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ABSTRACT

Autoencoders (AEs) are widely being used for representation learning. Empir-
ically AEs are capable of capturing hidden representations of a given domain
precisely. However, in principle AEs latent representation might be misleading,
especially in the presence of weak encoding constraints. In this paper, we intro-
duce one stage autoencoders (OSAs) to induce searching for patterns while train-
ing artificial neural networks. We propose two different frameworks for OSAs;
Autoclave Restricted Boltzmann Machines (ACRBMs) and Local Observer Con-
volution (LOC). Both frameworks are compatible with artificial neural networks
and trained via direct backpropagation (end-to-end training). Furthermore, they
are scalable and require significantly less number of parameters than traditional
AEs. ACRBMs are extensions of RBMs that are able to describe a given domain
symmetrically. LOC is a density based clustering algorithm that implicitly draws
a spatial graph from input domains. Unlike standard clustering algorithms that
require specifying the expected number of clusters, we believe that LOC is the
first neural network compatible algorithm capable of dynamically choosing the
appropriate number of clusters that best fit a given domain. Both ACRBMs and
LOC were evaluated in terms of unsupervised learning. Experiments showed that
both structures of shallow ACRBMs and AE-based ACRBMs outperformed K-
means for image clustering using the same number of clusters. Similarly, LOC
outperformed K-means in terms of unsupervised image segmentation.

1 INTRODUCTION

Computationally, learning process can be coordinated as a conjunction of pattern searching within
prior information and pattern generation by exploiting latent representation or an understanding.

Memory Prior
v ∼ F (µ, σ, α) Exploration Latent Representation

q(h | v; wi)

ExploitationPosterior
g(v̂ | h; wj)

Pattern Generation

Pattern Searching

Multi-Domain Clusters

Figure 1: Computational graph for learning process.

As indicated in figure 1, the prior v ∼ F (µ, σ, α), follows an arbitrary distribution F with mean µ
and a covariance σ, including a domain specific parameter α that works as a domain indicator. The
latent representation is inferred by a q function for computing hidden state h given a visible state v.
Pattern generation function g exploits the hidden state h, to get the predicted state v̂. The functions
q and g are optionally parameterized by wi and wj respectively.
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In machine learning, generative models are commonly being used for patterns generation, how-
ever generators incorporated with pattern searching process cannot be trivially obtained. Typically
searching process cannot be defined as a continuous function, making it incompatible with gradient
based optimization methods. In this paper, we show that a restricted latent representation guarantees
a definite exploration that constructs an approximated patterns to imitate inputs domain precisely.

Like stochastic approaches, generative models leverage inputs domain to induce more exploration
without introducing too much randomness, however, a large number of parameters could easily lead
to undefined exploration behavior or random walks Radhakrishnan et al. (2018). Historically genera-
tive models including Hidden Markov model (HMM) (Tran et al., 2016), Bayesian network (Rohekar
et al., 2018), Restricted Boltzmann Machines (RBMs) (Salakhutdinov et al., 2007), Deep Boltzmann
Machines (DBMs) (Salakhutdinov & Hinton, 2009), Autoencoders (AEs) (Jarrett & van der Schaar,
2020) are indispensable for features-extraction. Likewise, they are commonly used as a base struc-
ture for many deep learning problems, such as dimensionality reduction , word embeddings and
image segmentation.

In recent years, generative models trained via backpropagation, such as AEs, have been favored as
being compatible with other Artificial Neural Networks (ANNs). To approach the point of junction
for generative models, we differentiate between RBMs and shallow AEs from a theoretical perspec-
tive, reformulating and analyzing their mathematical model.
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Figure 2: Computational illustration for RBMs (a) and AEs (b).

Figure 2 illustrates a computational representation for RBMs (a) and AEs (b) such that w, β, bh and
bv are model parameters, while v, h and v̂ represent states. Each of RBMs and AEs explore the
domain of the visible state v, by utilizing the parameters w and bh. The exploration process output
h is indicated as the latent representation, following equation 1. The predicted state v̂ follows equa-
tions 2 and 3 for RBMs and AEs respectively. It is obtained by exploiting the latent representation h
based on wT parameter for RBMs, β parameter for AEs, and bias parameter bv for both. Functions
σh and σv are the nonlinearity activations, e.g., sigmoid function.

h = σh(vw + bh) (1)

v̂ = σv(hw
T + bv) (2)

v̂ = σv(hβ + bv) (3)

A frequent problem of AEs is the mutually exclusive encoder-decoder, also known as the
exploration-exploitation trade-off. Exploration states that the latent representation h implies new
information about input domains, i.e., the more exploration it does, the more interesting features
we get. However, unconstrained exploration preserves high entropy which means searching in an
infinite space for the latent representation. Therefore, the exploitation is being used to transform
the infinite space into a finite one restricted by the neural-network settings. Variational Autoencoder
(VAE) (Kingma & Welling, 2014) was slightly able to overcome this problem, nevertheless, VAE
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still suffer from the lack of self-consistency problem Cemgil et al. (2020). This paper focuses on the
encoder representation in terms of simplicity and explanatory power.

To make searching for a latent vector computationally possible, the searching space must be finite.
A remarkable feature of RBMs is that the latent variables are implicitly constrained by how the re-
construction is being computed, and how algorithms such as constructive divergence (CD) (Yuille,
2005) operate relying on this nature. RBMs are able to encode and explain a given domain sym-
metrically as a one-to-one mapping between the latent variable and the generated sample. This
guarantees that the exploration-exploitation trade-off will be approximately zero, however, there is
no guarantee that doing much exploration is possible anymore. Unlike AEs, RBMs do not have a
smooth reconstruction stage, which makes the optimization process a bit messy, and requires careful
settings with many considerations while training. In addition, untimely RBMs fail especially when
the ANN compatibility gets into the picture.

In conclusion, it can be considered that AEs outperformed RBMs in terms of unlimited exploration,
nevertheless, the trainable decoder, makes the trade-off between the exploration and exploitation out
of control. Despite that, if both AEs and RBMs are feasible, it is not strictly fair to say that AEs
outperformed RBMs as they are not comparable. Theoretically RBMs still have advantages over
AEs, in terms of encoder-decoder symmetry.

As indicated by equations 1, 2 and 3, the key difference between RBMs and AEs is the inferential
step of the predicated state. To elaborate the inferential step main differences, we will just consider
the affine functions, where most parameterization is being used, neglecting bias parameters and
nonlinearity activations (equations 4, 5 and 7).

h = vw (4)

v̂ = hwT (5)

v̂ = hβ (6)

RBMs follow what we call parameter-load, while AEs follow what we call parameter-stress. A
parameter is called loaded, if it has many dependencies, in which none of them could be trivially
met. This makes the parameter self-regularized, e.g., the same parameter w is used into multiple
inferential steps (equations 4 and 5). The parameter-stress could be interpreted in analogous manner,
as different parameters w and β are being used for each inferential step, which implies a wider
searching space (equations 4 and 6). RBMs implicit restrictions can be shown by reformulating
equation 5 into 7, hence, an optimal reconstruction is obtained iff W = I , which implies that w is
implicitly constrained to be semi-orthogonal.

v̂ = vwwT ,

v̂ = v(wwT ) = vW
(7)

In order to resolve the exploration-exploitation problem of RBMs and AEs, this paper proposes
One Stage Autoencoders (OSAs), with two different ANN compatible frameworks including Auto-
clave Restricted Boltzmann Machines (ACRBMs) as an RBMs extension, and the Local Observer
Convolution (LOC). The major structure of ACRBMs does not require reconstruction criteria as
the reconstruction mutually depends on the optimization process of the latent variables. Regardless
the existence of the reconstruction criteria, ACRBMs can describe a given domain symmetrically,
which means they operate as real generators. Regarding LOC, it implicitly draws a spatial graph
from inputs domain, which alerts searching for patterns while training, by synchronizing the pattern
searching and pattern generation in a self-regularized way. Since the LOC optimization process
requires reconstruction criteria, the generative models based on LOC, are not considered as real
generators.

Section 2 exhibits graphical and mathematical representations of ACRBMs and LOC, including their
main properties. Section 3 presents baseline models’ performance for AE-based ACRBMs and LOC
compared to K-means in terms of unsupervised learning.
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2 ONE STAGE AUTOENCODERS

The proposed OSAs frameworks are straightforward to train, maintaining the compatibility with
other ANNs. They are mainly designed to control AEs’ exploration behavior. The number of pa-
rameters being used to train OSA-based models are significantly less than AE/VAE.

2.1 AUTOCLAVE RESTRICTED BOLTZMANN MACHINES

ACRBMs nearly have the same forward pass as RBMs, rather what makes ACRBMs an ANN com-
patible is that the model does not relay on a reconstruction-based optimization. Still the reconstruc-
tion can be computed, simulating the encoder-decoder in context.

v

h v̂

w, bh

wT

Latent Variables Based
Optimization

Figure 3: Computational illustration for ACRBMs.

According to figure 3, ACRBMs forward pass follows equations 8 and 9, where h and v̂, are
ACRBMs hidden and predicted state, respectively

h = σh(vw + bh) (8)

v̂ = σv(hw
T ) (9)

For a smoothly feasible optimization process, the activation function σh has been chosen to be a soft-
max function. Let the optimal reconstruction v∗, given that the nonlinear function σv is invertible,
then

hwT = σ−1v (v∗) (10)

By squaring the left and right hand sides

(hwT )T (hwT ) = σ−1v (v∗)Tσ−1v (v∗)

w(hTh)wT = σ−1v (v∗)Tσ−1v (v∗)
(11)

and for a semi-orthogonal hidden states, u = hTh = I , it reduces to

wwT = σ−1v (v∗)Tσ−1v (v∗) (12)

The solution to ACRBMs can be expressed as following

ηi =
ui∑n
j=1 uj

, for i = 1, . . . , n and u = (u1, . . . , un) ∈ Rn×n
(13)

min. − 1

n

n∑
i=1

log(diag(η)) (14)
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The major assumption about ACRBMs states that scaling a latent vector hi by a constant factor c
explicitly adds non-significant variances. Contrarily, orthogonal vectors require a non-trivial trans-
formation, maintaining a considerable variance with a different representation. ACRBMs maximize
independence within input examples by imposing orthogonality, i.e., the most dissimilar examples
will be encoded as orthogonal ones. Consequently, the orthogonalization will be satisfied for n-
samples of h, at which the most dissimilarity occurs in the Euclidean space.

v1 v2 v3 . . . vm

h1 h2 h3 . . . hm

t1 t2 . . . tn

Figure 4: ACRBM probabilistic model (latent dimension size = n).

ACRBMs implicitly inherits some properties of Markov random fields (MRF) (Hamilton et al.,
2017), including its graphical representation in abstract form. In figure 4, vi and hi are the visible
and hidden states for each example i. Initially every hidden state hi claims that transition proba-
bilities are equal for all transition states t. In order to reach the equilibrium state where all hidden
states are uniformly partitioned into n states (t1, t2, . . . , tn), ACRBM assumes that every hidden
state should be assigned to a single transition state. Such lemma can be interpreted as a solution of
the following optimization problem

max.
∑m

i=1

∑n
j=1 p(hi = tj)× p(hi = tj)

min.
∑m

i=1

∑n
j=1

∑n
k=1 p(hi = tj)× p(hi = tk)

(15)

In fact the optimization problem (equation 15) is considered a probabilistic reformulation of equation
14, which approximates the empirical distribution that best supports hidden states (observations).
For small latent dimension size, ACRBMs transition probabilities tend to be strictly 0 or 1. The
maximization term (numerator) asserts that tj with high confidence is always preferred, therefore
the term p(hi = tj)× p(hi = tj) represents the probability of hi starting at tj and ending at tj (i.e.
no transition). The dominator is a minimization over joint probability summation.

(a) Latent dimension size = 30 (b) Latent dimension size = 100 (c) Latent dimension size = 300

Figure 5: Reconstruction examples by shallow ACRBM for different latent representation sizes.

Figure 5 shows reconstruction examples (2nd row) of randomly sampled Mnist (LeCun et al., 2010)
test set examples (1st row). It illustrates that the reconstruction quality is better for a larger latent
dimension size, including the capability to generate a neighbor representation of the given input.
This is arising, due to implicit equality constraints (equation 12). Yet, in practice these constraints
cannot be exactly satisfied. In such case the exact form of equation 12 should be

wDwT = σ−1v (v∗)Tσ−1v (v∗) (16)

Where D = hTh tends to be a sparse square matrix with a non-zero diagonal elements. Theoreti-
cally, at reaching the optimal of ACRBMs’ objective, D should be a diagonal matrix which implies
that ACRBMs’ parameters describe relationships between input units vij globally (the interior of the
domain) and locally (domain cluster). This is implicitly similar to Markov chain (Lhritier, 2020),
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e.g., ACRBM might consider a reconstructed unit (pixel) as same as input unit which is described
by a zero-transition probability.

In figure 6, cluster neighbors are obtained by nearest neighbor search (NNS) on the latent represen-
tation of a query image (1st column). It shows that ACRBMs are capable of interpreting neighbors
in a rational way even when using less dimensions, e.g., four is interpreted as a nine without loop.
This recommends that a reasonably less dimensionality is preferred in case of using ACRBMs within
generative adversarial networks (GANs) (Goodfellow et al., 2014).

(a) ACRBM latent dimension = 100 (b) ACRBM latent dimension = 300

Figure 6: Shallow ACRBM cluster neighbors in order.

2.2 LOCAL OBSERVER CONVOLUTION

Analogously, LOC implicit restrictions are attained by having spatial conflicts, which are developed
by a set of spectral gram matrices G, referred as the observer kernel (see figure 7).

Input Image
(vi)

2D Convolution Output
(Layer l = 0)

. . . . . . . . .

2D Convolution Output
(Layer l = L)

Proessing Node
Computes The Observer Kernel (G)

Observer Kernel
(G)

Proessing Node
(LOC)

Figure 7: Computational illustration for LOC.

The Gi matrix is a fake observer, who started these conflicts, and then has been employed to resolve
them. This game is inspired by the two-way partitioning problem (Schreiber et al., 2018), which can
be described by the following mathematical model, where S is the feasible set corresponds to the
partition

min. wT vw

subject to : w2
i = 1, for i = 1, . . . , n

S = {i | wi = 1} ∪ {i | wi = −1}
(17)
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To reformulate the constrained partitioning problem, into unconstrained one, LOC disposed the
parameterization, using the local features ai, at layer L, approximating the inner product, by the
following kernel function

K(vi, ai) = vi ∗ ai (18)

A generalization of the previous convolution to an arbitrary number of dimensions, is obtained by
repeatedly stacking different versions of ai. Experiments show that it is possibly sufficient to repeat
the same ai, for tasks such as unsupervised segmentation. We found that many formulations with
different properties can be obtained to optimize the fake observer. This simply may include ones
such as mean squared error (MSE), which has been chosen in our experiments as the major objective
for optimizing the observer. LOC with MSE objective is described by the following minimization
problem, which includes an explicitly defined lower bound ρ as a hyper-parameter (equation 21).

K(vi, Gi) = vi ∗Gi (19)

ε =
1

k

k∑
i=1

(vi −K(vi, Gi))
2 (20)

Gloss =

{
ε if ε > ρ
0 otherwise.

(21)

min. Gloss (22)

The ρ hyper-parameter works as a perturbation parameter to control the LOC reductions, i.e., a large
perturbation, preserves large partitioning factor. As a result of using MSE objective, we end up with
floating points outputs, that can be clipped in case of LOC has been used for clustering. This ends
up with statistically correlated cluster labels that follow a standard labeling, e.g., there is no cluster
with a label 10 if the total number of clusters are exactly 9.

In case of the problem of image pixels’ clustering, a hypothetical solution to the LOC problem would
be to form groups of pixels, assigning a representative rjk for each group (e.g., group median seems
to be reasonable given the objective function). Still, we believe that more interesting representatives
could be found using adversarial attacks on G while training.

3 EXPERIMENTAL RESULTS

The performance of our proposed OSAs frameworks has been evaluated in terms of multi-domain
clustering. The settings which have been followed are interchangeable. We restricted the major
experiments to a simple ANN modeling in order to elaborate the feasibility of ACRBMs and the
LOC in practice (see also appendix B and C for the baseline models’ architectures and used hyper-
parameters).

3.1 ACRBMS EVALUATIONS

In the following sets of experiments, the performance of the proposed shallow ACRBM and AE-
based ACRBM architectures have been evaluated against K-means and AE-based K-means for the
problem of unsupervised image clustering. Mnist dataset (LeCun et al., 2010) has been used for
evaluating the clustering performance where the original splits were maintained, as 60K and 10K
for train and test sets respectively.

ACRBMs have been trained without considering a reconstruction criterion, either as AE-based or
shallow ANN model. The cluster label of an example i is obtained based on ACRBM hidden state
hi activation (energy), such that the index of the most activated dimension j is being assigned as a
cluster label (for j = 1, . . . , n). Mapping clusters to ground truth labels is obtained by mapping the
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Table 1: Unsupervised clustering results on Mnist test set

#Clusters #Parameters Accuracy
K-means 10 - 57.32

AE + K-means 10 +200K 79.56
Shallow ACRBM 10 +23K 61.44
Shallow ACRBM 30 +23K 76.95

AE + ACRBM 10 +197K 86.80± 1.06
AE + ACRBM 30 +850K 92.86± 0.89

whole cluster label ci for each example vi to the corresponding ground truth label yi that minimizes
the total cluster entropy, (see appendix A equation 23 for computing average accuracy).

As reported in table 1, for 10 clusters the classification accuracy of shallow ACRBM is significantly
better than K-means, and similarly AE-based ACRBM outperformed AE-based K-means. Results
indicated that a substantial performance gain is obtained by increasing the number of clusters.

(a) latent dimentions size = 100 (b) latent dimentions size = 1000

Figure 8: A 2D projection of shallow ACRBMs latent representation.

Figure 8, shows 2D projection of shallow ACRBMs latent representation with different sizes. It
illustrates that by increasing latent dimension size (number of clusters) the distortion decreases sig-
nificantly. We observed that large number of clusters serve as a smoothing parameter for ACRBMs,
in which more restrictions are being defined to the semi-orthogonalization objective, and frustrating
ACRBMs confidence about clusters assignments (figure 9), see also Müller et al. (2019).

(a) (b)

Figure 9: The trade-off between accuracy, confidence, and number of clusters.
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3.2 LOC EVALUATIONS

The proposed LOC has been experimented in terms of unsupervised segmentation compared with
K-means. The flowers dataset (Nilsback & Zisserman, 2010) has been used for evaluations. We
randomly resampled a test set of size 2189 examples, and the remaining were used for training.

Origin Ground Truth LOC Multi-Class LOC Binary K-means Binary

Figure 10: Flowers segmentation examples for LOC and K-means.

Figure 10 shows randomly sampled results of LOC in terms of multi-class segmentation and binary
segmentation. Relying on the statistical properties of LOC with MSE objective, we were able to
approximate the multi-class segmentation to binary segmentation according to the median cluster
label for each example separately. The first 50% of sorted clusters labels have been mapped to zero
cluster (background), while others assigned to one cluster (foreground).

Table 2: Unsupervised segmentation results on flowers

Accuracy IoU DICE
K-means 61.48 52.23 55.02

LOC 81.22 61.93 71.80

As shown in table 2 the unsupervised segmentation performance of LOC is significantly better than
K-means, see also appendix A for evaluation metrics.

Unlike standard unsupervised learning algorithms, LOC has many extra advantages, these includes:

1. The number of clusters are begin determined automatically by the ANN proportional to the
perturbation parameter, i.e., each image may have been segmented with a different number
of clusters.

2. The underlying structure is simple and compatible with ANN.

3. The latent representation (observer kernel) of LOC mainly reflects clustering results.

4 CONCLUSIONS

To address the non-descriptive learning problem of AEs, we have investigated the learning rep-
resentation under implicit constraints, and its impact on pattern searching process. The proposed
formulations of ACRBMs and LOC have shown their capability of working as discrete searching
processes in an ANN compatible form. Our proposed frameworks provide baseline settings to imi-
tate input domain which has been demonstrated for unsupervised learning tasks. In addition to the
discrete searching capability of ACRBM, we believe that it has a scalable potential for operating as
real generators, especially by being incorporated with GANs to automatically sample from feature
representations via reconstruction. LOC has been designed to be incorporated with ANN to make
use of earlier stage layers gradients as feedback. It instructs searching for patterns within the local
domain (features) while being conditionally dependent on global domain (examples).
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A EVALUATION METRICS

A(y, ŷ) =


∑m

i=1 1{yi = ŷi}
m y, ŷ ∈ Rm

∑m
i=1

∑h
j=1

∑w
k=1 1{yijk = ŷijk}

m×h×w y, ŷ ∈ Rm×h×w

(23)

J(y, ŷ) =
1

m

m∑
i=1

∑h
j=1

∑w
k=1 1{yijk ∧ ŷijk}∑h

j=1

∑w
k=1 1{yijk ∨ ŷijk}

, y, ŷ ∈ Rm×h×w (24)

S(y, ŷ) =
1

m

m∑
i=1

2×
∑h

j=1

∑w
k=1 1{yijk ∧ ŷijk}∑h

j=1

∑w
k=1 yijk + ŷijk

, y, ŷ ∈ Rm×h×w (25)

The average accuracy (Accuracy), intersection-over-union (IoU) and Sφrensen-Dice coefficient
(DICE) metrics follows equations 23, 24 and 25 respectively. The ground truth is indicated by yi,
while ŷi represents the predicted state. If y, ŷ ∈ Rm, then yi and ŷi are considered labels, otherwise
they are considered binary masks (i.e. y, ŷ ∈ Rm×h×w).

B ACRBMS IMPLEMENTATION DETAILS

The architecture illustrated in figure 11 is the one used for evaluating AE-based ACRBMs perfor-
mance. Both encoder and decoder are composed of two convolution layers, with ReLU activation
function. It is composed of 2 layers for both of encoder and decoder, with ReLU activation function.
Encoder is followed by AE latent representation hAE layer with a linear activation. The hAE layer
is attached to ACRBM latent representation hACRBM . Both of AE and ACRBM latent dimensions
have been merged and passed to the decoder.

...

input
+ gaussian noise

encoder hAE hACRBM

merge

decoder

output

Figure 11: ACRBM within AE architecture.

The same architecture has been used for AE-based K-means experiment, except for the hACRBM

layer which has been replaced by a dense layer with 10 hidden units and ReLU activation function.
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Table 3 states the hyper-parameters that have been used for ACRBM major experiments. We ran
500 K-means initializations Bahmani et al. (2012) on AE latent representation, where the one that
achieved the maximum accuracy has been selected.

Table 3: ACRBM hyperparameters

#Clusters #Hidden Units Optimizer #Epochs Batch Size

AE + K-means 10

Encoder = 100
Latent dimensions = 100
Decoder = 100

Adam
β1 = 0.05
β2 = 0.999
α = 10−3 500 256

Shallow ACRBM 10 -

Adam
β1 = 0.01
β2 = 0.999
α = 10−2 20 256

Shallow ACRBM 30 -

Adam
β1 = 0.01
β2 = 0.999
α = 10−2 20 256

AE + ACRBM 10

Encoder = 100
Latent dimensions = 90
Decoder = 100

Adam
β1 = 0.05
β2 = 0.999
α = 10−3 500 256

AE + ACRBM 30

Encoder = 300
Latent dimensions = 300
Decoder = 300

Adam
β1 = 0.1
β2 = 0.999
α = 10−3 500 256

C LOC IMPLEMENTATION DETAILS

Architecture illustrated in figure 12 has been used for evaluating LOC performance. The convolu-
tion blocks composed of 2D convolution layer followed by batch normalization and ReLU activation
function. The parameters k, s and nf represents kernel size, strides and number of filters respec-
tively. The hyper-parameters that have been used for LOC experiment are shown in table 4.

Input Image
(vi)

k = 3× 3, s = 1, nf = 8
padding = same

batch normalization + ReLU

k = 7× 7, s = 2, nf = 8
padding = same

batch normalization + ReLU

Max Pooling
pool size = 2× 2

k = 3× 3, s = 2, nf = 8
padding = same

batch normalization + ReLU

k = 7× 7, s = 2, nf = 8
padding = same

batch normalization + ReLU

Max Pooling
pool size = 2× 2

k = 1× 1, s = 1, nf = 1
padding = valid

sigmoid

Figure 12: LOC auto-segmentation architecture.

Table 4: LOC hyperparameters

ρ Optimizer #Epochs Batch Size

LOC 0.5

Adam
β1 = 0.9
β2 = 0.999
α = 10−3 50 64
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