
Under review as a conference paper at ICLR 2021

TRANSFORMER-QL: A STEP TOWARDS MAKING
TRANSFORMER NETWORK QUADRATICALLY LARGE

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer networks have shown outstanding performance on many natural lan-
guage processing tasks. However the context length (the number of previous to-
kens on which the output states depend) of a Transformer network grows at best
linearly with the memory and computational power used. This limitation prevents
a transformer network to have very long context in a resource limited application.
In this work, we propose a class of transformer networks, namely Transformer-QL
(Quadratically Large), in which, the context length can grow at best quadratically
with the memory and computational power used. We have empirically evaluated
a Transformer-QL model in three long range language modeling datasets. The re-
sults show that Transformer-QL can provide significant improvements over other
state of the art networks.

1 INTRODUCTION

Since its introduction in Vaswani et al. (2017), Transformer networks have overtaken its predecessor
Recurrent Neural Networks (RNN) in almost every natural language processing task. However, one
limitation of Transformer network is its high requirement of memory and computational power. In a
vanilla Transformer network, the memory and computational requirement grows quadratically with
the sequence length, and thus with context length.

In an effort to overcome the above limitation, Transformer-XL (Dai et al., 2019) and Compressive
Transformer (Rae et al., 2020) have been recently proposed. However, in both the network, the
context length can grow at best linearly with the memory and computation usage. An alternative
strategy have been explored in Li et al. (2019); Ye et al. (2019); Child et al. (2019); Zaheer et al.
(2020); Beltagy et al. (2020); Wang et al. (2020b); Kitaev et al. (2020); Katharopoulos et al. (2020);
Choromanski et al. (2020); Wang et al. (2020a). All these works have proposed to replace the vanilla
self-attention network by a different one with linear or log-linear memory and computation complex-
ity leading to novel transformer architectures with overall linear or log-linear cost. Although, they
provide an improvement over the quadratic cost of the vanilla transformer network, the achieved
cost is still, at best, linear. Besides, since those techniques are based on either sparsification or
compression of the self attention mechanism, they struggle to accumulate long distance information
(Gupta & Berant, 2020).

Several works such as Burtsev & Sapunov (2020); Ainslie et al. (2020); Gupta & Berant (2020)
have proposed to increase the context length by introducing a global attention which attains to every
input token, thus capable of capturing long distance dependency. However, capturing long distance
dependency using those approaches involves extreme compression of state space by the global at-
tention mechanism. Moreover, even though, they perform well on several tasks, their performance
on language modeling task have not been tested. Another line of work (Zhang et al., 2019; Pappa-
gari et al., 2019) have suggested to use hierarchical arrangement of transformer network to capture
document-wide dependency. However, applicability of those networks requires hierarchical struc-
ture in the data itself. Moreover, those techniques have been proposed for document compression
rather than language modeling.

In this paper, we propose a class of transformer architectures, namely Transformer-QL
(Quadratically Large), to alleviate the problem of capturing long distance dependency. Similar to
multi-scale transformer networks (Donahue et al., 2019; Subramanian et al., 2020; Zhao et al., 2020;

1

Under review as a conference paper at ICLR 2021

Dai et al., 2020), Transformer-QL captures the contextual information in multiple temporal scales -
finer scales to capture recent past information and coarser scales to capture distance past information.
Additionally like Transformer-XL, it keeps the hidden states of a past segment in memory and use it
to process future segments causing the context length to grow beyond the current segment. Overall,
the context length in Transformer-QL can grow up to quadratically with the memory/computational
usage. The contributions of the work are as follows:

• We have proposed a novel class of transformer architectures, namely Transformer-QL, in
which, the context length can be made to grow linearly with memory and computation cost.
Further, employing a linear cost self attention layer like Wang et al. (2020b); Katharopoulos
et al. (2020), the context length of Transformer-QL can be made to grow quadratically in
both memory and computational cost.

• We have empirically evaluated a Transformer-QL model on three long range language
modeling datasets. The results show significant improvement in perplexity score over
Transformer-XL and Compressive Transformer.

The organization of the paper is as follows. In section 2, the proposed Transformer-QL architec-
ture along with its background has been introduced. Section 3 provides empirical evaluation of
Transformer-QL. The section also studies the sensitivity of Transformer-QL to several hyperparam-
eters. Finally, in Section 4, the conclusion has been drawn and future directions of the work have
been suggested.

2 METHOD

2.1 TERMINOLOGY AND NOTATIONS

In a transformer network, the input sequence are partitioned into smaller segments of fixed length.
Each segment is processed independently of other segments. We refer to the number of tokens in
each segment as segment length. In a transformer network with recurrent memory like Transformer-
XL, the hidden states of the recent past segments are preserved in a fixed length memory. We refer
to the number of tokens in each layer of the memory unit as memory length. For an output state
(i.e. the output states of the last layer), we use the term context length to refer to the number of past
tokens on which the output state depends. In transformer network, different output states might have
different context length. We respectively refer the minimum and maximum of the context lengths
of all the output states in a network as minimum context length and maximum context length of the
network. We refer the sum of segment length and the memory length using the term window length.

We denote the segment length, memory length, window length and model dimension by ns, nm, nw
and dm respectively. Thus, we have nw = ns + nm. We also use the notations slt and ml

t to denote
the output and memory of l-th layer at time step t for l = 1, 2, · · · , L where L is the total number
of Layers. The output and memory of embedding layer at time step t have been denoted by s0t and
m0

t respectively. The number of heads in the self attention layers has been denoted by H .

2.2 BACKGROUND

Transformer A transformer network consists of stacked collection of multiple transformer layers.
Each transformer layer contains a multi-head self-attention layer followed by a position-wise feed
forward layer. Though the memory and computational cost of position-wise feed forward layer is
linear in the length of input sequence, the multi-head self attention layer has a quadratic cost. The
transformer network tackles the quadratic memory and computational cost by dividing the input se-
quence into smaller segments and applying the transformer network on each segment independently.
However, such method limits the context lengths to the segment length. Dai et al. (2019) has named
this problem as context fragmentation problem.

Transformer-XL Dai et al. (2019) has proposed Transformer-XL to solve the context fragmenta-
tion problem. In Transformer-XL, instead of discarding the hidden states after the computation of a
segment, they are saved in memory (please refer to Figure 3). During the computation of the follow-
ing segments, the self attention is applied over the hidden states of both the current segment and the

2

Under review as a conference paper at ICLR 2021

memory, thus has an increased context length without quadratic increase in the memory and compu-
tational cost. In fact, the memory/computational cost of the self-attention layer of Transformer-XL
grows only quadratically only with the segment size ns and linearly with the memory length nm.
On the other hand, the context lengths get increased by a length of nm per layer. By keeping ns
small and making nm large enough, the memory and computational cost of Transformer-XL can be
made close to linear with respect to the context lengths. Rae et al. (2020) has proposed to improved
the memory/computational cost of Transformer-XL further by keeping the part of the memory states
in a compressed form. However, even with this improvement, the memory and computational cost
can be at best linear in the context length.

2.3 THE MODEL

Output LayersScale 3Scale 2Scale 1

Autoregressive Prediction

Transform
er−XL Layer

Transform
er−XL Layer

Transform
er−XL Layer

Transform
er−XL Layer

Causal Accum
ulation LayerCom

pression

Com
pression

Figure 1: High Level Visualization of Proposed Model. The model processes the input tokens in
multiple temporal scales. Each scale has several transformer layers with recurrent memory. The
output of the last layer of one scale is compressed to form the input of the next scale. As the
segment length gets reduced because of compression, the memory length is increased to make the
total length (i.e. segment length + memory length) of all the layers same. In the figure, the blue
boxes represent hidden states of the current time step where as the red boxes represent the memory
states.

Overview In this paper, we explore to increase the context length by compressing the hidden
states hierarchically. The high level view of our architecture is shown in Figure 1. As shown in the
figure, the model processes the input sequence in several scales of temporal granularity. Each scale
consists of several transformer layers with recurrent memory. The output of the last layer of one
scale is compressed causing the temporal granularity as well as the segment length to reduce. As the
segment length reduces, we also simultaneously increase the memory length to keep the total length
(i.e. segment length + memory length) of the layer constant. Then the new segment and memory is
fed as the input to the first layer of the next scale. The resulting architecture is similar to the multi-
scale transformer architectures (Donahue et al., 2019; Subramanian et al., 2020; Zhao et al., 2020).
Additionally, Transformer-QL keeps recurrent memory to store hidden states of previous segments.
Therefore, in Transformer-QL, the layers belonging to a finer scale process contextual information
in fine-grained manner, but have a smaller context length. On the other hand, a layer belonging to a
coarser scale process information in coarse-grained manner, but have a longer context length (please
refer to Figure 5 for a detailed illustration of the context lengths of Transformer-QL layers). To get
the final output of the network, we causally combine the (possibly over-sampled) outputs of the last
layer of each scale and pass those through several transformer layers (following Subramanian et al.
(2020); Zhao et al. (2020)) to learn deep representation of the output.

3

Under review as a conference paper at ICLR 2021

Function Compute(s, m, l)
1 begin
2 s′ ← MultiHeadSAttnl(s,m)
3 s′′ ← LayerNorm(s+ s′)

4 s′′′ ← LayerNorm(s′′ + PoswiseFFl(s′′))
5 return s′′′

(b) One Transformer-XL layer over hidden states s and
memory m

Function Shift(s, m)
1 begin
2 nm ← len(m)
3 m′ ← concat (m, s)
4 m′′ ←m′[−nm :]
5 return stop gradient(m′′)

(d) Shift the current hidden state s into memory
m

1 At the beginning
2 begin
3 m0

0, · · · ,mL−1
0 ← 0 // initialize all the memory to zero

4 t← 1 // initialize time step to 1

5 while there is more data to process do
6 s0t ← xtWemb // embed input segment
7 m0

t ← Shift(s0t ,m0
t−1) // shift hidden states into memory

8 shift len← n0
s // initialize shift length to n0

s

9 acc inputs = [] // list to hold all the inputs of accumulation layer
10 lg ← 1 // initialize global layer index to 1
11 for i← 1 to no of scales do
12 Li ← no of layers at scale i // set Li to the number of layers at scale i
13 for l← 1 to Li do
14 s

lg
t ← Compute(slg−1

t ,m
lg−1
t−1 , lg) // run one Transformer-XL layer

15 m
lg
t ← Shift(slgt [: shift len],mlg

t−1) // shift hidden states into memory
16 lg ← lg + 1 // increase the global layer index

17 acc inputs.append([slg−1
t ,m

lg−1
t]) // put output of scale i in acc inputs

18 if i < no of scales then
// not the last scale, add a compression layer

19 s
lg
t ← fc(concat(mlg−1

t−1 , slg−1
t))[−nlg

s :] // compress the states
20 shift len← shift len/c // reduce the shift len for the new scale

21 m
lg
t ← Shift(slgt [: shift len],mlg

t−1) // shift hidden states into memory
22 lg ← lg + 1 // increase the global layer index

23 shift len← n0
s // set the shift length for the output layers

24 s
lg
t ← Accumulate(acc inputs) // combine the states in acc inputs

25 m
lg
t ← Shift(slgt [: shift len],mlg

t−1) // shift hidden states into memory
26 lg ← lg + 1 // increase the global layer index
27 Lo ← no of output layers // set Lo to the number of output layers
28 for l← 1 to Lo do
29 s

lg
t ← Compute(slg−1

t ,m
lg−1
t−1 , lg) // one Transformer-XL layer

30 m
lg
t ← Shift(slgt [: shift len],mlg

t−1) // shift hidden states into memory
31 lg ← lg + 1 // increase the global layer index

32 t← t+ 1 // increase the time step

(e) Forward pass of Transformer-QL. slt and ml
t represents the hidden states and memory states of layer l at

time step t. nl
s and nl

m represent the segment length and memory length of l-th layer.

Figure 2: Transformer-QL Algorithm.

The Compression Function For compression, we use one of average pooling and max pooling
with pool size and stride both equal to c where c is the rate by which we compress the states while
transitioning from one scale to the next. Let slt and ml

t be the output and memory states of l-th layer
with length nls and nlm respectively. We apply the compression function on the concatenation of ml

t

and slt to get the output sl+1
t of length nl+1

s = (nls + nlm)/c (for simplicity assume that nls + nlm
is divisible by c). If nl+1

s > nls, we take the last nls elements of sl+1
t to form the output of the

4

Under review as a conference paper at ICLR 2021

compression layer. Finally, we keep a recurrent memory ml+1
t of length nls + nlm − nl+1

s making
nls + nlm = nl+1

s + nl+1
m to hold.

The Memory Updates In Transformer-XL with segment length ns and memory length nm, the
segment of length ns is get shifted into the memory. In other words, the memory for the next time
step is computed as ml

t+1 = concat(ml
t, s

l
t)[−nm :] for all layer l. However, in Transformer-QL,

the granularity of layers belonging to different scales are different. More precisely, a segment of
length n0s belonging to scale 1 is compressed into a segment of length n0s/c

i−1 at a layer belonging
to scale i. Thus, in Transformer-QL, we update the memory of a layer l belonging to scale i as
ml

t+1 = concat(ml
t, s

l
t[: n

i
h])[−nim :] where nih = n0s/c

i−1 and nim are the shift length and the
memory length at scale i for i = 0, 1, · · · respectively. The complete algorithm of Transformer-QL
is shown in Figure 2.

Droppath Regularization Since the output of the last layer of every scale is summed in the ac-
cumulation layer, the path through a higher scale forms to a deeper network while the path through
a lower scale forms to a shallower network. Consequently, layers in the higher scales might remain
under-fitted due to lack of gradient flow through the deeper network while the layers in the lower
scales get over-fitted. To alleviate this problem, we have introduced droppath regularization. In
the accumulation layer, let each output be computed as so = 1

l

∑l
i=1 s

i where si represents the
(possibly over-sampled) output of scale i and l is the total number of scales. In droppath regular-
ization with droppath probability p, we drop the output of all the scales below j with a probability
p/(l − 1) for j = 2, 3, · · · , l from the accumulated output. More precisely, we generate a random
number u from uniform probability distribution and compute the output as so = 1

l−j+1

∑l
i=j s

i if

u ∈
[
(j−2)p
l−1 , (j−1)p

l−1

]
. For u ≥ p, no droppath is applied.

2.4 THE COMPLEXITY

The memory/computational complexity of a Transformer-XL network (Dai et al., 2019) with seg-
ment length ns, memory length nm and L layer is Θ((α(nm, ns) + ns)L) where α(·, ·) is the
complexity of self-attention layer. The context length nc of the network is Θ(nmL). Since
α(nm, ns) = Ω(nm + ns) (Li et al., 2019; Ye et al., 2019; Child et al., 2019; Zaheer et al., 2020;
Beltagy et al., 2020; Wang et al., 2020b; Kitaev et al., 2020; Katharopoulos et al., 2020; Choroman-
ski et al., 2020), the memory and computational complexity of Transformer-XL in terms of context
length is Ω(nc). Similarly, the memory and computational complexity of Compressive Transformer
(Rae et al., 2020) in term of context length is Ω(nc/c) where c is the compression rate. Therefore, the
memory/computational complexity of both Transformer-XL network and Compressive Transformer
network in term of the context length is at least linear. Consequently, increasing the context length in
both the networks requires at least linear increase in the amount of both memory and computational
requirements.

On the other hand, a Transformer-QL network with L Transformer-XL layers and i compression
layers, the context length nc becomes Θ(ci(ns +nm)) = O(clogcns(ns +nm)) = O(ns(ns +nm))
where ns = n0s and nm = n0m are the segment and memory length in scale 1 of the network.
Note that, since at most i = logcns compression layer can be used in Transformer-QL, we have
ci = O(clogcns) = O(ns). If we set nm = O(ns), we have nc = O((ns)

2
). However, the

time and memory complexity of a Transformer-QL network is Θ(α(ns, nm)L + (ns + nm)i)) =
Θ(α(ns, nm)(L + i)). Since α(ns, nm) = Ω(ns + nm) and we set nm = O(ns), the mem-
ory/computational complexity of Transformer-QL becomes Ω(ns(L + i)). Therefore, the mem-
ory/computational complexity of Transformer-QL in terms of context length is Ω(

√
nc(L + i)) =

Ω
(√
nc(L+ logcns)

)
. Thus, the complexity of Transformer-QL can be at best sub-linear. More-

over, if we set the compression rate c to ns, the memory and computational complexity can be at
best Θ(

√
nc) or, in other words, the context length can be at best quadratic in the memory and com-

putational cost. In Appendix B, we provide an algorithm to compute a tight estimation of the context
length of a Transformer-QL network. In the appendix, we have also provided a detailed illustration
of the dependency structure of the hidden states of a Transformer-QL network on the past tokens.

5

Under review as a conference paper at ICLR 2021

Dataset Model Test Average Test
ns/nm/ncm nw test nc Perplexity

Transformer-XL 04/12/− 16 98 20.15

Comp-Transformer 04/06/06 16 146 19.67

SimpleBooks-2 Transformer-QL 04/12/− 16 138 18.78

Transformer-XL 08/24/− 32 196 19.61

Comp-Transformer 08/12/12 32 292 19.15

Transformer-QL 08/24/− 32 276 18.56

Transformer-XL 04/12/− 16 98 12.93

Comp-Transformer 04/06/06 16 146 12.49

SimpleBooks-92 Transformer-QL 04/12/− 16 138 12.17

Transformer-XL 08/24/− 32 196 12.35

Comp-Transformer 08/12/12 32 292 12.01

Transformer-QL 08/24/− 32 276 11.88

Transformer-XL 04/12/− 16 98 31.19

Comp-Transformer 04/06/06 16 146 31.91

WikiText-103 Transformer-QL 04/12/− 16 138 29.13

Transformer-XL 08/24/− 32 196 27.52

Comp-Transformer 08/12/12 32 292 27.19

Transformer-QL 08/24/− 32 276 26.63

Table 1: Perplexity scores (lower is better) of the three networks: Transformer-QL, Transformer-
XL and Compressive Transformer (Comp-Transformer). The third column shows the segment
length (ns), memory length (nm) and compressed memory length (ncm) of the test model. The
forth column shows the window length nw of the test model. Note that, for Transformer-XL and
Transformer-QL, the window length is ns + nm and for Compressive Transformer the window
length is ns + nm + ncm. The average test context length nc has been shown in the fifth column.
The average test context length has been computed by taking the average of the minimum and max-
imum context length of the test model where the minimum and maximum context length have been
calculated using the algorithm of Appendix B.

3 EMPIRICAL EVALUATION

In this section, we empirically evaluate the efficacy of Transformer-QL for long range language mod-
eling task. Towards that goal, we compare the results of Transformer-QL with that of Transformer-
XL (Dai et al., 2019) and Compressive Transformer (Rae et al., 2020). Then we evaluate the sensi-
tivity of Transformer-QL to several hyper-parameters.

3.1 COMPARISON WITH STATE OF THE ART METHODS

State of the Art Methods We compare Transformer-QL network with the following two networks:

Transformer-XL (Dai et al., 2019) Transformer-XL is similar to vanilla Transformer with two
modifications. It uses recurrent memory to store and access the hidden states of the past
time steps. The recurrent memory enables to increase the minimum context length up to
nmL where nm is the memory length and L is the number of layers. It also uses relative
positional embedding of token instead of absolute positional embedding.

Compressive Transformer (Rae et al., 2020) Like Transformer-XL, Compressive Transformer
also uses recurrent memory. However, Compressive Transformer keeps part of the recurrent
memory in compressed format, thus has an increased context length over Transformer-XL.

Datasets We compare Transformer-QL against the above two networks on three long range lan-
guage modeling datasets: SimpleBooks-2 (Nguyen, 2019), SimpleBooks-92 (Nguyen, 2019) and
WikiText-103 (Merity et al., 2017). SimpleBooks-2 and SimpleBooks-92 are created from Guten-
berg book corpus (www.gutenberg.org) while WikiText-103 are created from Wikipedia articles. All

6

Under review as a conference paper at ICLR 2021

Model Train Test Trans-QL Trans-XL Improvement Relative
dimension ns/nm ns/nm Improvement

512 16/16 16/16 33.32 32.68 −0.64 −1.96%
1024 16/16 16/16 27.70 28.42 0.72 +2.53%
1536 16/16 16/16 27.00 28.22 1.22 +4.32%

Table 2: Improvement in test perplexity score (lower is better) of Transformer-QL over Transformer-
XL for three different model dimensions. The forth and fifth columns show the test perplexity
obtained by Transformer-QL and Transformer-XL respectively.

the three datasets preserve paragraph and section structures of their sources making those suitable
for long range language modeling task. The statistics of the three datasets are shown in Table 4 of
Appendix C.

Experimental Details For the experiments of Transformer-XL and Compressive Transformer, we
have used an 8-layer network. And for the experiments of Transformer-QL, we have used a network
with 3 layers in scale 1, 3 layers in scale 2 and 2 layers in the output block. Thus, the Transformer-
QL has a total of eight layers as in Transformer-XL and Compressive Transformer. We set the
compression rate of Compressive Transformer to 2. In Transformer-QL, we have used max-pooling
layer with pool size 2 and stride 2 as the compression layer. Thus, both the Transformer-QL and
Compressive Transformer have a compression rate of 2. For the experiments on the SimpleBooks-
92 and WikiText-103, we have set the model dimension to 1536 and used an initial learning rate
of 1 × 10−4. On the other hand, for the experiments on SimpleBooks-2, we have set the model
dimension to 256 and learning rate to 2.5 × 10−4. All the models have been trained using Adam
optimizer. We set the droppath probability of Transformer-QL to 0.3. The details of other hyper-
parameters can be found in Appendix E .

Results The results of the comparison are shown in Table 1. The results are grouped by the
window length nw of the test model as the lower bound of memory and computation requirement
directly depends on it. In all the datasets and settings, Transformer-XL performs worst among
all three. Worst performance of Transformer-XL is not surprising as it has smallest average con-
text length (shown in the fifth column) for a given nw. However, Compressive Transformer has
a slightly larger average context length than Transformer-QL. Yet, Transformer-QL has performed
similarly or significantly better than Compressive Transformer in all the setting which indicates that
Transformer-QL can exploits the contextual information more effectively than Compressive Trans-
former.

3.2 EFFECT OF MODEL DIMENSION

In this section, we investigate the effect of model dimension on the performance of Transformer-
QL. Towards that goal, we have performed experiments on WikiText-103 dataset with varying
model dimension. For each experiment, we compared the test perplexity of Transformer-QL with
that of Transformer-XL. The results are shown in Table 2. The improvement in test perplexity
of Transformer-QL over Transformer-XL has been computed by subtracting the test perplexity of
Transformer-QL from that of Transformer-XL. The relative improvement is computed by

Relative improvement =
Improvement× 100

Test perplexity of Transformer-XL

As shown in the table, Transformer-QL performs relatively worse for small model dimension like
512 and relative improvement increases as the model dimension increases. We speculate that the
relatively worse performance of Transformer-QL for smaller model dimension is caused by the
difficulty in compressing hidden states during switching from one scale to the next. To alleviate
the problem, Donahue et al. (2019) have proposed to increase the model dimension as the model
transits from a lower scale to a higher one. On the other hand, Dai et al. (2020) have suggested a
novel query-only-pooling to solve the problem. We take it as a future work to try those approaches
in Transformer-QL.

7

Under review as a conference paper at ICLR 2021

3.3 EFFECT OF CONTEXT LENGTH

In this section, we study the relative improvement in perplexity scores obtained by Transformer-QL
over Transformer-XL for varying context length. The results are shown in Table 3. From the table,
it can be noticed that relative improvement obtained by Transformer-QL is more when the context
length of the Transformer-XL networks are smaller in the first place. For example, for test ns = 08
and nm = 08, the relative improvement is as high as 8.80%. On the other hand, for the test ns = 02
and nm = 30, the relative improvement is only 2.76%. This can be explained by the fact that for
the segment and memory length 02 and 30, the average context length of Transformer-XL is already
large enough (241) to provide good result. By extending the average context length from 241 to
332, Transformer-QL provides only a small improvement following the law of diminishing return
(Hestness et al., 2017).

Model Test Avg. test nc Perplexity
Dimension ns/nm Trans-XL Trans-QL Trans-XL Trans-QL Rel Imprv

08/08 68 100 33.08 30.17 +8.80%
1536 16/16 136 200 28.22 27.00 +4.32%

02/30 241 332 27.19 26.44 +2.76%

Table 3: Relative improvements in perplexity scores (lower is better) obtained by Transformer-QL
over Transformer-XL on WikiText-103 dataset. The second column shows the test segment (ns) and
memory (nm) length. The third and forth column respectively show the average test context length
(nc) of Transformer-XL and Transformer-QL network.
.

4 CONCLUSION AND FUTURE WORK

In the work, we have proposed a class of transformer networks namely Transformer-QL in which
the context length can grow quadratically in memory and computational usage. Our empirical eval-
uation shows that Transformer-QL can perform significantly better than other long range language
modeling networks like Transformer-XL and Multi-scale Transformer by exploiting longer context
length. Further more, it can perform significantly better than Compressive Transformer by exploiting
the contextual information more effectively.

In our empirical evaluation, we have evaluated a Transformer-QL network with only one compres-
sion layer. In future, we want to evaluate a network with more then one compression layers. Also,
we have empirically found that the performance of Transformer-QL network can be worse than
that of Transformer-XL when the model dimension is small. As our future work, we want explore
different methods for removing this limitation.

REFERENCES

Joshua Ainslie, Santiago Ontañón, Chris Alberti, Philip Pham, Anirudh Ravula, and Sumit Sanghai.
ETC: encoding long and structured data in transformers. CoRR, abs/2004.08483, 2020.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.
CoRR, abs/2004.05150, 2020.

Mikhail S. Burtsev and Grigory V. Sapunov. Memory transformer. CoRR, abs/2006.11527, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. CoRR, abs/1904.10509, 2019.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Jared Davis, Tamás
Sarlós, David Belanger, Lucy Colwell, and Adrian Weller. Masked language modeling for pro-
teins via linearly scalable long-context transformers. CoRR, abs/2006.03555, 2020.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc Viet Le, and Ruslan Salakhutdi-
nov. Transformer-XL: Attentive language models beyond a fixed-length context. In Proceedings
of the 57th Conference of the Association for Computational Linguistics, ACL 2019, pp. 2978–
2988. Association for Computational Linguistics, 2019.

8

Under review as a conference paper at ICLR 2021

Zihang Dai, Guokun Lai, Yiming Yang, and Quoc V. Le. Funnel-Transformer: Filtering out sequen-
tial redundancy for efficient language processing. CoRR, abs/2006.03236, 2020.

David Donahue, Vladislav Lialin, and Anna Rumshisky. Injecting hierarchy with U-Net transform-
ers. CoRR, abs/1910.10488, 2019.

Ankit Gupta and Jonathan Berant. GMAT: global memory augmentation for transformers. CoRR,
abs/2006.03274, 2020. URL https://arxiv.org/abs/2006.03274.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory F. Diamos, Heewoo Jun, Hassan Kianine-
jad, Md. Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. CoRR, abs/1712.00409, 2017.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
RNNs: Fast autoregressive transformers with linear attention. CoRR, abs/2006.16236, 2020.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In 8th
International Conference on Learning Representations, ICLR 2020,April 26-30, 2020. OpenRe-
view.net, 2020.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. In Advances in Neural Information Processing Systems 32: NeurIPS 2019, pp. 5244–
5254, 2019.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In 5th International Conference on Learning Representations, ICLR 2017, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017.

Huyen Nguyen. SimpleBooks: Long-term dependency book dataset with simplified English vocab-
ulary for word-level language modeling. CoRR, abs/1911.12391, 2019.

Raghavendra Pappagari, Piotr Zelasko, Jesús Villalba, Yishay Carmiel, and Najim Dehak. Hierar-
chical transformers for long document classification. In IEEE Automatic Speech Recognition and
Understanding Workshop, ASRU 2019, Singapore, December 14-18, 2019, pp. 838–844. IEEE,
2019.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, Chloe Hillier, and Timothy P. Lillicrap.
Compressive transformers for long-range sequence modelling. In 8th International Conference
on Learning Representations, ICLR 2020. OpenReview.net, 2020.

Sandeep Subramanian, Ronan Collobert, Marc’Aurelio Ranzato, and Y-Lan Boureau. Multi-scale
transformer language models. CoRR, abs/2005.00581, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems 30, pp. 5998–6008, 2017.

Shuohang Wang, Luowei Zhou, Zhe Gan, Yen-Chun Chen, Yuwei Fang, Siqi Sun, Yu Cheng, and
Jingjing Liu. Cluster-former: Clustering-based sparse transformer for long-range dependency
encoding. CoRR, abs/2009.06097, 2020a.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. CoRR, abs/2006.04768, 2020b.

Zihao Ye, Qipeng Guo, Quan Gan, Xipeng Qiu, and Zheng Zhang. BP-Transformer: Modelling
long-range context via binary partitioning. CoRR, abs/1911.04070, 2019.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontañón,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Transformers
for longer sequences. CoRR, abs/2007.14062, 2020.

9

https://arxiv.org/abs/2006.03274

Under review as a conference paper at ICLR 2021

Xingxing Zhang, Furu Wei, and Ming Zhou. HIBERT: Document level pre-training of hierarchical
bidirectional transformers for document summarization. In Proceedings of the 57th Conference
of the Association for Computational Linguistics, ACL 2019,Volume 1: Long Papers, pp. 5059–
5069. Association for Computational Linguistics, 2019.

Yucheng Zhao, Chong Luo, Zheng-Jun Zha, and Wenjun Zeng. Multi-scale group transformer for
long sequence modeling in speech separation. In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI 2020, pp. 3251–3257. ijcai.org, 2020.

A TRANSFORMER-XL ALGORITHM

The algorithm for Transformer-XL is shown in Figure 3.

1 At the beginning
2 begin
3 m0

0, · · · ,mL−1
0 ← 0 // initialize memory to zero

4 t← 1 // initialize time step to 1

5 while there is more data to process do
6 s0t ← xtWemb // embed input segment
7 m0

t ← Shift(s0t ,m0
t−1) // shift hidden states into memory

8 for l← 1 to L do
9 slt ← Compute(sl−1

t ,ml−1
t−1, l) // run one Transformer-XL layer

10 ml
t ← Shift(slt,ml

t−1) // shift hidden states into memory

11 t← t+ 1 // increase the time step

Figure 3: Forward pass of Transformer-XL. The functions Compute and Shift are given in Figure 2b
and 2d respectively.

1 cur slen← ns // set current segment length to ns

2 cur mlen← nm // set current memory length to nm

3 min clen← 0 // initialize minimum context length to 0
4 cur layer clen← nm // set current layer context length to nm

5 for i← 1 to no of scales do
6 Li ← no of layers at scale i // set Li to the number of layers at scale i
7 for l← 1 to Li do
8 min clen← min clen + cur layer clen // increase min clen by cur layer clen

9 if i < no of scales then
// there is a compression layer
// update min clen, cur mlen, cur slen and cur layer clen
// appropriately

10 min clen← min clen + min(cur mlen, ns)/cur slen
11 cur mlen← (nm + ns)−min((nm + ns)/2, ns)
12 cur slen← cur slen/c
13 cur layer clen← cur mlen× ns/cur slen

14 cur layer clen← nm // reset cur layer clen for output layers
15 Lo ← no of output layers // set Lo to the number of output layers
16 for l← 1 to Lo do
17 min clen← min clen + cur layer clen // increase min clen by cur layer clen

18 return min clen

Figure 4: Computation of minimum context length of a Transformer-QL model. The ns, nm respec-
tively represent the segment and memory length of the scale 1 of the network.

10

Under review as a conference paper at ICLR 2021

B CONTEXT LENGTH OF TRANSFORMER-QL

A tight estimate of the minimum context length of a Transformer-QL network can be computed using
algorithm of Figure 4. For simplicity, we have assumed that all the division operations result into
integer output. We have also assumed that there is at least one layer in every scale. The maximum
context length can be obtained by adding ns to the minimum context length.

TransformerXLLayer

TransformerXLLayer

AccumulationLayer

Autoregressive Prediction

TransformerXLLayer

Compression

Compression

TransformerXLLayer

S0
t−7:t−7 S0

t−6:t−6 S0
t−5:t−5 S0

t−4:t−4 S0
t−3:t−3 S0

t−2:t−2 S0
t−1:t−1 S0

t:t

S1
t−11:t−7 S1

t−11:t−6 S1
t−11:t−5 S1

t−7:t−3 S1
t−7:t−2 S1

t−7:t−1 S1
t−7:tS1

t−11:t−4

S2
t−19:t−14 S2

t−19:t−12 S2
t−15:t−10 S2

t−15:t−8 S2
t−11:t−6 S2

t−11:t−4 S2
t−7:t−2 S2

t−7:t

S3
t−27:t−14 S3

t−27:t−12 S3
t−23:t−10 S3

t−23:t−8 S3
t−19:t−6 S3

t−19:t−4 S3
t−19:t−2 S3

t−19:t

S4
t−43:t−28 S4

t−39:t−24 S4
t−35:t−20 S4

t−31:t−16 S4
t−27:t−12 S4

t−19:t−4 S4
t−19:t

S5
t−59:t−28 S5

t−55:t−24 S5
t−51:t−20 S5

t−47:t−16 S5
t−43:t−12 S5

t−43:t−8 S5
t−43:t−4 S5

t−43:t

S6
t−47:t−7 S6

t−47:t−6 S6
t−47:t−5 S6

t−47:t−4 S6
t−43:t−3 S6

t−43:t−2 S6
t−43:t−1 S6

t−43:t

S7
t−51:t−7 S7

t−51:t−6 S7
t−51:t−5 S7

t−51:t−4 S7
t−47:t−3 S7

t−47:t−2 S7
t−47:t−1 S7

t−47:t

S4
t−23:t−8

Figure 5: Dependency of hidden states to the past tokens in a Transformer-QL network.

Additionally, in Figure 5, we have shown the detailed computation of minimum/maximum context
length with an example. In the figure, the notation Sl

t1:t2 used to denote a hidden states of l-th layer
and the state depends on the t1-th to t2-th tokens of the input sequence. In the example of the figure,
each output state depends on at least 44 previous tokens. In other words, minimum context length
of the network is 44. On the other hand, in a Transformer-XL network of same segment length,
memory length and number of layers, the minimum context length would have been 4× 4 = 16.

C STATISTICS OF DATASETS

The statistics of the datasets are shown in Table 4.

11

Under review as a conference paper at ICLR 2021

Dataset Number of Vocabulary Average
Tokens Size Frequency

SimpleBooks-2 2.2M 11, 492 195.43
SimpleBooks-92 91.5M 98, 304 931.40

WikiText-103 103M 267, 735 385.56

Table 4: Statistics of the datasets used in the experiments.

D COMPARISON WITH MULTI-SCALE TRANSFORMER

In this section, we empirically compare Transformer-QL with Multi-scale Transformer (Subrama-
nian et al., 2020). Our implementation of Multi-scale Transformer is same as Transformer-QL
without any recurrent memory. The resultant Multi-scale Transformer is similar to the button-up
model of Subramanian et al. (2020). We have used hyperparameter settings same as Transformer-
QL to train the Multi-scale Transformer. The result is shown in Table 5. From the table, we can see
that Multi-scale Transformer has been widely bitten by Transformer-QL even when the Multi-scale
Transformer has been trained and tested with a larger window length.

Dataset Model Train Test Average Test
ns nm ns nm nw test nc Perplexity

MS-Transformer 16 − 16 − 16 8 25.13
SimpleBooks-2 Transformer-QL 08 08 08 08 16 100 18.92

MS-Transformer 16 − 64 − 64 32 21.89
Transformer-QL 08 08 16 16 32 200 18.57

MS-Transformer 64 − 16 − 16 8 28.37
SimpleBooks-92 Transformer-QL 08 08 08 08 16 100 12.42

MS-Transformer 64 − 64 − 64 32 14.30
Transformer-QL 08 08 16 16 32 200 11.92

MS-Transformer 128 − 32 − 32 16 44.05
WikiText-103 Transformer-QL 16 16 08 08 16 100 30.17

MS-Transformer 128 − 128 − 128 64 29.15
Transformer-QL 16 16 16 16 32 200 27.00

Table 5: Comparison of Transformer-QL with Multi-scale Transformer (MS-Transformer). The
third and forth column respectively show the segment length (ns) and the memory length (nm) used
during training. The fifth, sixth and seventh columns respectively show the segment, memory and
the window (nw = ns + nm) length used to compute the text perplexities.The eighth column shows
the average context length (nc) of the test models.

E HYPERPARAMETER SETTING

We used the following values for hyperparameter for the experiments on SimpleBooks-2 datasets:

12

Under review as a conference paper at ICLR 2021

Hyperparameter Transformer-XL Compressive Transformer-QL Multi-scale
Transformer Transformer

d model 256 256 256 256
d embed 256 256 256 256
div val 1 1 1 1
untie r False False False False
proj same dim True True True True
n head 4 4 4 4
d head 64 64 64 64
d inner 1024 1024 1024 1024
train batch size 128×8

ns

128×8
ns

128×8
ns

128×8
ns

train ns 08 04 08 08
train nm 08 06 08 -
train ncm - 06 - -
pre lnorm True True True True
warmup steps 0 0 0 0
train steps 60, 000 60, 000 60, 000 60, 000
learning rate 0.00025 0.00025 0.00025 0.00025
min lr ratio 0.004 0.004 0.004 0.004
clip 0.25 0.25 0.25 0.25
dropout 0.1 0.1 0.1 0.1
dropatt 0.1 0.1 0.1 0.1
droppath - - 0.3 0.3
init std 0.02 0.02 0.02 0.02
proj init std 0.01 0.01 0.01 0.01
recons loss weight - 0.01 - -

For the SimpleBooks-92 datasets and model dimension 1536, the following values of hyperparame-
ters are used:

Hyperparameter Transformer-XL Compressive Transformer-QL Multi-scale
Transformer Transformer

d model 1536 1536 1536 1536
d embed 1536 1536 1536 1536
div val 4 4 4 4
untie r False False False False
proj same dim True True True True
n head 16 16 16 16
d head 96 96 96 96
d inner 6144 6144 6144 6144
train batch size 512×8

ns

512×8
ns

512×8
ns

512×8
ns

train ns 08 04 08 08
train nm 08 06 08 08
train ncm - 06 - -
pre lnorm True True True True
warmup steps 0 0 0 0
train steps 250, 000 250, 000 250, 000 250, 000
learning rate 0.0001 0.0001 0.0001 0.0001
min lr ratio 0.004 0.004 0.004 0.004
clip 0.1 0.1 0.1 0.1
dropout 0.15 0.15 0.15 0.15
dropatt 0.15 0.15 0.15 0.15
droppath - 0.3 0.3 0.3
init std 0.02 0.02 0.02 0.02
proj init std 0.01 0.01 0.01 0.01
recons loss weight - 0.01 - -

13

Under review as a conference paper at ICLR 2021

For the WikiText-103 datasets and model dimension 1536, the following values of hyperparameters
are used:

Hyperparameter Transformer-XL Compressive Transformer-QL Multi-scale
Transformer Transformer

d model 1536 1536 1536 1536
d embed 1536 1536 1536 1536
div val 4 4 4 4
untie r False False False False
proj same dim True True True True
n head 16 16 16 16
d head 96 96 96 96
d inner 6144 6144 6144 6144
train batch size 512×16

ns

512×16
ns

512×16
ns

512×16
ns

train ns 16 08 16 16
train nm 16 12 16 -
train ncm - 12 - -
pre lnorm True True True True
warmup steps 0 0 0 0
train steps 350, 000 350, 000 350, 000 350, 000
learning rate 0.0001 0.0001 0.0001 0.0001
min lr ratio 0.004 0.004 0.004 0.004
clip 0.1 0.1 0.1 0.1
dropout 0.15 0.15 0.15 0.15
dropatt 0.15 0.15 0.15 0.15
droppath - - 0.3 0.3
init std 0.02 0.02 0.02 0.02
proj init std 0.01 0.01 0.01 0.01
compression rate - 2 2 2
recons loss weight - 0.01 - -

For training models of model dimensions 512 and 1024, we have used initial learning rate of 0.0005
and 0.00025 respectively keeping the rest of the hyper-parameters same.

14

	Introduction
	Method
	Terminology and Notations
	Background
	The Model
	The Complexity

	Empirical Evaluation
	Comparison with State of the Art Methods
	Effect of Model Dimension
	Effect of Context Length

	Conclusion and Future Work
	Transformer-XL Algorithm
	Context Length of Transformer-QL
	Statistics of Datasets
	Comparison with Multi-scale Transformer
	Hyperparameter Setting

