − 1

N

N∑
i=0

log η̂(xi) (10)

B(λ̂,F , N, δ) = 10||λ̂||1

(
RN (Φ) + F

√
log 1/δ

2N

)
, (11)

where ≾ stands for the fact that the bound comprises additional terms that decrease at a higher rate in
sample complexity and were therefore neglected. H(ηπ) and L̃(η̂), the empirical log-likelihood of
the solution, form a bias term. The remaining term B(λ̂,F , N, δ) is a variance term depending on
the multipliers characterizing the solution λ̂, the number of samples, the confidence level δ, and the
feature class complexity as the empirical Rademacher complexity of the classRN (Φ) [Mohri et al.,
2018].

3.2 Proof Sketch

Here we report the main steps of the proof of Th. 1. The interested reader can find the complete proof
in Appendix A. First, define the set containing the solutions to the expected and sampled Max-Ent
problems with S := {η̄, η̂}, the related set for the multipliers ΩS := {λ̄, λ̂}, and a quantity that will
be central now on h(x1, · · · , xN ) := maxη∈S |Eηπ [log η] − 1

N

∑N
i log η(xi)|. Then, the building

blocks of the error term KL(ηπ||η̂), namely KL(η̄||η̂) and KL(ηπ||η̄) are bounded by:

KL(η̄||η̂) ≤ 2h(·)
KL(ηπ||η̄) ≤ −H(ηπ) + L̃(η̂) + 3h(·).

It is possible to show that:

h(·) ≤ 2 max
λ∈ΩS

||λ||1

(
RN (Φ) + F

√
log 1/δ

2N

)

max
λ∈ΩS

||λ||1 ≤ ||λ̂||1 +
√

6M

σmin( ˆCov(F))
h(·).

The first inequality is obtained with standard methods as in van der Vaart and Wellner [1996], Dudley
[1999], Koltchinskii and Panchenko [2002], Wang et al. [2013]. The second one is obtained by
exploiting the intrinsic properties of the Max-Ent solution and by noting that it is possible to link
h(·) with the Bregman divergence of the log-partition function DA(λ̄, λ̂). One can see that the use of
the second inequality introduces an additional assumption about the expressiveness of the feature
functions, requiring the minimum singular value of the sampled covariance matrix σmin( ˆCov(F)) to
be strictly positive. As a final step, setting x =

√
h(x1, · · · , xN ) and combining the two previous

inequalities yields a quadratic inequality:

x2 − bx− c ≤ 0

b = 2
√

6M
σmin( ˆCov(F))

[
RN (Φ) + F

√
log 1/δ
2N

]

c = 2||λ̂||1

[
RN (Φ) + F

√
log 1/δ
2N

] ,

which is well-defined and solves for

h(x1, · · · , xN ) ≾ ||λ̂||1

(
RN (Φ) + F

√
log 1/δ

2N

)
,

by neglecting higher-order terms. The statement of the theorem is then just a matter of combining all
these results.
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4 Distributional Representation Learning with State Aggregation

This section addresses the second research question Q2, namely how to use the bound in Th. 1 from
an algorithmic perspective to automatically refine the features used to represent the state space in
a principled way while performing D-Max-Ent PE. In particular, the focus is on a specific instance
of feature functions for return distributions, namely state aggregation. More specifically, the state
aggregation feature functions F = {fj}j∈[M ] split the state space into M disjoint subsets, one for
each function, i.e., S = ∪j∈[M ]Sj and Sj ∩ Sj′ = ∅, j, j′ ∈ [M ], j ̸= j′, and gives back the
associated return g ∈ R, namely:

fj : S × R→ R
fj(s, g) = g1[s∈Sj ].

(12)

These features are bounded by the maximum return Gmax, while the empirical Rademacher complexity
over N samples of returns {(si, gi)}i∈[N ] can be directly computed as in Clayton [2014]:

RN (Φ) = Gmax

∑
j∈[M ]

√
P̂ (Sj), (13)

where P̂ (Sj) = Nj/N and Nj = |{(gi, si) : si ∈ Sj , i ∈ [N ]}|. The decomposition of the
Rademacher term into single terms leads to rewriting B(λ̂,F , N, δ) as in the following lemma.
Lemma 1. For Distributional Max-Ent Evaluation with a state-aggregation feature class, the variance
term B(λ̂,F , N, δ) is given by;

B(λ̂,F , N, δ) = 10||λ̂||1Gmax

 ∑
j∈[M ]

√
P̂ (Sj) +

√
log 1/δ

2N

 . (14)

4.1 Representation Refinement: Progressive Factorization

State aggregation features are of interest due to the possibility of progressively refining the repre-
sentation by increasing the factorization level, that is, by splitting a subset Sj into further disjoint
subsets. This refinement is called progressive factorization and is defined as follows.
Definition 1 (Progressive Factorization). For two sets of state aggregation feature func-
tions, F ,Fj , we say that Fj is a progressive factorization of F , i.e., F ⊂ Fj , if F =
{f1, . . . , fj−1, fj+1, . . . , fM} ∪ {fj},Fj = {f1, . . . , fj−1, fj+1, . . . , fM} ∪ {fk

j }k∈[K] and the
additional functions {fk

j }k∈[K] are such that the corresponding subsets satisfy

Sj =
⋃

k∈[K]

Sk
j , Sk

j ∩ Sk′

j = ∅, k, k′ ∈ [K], k ̸= k′,

where only non-degenerate class factorizations will be considered, meaning that the new subsets Sk
j

are non-empty.

It is relevant for our interests that, in the case of progressive factorizations F ⊂ F ′, the respective
Max-Ent solutions enjoy the following monotonicity property

Lemma 2 (Monotonicity). The multipliers of the Max-Ent solutions λ̂, λ̂′ using F ⊂ F ′ are such
that

||λ̂||1 ≤ ||λ̂′||1. (15)

This result is fully derived in Appendix C, and it ensures a monotonically increasing of all terms
contained in the variance term of Eq. (11) since the complexity term is monotonically increasing by
definition. On the other hand, the bias represented by Eq. (10) is guaranteed to decrease monotonically
at finer levels of factorizations.
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4.2 D-Max-Ent Progressive Factorization Algorithm

Algorithm 2 Distributional Max-Ent Progressive
Factorization
Require: (HN ,F0, δ, β,K) ▷ N -trajectory

samples, initial feature set, confidence level,
boosting factor, factorization factor

1: Done← False, i∗ ← 0
2: while not Done do
3: F ← Fi∗ ,M ← |F|
4: η̂ ← D-Max-Ent PE(HN ,F)
5: J (η̂)← βL(η̂) +B(λ̂,F , N, δ)
6: {Fj}j∈[M ] ← Progressive Factor(F ,K)
7: for j ∈ [M ] do
8: η̂j ← D-Max-Ent PE(HN ,Fj)

9: J (η̂j)← βL(η̂j) +B(λ̂j ,Fj , N, δ)
10: if J (η̂j) < J (η̂) then
11: i∗ ← j
12: end if
13: end for
14: if Fi∗ == F then
15: Done← True
16: end if
17: end while
18: return η̂i∗

In summary, D-Max-Ent PE shows a general-
ization error bound whose quantities are either
known or estimated and change monotonically
between progressive factorizations. On these
results, we build an algorithm called D-Max-Ent
Progressive Factorization, shown in Algorithm
2, which iteratively constructs a sequence of fea-
ture sets F0 ⊂ F1 ⊂ . . . with progressive fac-
torization while performing PE. The behavior of
the algorithm is similar to what is done in Struc-
tural Risk-Minimization (SRM) [Vapnik, 1991],
and it involves optimizing for a trade-off: the
bias term (i.e., empirical risk) decreases by tak-
ing into account more complex features classes,
while the variance term (i.e., the confidence in-
terval) increases. The whole algorithm is then
based on the progressive search for the new set
of feature functions which reduces a proxy of
the generalization error bound of D-Max-Ent
PE:

J (η̂) = βL(η̂) +B(λ̂,F , N, δ), (16)

and the procedure will continue until there are
no further improvements in the trade-off. Due
to the nature of the proxy function, the role of
β > 0 is to regulate the tendency to factorize. Higher values of β will increase the magnitude of the
decreasing term, causing a boost in the tendency to factorize. On the other hand, lower values will
further decrease the importance of this term, resulting in a lower tendency to factorization.

Finally, the Progressive Factor function takes as input a list of feature functions and a factoring
factor K and returns a M -list of a progressively factored set of feature functions. More specifically,
each element in {Fj}j∈[M ] progressively factors a different subset Sj into K disjoint subsets as
in Definition 1. The new K subsets {Sjk}k∈[K] are constructed in the worst-case scenario: the
complexity term in Eq. (13) is maximized with partitions of a set leading to a uniform distribution of
samples in each new partitioned subset, and since it is not possible to know in advance which samples
will be contained in which new subset, one way is then to proceed with a uniform factorization. We
decided to maintain the most agnostic approach over the set of possible features, but prior knowledge
could be used to narrow down the partitions to consider.

5 Illustrative Numerical Simulations

This section reports the results of some illustrative numerical simulations that make use of Algorithm
2. We have fully implemented the code base (out of the library used for Maximum Entropy Estimation)
and we will make the software used in our experiments available as open-source.

Simulations Objectives The objectives of the simulations are twofold. First of all, to analyze the
outcome of performing policy evaluations with aggregated states at different sample regimes, by
comparing the output of the proposed algorithm with some relevant baseline distributions. Secondly,
the aim is to study the role of the boosting parameter β and the sampling regime N , being the main
hyper-parameters of Algorithm 2, in the tendency to factor the representation at utterly different
sample regimes.

MDP Instance Design The effectiveness of the proposed approach is expected to be particularly
evident in MDPs admitting a factored representation of the return distribution, namely the ones in
which many states are nearly equivalent under the evaluation of a policy. This factorizability property
is not uncommon in general since it is present in any environment with symmetries and Block-MDPs
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Figure 1: Bound Trend for different β (N = 50) Figure 2: KL Trend for different β (N = 50)

Figure 3: Bound Trend for different β (N =
1000)

Figure 4: KL Trend for different β (N = 1000)

[Du et al., 2019] as well. The MDP instance is then designed to be a Block-MDP indeed since
it allows for better evaluate the simulation objectives: one would expect that operating on MDPs
admitting a factored representation would allow for lower values of β to be effective enough, while a
higher level of boosting would force over-factorizations that are unnecessary, leading to no further
improvement or even degradation of the results. The simulations are run on a rectangular GridWorld,
with a height of 4 and length of 8, with traps on the whole second line and goals all over the top. A
visualization of the setting can be seen in Appendix D. The policy is selected as a uniform distribution
over the set of actions A = (up, left, right).

Performance Indexes The proposed MDP instance presents many upsides in terms of the inter-
pretability of the output as well. First of all, it allows us to directly compute the true underlying
return distribution with Monte-Carlo estimation. Secondly, it permits to compare of the output
distribution of the algorithm with the result of performing plain Distributional Max-Ent Policy
Evaluation (Algorithm 1) with two baseline representations: an oracle factorization that aggregates
together states known to be equivalent under the policy, and in particular all the upper and lower
states respectively; a full factorization that employs |S|-singletons of states as representations, i.e.,
the most fine-grained representation possible. The comparison is made via two relevant quantities,
the KL divergence with respect to the true distribution (the bounded quantity), and the total bound
Btot = L̃(η̂) +B(λ̂,F , N, δ) (the bounding quantity). Finally, the value of the partition splitting K
is set to 2, to reduce the exponential search space of all possible uniform partitions, the discount
factor γ is set to 0.98 and the confidence δ to 0.1, the results are averaged over 10 rounds with the
respective standard deviation.

Results Discussion The results of the simulations are reported from Fig. 1 to Fig. 4, with the quantity
related to the oracle parametrization being in orange, while the ones related to the full parametrization
being in blue. Although these two distributions have almost the same KL divergence, they differ in
the variance term in the bound, which is way higher for the case of full factorization. In all cases, it is
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evident that the value of β pushes towards a higher level of factorizations, going from performing no
factorization at all using low values (β = 3, N ∈ {50, 1000}), to performing up to 4 factorization
steps even in this simple scenario (β = 450, N = 50). Furthermore, at higher sample regimes, the
higher quality of the estimation counteracted the action of β, and increasing it generally induces
fewer factorizations, as in Fig. 3, 4. Finally, it is apparent that minimizing for Eq. (16) successfully
decreases the KL divergence. Nonetheless, its values stop decreasing significantly after the first
factorization, which splits the state space over the two rows and further factorizations might lead to
performance degradation as well.

6 Discussion

In this section, we briefly discuss the literature related to this work and provide some concluding
remarks about the results and future research paths.

6.1 Related Works

Our work relates to multiple fields. We now highlight the most relevant connections, while an
exhaustive overview is beyond the scope of this paper.

Distributional Reinforcement Learning D-RL has recently received much attention, both for
the richness of flavors it admits [Rowland et al., 2019, 2021], and the surprising empirical effec-
tiveness [Bellemare et al., 2020]. Our work tries to answer different research questions compared
to traditional policy evaluation in D-RL and applies completely different techniques to derive the
quantities of interest. In particular, it does not employ Bellman Operators or contraction arguments.
In this way, the sequential nature of the problem is not exploited, but we show that density estimation
techniques do offer interesting properties nonetheless. Additionally, the employed indexes differ
from traditional D-RL results. For example, the most recent bound for Q-TD [Rowland et al., 2023],
shows a sub-linear term but the bound is made over the maximum Wasserstein distance, which
cannot be directly related to the KL-divergence without further assumptions. Finally, distributional
considerations have been employed in the field of function approximations as well. However, to the
best of our knowledge, no other D-RL works explicitly address representation learning.

Maximum Entropy and Feature Selection Max-Ent methods have a long and extensive literature
in the density estimation field, which mostly focused on the general and algorithmic aspects of the
method [Barron and Sheu, 1991, Dudík et al., 2004, Sutter et al., 2017]. Among the others, Cortes
et al. [2015] proposed a Max-Ent regularized formulation for performing feature selection. Their
method allocates different weights to different features to achieve an even better trade-off based on
a combination. Due to this, their work differs from ours in the nature of the search space, which
is not built progressively but is defined a priori. Additionally, their generalization bound is of the
same nature as standard Max-Ent bounds and contains a supλ∈Ω||λ||1 term, which is bounded yet
unknown. Finally, Mavridis et al. [2021] perform progressive state-aggregation through Max-Ent
methods, but they try to optimize a different objective function based on state-dissimilarity.

6.2 Conclusions

In our work, we presented in a D-RL framework a new policy evaluation approach based on Maximum
Entropy density estimation, called Distributional Max-Ent Policy Evaluation, which benefits from
the learning guarantees of Max-Ent and the generality of the setting, being able to enforce even
complex feature families. We extended previous results and derived a practical formulation of the
generalization error bound, which contains only estimated and known quantities of the problem. We
then instantiated a particular class of features, namely state aggregation, and we proposed an algorithm
called Distributional Max-Ent Progressive Factorization to adaptively find a feature representation
that optimizes for a proxy of the generalization error bound in a Structural Risk Minimization fashion.
We then provided illustrative simulations showing the empirical behaviors of these approaches, while
clarifying the links between some hyperparameters and the sample regime. Much of our analysis
and theoretical guarantees straightforwardly extend to other feature classes, and an open question is
to investigate other instances of features and settings that can benefit from the proposed framework.
Another open question is whether there exist MDP instances that enjoy some relevant properties in
the bias/variance trade-off along successive factorizations.
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A Main Proof and Lemmas

In this section, we proceed in providing a proof of Theorem 1 of the main paper, together with
some useful lemmas instrumental for proving it. Again, we define the set containing the solutions
to the expected and sampled Max-Ent problems with S := {η̄, η̂}, the related set for the multipliers
ΩS := {λ̄, λ̂}, which is a restriction of Ω = {λ ∈ RM : A(λ) < +∞}, and a quantity that will be
central now on h(x1, · · · , xN ) := maxη∈S |Eηπ [log η]− 1

N

∑N
i log η(xi)|.

Contribution Highlights The whole structure of the proof is built upon several intermediate results,
of which some use standard techniques, and others are novel to this work. Here we report some
comments to better clarify our contributions:

• Lemma 3 bounds the generalization-error with h(·), and it is based on the straighforward
combination of Lemma 4 and Lemma 5.

• Lemma 4 introduces a slight modification to Wang et al. [2013] that is the use of the maxΩS
over a finite set rather than supΩ over the entire set of distributions. This will allow us
to combine the result with the one of Lemma 5 and to deal with a simpler term, namely
h(x1, · · · , xN ) defined over the max instead of the sup.

• Lemma 5 is a novel contribution, which was needed to obtain a practical form for the
generalization error, compared to the intermediate result of Wang et al. [2013]. In this
lemma as well maxΩS is employed, rather than supΩ.

• Lemma 6 uses standard techniques as can be found in van der Vaart and Wellner [1996],
Dudley [1999], Koltchinskii and Panchenko [2002], but the analysis is again restricted to
maxΩS thanks to the previous results.

• Lemma 7, Lemma 8 are novel results. They are needed to derive a practical generalization-
error bound. Lemma 7 upper-bounds ||λ̄||1 with ||λ̂||1 by requiring additional constraints
about the expressiveness of the feature functions. Lemma 8 uses this result to substitute
maxλ∈ΩS ||λ||1 with ||λ̂||1.

As previously said, one of the main positives of this derivation is the ability to operate over maxη∈S
rather than supλ∈Ω. We will highlight the passages where this quantity is introduced with a (⋆), and
provide further comments.

Initial step

First of all, we proceed in bounding the generalization error by bounding two sub-terms building it,
that the following Lemma 3 will consist of a combination of two following lemmas, Lemma 4 and
Lemma 5.
Lemma 3. The generalization error between the true distribution and the Max-Ent solution of the
sampled problem ηπ, η̂ (expressed as KL-divergence between the two distributions), given N i.i.d.
samples, can be bounded with the following quantity:

KL(ηπ||η̂) ≤ −H(ηπ) + L̃(η̂) + 5max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

Proof. As said, the result directly follows by considering that for the problem under consideration
KL(ηπ||η̂) = KL(η̄||η̂) +KL(ηπ||η̄), since the two solutions correspond to the exact and sampled
estimation problems. To bound the term on the right it is sufficient to bound the two terms on the left.
We know that according to Lemma 4,

KL(η̄||η̂) ≤ 2max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

And according to Lemma 5

KL(ηπ||η̄) ≤ −H(ηπ) + L̃(η̂) + 3max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|
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And the result directly follows.

Lemma 4. For the solutions of the exact and sampled Max-Ent problems, η̄ and η̂ respectively, it
holds that

KL(η̄||η̂) ≤ 2max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

Proof.

KL(η̄||η̂) = KL(ηπ||η̂)−KL(ηπ||η̄)
= (Eηπ [log η̄]− Eη̃[log η̄]) + (Eη̃[log η̂]− Eηπ [log η̂]) + (Eη̃[log η̄]− Eη̃[log η̂])

≤ 2 max
η∈S={η̄,η̂}

|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|+
1

N

N∑
j=0

log
η̄(xj)

η̂(xj)
(⋆)

≤ 2max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

where the term 1
N

∑N
j=0 log

η̄(xj)
η̂(xj)

is negative and then is removed from the bounding scheme.

(⋆) Here, Wang et al. [2013] bounded conservatively the first two terms (Eηπ [log η̄]− Eη̃[log η̄]) +
(Eη̃[log η̂] − Eηπ [log η̂]) with the supλ∈Ω, yet we notice that the only two quantities of interest
between which we are asked to maximize over are in the maxη∈S={η̄,η̂}.

Lemma 5. For the solutions of the Max-Ent problem in expectation η̄ it is possible to bound the
KL-divergence with respect to the true distribution ηπ with the following quantity

KL(ηπ||η̄) ≤ −H(ηπ) + L̃(η̂) + 3max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

Proof.

|Lηπ (η̄)− L̃(η̂)| = |Eηπ [log η̄]− 1

N

N∑
j=0

log η̂(xj)|

≤ |Eηπ [log η̄]− Eηπ [log η̂]|+ |Eηπ [log η̂]− 1

N

N∑
j=0

log η̂(xj)|

≤ |KL(ηπ||η̄)−KL(ηπ||η̂)|+max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)| (⋆)

≤ 2max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|+max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

≤ 3max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

(⋆) Again, due to the conservative bound in Lemma 4, Wang et al. [2013] maintained the same
quantity in this bound for later simplifications. We apply a tighter bound of maxη∈S |Eηπ [log η]−
1
N

∑N
j=0 log η(xj)| to |Eηπ [log η̂]− 1

N

∑N
j=0 log η̂(xj)|.
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It follows that it is possible to write
|Lηπ (η̄)− L̃(η̂)| = |KL(ηπ||η̄) +H(ηπ)− L̃(η̂)|

|KL(ηπ||η̄)− (−H(ηπ) + L̃(η̂))| ≤ 3max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

||KL(ηπ||η̄)| − |(−H(ηπ) + L̃(η̂))|| ≤ 3max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

which proves the result.

Intermediate Step

As suggested by the previous considerations, everything boils down to being able to bound the
term h(x1, · · · , xN ) := maxη∈S |Eηπ [log η] − 1

N

∑N
j=0 log η(xj)|. To do this, we used standard

techniques to derive the following intermediate step, where we can bound the quantity of interest
which depends on the supremum between distributions maxη∈S | · | with a quantity depending on the
supremum between their respective parameters λ ∈ ΩS , namely supλ∈ΩS

||λ||1.
Lemma 6. The supremum difference between the expected log-likelihood and the sampled one,
taken over the expected and sampled solutions in S = {λ̄, λ̂}, is defined as h(x1, · · · , xN ) :=

maxη∈S |Eηπ [log η]− 1
N

∑N
j=0 log η(xj)| and it can be bounded by

max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)| ≤ 2 sup
λ∈ΩS

||λ||1RN (Φ) + 2 sup
λ∈ΩS

||λ||1F
√

log 1/δ

2N

with F = supf∈F ||f ||∞.

Proof. We define

h(x1, . . . , xN ) = max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

= sup
λ∈ΩS ,f∈F

|Eηπ ⟨λ, f(x)⟩ − 1

N

N∑
j=0

⟨λ, f(x)⟩|

Then by exploiting the definition of the function, we study the differences induced by changing one
sample from xk to x′

k

|h(x1, . . . , xM )− h(x1, . . . , x
′
k, . . . , xM )| =

= | sup
λ∈ΩS ,f∈F

|Eηπ ⟨λ, f(x)⟩ − 1

N

N∑
j=0

⟨λ, f(x)⟩|

− sup
λ∈ΩS ,f∈F

|Eηπ ⟨λ, f(x)⟩ − 1

N

N∑
j ̸=k

⟨λ, f(x)⟩+ ⟨λ, f(x′
k)⟩||

≤ sup
λ∈ΩS ,f∈F

1

N
|⟨λ, f(xk)− f(x′

k)⟩|

≤ 2

N
sup

λ∈ΩS ,f∈F
||λ||1||f ||∞ =

C

N
(C = 2 sup

λ∈ΩS ,f∈F
||λ||1||f ||∞)

Now, by Mc Diarmid’s inequality, by studying the function concerning its sampled expectation
EX̃h(·) over the samples set X̃ = {x1, . . . , xN}:

P (h(x1, . . . , xN )− EX̃h(x1, . . . , x
′
k, . . . , xN ) ≥ ϵ) ≤ exp(

−2Nϵ2

C2
)

P
(
h(x1, . . . , xN )− EX̃h(x1, . . . , x

′
k, . . . , xN ) ≥ C

√
log 1/δ

2N

)
≤ δ
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It then follows that

max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)| ≤ EX̃ sup
λ∈ΩS ,f∈F

|Eηπ ⟨λ, f(x)⟩ − 1

N

N∑
j=0

⟨λ, f(x)⟩|+ C

√
log 1/δ

2N

We now use symmetrization techniques by considering the Rademacher sequence {ωj} and by using
the standard result that given a class of measurable functions G if

Z(X̃ ) = sup
g∈G
|Eg(x)− 1

N

N∑
j=0

g(xj)| and R(X̃ , ω) = sup
g∈G
| 1
N

N∑
j=0

ωjg(xj)|

Then:

EX̃Z(X̃ ) ≤ 2EX̃ ,ωR(X̃ )

From this, it follows that the whole expression reduces to

max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)| ≤ 2EX̃ ,ω sup
λ∈ΩS ,f∈F

| 1
N

N∑
j=0

ωj⟨λ, f(xj)⟩|+ C

√
log 1/δ

2N

We extract the supremum over λ ∈ ΩS to obtain the (absolute) Rademacher averages of the functions
in F

Eω sup
λ∈ΩS ,f∈F

| 1
N

N∑
j=0

ωj⟨λ, f(xj)⟩| ≤ sup
λ∈ΩS

||λ||1Eω sup
f∈F
| 1
N

N∑
j=0

ωjf(xj)|

≤ sup
λ∈ΩS

||λ||1RN (Φ)

It follows that the final formulation for the term we are studying is the following

max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)| ≤ 2 sup
λ∈ΩS

||λ||1RN (Φ) + C

√
log 1/δ

2N

C = 2 sup
λ∈ΩS ,f∈F

||λ||1||f ||∞

Final Step

The bound offered by Lemma 6 would be unpractical since it relates a quantity central to our analysis
to something which is not known in advance. Due to this, we make a further effort with the following
Lemma, by substituting the term supλ∈ΩS

||λ||1 with ||λ̂||1. To do this, an additional assumption
over the feature functions will be needed though. First of all, we bound the two terms in ΩS with
Lemma 7. The solutions of the expected and sampled Max-Ent problem are related to the bound:

||λ̄||1 ≤ ||λ̂||1 +

√√√√ 6M

σmin( ˆCov(F))
max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

Proof. We take into account the following relationships which are valid for the solutions of the
MaxEnt problem under structural constraints, i.e. Eη̄[f ] = Eηπ [f ] and Eη̂[f ] = Eη̃[f ]

H(η) = log
∑
y

exp(⟨λ, f(y)⟩)− ⟨λ,Eη[f ]⟩

= A(λ)− ⟨λ,Eη[f ]⟩ = A(λ)− ⟨λ,∇A(λ)⟩
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From which it follows that it is possible to recover the Bregman divergence under the log-partition
function DA(λ1, λ2)

H(η̄)−H(η̂) = A(λ̄)−A(λ̂)− ⟨λ̄,∇A(λ̄)⟩+ ⟨λ̂,∇A(η̂)⟩
= A(λ̄)−A(λ̂)− ⟨λ̄,∇A(λ̄)⟩+ ⟨λ̂,∇A(λ̂)⟩+ ⟨λ̄,∇A(λ̂)⟩ − ⟨λ̄,∇A(η̂)⟩
= A(λ̄)−A(λ̂)− ⟨λ̄− λ̂,∇A(λ̂)⟩+ ⟨λ̂,∇A(λ̂)−∇A(λ̄)⟩
= DA(λ̄, λ̂) + ⟨λ̄,∇A(λ̂)−∇A(λ̄)⟩

Now using the Taylor expansion of the divergence and the fact that∇2A(λ̂) = ˆCov(F)

H(η̄)−H(η̂) + ⟨λ̄,∇A(λ̄)−∇A(λ̂)⟩ = DA(λ̄, λ̂)

≥ 1

2
(λ̄− λ̂)⊺∇2A(λ̂)(λ̄− λ̂) =

1

2
||λ̄− λ̂||2∇2A(λ̂)

≥ σmin(∇2A(λ̂))||λ̄− λ̂||22

≥ σmin(∇2A(λ̂))

M
||λ̄− λ̂||21

≥ σmin( ˆCov(F))
M

||λ̄− λ̂||21

where M corresponds to the number of the features. Finally, by exploiting the zero duality gap and
the results of Lemma 10

||λ̄− λ̂||21 ≤
M

σmin(Covλ̂(f))
(H(η̄)−H(η̂) + ⟨λ̄,∇A(λ̄)−∇A(λ̂)⟩)

=
M

σmin( ˆCov(F))
(L0(λ̄)− L̃(λ̂) + ⟨λ̄,∇A(λ̄)−∇A(λ̂)⟩)

≤ M

σmin( ˆCov(F))
(|L0(λ̄)− L̃(λ̂)|+ |⟨λ̄,∇A(λ̄)−∇A(λ̂)⟩|)

≤ 2M

σmin( ˆCov(F))
|L0(λ̄)− L̃(λ̂)|

≤ 6M

σmin( ˆCov(F))
max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

It is then possible to write

||λ̄− λ̂||1 ≤

√√√√ 6M

σmin( ˆCov(F))
max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

|||λ̄||1 − ||λ̂||1| ≤ ||λ̄− λ̂||1 ≤

√√√√ 6M

σmin( ˆCov(F))
max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

which concludes the proof.

Now, it is possible to combine all the previous results in
Lemma 8. Assume that the minimum singular value of the sampled covariance matrix is strictly
positive, that is σmin( ˆCov(F)) > 0, then the supremum term of Lemma 6 can be bounded with

max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)| ≾ 2||λ̂||1RN (Φ) + 2||λ̂||1F
√

log 1/δ

2N
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Proof. Taking all together the terms obtained so far from Lemmas [6, 7], setting C =
2 supλ∈{λ̄,λ̂},f∈F ||λ||1||f ||∞ we have

max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)| ≤ 2 sup
λ∈{λ̄,λ̂}

||λ||1RN (Φ) + C

√
log 1/δ

2N

sup
λ∈{λ̄,λ̂}

||λ||1 ≤ ||λ̂||1 +

√√√√ 6M

σmin( ˆCov(F))
max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

It follows the quadratic form in x =
√

maxη∈S |Eηπ [log η]− 1
N

∑N
j=0 log η(xj)|

x2 − bx− c ≤ 0

b = 2

√
6M

σmin( ˆCov(F))

[
RN (Φ) + F

√
log 1/δ

2N

]
≥ 0

c = 2||λ̂||1

[
RN (Φ) + F

√
log 1/δ

2N

]
≥ 0

The discriminant is well defined ∆ = b2 + 4c ≥ 0 and the solution is given by

max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)| ≤
(b+√b2 + 4c

2

)2
≤ b2

2
+ c+ b

√
b2 + 4c

≾ 2||λ̂||1RN (Φ) + 2||λ̂||1F
√

log 1/δ

2N
The final step was done because all additional terms out of c itself are of higher order.

B Further instrumental Lemmas

In this section, we present some additional standard lemmas which summarize some important
properties of the Max-Ent solutions and distributions in the exponential family that was used in the
employed section.
Lemma 9. For any distribution η in the exponential family, it holds that for the log-likelihood with
respect to a distribution ηπ it holds that

Lηπ (λ) = A(λ)− ⟨λ,Eηπ [f ]⟩

Proof.
Lηπ (λ) = −Eηπ [log η] = −Eηπ [⟨λ, f⟩ − log Φλ] = −⟨λ,Eηπ [f ]⟩+A(λ)

Lemma 10. For any distribution η in the exponential family, it holds that

|Lηπ (λ)− L̃(λ)| = |⟨λ,Eηπ [f ]− Ẽ[f ]⟩|
where Lηπ (λ) is the negative log-likelihood of η with respect to ηπ .

Proof.

|Lηπ (λ)− L̃(λ)| = | − ⟨λ,Eηπ [f ]⟩+A(λ) + ⟨λ,Eη̃[f ]⟩ −A(λ)|
= |⟨λ,−Eηπ [f ] + Eη̃[f ]⟩|
= |⟨λ,Eηπ [f ]− Eη̃[f ]⟩|
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We will now derive some properties between the sampled log-likelihood and the log-likelihood with
respect to the true distribution ηπ , called L0 for simplicity

Lemma 11. For the solutions of the exact and sampled Max-Ent problems, η̄ and η̂ respectively, it
holds that

|L0(λ̄)− L̃(λ̂)| ≤ |⟨λ̂,Eηπ [f ]− Eη̃[f ]⟩|
≤ |⟨λ̂,∇A(λ̄)−∇A(λ̂)⟩|

|L0(λ̄)− L̃(η̂)| ≥ |⟨λ̄,Eηπ [f ]− Eη̃[f ]⟩|
≥ |⟨λ̄,∇A(λ̄)−∇A(λ̂)⟩|

Proof. The proof follows directly from the fact that λ̄ is optimal with respect to η̂ in the exact problem
L0(λ̄) ≤ L0(λ̂) and viceversa L̃(λ̄) ≥ L̃(η̂).

C Monotonicity Lemma

In this section, we provide the proof of Lemma 2.

Proof. Taking into account two features with increased factorization F ⊂ F ′ we consider the
particular set of factorized features ᾱ, {ᾱk}, since the rest of the features are the same. It follows that

|µ̂ᾱ| =
∑
k

|µ̂ᾱk
|

|µ̂ᾱ|
|Sᾱ|

=
∑
k

|µ̂ᾱk
|

|Sᾱ|
(∀ᾱk : |Sᾱk

| < |Sᾱ|)

|µ̂ᾱ|
|Sᾱ|

≤
∑
k

|µ̂ᾱk
|

|Sᾱk
|

Now, due to the relationship of Lemma 12 we know that λ̂α = f( |µ̂ᾱ|
|Sᾱ| ) with f(·) being an unknown

but subadditive for positive values of λ. Moreover, the functions are the same for all the terms, so that

|µ̂ᾱ|
|Sᾱ|

≤
∑
k

|µ̂ᾱk
|

|Sᾱk
|

f(
|µ̂ᾱ|
|Sᾱ|

) ≤ f(
∑
k

|µ̂ᾱk
|

|Sᾱk
|
) ≤

∑
k

f(
|µ̂ᾱk
|

|Sᾱk
|
)

|λᾱ| ≤
∑
k

|λᾱk
|

Since the rest of the terms are the same, this concludes the proof.

Lemma 12. There exists a monotonic and anti-symmetric function f(·) such that it is possible to
univocally define λ̂α = f(µ̂α, |Sα|, Gmax)

Proof. We start by considering the Lagrangian formulation of the Max-Ent problem,

L(η, λ) = H(η) +
∑
α∈IF

λα(Eη[fα]− µ̂α) + µ(E[η]− 1) (17)
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By taking the gradient of the Lagrangian with respect to the distribution it follows that each x-term
of the support gives

(∇ηL)(x) = −1− log η(x) + λαfα + µ

From which it follows that with λ0 = µ− 1 the equation for the α-constraint is

ηα(x) = eλ0eλαfα(x)

We now compute insert this value inside the constraint equation under the feature class fα = g1s∈Sα∫
R

∫
X
gη(x)α = µ̂α

|Sα|
∫ Gmax

Gmin

geλ0eλαrdg = µ̂α

which leads to the implicit formulation for λα by solving the integral by setting G = Gmax

eλ0
2λα cosh(Gλα)− 2 sinh(Gλα))

λ2
α

=
µ̂α

|Sα|

Now, it can be proven by considering the normalization constraint that eλ0 = 1/Z(λ) with Z(λ) a
constant depending on λα, in particular:

Z(λ) =

∫
X
e
∑

α λαfαdx

=
∑
α

|Sα|
∫
R
eλαfαdr

=
∑
α

|Sα|
sinhλαG

λα

= |Sα|
sinhλαG

λα
+ C

The whole equation then becomes

2λα cosh(Gλα)− 2 sinh(Gλα))

λ2
α

= µ̂α(
sinhλαG

λα
+ C)

This equation provides an implicit definition for λα and it can be shown to be convex for positive
values of λ. The function for lambda is the inverse of this whole term, which is then concave and has
a zero in the origin, thus it is sub-additive.

D Further Discussion about the Environment Setup

The GridWorld instance was selected to be able to satisfy the Experiment Objectives. More specifi-
cally, for the following reasons:

• be able to test the representation learning capacity of the algorithm in a setting with an
apparent factorization of the state space

• because of the possibility of explicitly comparing the outputs with the true distribution.

As previously said, the simulations were run on a rectangular GridWorld, with a height of 4 and
length of 8, with traps on the whole second line and goals all over the top. A visualization of the
Gridworld can be seen in Fig.5.

E Reproducibility

The code was run over a 4 core Intel(R) Core(TM) i5-4570 CPU @ 3.20GHz. The package use to
perform Maximum Entropy density estimation can be found at Max-Ent. The repository can be found
at the anonymized link Code.

19

https://github.com/PythonCharmers/maxentropy
https://anonymous.4open.science/r/maxent-C340/README.md
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Figure 5: GridWorld template
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