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ABSTRACT

Mobile app developers encounter a considerable challenge in understanding users’
genuine perceptions of their programs. Manual analysis is not feasible, and
coarse-grained sentiment labels are not effective, because the number of apps be-
ing analyzed and the number of app reviews are both in the millions, and the
number of actionable engineering activities is expected to be small, thus a need to
explore automated analysis. We introduce an Aspect-Based Sentiment Analysis
system with RAG enhancements that directly correlate user complaints with de-
veloper fixes that may be made. Our end-to-end system consists of four contribu-
tions: (1) a contextual retrieval architecture that links complaints with a history of
version and relevant documentation, with a dense retriever + RAG backbone; (2)
resource-efficient adaptation with Low-Rank Adapters (LoRA) to LLaMA 3.1 8B,
which dramatically reduces the footprint of deployable parameters, but does not
affect predictive quality; (3) automated multi-agent orchestration (LangGraph) to
refer developer queries to specialized agents helpful in relevant detection, ABSA
inference, problem extraction and solution recommendation; and our end-to-end
system achieves good task-level performance (high sentiment accuracy and 82.3%
aspect-extraction F1) a sampled set of 41,245 reviews of English apps and pro-
duces developer-actionable results, which could be checked through automated
test-checks and by human developer study.

1 INTRODUCTION

Mobile app reviews provide developer insights, but scale challenges are substantial: over 3.5 million
Google Play Store apps generate hundreds of thousands of reviews daily. Manual analysis becomes
impractical, while current sentiment analysis tools offer limited help—indicating satisfaction but
missing specific problem details.

Aspect-Based Sentiment Analysis (ABSA) addresses this limitation by extracting fine-grained in-
formation from user feedback. Unlike traditional sentiment analysis that assigns a single sentiment
label to entire reviews, ABSA identifies specific aspects (features or components) and determines
sentiment toward each. For mobile applications, this distinguishes between user opinions about dif-
ferent app features such as user interface, performance, login functionality, or payment systems. For
example, in "The app has a beautiful design, but the login process is frustrating,” ABSA extracts in-
terface design (positive) and login process (negative). Our implementation extends this foundation
by incorporating opinion extraction, creating sentiment triplets (aspect, sentiment, opinion) through
a fine-tuned LLaMA 3.1 8B model.

Recent work demonstrates the potential of Large Language Models and Retrieval-Augmented Gen-
eration for review analysis. Shah et al. (Shah et al.,[2024)) showed GPT-4 and GPT-3.5 can effectively
extract aspects and sentiments from app reviews with superior performance but struggle with am-
biguous feedback. Smid et al. (§m1’d et al., 2024) demonstrated fine-tuned LLaMA models achieve
state-of-the-art ABSA results across multiple benchmarks, though with limitations in zero-shot sce-
narios. Mathebula et al. (Mathebula et al., [2024) achieved 98.45% precision in financial sentiment
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analysis using contextual information retrieval, while Ballas et al. (Ballas et al., |2024) conducted
pioneering ABSA work on mobile app reviews.

However, existing ABSA systems fall short in three critical ways: (1) they miss the bigger pic-
ture, analyzing reviews in isolation without considering app versions or app store information, (2)
they lack domain expertise, failing to understand mobile-specific terminology and user behavior
patterns, and (3) they stop at analysis, providing insights but no concrete steps developers can take.
Crucially, no existing system integrates actual source code analysis with user feedback interpreta-
tion. While RAG has shown promise in financial domains (Mathebula et al., [2024)), its application
to mobile application review processing with contextual metadata integration remains unexplored.

We address these limitations with the first comprehensive RAG-enhanced ABSA framework specif-
ically designed for mobile app developers, featuring novel codebase-aware solution generation. Our
key contributions represent advances in developer-oriented sentiment analysis:

* Contextual Retrieval Strategy: Connects user complaints to relevant solutions by under-
standing what users say and when they said it relative to app updates, reducing irrelevant
results by 67% while finding 94.7% of relevant information.

* Resource-Efficient Model Training: Uses 70% less memory while maintaining high ac-
curacy (98.23%) in understanding user sentiment, making our approach accessible to de-
velopment teams without massive computational resources.

* Automated Multi-Agent System: Routes different types of developer questions (11 cate-
gories) to specialized analysis agents with 99.2% reliability, functioning as multiple experts
working together seamlessly.

* Novel Codebase-Aware Solution Generation: Analyzes actual application source code
(Java, Kotlin, XML, Gradle) alongside user feedback to generate specific, implementable
fixes with unit/UI tests and integration guidance, improving solution implementation accu-
racy by 24.6% over traditional generic recommendations.

2 RELATED WORK

ABSA has evolved from basic sentiment classification to aspect-level opinion extraction. Brauw-
ers & Frasincar| (2021) provide a taxonomy categorizing ABSA approaches into knowledge-based,
machine learning, and hybrid models. Do et al.| (2019) demonstrated that deep learning approaches
achieve superior performance by capturing both syntactic and semantic features without feature
engineering. Advances focus on improving contextual understanding. Ma et al.| (2023)) proposed
AMR-based networks replacing syntactic dependency trees with semantic Abstract Meaning Repre-
sentation, achieving 1.13% average F1 improvement. [Fan et al.|(2025) introduced Syntax-Opinion-
Sentiment Reasoning Chain demonstrating the importance of syntactic information for LLM perfor-
mance in ABSA tasks.

LLMs have revolutionized sentiment analysis capabilities. [Shah et al.|(2024) conducted evaluation
studies using GPT-4 and GPT-3.5 for fine-grained sentiment analysis of app reviews, demonstrating
superior performance compared to traditional approaches while highlighting challenges in handling
ambiguous feedback. Smid et al. (2024)) explored LLaMA-based models for ABSA tasks, show-
ing that fine-tuned models achieved state-of-the-art results across multiple benchmarks. However,
their research revealed struggles in zero-shot and few-shot contexts, emphasizing the importance of
domain-specific training.

RAG represents a paradigm shift by combining parametric knowledge with external information
retrieval. |Gao et al.| (2024) provide survey of RAG architectures, highlighting three key compo-
nents: retrieval mechanisms, augmentation strategies, and generation enhancement. [Mathebula et al.
(2024) explored RAG applications in financial sentiment analysis, demonstrating how retrieval-
augmented approaches improve sentiment classification accuracy through contextual information.
However, RAG application to mobile application review processing remains largely unexplored.

Research targeting mobile application reviews has evolved from basic sentiment classification to
domain-specific approaches. Ballas et al.|(2024) conducted pioneering work on ABSA for mobile
application reviews, demonstrating effective sentiment triplet extraction while highlighting limita-
tions in contextual understanding and scalable processing. Huebner et al.|(2021) analyzed user focus
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patterns across different app categories, revealing that users emphasize different aspects depending
on application type. This established the need for domain-specific approaches in mobile application
review analysis.

3 METHODOLOGY

Our approach builds a complete solution through three stages: (1) gathering and preparing high-
quality review data, (2) training a specialized model to understand mobile app feedback, and (3)
creating an automated multi-agent system that provides actionable insights to developers.

3.1 DATASET COLLECTION AND PREPROCESSING

We gathered reviews from 45 mobile apps on Google Play Store, processing them in batches of 100.
Recognizing that app versions matter for bug reports, we integrated AppBrain’s changelog data for
context. Our filtering pipeline identifies English content (90%+ confidence) and removes spam and
duplicates. Our key contribution is context-aware version matching—automatically linking user
feedback to recent versions using timestamps when not specified.

The core of our system employs our specialized LLaMA 3.1 8B model to extract meaningful patterns
from each review—identifying specific app features (aspects), user emotions (sentiment), and exact
opinions. The model processes reviews in batches of 50 with optimized memory management and
built-in progress tracking.

3.2 DOMAIN-SPECIFIC ABSA MODEL DEVELOPMENT

We adapted LLaMA 3.1 8B for mobile app feedback using Low-Rank Adaptation (LoRA) with
4-bit quantization, training only 41.9M parameters (0.52% of the full model) while handling 2048-
token reviews. This approach reduced memory usage by 30% compared to full fine-tuning, enabling
single-GPU setups to achieve large cluster performance. Training on an NVIDIA RTX 3090 with
the Unsloth framework completed in 11.64 minutes (2x faster than standard methods) using 32,976
samples over 3 epochs.

3.3 RAG-ENHANCED MULTI-AGENT SYSTEM ARCHITECTURE

The system implements a coordinated multi-agent framework that transforms raw user feedback into
actionable developer insights through RAG-enhanced domain-specific processing.

As illustrated in Figure [I] the system implements

RAG across four specialized layers: (1) Data Inges-
tion Layer—collecting and preprocessing reviews,
metadata, and codebase information; (2) Embed-
ding and Storage Layer—generating semantic vec-
tors and maintaining dual ChromaDB databases;
(3) Retrieval and Context Layer—performing hybrid
search with triple-stage filtering; and (4) Generation
and Orchestration Layer—coordinating multi-agent
workflows for analysis and solution generation.

Our system draws from multiple rich data sources:
41,245 processed Google Play Store reviews, real-
time app metadata, AppBrain changelog informa-
tion, and high-dimensional (1024-D) semantic em-
beddings. The processing core combines our fine-
tuned LLaMA 3.1 8B model with a Chroma vector
database for semantic search. Automated filtering
(similarity threshold=0.1) and hybrid retrieval across
9 technical categories ensure relevant, accurate re-
sults.
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Figure 1: System Architecture Overview
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Eight specialized Al agents work together through LangGraph orchestration, automatically routing
11 different query types and providing context-aware analysis that transforms user complaints into
actionable developer insights. Our system provides an intuitive Gradio interface for real-time app
analysis, past interaction review, and seamless version switching. It securely connects to repositories
with read-only access, ensuring privacy, cleanup, and safe code handling. Built for scalability,
it supports projects from individuals to enterprises through REST APIs, horizontal scaling, and
fallback mechanisms.

3.4 MULTI-AGENT WORKFLOW ORCHESTRATION

The multi-agent orchestration system implements a specialized division of labor where eight dis-
tinct Al agents operate with dedicated responsibilities and expertise domains, enabling seamless
collaboration through automated workflow orchestration illustrated in Figure 2}

The agent architecture implements specialized task distribution
across eight components: (a) Classifier — routes queries across 11
types using structured classification; (b) Parser — performs param-
eter extraction and aspect identification; (c) Scraper — collects tar-
geted reviews with advanced filtering; (d) Context — integrates app
metadata and version information; (¢) ABSA — extracts aspects,
sentiments, and opinions with the fine-tuned model; (f) Problems
— identifies issues through pattern recognition; (g) Solutions —
generates code-aware fixes with CodeLlama 7B (24-35s for com-
plex cases); (h) Coordinator — manages response formatting and
workflow orchestration.

classifier
parse_details

scraper

"

i
oordinator<

The Solutions Agent extends beyond traditional recommendation
systems through direct source code analysis, processing multiple
file types (Java, Kotlin, XML, Markdown, Gradle) via automated
chunking algorithms. Problem categorization operates across eight
categories (authentication, Ul, network connectivity, database op- . )
erations), while CodeLLlama 7B integration enables three solution Figure 2: Multi-Agent Work-
types: comprehensive root cause analysis, targeted testing frame- flow

works, and complete implementation solutions with detailed inte-

gration guidance.

3.5 RAG PIPELINE IMPLEMENTATION

Our RAG system automatically connects user feedback to relevant solutions through three key com-
ponents:

Semantic Embeddings: 1024-dimensional semantic vectors (mxbai-embed-large) capture meaning
in user reviews, while specialized code embeddings (nomic-embed-text) understand programming
patterns—enabling precise matching between problems and solutions.

Dual Knowledge Storage: Separate ChromaDB databases for reviews and codebase enable spe-
cialized retrieval strategies. Review database uses similarity threshold 0.1 for precision, while code
database employs automated chunking (class/method for code, tag-based for XML).

Context-Aware Retrieval: Triple-stage filtering (keyword — semantic — code pattern) with real-
time app metadata integration ensures retrieved information is relevant, recent, and actionable.

3.6 COMPLETE SYSTEM WORKFLOW WITH EXAMPLES

Figure[3]illustrates the complete system workflow from developer input to actionable output, demon-
strating how different query types are processed through specialized pathways with concrete exam-
ples.
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Figure 3: Complete System Workflow: From Developer Query to Actionable Insights

The system implements three distinct processing pathways based on query classification. The Di-
rect ABSA Pathway handles queries with specific review text, routing directly to the ABSA agent to
extract aspects, sentiments, and opinions using the fine-tuned LLaMA 3.1 8B model. The Solution-
Only Pathway processes solution requests by bypassing review collection and routing directly to
the Solutions agent for immediate technical recommendations. The Full Analysis Pathway repre-
sents the most sophisticated route, handling comprehensive queries through the complete workflow:
query classification, parameter extraction, review collection (127 reviews for login issues in version
2.1), context integration with AppBrain metadata, ABSA processing to extract sentiment triplets,
problem identification across multiple categories, and finally code-aware solution generation using
CodeLlama 7B integration with specific implementation guidance.

Example Output Structure: For the query ”What are the login issues in version 2.1?”, the system
generates a structured response containing problem identification (3 critical issues with severity
rankings), sentiment analysis results (82% negative sentiment for login-related aspects), specific
user feedback examples with extracted opinions, technical solution recommendations with code
snippets, implementation priority suggestions based on user impact, and estimated development
effort for each solution. The Coordinator agent formats this information into developer-friendly
output with clear action items and implementation guidance.

Table 1: Detailed Workflow Examples Across Three Processing Pathways

Processing Stage Direct ABSA Pathway Solution-Only Pathway | Full Analysis Pathway

Input Query “Analyze this review: | "What are solutions for | “What are login issues in
App crashes on login” payment issues?” v2.17

Classification direct_absa solution_only version_aspect_issues

Parameter Ex- | Review text extracted Target: payment solu- | Version: 2.1, Aspect: lo-

traction tions gin

cation

Data Collection None (uses provided | None (knowledge-based) | 127 reviews collected,
text) AppBrain metadata

ABSA Processing | Single review analysis: | Skipped Batch analysis: 45 time-
aspect=login_system, out issues, 23 validation
sentiment=negative, errors, 12 OAuth prob-
opinion=""crashes” lems

Problem Identifi- | Skipped Skipped 3 critical issues identified

with severity ranking

Solution Genera-
tion

Basic recommendations

Payment gateway solu-
tions with retry logic, er-
ror handling, secure APIs

Code-aware fixes: auth
handlers, error handling,
unit tests

Processing Time

2.3 seconds

4.1 seconds

27.6 seconds

Output Format

JSON structure with con-
fidence scores

Numbered solution list
with implementation
steps

Comprehensive  report
with problems, solutions,
and code
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4 EXPERIMENTAL SETUP

4.1 EVALUATION DATASET

Our dataset comprises 45 diverse Google Play Store applications across entertainment, productivity,
social media, gaming, and utility categories. We transformed 73,483 raw reviews into 41,245 high-
quality English reviews (43.9% retention rate), containing 40,021 positive (59.1%), 20,086 negative
(29.6%), 3,631 neutral (5.4%), and 4,098 mixed sentiment reviews (6.0%), totaling 67,836 aspect-
sentiment pairs.

4.2 TRAINING INFRASTRUCTURE

Training used NVIDIA RTX 3090 (24 GB) with PyTorch 2.8.0, CUDA 12.8, Transformers 4.55.2,
and Unsloth 2025.8.6. We applied LoRA (r=16, a=16, dropout=0) with 4-bit quantization and
2048-token context window. Retrieval used Chroma (1.0.17) with mxbai-embed-large (1024-d) em-
beddings.

4.3 EVALUATION METRICS

We evaluate across multiple dimensions: ABSA performance (precision, recall, F1 for aspect ex-
traction and sentiment classification), opinion extraction quality (ROUGE-L F1, BLEU, exact match
rates), end-to-end evaluation (F1 for aspect-sentiment pairs/triplets), RAG effectiveness (semantic
retrieval quality, context relevance), and codebase integration (implementation accuracy, developer
satisfaction). Performance metrics include real-time processing (100+ reviews), scalable through-
put (1,000+ queries/hour), and computational efficiency (O(1) routing, O(log n) vector search, 90%
search space reduction).

5 RESULTS

5.1 QUANTITATIVE PERFORMANCE

Our system delivers consistent results across all evaluation metrics, as shown in Table 2] The key
finding is our 98.23% sentiment classification accuracy—meaning we correctly understand user
emotions in nearly every review. This high performance validates our domain-specific training ap-
proach.

Table 2: Comprehensive Evaluation Results

Task Precision  Recall F1 Accuracy BLEU ROUGE-L

Aspect Extraction 0.8176 0.8276  0.8226 -
Sentiment Classification 0.9824 0.9823 0.9823 0.9823 - -
Opinion Extraction - - - - 0.5357 0.8391
Aspect-Sentiment Pairs 0.8031 0.8130  0.8080 - - -
Complete Triplets 0.8030 0.8129  0.8079 - - -
Overall System - - 0.8630 - - -

5.2 COMPARATIVE ANALYSIS

Table [3] compares our system with recent state-of-the-art methods in ABSA and LLM-based senti-
ment analysis.

Our system demonstrates improved performance across key metrics. We achieved a 4.2-6.2% im-
provement in sentiment classification accuracy over existing methods, representing substantial ad-
vancement in understanding user emotions. The system shows a 20.3% improvement in overall
F1 score compared to Hellwig et al.’s ACSA F1, indicating significant progress in comprehensive
sentiment analysis capabilities. Additionally, we maintain competitive aspect extraction perfor-
mance while ensuring consistency across diverse app categories, demonstrating the robustness of
our domain-specific approach.
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Table 3: Performance Comparison with State-of-the-Art Methods

Method Aspect F1  Sentiment Acc. Overall F1
Our System (2025) 0.8226 0.9823 0.8630
Shah et al. (2024) (Shah et al.| [2024) 0.75-0.80 0.92-0.94 N/R
Smid et al. (2024) (Smid et al., [2024) 0.78-0.82 0.89-0.92 0.80-0.83
Hellwig et al. (2025) (Hellwig et al.| |2025) 0.8133 N/R 0.7171
Scaria et al. (2024) (Scaria et al.|[2024) 0.81-0.86 N/R 0.78-0.84

To contextualize capabilities beyond metrics, Table ] compares core features across recent systems.

Table 4: Feature Comparison Across Systems

System ABSA RAG Multi-Agent  Context/Version
Our System (2025) v v N v
Shah et al. (2024) (Shah et al. v - - -
2024)

Smid et al. (2024) (éml’d et al., v - - -
2024)

Hellwig et al. (2025) (Hellwig v - — —
et al.,|2025)

Scaria et al. (2024) (Scaria et al.} v - - -
2024)

Ballas et al. (2024) (Ballas et al.} v - - v
2024)

Zhang et al. (2023) (Zhang et al.| - - - -
2023))

Fan et al. (2025) (Fan et al. v - - -
2025))

Ma et al. (2023) (Ma et al.,|2023) v - - -
Gao et al. (2024, survey) (Gao - v - -
et al.,[2024)

Mathebula et al. (2024, finance) - v - -

(Mathebula et al.| [2024)

In summary, prior systems largely focus on text-only ABSA without integrated retrieval, orches-
tration, or code reasoning. Our system uniquely combines ABSA with RAG, multi-agent routing,
version/context awareness, and code-aware solution generation, while also supporting on-prem de-
ployment and full reproducibility artifacts.

Note: v'indicates explicit feature support as described by the cited work; “Partial” denotes some
artifacts or limited instructions are provided.

5.3 ABLATION STUDIES

Retrieval and Context: Removing RAG degraded retrieval quality and downstream aspect/triplet
accuracy; disabling contextual metadata and changelog integration reduced version-specific detec-
tion and lowered solution relevance; keyword-only retrieval increased irrelevant matches compared
to the hybrid keyword-+semantic approach.

Orchestration and Modeling: Collapsing the multi-agent workflow into a single agent increased
routing errors and reduced consistency across outputs; replacing the fine-tuned, domain-specific
model with a base model harmed aspect recognition and sentiment precision.

Overall Effect: Across the core metrics reported in Table [2] the complete system configuration
consistently outperformed all ablated variants.

Comparison with Large-Scale Models: Compared with general-purpose frontier models (e.g.,
GPT-4, Claude-3.5), our domain-specialized approach performs competitively on mobile app feed-
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back, particularly in handling mobile-specific terminology, while offering lower latency and on-
prem privacy options that suit production constraints.

5.4 ERROR ANALYSIS AND PERFORMANCE BREAKDOWN

We analyzed some challenging cases and observed systematic failure patterns across components,
along with robustness characteristics of the overall system.

ABSA Component Errors: Aspect extraction achieved 82.26% F1. The dominant error sources
are (1) implicit references (pronouns like “’it” without clear antecedents), (2) multi-sentence or com-
pound aspects requiring coreference resolution, and (3) unseen terminology. Sentiment classification
reached 98.23% accuracy; remaining errors are primarily due to sarcasm and conditional phrasing
(e.g., ”good but needs improvement”).

RAG Retrieval Analysis: The system maintains 94.7% recall with a 67% reduction in irrelevant
results. Failure cases arise from (1) synonym/terminology mismatches between user language and
stored content, (2) version-specific API changes that shift context temporally, and (3) sensitivity to
similarity thresholds (performance drops when thresholds exceed 0.15), motivating adaptive tuning.

Multi-Agent Coordination: Routing reliability is 99.2% with sub-second dispatch. About 2.1%
of routing errors are caused by ambiguous queries spanning multiple agent competencies. Load
beyond 1,200 concurrent requests introduces temporary delays, with 98.7% recovery via redundant
routing.

Code-Aware Solution Quality: CodeLlama 7B produces solutions in 24-35 seconds, including
thorough test cases and executable fixes while preserving imports and architectural conventions. On
representative mobile codebases (e.g., parsing bugs, RecyclerView binding issues), targeted correc-
tions are generated consistently.

System Robustness: Robustness features include fallbacks when repositories are inaccessible, au-
tomatic cleanup of temporary directories, secure handling of private repositories, and resumable
dataset labeling with batch memory optimization. GPU memory cleanup, singleton-based resource
usage, and Gradio’s error-aware Ul further enhance reliability with real-time feedback and context
preservation.

6 DISCUSSION

Our RAG-enhanced multi-agent ABSA framework demonstrates significant advances in developer-
oriented sentiment analysis. The 98.23% sentiment accuracy and 86.30% overall F1 score represent
substantial improvements over existing methods, validating our approach of combining contextual
retrieval with specialized agent orchestration. The system’s key strength lies in bridging the gap
between user feedback analysis and actionable developer solutions through code-aware generation.

The multi-agent architecture proves particularly effective, with 99.2% routing reliability enabling
seamless developer interaction. Our resource-efficient LoRA approach achieves 70% memory re-
duction while maintaining high accuracy, making the system accessible to development teams. The
RAG implementation addresses critical limitations by providing contextual understanding that con-
nects user complaints to specific app versions and technical solutions.

However, several limitations present opportunities for future development. The system is optimized
for mobile applications and currently limited to English, requiring multilingual datasets for global
deployment. Hardware requirements (24GB+ GPU memory) may limit smaller teams, though quan-
tization helps mitigate this. The system struggles with short reviews, sarcastic comments, and un-
usual architectures. Future work will focus on Google Play API integration, multilingual support,
automated code validation, and expansion to other software domains.

7 LLM USAGE

Large Language Models power our system’s core functionality: (1) fine-tuned LLaMA 3.1 8B han-
dles aspect-sentiment-opinion extraction, (2) Ollama LLaMA 3.1 manages multi-agent coordination
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and query routing, (3) CodeLlama 7B generates code solutions with 24-27 second processing times,
and (4) nomic-embed-text creates semantic embeddings for code pattern matching across multiple
file types.

We used LLMs strictly as computational tools within our framework, not for ideation or writing. All
outputs are validated, and we take full responsibility for their reliability.

8 CONCLUSION

We’ve created a comprehensive solution that enhances how developers understand and act on user
feedback by combining semantic understanding, contextual awareness, resource-efficient model
training, and specialized Al agents to transform large review volumes into clear, actionable insights.
The results demonstrate 98.23% accuracy in understanding user sentiment and 86.30% overall per-
formance across 41,245 real Google Play Store reviews, providing specific, code-aware solutions
that developers can implement directly. This work contributes to developer tools by bridging the
gap between knowing users are unhappy and knowing exactly what to fix, delivering not just a
research prototype but a production-ready foundation for automated development assistance with
sub-second responses, 1,000+ queries/hour throughput, 99.2% uptime, and flexible deployment via
Gradio UI and REST APIs.

REPRODUCIBILITY STATEMENT

We ensure reproducibility by sharing complete implementation details and releasing our code upon
publication. Section 4 presents the experimental setup, covering hardware (NVIDIA RTX 3090,
24GB), software (PyTorch 2.8.0, CUDA 12.8, Transformers 4.55.2, Unsloth 2025.8.6), and hy-
perparameters used in fine-tuning. Dataset preprocessing steps and filtering rules are reported in
Section 4.1, while Section 3.4 details the LLaMA 3.1 8B model with LoRA training configuration.
Section 4.3 describes the evaluation metrics and protocols. The implementation includes modu-
lar files (e.g., enhanced_rag_review.py, code_integration_layer.py, Solution_RAG.py, rag_gradio.py)
with documented interfaces, and full architecture details appear in the Appendix. Anonymous repos-
itories will be released to support replication and extension.

ETHICS STATEMENT

This work follows the ICLR Code of Ethics. We analyze publicly available Google Play Store
reviews that exclude personal data beyond usernames, focusing only on review content to protect
privacy. For code integration, we enforce strict safeguards such as read-only access, temporary
directory cleanup, local-only processing, and secure token handling. The goal is to help developers
improve user experience while preventing misuse. Both fine-tuned models and tools are designed
for constructive software engineering applications, with a focus on fairness, transparency, and safe
sentiment analysis.
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A IMPLEMENTATION DETAILS

The complete system implementation includes:

* Enhanced RAG Review System ( enhanced_rag_review.py): Complete enhanced system
with code-aware capabilities, backward compatibility, and repository configuration man-
agement

* Code Integration Layer (code_integration_layer.py): Repository management frame-
work with ‘CodelntegrationManager’ supporting local/remote access, automatic cloning,
caching, and security controls

* Enhanced Solution Agent (enhanced_solution_agent.py): Advanced code analysis capa-
bilities with ‘CodeAnalyzer’ for multi-platform support and project structure scanning

* CodebaseRAG Assistant (Solution_RAG.py): Sophisticated RAG system implementing
enhanced codebase ingestion with dependency extraction, intelligent chunking across Java,
Kotlin, XML, Markdown, Gradle, and properties files, featuring CodeLlama 7B (tempera-
ture=0.1) integration for problem-aware solution generation with 8-category problem clas-
sification and multi-modal output (analysis, tests, implementation)

* Advanced Dataset Labeler (dataset labeler.py): ‘ReviewDatasetLabeler’ class with le-
nient language detection, quality scoring algorithms, resumable execution, and memory
optimization

¢ Model Management System (model_loader.py): ‘ABSAModelSingleton’ with automatic
GPU cleanup, memory optimization, and efficient resource utilization

* Production Interface (rag_gradio.py): ‘GradioAppAnalyze’ with real-time app version
loading, interactive chat, conversation context management, and comprehensive error han-
dling

* Advanced Tools Integration (tools.py): LLM JSON relevance checking, batch process-
ing, sophisticated parsing, session retry logic, and SSL verification fallback

e Multi-Agent Orchestration (rag review.py): LangGraph state machine with eight spe-
cialized agents, intelligent routing logic, and conversation context management

The system supports both interactive UI through Gradio interface and CLI-based analysis for devel-

oper integration.

B ENVIRONMENT AND SETUP

B.1 HARDWARE AND SOFTWARE

GPU: NVIDIA RTX 3090 (24GB). CUDA 12.8. Driver 550+.

OS: Linux or Windows 11 with WSL2. Python 3.10.

Core packages: PyTorch 2.8.0, Transformers 4.55.2, Unsloth 2025.8.6, Chroma 1.0.17, mxbai-
embed-large (reviews), nomic-embed-text (code), Gradio 4.x.

B.2 ENVIRONMENT REPRODUCIBILITY

Use fixed seeds for Python, NumPy, and PyTorch; deterministic flags enabled in inference. Persist
model and embedding versions in metadata. Maintain a requirements.txt and lock file.
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C DATA COLLECTION AND PREPROCESSING

C.1 SOURCES AND SAMPLING

Google Play Store reviews from 45 apps across multiple categories; AppBrain changelog metadata
for version context. Reviews processed in batches of 100; duplicate and spam removal applied.

C.2 PIPELINE
Language filtering (English, confidence > 0.9); normalization (lowercasing, Unicode cleanup);

deduplication (exact and fuzzy); context linking (timestamp-based version matching when explicit
version absent); final dataset: 41,245 English reviews.

D TRAINING CONFIGURATION

D.1 MODEL AND STRATEGY
Backbone: LLaMA 3.1 8B. Parameter-efficient fine-tuning via LoRA (4-bit quantization). Trainable

parameters: 41.9M ( 0.52%). Context window: 2048 tokens. Optimizer and schedule as in Unsloth
defaults with linear warmup.

D.2 HYPERPARAMETERS

LoRA rank r = 16, a = 16, dropout=0. Batch sizing tuned to fit 24GB with gradient accumulation.
Training for 3 epochs over 32,976 samples. Checkpoints saved per epoch with evaluation subsets.

E PROMPTS AND INFERENCE

E.1 ABSA PROMPT (EXCERPT)

Given a review, extract a JSON array of items with fields: aspect, sentiment, opinion. Enforce
schema, handle multiple sentences, and avoid hallucination.

E.2 RELEVANCE AND RETRIEVAL

Hybrid retrieval: keyword pre-filter — semantic search (Chroma, mxbai-embed-large) — code pat-
tern checks for solution generation contexts. Similarity threshold starts at 0.1 and adapts by query

type.

F EVALUATION PROTOCOLS

F.1 METRICS
Aspect extraction: Precision/Recall/F1. Sentiment: Accuracy/F1. Opinion quality: ROUGE-L F1

and BLEU. End-to-end: pair/triplet F1. Retrieval effectiveness: precision/recall of retrieved contexts
for sampled queries.

F.2 SPLITS AND PROCEDURE

Held-out validation from the 41,245-review corpus; macro-averaged metrics across app categories.
Inference uses deterministic decoding for comparability.

G ABLATION CONFIGURATIONS

We evaluate controlled variants relative to the full system: (a) No RAG (ABSA-only), (b) No Con-
text (disable metadata/changelogs), (c) Single-Agent (collapse orchestration), (d) Base Model (no
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domain fine-tuning), (¢) Keyword-Only retrieval. Impacts are described qualitatively in Section 5.3;
core metrics appear in Table

H USAGE INSTRUCTIONS

H.1 CLI

Analyze a target app or reviews: provide input reviews JSON/CSV and optional repository URL for
code-aware solutions. Outputs include extracted aspects/sentiments/opinions, problem summaries,
and solution drafts.

H.2 Ul

Gradio interface exposes: app/version selector, query box, retrieved context viewer, ABSA results
panel, problems & solutions with code suggestions, and export options. Session state persists for
auditability.

I OPERATIONAL AND PRIVACY CONSIDERATIONS

Repository access is read-only with temporary clones and automatic cleanup. Tokens stored se-
curely; local processing by default. Logs exclude PII and retain minimal traces for debugging (com-
ponent timings, routing decisions).

J MODULE RESPONSIBILITIES

* enhanced_rag_review.py: Orchestrates full pipeline (collection — retrieval - ABSA —
problems — solutions), exposes CLI entrypoints, consolidates configs, handles run logging
and result packaging.

* rag review.py: Defines LangGraph state machine, eight agents, routing logic, and conver-
sation context; abstracts agent contracts and error boundaries.

* Solution RAG.py: Implements  code-aware  retrieval  across  reposito-
ries  (Java/Kotlin/XML/Gradle/MD); integrates CodelLlama 7B for analy-
sis/tests/implementation output modes.

* enhanced solution_agent.py: Adds static analysis, project graph scanning, dependency
hints, and patch planning; bridges from natural-language issues to code diffs/tests.

* code_integration_layer.py: Secure repo ingestion (local/remote), caching, chunking rules
(class/method; tag-based for XML), and cleanup; supports read-only tokens.

* model_loader.py: Loads LLaMA 3.1 8B with LoRA adapters via a singleton; configures
4-bit quantization, seed control, CUDA memory guards, and teardown.

 dataset_labeler.py: ReviewDatasetLabeler with lenient language detection, quality scor-
ing, resumable execution, and memory-aware batching.

 rag_gradio.py: Production UI with app/version selection, context viewer, ABSA panels,
problems/solutions, and export; includes error-aware UX.

* tools.py: JSON schema enforcement, LLM relevance checking, session retries/backoff,
SSL fallback, and structured parsing utilities.

* codebase.py, datas.py, create_simple_reviews.py, test.py: Helpers for code ingestion,
dataset prototyping, and quick smoke tests.

K CONFIGURATION SCHEMA (EXCERPT)

Configs may be provided via YAML/JSON or CLI flags.
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absa:
model_name: llama-3.1-8b
lora:
r: 16
alpha: 16

dropout: 0.0

quantization: 4bit
retrieval:

db: chroma

review_embed: mxbai-embed-large

code_embed: nomic-embed-text

similarity_threshold: 0.10

hybrid: [keyword, semantic, code_pattern]
agents:

enabled: [classifier, parser, scraper, context, absa, problems, solutions,
runtime:

seed: 42

device: cuda

L PROMPT TEMPLATES (EXCERPTS)

ABSA Extraction (LLM): Given a review, return JSON array: aspect, sentiment, opinion. Handle
multi-sentence inputs; avoid hallucination; preserve spans where possible.

Relevance (LLM): With app description and N reviews, output JSON: relevant_reviews, rationale;
ensure determinism and schema validity.

Code-Aware Solutions (LLM): Given problems and repository context, produce: analysis, tests,
implementation (diff-style or file-level instructions); maintain imports and architectural patterns.

M OvuTPUTS AND FILE FORMATS

* results/absa. jsonl: One JSON object per review with triplets and confidences.
* results/problems. json: Aggregated issues with categories and exemplars.

* results/solutions/: Proposed fixes, test specs, and integration notes.

* logs/run. json: Timings, routes, component statuses; no PIL.

N LOGGING, MONITORING, AND ERRORS

Component timings, routing decisions, and retrieval stats are logged. Fail-closed policies for schema
validation; automatic retries with backoff for transient failures; graceful degradation when reposito-
ries are unavailable (skip code-aware stage, report warning).

O CACHING AND PERFORMANCE

Vector stores cached on disk; embedding calls batched; LoRA-loaded model kept as a singleton;
GPU memory reclaim on teardown; hybrid retrieval reduces search space before semantic queries.

P SECURITY AND PRIVACY

Read-only repo access with ephemeral clones; secrets via . env and never committed; processing
local by default; logs exclude PII; optional offline mode with cached embeddings.

Q REPRODUCTION CHECKLIST

¢ Create environment from requirements. txt or Dockerfile; set seeds.
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* Run dataset labeling; verify counts match Section 4.1.

* Fine-tune ABSA model with provided configs; confirm metrics match Table 2] within tol-
erance.

» Execute end-to-end pipeline on the provided split; export problems/solutions.

* Validate outputs against reference JSON and checksums.
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