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Abstract

Learning efficient visual representations across heterogeneous unlabeled datasets re-
mains a central challenge in federated learning. Effective federated representations
require features that are jointly informative across clients while disentangling client-
specific factors without supervision. We thus introduce FORLA, a novel framework
for federated object-centric representation learning and feature adaptation using
unsupervised slot attention. At the core of our method is a shared feature adapter,
trained collaboratively across clients to adapt features from foundation models, and
a shared slot attention module that learns to reconstruct the adapted features. To
optimize this adapter, we design a two-branch student—teacher architecture. In each
client, a student decoder learns to reconstruct full features from foundation models,
while a teacher decoder reconstructs their adapted, low-dimensional counterpart.
The shared slot attention module bridges cross-domain learning by aligning object-
level representations across clients. Experiments in multiple real-world datasets
show that our framework not only outperforms centralized baselines on object
discovery but also learns a compact, universal representation that generalizes well
across domains. This work highlights federated slot attention as an effective tool
for scalable, unsupervised visual representation learning from cross-domain data
with distributed concepts. Our code, data, and pretrained models are available at:
https://github.com/PCASOlab/FORLA.

1 Introduction

Self-supervised vision models such as DINO [7] and MAE [20] have popularized representation
learning as a transferable pretraining strategy for diverse downstream tasks. However, their joint use
in federated learning (FL) remains underexplored. Consider a FL scenario where clients hold data
from different domains and sub-domains: for example, some contain expert domains like various
types of surgical procedures, while datasets on other clients represent natural domains with everyday
objects. Despite their differences, these datasets may share certain properties, such as being captured
with visible light cameras, leading to overlapping textures or visual patterns. In some cases, specific
objects, such as tissues and surgical instruments, are shared only within sub-domains of the expert
domain, in this case across different surgical types. This heterogeneity poses challenges for FL using
unsupervised methods that leverage consistency to capture semantic meaning in the feature space

[7, 20, 30].

We propose that self-supervised object-centric learning [17, 38] offers the right inductive bias
for learning semantically meaningful representations from independently curated datasets while
preserving object-level knowledge across clients in federated settings. Slot Attention [38] learns
object-centric representations by factoring a scene into independent slots that specialize in individual
objects, yielding an interpretable, potentially domain-invariant basis. However, training slot attention
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on pooled data across clients entangles concepts and inflates computation, while training one model
per client preserves local structure but leaves feature spaces incompatible.

We thus introduce FORLA (Federated Object-Centric Representation Learning with Slot Attention).
that couples object-centric structure learning with collaborative feature adaptation across clients.
Each client starts from frozen foundation-model embeddings. A shared, lightweight adapter maps
these embeddings into a compact latent space. We train the adapter through a two-branch teacher-
student objective: (i) a teacher decoder reconstructs the learnable feature representation; (ii) a
student decoder reconstructs the frozen foundation model representation; (iii) both teacher and
student share the adapter and slot attention modules with other clients. Importantly, FL lets the
student inherit the teacher’s knowledge without a knowledge distillation (KD) loss, sidestepping the
permutation-matching problem posed by slot attention’s permutation invariance.

The dual-branch architecture of FORLA, with one branch reconstructing raw features while the other
reconstructs dynamic features, is crucial for efficient learning. On the one hand, reconstructing raw
features anchors the learning objective and enables convergence. On the other hand, learning adaptive
features improves object representation in complex scenes and novel domains, as shown by the PCA
visualization of adapted versus raw features in Fig. 2.

Object-centric learning has not been scaled to large multi-domain datasets, including mixtures of
expert and natural domains. This work, to our knowledge, is the first to study and demonstrate
the advantage of federated unsupervised object centric learning at scale. Our key contributions
are: 1) We consider representation learning a first-class problem in FL and motivate object-centric
learning as a principled solution. 2) We design an architecture with a communication-efficient
teacher—student adapter and slot attention modules that harmonizes heterogeneous raw foundation
features without sharing data. 3) Through extensive experiments we show that this architecture
consistently outperforms centralized training on mixed data, even when using identical foundation
models. For instance, federated slot attention achieves a 7.6% higher mIoU in multi-domain object
discovery while reducing client—server communication by 85.2% through lightweight adaptation
layers, compared to standard fine-tuning of foundation models. Furthermore, relative to the mixture-
of-foundation-models approach, the communication cost can be reduced by up to 6.7x. This
highlights FL’s unique ability to exploit distributed datasets when using an object-centric approach.

2 Related work

In this section we provide a brief overview of related work for FORLA which we further expand in
Supplementary Material A.

Federated Learning (FL.) While FL traditionally focuses on parameter aggregation [42], recent
work addresses non-1ID challenges through prototype exchange [44], contrastive alignment [69], and
knowledge distillation [19, 63]. However, these methods focus on classification/segmentation rather
than learning disentangled representations. Our work bridges this gap by introducing self-supervised
object-centric learning to FL.

Object-Centric Learning Slot Attention [38] introduced object-centric learning via iterative slot
refinement. Follow-up work improved scalability [56], applied foundation models [52], and enhanced
performance via feature augmentation [39], multimodal inputs [67, 2], or fine-tuning [12]. However,
no prior work integrates slot attention with federated learning across heterogeneous data which is a
setting where FL can mitigate concept entanglement by preserving local structure.

Concept Entanglement in Multi-Domain Learning Concept entanglement persists as a key chal-
lenge in multi-domain learning with overlapping semantics. Early solutions like Domain Separation
Networks [4] explicitly partition features into shared and private subspaces. Subsequent advances
include adversarial domain-invariant encoding [37], variational information maximization [24], and
label-free latent disentanglement via sparse adapters [9]. Recent work further distills domain-specific
representations through adapter alignment [32]. While these methods reduce entanglement, none
address object-centric disentanglement — a gap we bridge in both centralized and federated settings.

Adaptation Layers and Feature Harmonization Adaptation layers align feature spaces in transfer
[49] and multi-task learning [59]. In FL, adapters support personalization [8]. FT-DINOSAUR [12]
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Figure 1: Overview of FORLA. Left: Within each client, student and teacher branches are trained
to reconstruct raw foundation model features and adapted features, respectively. Right: During
each global federated learning (FL) round, the student’s adapter and Slot Attention (SA) modules
are aggregated across clients via the server. In later stages of training, the teacher’s adapter and
SA modules are locally synchronized with the student through a local FedAvg update, enabling
progressive knowledge distillation.

shows that object-centric learning benefits from cross-domain fine-tuning. Lightweight adapters
[16, 70], bias tuning [6, 68], and low-rank updates [22] offer scalable adaptation. Masking-based
adaptation for frozen models [60] enables harmonized multi-model input without the need to tune
one particular foundation model. Our approach integrates these ideas in a federated setting to align
local representations across diverse clients.

Knowledge distillation Knowledge distillation has been used in federated learning in a fully
supervised setting [71, 61]. Unsupervised self-distillation, as in DINO [7], ensembles knowledge
via Exponential Moving Average (EMA) updates from student to teacher, akin to Polyak averaging
[45]. We adopt a similar strategy: the teacher is updated by averaging with the student, without a
conventional KD loss; a step necessary due to Slot Attention’s permutation invariance [38]. Our
method is also related to co-distillation [1], where student and teacher models mutually distill
knowledge to perform efficient ensemble learning from large-scale, distributed data. Unlike standard
co-distillation, which employs identical models, we share only a subset of modules between student
and teacher, and our framework operates entirely in an unsupervised setting.

3 Method

3.1 Overview

Figure 1 illustrates the proposed framework for federated object-centric representation learning
and feature adaptation using Slot Attention. Clients share frozen features extracted from multiple
vision foundation models. On top of these shared features, FORLA trains two parallel branches
with identical feature-adapter and Slot Attention architectures but with slot decoders of different
sizes. Lightweight adapters compress and harmonize the stacked foundation features into a compact,
low-dimensional representation. The two Slot Attention modules extract object-centric latent slots
using the adapted features. The student decoder learns to reconstruct the raw high-dimensional
frozen features, while the teacher decoder reconstructs the adapted features. During training, the
adapter and Slot Attention parameters are periodically aggregated and synchronized across clients
and within each clients’ branches using FedAvg. This architecture enables FORLA to: (i) learn a
global distilled representation efficiently, and (ii) align slot attention across heterogeneous domains
without supervision.



3.2 Slot Attention with Adapted Foundation Features

Feature stacking and adaptation Given an input image, we extract features from M frozen
foundation models (DINO, SAM [28], MAE, CLIP [48]). Let I (m) ¢ REXWXCm pe the feature
map from model m. We concatenate these into:

F=[FO|F®| ... FM] e REWxCa Co =" Cp e))

To reduce dimensionality and fuse the stacked features, we introduce an adapter module g4 producing
adapted features Fuqap € RHAXWxd.

Fadapt =Jd¢ (F), d < Ctot (2)

We explore three feature adapter designs: MLP adapter [50], mixture-of-experts (MoE) [53, 15], and
Attention-based Feature Modulation (AFM) [23]. Details are provided in Supplementary Material B.

Slot attention The adapted features F g,y are flattened into N = H x W vectors and fed into a Slot
Attention encoder [38], producing K object-centric slot latent vectors {s k},ff:l. As in DINOSAUR
[52], decoding reconstructs target features and slot attention masks using MLP decoders. Details on
Slot Attention and decoding can be found in Supplementary C.

3.3 Feature reconstruction and loss functions

The student branch aims to reconstruct the full stacked feature map, F = Dy (S) € RH XWX Cl

while the teacher reconstructs the lower-dimensional adapted feature map, Fagapr = Dy, (S) €
RH*xWxd Student and teacher reconstruction losses are defined as:

1 N 2
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1 . 2

£2 = m HFadapt - FadaptH2 . (4)

As illustrated in Fig. 1, £; and £, independently optimize the student and teacher branches.

Progressive Distillation To prevent collapse (i.e., trivial reconstructions to zero target), we adopt a
progressive training strategy. During early training, gradients from the teacher decoder to its adapter
are blocked and the adapter is updated via exponential moving average (EMA) from the student. This
stabilizes training, as reconstructing raw foundation features is more reliable when starting from
scratch.

3.4 Federated Learning with Two-Stage Knowledge Transfer

Stage 1: Federated representation distillation and alignment When starting from scratch
(early rounds), as described in Algorithm 1, clients send updated student adapter and slot encoder
parameters to the server. The server aggregates these using FedAvg:

. 1 .
e(r+1) _ Zinznc @g) (5)

where © includes the adapter and slot encoder weights. This enables learning a global representation
adapter that generalizes across all client datasets, along with a global Slot Attention module for object
discovery across domains. In this stage only the student will learn to optimize the adapter, while the
teacher will learn a more adapted, domain-specific object-discovery.

Stage 2: Cross-branch federation. In later rounds, the feacher branch is allowed to further
optimize its own adapter and Slot Attention module. The refined knowledge is then transferred to the
student via a self-averaging strategy we term Local FedAvg. For this step, conventional knowledge
distillation (KD) is challenging due to Slot Attention’s permutation invariance. Slot alignment via
Hungarian matching [38] could make attention-based KD feasible, however we adopt a simpler



Algorithm 1 Federated Two-Branch Slot Attention Training in FORLA

1: Initialize: Global parameters ©° = (¢°, 0°) for adapter g, and Slot Attention SAg
2: Initialize: Local teacher branch (¢2,, 02,) < (¢°,6°) via EMA
3: foreachroundr =1,2,..., Rdo

4 for each client ¢ € {1, ..., C} in parallel do
5 Load global model: (¢, 6.) « (¢, 1) # synchronize local models
6: for each local epoch e = 1 to E do
7: for each batch B in client ¢’s data do
8 Extract and concatenate features F' from M frozen foundation models
9: Compute adapted features Fagapt = g4, (F) # learnable adapter
10: Obtain slots S = SAg, (Fadapt) # learnable slot attention
11: Student loss: £, = || — F||3 where I' = Dy (S) (Eq. 3)
12: Teacher loss: L2 = || Fugapt — Fadapt||3 Where Fuape = Diea(S) (Eq. 4)
13: Update student branch (¢, 6.) using £1 # gradient update for student
14: if in later rounds then
15: Update teacher branch (¢5*, 05*) using Lo
16: Local FedAvg : (¢, 0.) «+ a(de, ) + (1—a) (o, 05) # local FedAvg
17: else
18: Update teacher branch 05 using Lo
19: EMA Update: ¢5* < EMA(¢.) # early stage: update teacher via EMA
20: end if
21: end for
22: end for
23: Send updated student branch (¢, 6.) to server # upload local parameters
24: end for
25: Global aggregation: (¢(",0() « FEDAVG ({e, 0 Y1) # next-round global model
26: end for

27: Return: Global model (¢, 87)

approach. We treat the student and the teacher as two local clients, sharing knowledge through weight
averaging using FedAvg. This allows the teacher to be indirectly globalized by synchronizing with
the student’s Slot Attention module.

In such a framework, the KD aspect (the two-branch reconstruction) is tightly integrated with FL:
each client’s training is effectively distilling the knowledge of multiple foundation models into the
shared slot representation, and, in return, FL can benefit from the knowledge transfer between teacher
and student. By aggregating the adapter and slot encoder, a universal representation adapter and an
object discovery module are learned by leveraging knowledge across all domains.

4 Experiments and Results

We evaluate FORLA on a wide range of visual domains. Through extensive experiments, we
aim to address the following research questions: 1) Centralized vs. decentralized learning: Can
federated object-centric learning match or exceed centralized performance? 2) Representation
adapters: Which feature adaptation and distillation strategies work best across training regimes? 3)
Algorithm compatibility: Can FORLA integrate with various federated optimization algorithms
beyond FedAvg, such as FedProx and FedAdam? 4) Representation quality: How interpretable are
FORLA'’s representations compared to frozen foundation features? 5) Impact of domain gap: How
does the domain gap across datasets affect object discovery in solo, centralized, and federated training
setups? 6) Component contribution: What is the role of each design component—distillation,
adapter, and personalization in the overall performance?

We perform rigorous evaluations on both surgical and natural datasets using object discovery metrics.
FORLA outperforms individual and centralized training, yielding interpretable representations and
scene segmentation capabilities without supervision or data sharing.

Dataset We evaluate our experiment on seven datasets, categorized into two groups: 1) Surgi-
cal vision datasets: including the abdominal surgical dataset [72], Cholec80 dataset [58], and a
proprietary thoracic surgery dataset. 2) Natural vision datasets: including COCO [36], PASCAL
VOC 2012 [13], YouTube-VIS [66], and YouTube-Objects [47]. In total, these datasets comprise



Table 1: Federated performance on surgical and natural data (stratified evaluation).

Surgical Natural
Abdominal Cholec Thoracic Ccoco PASCAL YTVIS YTOBJ
mBO FG-ARI CorLoc mBO FG-ARI CorLoc mBO FG-ARI CorLoc mBO FG-ARI CorLoc mBO FG-ARI CorLoc mBO FG-ARI CorLoc mBO CorLoc

DINO Individual 47.33 57.87 5238 28.7 389 304 3096 193 3045 2396 29.2 20.13 3479 35.17 5231 33.09 36.64 54.02 4277 54.78
SAM Individual 47.00 53.70 56.20 25.75 32.62 31.81 50.28 41.14 54.88 22.61 25.02 20.50 36.98 35.78 35.78 32.62 36.07 36.07 42.86 54.95
Concat Individual 48.65 54.07 64.30 28.68 37.96 33.89 48.77 40.56 51.19 22.49 25.06 47.98 3558 3524 47.25 32.97 3597 53.28 43.33 50.56

Individual 51.85 59.04 69.25 33.54 4359 53.8 54.0 43.59 580 2441 27.63 57.67 3577 350 51.65 35.16 38.25 58.08 48.62 60.31
MLP  Centralized 55.91 61.31 76.47 31.12 41.12 4337 5444 442 63.06 25.12 27.99 60.1 36.59 3581 522 3447 375 5444 46.67 5743
FORLA  56.71 62.81 79.73 34.58 44.75 50.85 59.8 47.02 7045 2562 26.84 60.58 38.32 36.46 66.48 36.51 40.14 57.35 46.49 57.52

Individual 51.83 57.54 72.02 34.64 45.12 5242 51.1 4187 5589 24.69 2832 609 3436 3299 5275 34.82 38.38 56.33 48.51 61.52
MOE  Centralized 54.89 60.66 75.58 30.37 40.28 42.69 55.6 44.8 64.57 24.82 27.72 57.51 36.72 36.21 51.1 34.69 38.08 524 44.86 5343
FORLA 5642 61.95 7545 3406 4526 49.14 57.71 46.12 63.17 26.65 28.7 65.59 39.43 37.44 64.84 3938 4342 639 484 6221

Individual 50.34 59.04 70.73 329 4246 4236 53.03 43.48 56.62 24.15 27.76 56.22 34.98 34.16 51.1 3394 37.54 54.59 4898 65.11
AFM  Centralized 55.26 61.5 77.97 32.87 42.92 4736 5593 44.62 65.58 23.73 2697 56.06 37.16 36.4 544 3347 369 5124 4451 52.13
FORLA 57.86 64.88 80.3 342 44.35 54.49 61.86 47.58 7542 27.22 30.11 64.94 40.83 39.51 64.84 38.51 43.08 64.92 51.92 66.87

Adapter Method

Table 2: Federated performance on mixed-domain training with all datasets.

Method Abdominal Cholec Thoracic COCO PASCAL YTVIS YTOBJ Average
mBO CorLoc mBO CorLoc mBO CorLoc mBO CorLoc mBO CorLoc mBO CorLoc mBO CorLoc mBO CorLoc
Individual + AFM 50.34 70.73 32.90 42.36 53.03 56.62 24.15 56.22 3498 51.10 33.94 54.59 48.98 65.11 40.33 56.82
Centralized + MLP 49.78 58.08 25.49 34.11 44.83 41.95 24.54 56.54 36.71 53.85 33.71 52.11 44.42 47.74 37.21 49.34
Centralized + MOE 53.46 68.92 25.84 32.58 48.06 46.85 25.28 58.64 37.38 50.55 36.06 54.59 46.05 53.34 39.73 52.21
Centralized + AFM 54.16 72.5 31.64 46.42 53.72 57.49 26.68 63.97 38.93 53.85 37.15 60.41 47.84 57.41 41.45 58.81
Centralized + Individual decoder 54.87 70.88 27.39 37.83 50.91 52.39 25.98 62.20 39.09 59.34 36.30 57.21 47.41 58.62 40.28 56.78
Slot FedAvg + MOE 55.77 70.55 30.23 44.27 54.53 59.93 26.37 63.97 39.81 63.19 37.78 61.86 48.98 63.65 41.92 61.20
Slot FedAvg + AFM 53.74 69.65 32.63 41.65 52.01 50.42 25.45 63.17 39.13 63.74 37.60 62.30 48.12 61.74 41.24 58.95
FORLA + MLP 56.54 77.68 33.36 50.71 58.36 68.32 24.75 56.22 37.54 51.65 36.91 57.50 44.25 52.18 41.53 59.04
FORLA + MOE 56.03 73.08 31.78 42.43 56.79 62.73 26.41 62.84 38.29 60.44 37.43 57.35 49.33 63.79 42.29 60.37

FORLA + MOE + FedProx 54.19 72.62 32.42 44.06 57.24 61.81 26.73 62.52 39.19 60.44 37.87 60.84 46.27 57.95 42.13 59.89
FORLA + MOE + FedAdam  55.02 73.50 32.58 43.14 55.63 59.82 26.28 63.00 39.05 57.69 37.27 57.93 47.34 58.99 41.88 59.01
FORLA + AFM 61.84 77.32 33.96 44.40 56.74 59.17 26.45 64.46 38.02 65.38 39.33 67.39 49.36 64.02 43.81 63.02

FORLA Surgery | Natural 57.86 80.30 34.20 54.49 61.86 75.42 27.22 64.94 40.83 64.84 38.51 64.92 51.92 66.87 44.63 67.40

approximately 1.4 million images. With the exception of the proprietary thoracic dataset, all data is
publicly available.! Further details are provided in Supplementary Material E.

Experiment setup Following other research on object centric representation learning papers (e.g
MONET [5], IODINE [18] and FT-DINO [ 1]), we evaluate our approach based on the quality of the
slot attention masks using four primary metrics: Foreground Adjusted Rand Index (FG-ARI) [17],
Mean Best Overlap (mBO) [46], and Correct Localization (CorLoc) [3] which are widely adopted
in object-centric research [52, 39, 11]. We also compute Mean Best Hausdorff Distance (mBHD),
which captures boundary-level accuracy and is particularly important for clinical data.

We compare three training regimes: (i) Individual, where datasets are trained separately; (ii) Cen-
tralized mixed, where related domains are combined; and (iii) Federated, where each dataset acts as
an isolated client (up to seven domains). Features are extracted from frozen ViT-B/16 encoders of
DINO, MAE, CLIP (vision branch only), and SAM (encoder for feature only). Each client trains
for 100+ epochs with early stopping after 30 stagnant epochs. FedAvg is performed globally every
100 iterations and locally (student-teacher) every 1000. We use Adam (Ir = 4x10~4, batch size = 16).
Please see more implementation details in the Supplementary Material F. Unless noted, evaluation
uses the student decoder, while teacher results appear in Supplementary G.

Main results Given a learned global representation via a feature adapter and a global object-centric
slot attention module, we first investigate how their performance compares to models trained on
individual datasets and centralized models trained on mixed datasets assigned to each client. We
begin with a controlled setting where domain gaps are smaller: using three clients for surgical data
and four clients for natural datasets in a federated setup. These results are summarized in Table 1.

We explore three types of adapters: MLP, MOE, and AFM, under individualized, centralized, and
federated training. We also experiment using single foundation models and a naive feature stack
(denoted as “Concat” in Table 1) without adaptation. Among the single foundation models, DINO

'An open-access version of the proprietary thoracic dataset is curated as part of the federated learning
benchmark in this work.
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Figure 2: Visualization of PCA maps and Slot Attention (SA) masks from different methods. The
middle three rows show the first three PCA components visualized using RGB channels for frozen
foundation model features and adapted features produced by the AFM module trained under central-
ized training and under FORLA. The last two rows illustrate the scene decomposition ability of each
method via the SA-generated masks.

and SAM achieved the best overall performance. Results for CLIP and MAE are provided in the
Supplementary Material G. Interestingly, concatenated features slightly outperform others on surgical
datasets (e.g. achieving 64.3 CorLoc on Abdominal), and are comparable to SAM and DINO on
natural datasets, likely due to their shared pretraining on natural images, enabling complementarity
when transferred to new domains. Once adapters are introduced, slot attention shows accuracy gains
across all domains. Regardless of adapter type or training approach, performance improves. Among
training strategies, the proposed federated method consistently outperforms both individualized and
centralized training. Within surgical datasets, performance gains on Abdominal and Thoracic are
especially prominent. FORLA with AFM reaches 80.3 CorLoc on Abdominal and 75.42 on Thoracic,
whereas Cholec achieves smaller gains due to closer domain proximity and distinct instrumentation.

For natural datasets, federated training also yields consistent performance improvements. Interestingly,
for some subdomains, centralized training underperforms individualized training, likely because
unsupervised slot attention benefits from domain-specific curation [ 1 1]. For instance, YTOBJ attains
48.98 mBO with individual training but drops to 44.51 mBO under centralized training using the
same AFM adapter. Since YTOBJ has only 10 object categories but abundant data, mixing it with
other datasets may dilute the inherent saliency, making unsupervised learning harder. This may also
explain why most state-of-the-art slot attention work avoids mixed training. Among adapters, the
attention-based AFM performs best, likely due to its scalability and ability to preserve rich foundation
feature channels, achieving top CorLoc scores of 66.87 on YTOBJ and 64.94 on PASCAL (Table 1).

To better understand how different approaches learn representations, Figure 2 shows the top three
PCA projections of features visualized using RGB channels. We observe that FORLA captures
more fine-grained and globally coherent semantic structures compared to centralized mixed training.
For instance, it more effectively separates distinct tissue textures in surgical scenes and groups
semantically related object parts holistically. Leveraging these adapted representations, the globally



Table 3: Study on the Self-Distillation on Different Datasets and Setups.

Abdominal Cholec Thoracic
mBO mHD | FG-ARICorLoc mBO mHD | FG-ARI CorLoc mBO mHD | FG-ARI CorLoc

Individual + distill 1 stage 33.91 80.240 35.41 29.22 35.35 56.349 4528 48.89 33.25 109.666 22.70 30.07
Individual + distill 2 stages 56.93 36.231 63.52 79.40 3250 62.133 4198 46.47 49.44 77.084 41.54 55.14

Method

Centralized + distill 54.34 50.635 59.34 6843 27.82 76.464 36.41 37.14 4873 77987 40.61 47.07
FORLA self distill 61.84 33.909 6949 7732 3396 59.801 45.07 4440 56.74 59.790 4542 59.17

COCO PASCAL YTVIS YTOBJ
Method

MBO FG-ARI CorLoc MBO FG-ARICorLoc MBO FG-ARICorLoc MBO FG-ARI CorLoc

Individual + distill 1 stage 21.78 24.5 47.66 33.77 3431 53.85 3397 36.61 5357 50.8 46.83 65.39
Individual + distill 2 stages 24.56  27.5 53.8 36.09 3526 50.00 3279 36.03 46.87 5037 46.61 6397
Centralized + distill 2577 2899 609 3790 3734 56.04 3515 38.6 5459 4643 42.67 5546
FORLA self distill 2645 30.21 64.46 38.02 3944 6538 3933 45.08 67.39 4936 4577 64.02

shared SA module is able to explicitly decompose scenes into meaningful object-level masks, as
illustrated in the last two rows of Figure 2.

We further test a more challenging setting by mixing all 7 datasets (surgical + natural) across
7 federated clients, using the AFM FORLA model trained under lower-heterogeneity (stratified)
settings as a strong baseline to see whether federated or fully mixed centralized training can surpass
it. As shown in Table 2, only the centralized model with AFM surpasses the individualized baseline;
for instance, Centralized+MLP achieves 49.34 CorLoc versus 56.82 for Individual+AFM, likely
due to limited decoder scalability. To test whether limited decoder scalability caused centralized
underperformance in comparison to FL, we experiment a hybrid setup: initializing a centralized
model with AFM, duplicating it to each client, freezing the adapter and slot attention, and fine-tuning
individual decoders per client. While this improves performance on some datasets like Abdominal and
PASCAL, it reduces performance on others, lowering the overall average, rejecting our hypothesis.

All federated approaches tend to outperform centralized or individualized training, thanks to the
inherent domain disentanglement in object-centric learning. Even if we remove the teacher from
FORLA and apply standard FedAvg to the student’s adapter and slot attention (referred to as slot
FedAvg) we see improvements over centralized and individualized baselines. Our full model (FORLA)
with the AFM adapter achieves the highest performance despite the substantial heterogeneity across
sub-domains. Interestingly, slot FedAvg performs well on the Natural dataset when using a MoE
adapter but struggles on Surgical datasets. This discrepancy likely arises because foundation models
are typically pretrained on natural data, making teacher supervision and feature adaptation more
critical for domains like Surgical, which are underrepresented in pretraining. It is noteworthy that
MLP adapts well to surgical domains (e.g., 79.73 CorLoc on Abdominal in Table 1), but performance
drops on natural domains (e.g., 52.18 on YTOBJ in Table 2). MOE lies in between, consistent with
its moderate gains. We also evaluated FedProx and FedAdam within FORLA+MOE that help in
specific domains but do not yield general performance boosts (Table 2).

In conclusion, FORLA remains most effective when applied separately to groups of clients holding
sub-domain data from either surgical or natural domains. Nevertheless, even under increased
heterogeneity, FORLA remains effective and outperforms both individualized and centralized training,
highlighting its strength in learning disentangled, generalizable representations without data sharing.

Effect of Self-Distillation on Different Datasets and Setups As demonstrated, FORLA outper-
forms direct FedAvg on adapter and slot attention, mainly due to its teacher—student design for
feature distillation and two-stage reconstruction. To test whether this also benefits individualized or
centralized training, we applied the same strategy to both. For individualized training, two versions
are compared: a one-stage setup (EMA from scratch) and a two-stage setup (EMA followed by
distillation). In most datasets, the two-stage version outperforms the one-stage setup. For example, as
shown in Table 3, on Abdominal, mBO improves from 33.91 (1-stage) to 56.93 (2-stage), and CorLoc
from 29.22 to 79.40. However, for Cholec and YTOBJ, the one-stage setup performs strongly (e.g.,
YTOBIJ: 65.39 CorLoc), possibly because slot attention in these datasets relies less on foundation
features—a pattern also seen in simple-scene slot attention literature [38].

For centralized training, the two-stage approach is on par with no-distillation setups (Table 2) gaining
moderate accuracy on natural data, and far below FORLA’s federated version. This observation



Table 4: Further model personalization experiment.

Abdominal Cholec Surgical Avg YTVIS YTOBJ  Natural Avg
Method mBO FG-ARI CorLoc mBO FG-ARI CorLoc mBO FG-ARI CorLoc mBO CorLoc mBO CorLLoc mBO CorLoc

Individual 51.85 59.04 69.25 33.54 4359 538 427 51.32 61.53 35.16 58.08 48.62 60.31 41.89 59.2
Centralized 54.16 59.54 725 31.64 41.5 4642 429 5052 5946 37.15 60.41 47.84 5741 425 5891

No personalization 57.04 63.82 7475 32.38 42.54 48.44 4471 53.18 61.6 37.72 59.53 46.93 59.71 42.33 59.62
FORLA Personalized SA 60.21 66.75 78.25 34.04 45.05 51.29 47.13 559 64.77 384 64.34 48.57 62.23 43.49 63.29
Personalized adapter 59.63 66.8 77.63 34.86 45.14 54.14 47.25 5597 65.89 38.79 65.21 48.45 61.74 43.62 63.48

Segmentation mBO [%] 1 Localization CorLoc [%] 1
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Figure 3: mBO and Corloc for centralized training and FORLA across different data combinations.
Data Comb: Data combinations. Individualized training is presented as baseline here.

Table 5: Results of combining two surgical Table 6: Results of different data partitions within the

domains and distributing across clients. same domain (one domain with 25% or 10% x4).
Method Abdominal Thoracic Method PASCAL [25%] Thoracic [25%] PASCAL [10%] Thoracic [10%]
mBO FG-ARI CorLoc mBO FG-ARI CorLoc mBO FG-ARI mBO FG-ARI mBO FG-ARI mBO FG-ARI

Single domain [50%x2]50.34 59.04 70.73 53.03 43.48 56.62  Individual [25/10%] 3321 31.52 46.39 39.79 30.71 28.11 27.14 2335
Centralized [2x50%x2] 56.56 62.80 76.97 54.52 4437 62.67 Centralized [25/10% x4] 34.98 34.16 53.03 4348 3499 33.52 49.17 40.14
FORLA 5730 63.30 77.08 61.55 47.84 71.53 Slot-FedAvg 3516 3294 56.48 4526 31.50 27.52 51.21 4091
FORLA 3525 3414 5426 4430 32.09 29.25 49.66 39.21

further validates the advantage of the proposed framework, which tightly integrates distillation and
federated training by treating the teacher and student as independent local clients.

Further Personalization Based on Global Representation We also explored whether further
personalization further improves object discovery after learning global features representation and
slot attention. Under a stratified setup (excluding Thoracic, COCO, and PASCAL), as shown in
Table 4, FORLA (without personalization) already outperforms individualized and centralized models
in this configuration. Next, we initialize models with the global federated version and personalize
them by freezing either the adapter or slot attention, allowing only one of them to be optimized locally.
Both setups show that domain heterogeneity can be further countered by personalization while still
leveraging shared knowledge. This is particularly effective for surgical data, which foundation models
have been rarely trained on.

Robustness to Data Partitioning and Domain Combinations We further evaluate the robustness
of FORLA under various data stratification and partitioning schemes. Figure 3 shows that FORLA
consistently outperforms individualized and centralized models across two- and four-domain combi-
nations. In cases with large domain gaps (e.g., surgical vs. natural), centralized training can even
underperform individualized setups (e.g., Thoracic in Comb1, PASCAL in Comb2), while FORLA
scales effectively across domains. Table 5 presents results where the Abdominal and Thoracic
datasets are each split between two clients (50% per client). While the benefit of exploiting structural
coherence within a local dataset diminishes when the data is distributed, our federated approach still
surpasses centralized training, particularly on the Thoracic domain.

We also test performance under data scarcity by partitioning a single domain across four clients
(Table 6). We first split a full dataset (25% per client) and then a reduced dataset (10% per client,
totaling 40% of the original). The results indicate that the advantage of federated object-centric
learning declines as the data per client becomes more limited. This trend is consistent across both
FORLA and the simpler Slot-FedAvg. This highlights the importance of having sufficiently large and
representative local datasets for unsupervised object-centric learning to discover meaningful concepts.



Table 7: Comparison to zero-shot segmentation of full SAM models with mask decoders.

PASCAL Abdominal Thoracic
mBO FG-ARI CorLoc mBO FG-ARI CorLoc mBO FG-ARI CorLoc
SAM (ViT-B) 23.79 24.55 35.16 45.76 52.10 39.15 18.10 16.41 8.35
SAM (ViT-H) 54.90 57.31 79.12 66.66 69.81 65.47 33.57 30.48 23.73
FORLA 40.83 39.51 45.04 57.86 64.88 80.30 61.86 47.58 75.42

T Note that Thoracic is less publicly available thus likely not included in the training of SAM.

These findings are consistent with the general behavior of object-centric models, confirming that our
framework requires data not to be overly partitioned.

Comparison to Supervised Segmentation Foundation Model We compare the unsupervised
segmentation of FORLA to the zero-shot segmentation of full SAM models (using ViT-B and the
ViT-H with its mask decoder trained under supervision). We found that SAM ViT-H is able to surpass
slot attention models trained with FORLA on the natural images but fails on the very specific surgical
domain (Thoracic). The underlying reason could be that the thoracic data is not publicly available
and not included in the training data of SAM. In addition, the inference time for SAM ViT-H is 1.1s
per image (0.85s for ViT-B), while the slot attention model takes only 3.75ms. Another advantage of
OCL over SAM is that training SAM on new domains would require mask supervision and, most
importantly, SAM will not capture the objectness (over decompose object parts to tiny masks) unless
instructed to do so via annotation.

5 Conclusion

In this paper we proposed FORLA, addressing the critical challenge of learning disentangled visual
representations from distributed, non-IID datasets. By integrating object-centric inductive biases
with federated optimization FORLA enables collaborative learning across heterogeneous domains
preserving local data structure. Extensive experiments across seven surgical and natural vision
datasets demonstrate FORLA's superiority over both individualized and centralized learning of object
representation. By using light adapters to learn from cached foundation features distributively,
FORLA is an economical framework for large scale object-centric representation learning without
centralized data or heavy compute infrastructure, achieving a 6.7x reduction in communication cost.

Limitations. While FORLA shows strong potential in learning universal object-centric representa-
tions from heterogeneous data, several limitations remain. First, real-world visual scenes often exhibit
hierarchical compositionality, where objects are nested or composed of multiple parts at varying
levels of granularity. Our current framework still assumes that there is an optimal decomposition hier-
archy according to the given dataset, but such compositionality should be downstream task-specific.
Second, our approach is still built on foundation models and struggles to discover objects purely
based on image reconstruction [52], as it relies on image properties that have already been captured
by foundation models.

Future work. Several research directions can further enhance FORLA. Incorporating a dynamic
slot mechanism [14, 34] will automatically adjust the number of slots per scene. We also intend
to explore alternative decoders, such as slot-diffusion decoder [25], to improve reconstruction and
flexibility, as well as high resolution encoders such as DINOv3 [55]. Extending FORLA to support
both image and video data [33] would enable unified training from mixed temporal modalities. Our
approach could also support a federated object-centric foundation model for downstream tasks such
as video action recognition, using slot representations as region-based tokens [54]. Integrating weak
supervision signals from classification tasks [35] or language prompts [65] available to only a subset
of clients could enhance the semantic alignment of learned slots and bridge the gap between vision
and language in federated settings. In addition, incorporating additional learning objectives tailored
to dataset subtypes or tasks, while using slots to bridge representations, could lead to more universal,
task-agnostic representations [32]. Another promising next step could involve experimentation on
robotic manipulation data [27]. These datasets represent a mix of data with specialized actions,
similar to robotic surgery, and Natural datasets, as they act on everyday objects.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This paper introduces an approach of federated Object-centric representation
learning with slot-attention. Section 3 defines the approach and Section 4 shows experiments
using the approach.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We mention limitations and further directions of improvement and future work
in the conclusion section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We have provided the complete mathematical formulation and the algorithm,
but theoretical claims are not made.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We will be releasing the code, data splits and pretrained models after review.
The algorithm for the approach is included in the paper. The experimental settings are also
provided in the main paper.
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Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The code and data splits will be released on Github post review.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: While the code will be released along with pretrained models, we have
mentioned the experimental settings in the paper. We have also provided additional details
in the supplementary.

Guidelines:

* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We have saved testing sample with mean value standard deviation calculated.
We use different metrics, such as FG-ARI, mBO and Cor-Loc and mHD to report the
performance. This helps show the statistical significance of the performance difference
between different methods. Considering the large number of experiments, we only present
the mean value in the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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9.

10.

11.

Answer: [Yes]
Justification: Provided in the experiment setup.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: all guidelines followed.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Introduction and conclusion discuss about our method’s positive impacts.
There are no apparent negative impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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12.

13.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No risk posed by the work.
Guidelines:

* The answer NA means that the paper poses no such risks.

» Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used a combination of publicly available datasets (which are cited) and
proprietary clinical data. For the clinical data, all patient information was de-identified in
compliance with HIPAA regulations, and the data usage was approved by the Institutional
Review Board (IRB).

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: : Code will be released post review and the novel algorithm is described in
the paper. A new curated dataset by combining our surgical vision data and public natural
vision data for bench marking will be released too.

Guidelines:

* The answer NA means that the paper does not release new assets.
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15.

16.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing involved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Retrospective research using de-identified data generally does not require IRB
review.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:
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* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplementary Materials for FORLA:
Federated Object-Centric Representation Learning
with Slot Attention

A Extended Related work

To provide additional context for our approach, we expand on key areas of related work in this section.

A.1 Federated Learning (FL)

FL enables collaborative training across decentralized datasets while preserving privacy [42]. Prior
work addresses challenges like non-IID data [3 1] and communication efficiency [29], but most focus
on classification or segmentation tasks without emphasis on learning representations. Early work on
unsupervised representation learning for FL showed that naive FedAvg misaligns local feature spaces
under non-IID data. Zhang et al. [69] addressed this with FURL/FedCA, which maintains a shared
memory bank and a contrastive alignment module. Michieli et al. [44] proposed Prototype-Guided
FL, where clients periodically exchange class-agnostic prototypes to pull their feature spaces into
a common geometry. Tan et al. [57] also leverage prototypes in FedPCL in a contrastive learning
scheme. This idea is later extended by clustering-based methods such as ORCHESTRA [40] and
FedRLC [43]. Knowledge distillation has also emerged as a powerful alignment tool. FedX [19]
employs two-sided knowledge distillation with a contrastive objective, allowing clients to share rich
representation information without exchanging data while FedUKD [63] further reduces domain
bias via bilateral distillation in an unsupervised FL framework. Despite this progress, object-centric
representation learning — which aims to decompose scenes into entity-specific features — has not yet
been explored in federated settings, and no prior work explicitly combines these paradigms to date,
despite its potential to leverage domain-specific data.

A.2  Object-Centric Learning

Slot Attention (SA) [38] pioneered the use of iterative attention to decompose scenes into object
slots. Subsequent work improved its scalability [56] and incorporated transformers [51], but all
assume centralized training on mixed data. ORL [64] demonstrated that exploiting object-level
correspondences can improve unsupervised learning on multi-object images. Following the intro-
duction of DINOSAUR [52], SA began to be applied to real-world scenarios using foundation
models. A growing body of work has since built on this approach to improve performance—either by
augmenting foundation features [39], or adding modality [67, 2], or by fine-tuning the foundation
models themselves [12]. Recent techniques like contrastive learning objective [4 1], patch permu-
tation augmentation [26] and using language supervision signals [10] have been demonstrated to
improve the scene decomposition performance. However, no prior work in federated learning has
combined object-centric models with distributed training across heterogeneous datasets. We argue
that centralized training of object-centric models struggles with concept entanglement, a challenge
that federated learning inherently mitigates by preserving local data coherence.

A.3 Concept Entanglement in Multi-Domain Learning

Concept entanglement represents a significant challenge in the field of multi-domain learning,
particularly when training machine learning models on datasets that contain overlapping visual
semantics. Early work tackles this problem by explicitly splitting features into shared and private
subspaces, as in Domain Separation Networks [4]. Subsequent approaches refine the idea: [37]
propose a Unified Feature Disentangler that learns domain-invariant codes via adversarial training
and [24] maximizes interaction information to carve representations into domain-specific and domain-
agnostic parts. Latent-domain methods reduce entanglement without domain labels—for example
using a sparse adapter for Latent Domain Learning [9]. [32] show that distilling representations from
multiple task- and domain-specific networks using alignment with small domain-specific adapters
can lead to efficient universal representations. Despite these advances, object-centric disentanglement
has yet to be explored in any centralized or federated setting, leaving a gap that our work addresses.
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A.4 Adaptation Layers and Feature Harmonization

Adaptation layers are widely used in transfer learning [49] and multi-task learning [59] to align feature
spaces. In federated learning (FL), [8] employs adapters for personalized federated learning. Didolkar
et al. [12] investigate the transferability of foundation models in object-centric representation learning
and introduce a fine-tuning framework (FT-DINOSAUR) for the task of object discovery, achieving
strong unsupervised transfer. Crucially, their results suggest that object-centric learning can be
improved by training on one domain and fine-tuning on another, but that improvements cannot be
achieved merely by scaling up data. Our work goes further by demonstrating how federated learning
can scale to heterogeneous datasets through cross-client feature harmonization, ensuring global
model stability despite diverse local inputs. One technique for adapting foundation models is the
application of lightweight feature adapters [16, 70], which introduce trainable components into the
network while keeping most of the model frozen. Other methods include fine-tuning only the bias
parameters of pretrained models [0, 68], and learning low-rank adaptations [22]. We also experiment
with adaptation modules correlated to a masking approach based on frozen foundation models [60].
An advantage of this approach is that multiple foundation models can be used in parallel, without any
query on which one to fine-tune.

A.5 Knowledge Distillation

Knowledge distillation has been used to perform federated learning, for instance, when a global
student calculated with FedAvg learns for a local teacher [71, 61]. In large-scale self-supervised
learning, such as DINO [7], self-distillation enables the model to implicitly ensemble knowledge
over time, with the teacher network being updated through an exponential moving average (EMA)
of the student, akin to Polyak-Ruppert averaging [45]. Inspired by this approach, our framework
updates certain modules of the teacher by averaging them with the student, but without relying
on a conventional knowledge distillation (KD) loss. This is because slot prediction is inherently
permutation-invariant [38], making direct teacher-to-student supervision inapplicable. Instead, we
synchronize the teacher and student Slot Attention modules through periodic averaging—effectively
a local FedAvg operation between the two branches. This strategy is also related to co-distillation [ 1],
where student-teacher models distill knowledge from one another to efficiently ensemble knowledge
from large-scale, distributed data. Unlike co-distillation, where student and teacher models are
typically identical, we share only certain modules between the two. Moreover, our framework
operates in a fully unsupervised setting.

B Feature adapters

We experimented with three types of adapter, MLP adapter [50], mixture-of-experts (MoE) [53, 15],
and Attention-based Feature Modulation (AFM) [23]. Extended details on those three adapters are
listed below:

- MLP adpater [50]: a simple MLP that maps F to d channels. This treats the concatenated
features as one vector per location and learns a single set of weights to combine and reduce
them.

- Mixture-of-experts [53, 15]: a set of E expert projection layers { g(® }E | (each a learned
linear projection) corresponding to each foundation. An auxiliary gating network produces
spatially varying weights a(®) (u, v) for each foundation model at each location (u,v). The
adapted feature is then Fgap(u, v) = Zle ¥ (u,v) g'®) (F(u,v)). This allows the model
to dynamically select different combinations of foundation features in different images.

- Attention-based Feature Modulation [23]: instead of combining all features, the adapter
learns to suppress or amplify channels from F. We implement this as a set of learnable
mask parameters {m.} forc = 1,..., Cyy applied to F . The mask effectively select which
foundation model features to pass through for each location. Following the channel masking,
a linear projection is applied to obtain d channel feature F ,qap; -
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C Slot Attention Models

Slot Attention [38] is an architecture for learning object-centric representations. It maps a set of NV
input feature vectors (e.g., image pixels or CNN features) to K slot vectors, each aiming to represent
an object in the scene. The K slots are initialized (e.g., randomly) and iteratively updated by an
attention mechanism that binds slots to parts of the input. At each iterationt = 1...T, attention
weights W, are computed between each input feature z; and each slot s; (for¢ = 1,..., N and
k =1,...,K). For example, using dot-product attention with learned projections W<, WX for
queries/keys, one can write:

(IiWQ)(SkWK)T>
exp(—
Wi, = vd

B K T WR) (s, WEYTY ’
D k=1 exp<( )\(/gk ) )

which is a normalized attention weight indicating how much slot k attends to input . Using these
weights, each slot is updated by aggregating the inputs:

(6)

N
s GRU(sk, 3 W (miWV)> 7 %)
i=1

where WV is a learned value projection and GRU is a gating recurrent unit that combines the current
slot value with the weighted input. This process is repeated 7" times, and includes an MLP-based
refinement per iteration [38]. The result is K output slot vectors {sk.}kK:l that are exchangeable
(permutation-invariant) and ideally each slot specializes to one object or background component.

In unsupervised object discovery, Slot Attention is typically trained by reconstructing the original
image from the slots. A decoder (e.g., a CNN, spatial broadcast decoder, or transformer decoder) uses
the slots to output K component reconstructions and masks, which are combined to match the input
image. The model thus learns to partition the scene into objects. However, such purely unsupervised
training can struggle on complex real-world images. Thus, recent work of applying slot attention
to such images is all based on foundational models [52, 39, 67, 1 1], and the reconstruction target is
feature map instead of image.

D Additional Details on FORLA

D.1 Two-stage Training and Local-FedAvg

We extend the FORLA framework details in Algorithm 1. The FedAvg between clients is performed
every 100 iterations, while the FedAvg between teacher and student is performed every 1000 iterations.
We use Adam optimizer with learning rate of 4x10~%, and weight decay of 4x10~*. For all data the
batch size is 16.

We set an empirical switching criteria as 90K iterations, as this number allows the reconstruction loss
of slot attention models on clients’s student branch to converge to plateau. We also found that training
for a larger number of iterations before switching from EMA (larger than 90K) can lead to better
initial convergence of the student branch, but in the long term this advantage is offset by the second
stage training of the student, making the additional time spent on initial training obsolete. In future,
the empirical threshold can be replaced by a dynamic threshold based on tracking of student loss.

D.2 Foundation Model Specifications

In computer vision community, a significant amount of time and resources have been used to train
foundation models from large image datasets of everyday scenes and objects (Natural vision domain).
We provide specifications of four vision foundation models used in FORLA. These four models
were selected because of their complementary capabilities in semantic understanding, segmentation,
reconstruction, and multimodal alignment. Table 14 summarizes key technical specifications, while
we elaborate on their architectural and functional characteristics below:

¢ DINO (self-DIstillation with NO labels) [7]:
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— Architecture: Vision Transformer (ViT-B/16, ViT-B/14 for DINO-v2 ) with 12 layers,
768D embeddings

— Pretraining Objective: Self-supervised distillation using image augmentations without
labels

— Training Data: ImageNet-1k (1.28M images)
— Key Strengths: Captures high-level semantic relationships through global self-attention;
produces spatially consistent feature maps ideal for object discovery
* SAM (Segment Anything Model) [28]:

— Architecture: ViT-B/16 image encoder with mask decoder

— Training Objective: Supervised promptable segmentation on 1B+ masks
— Training Data: SA-1B dataset (11M licensed images)

— Key Strengths: Specialized in boundary-aware feature extraction.

* MAE (Masked Autoencoder) [20]:

— Architecture: Asymmetric ViT-B/16 with 75% patch masking
— Pretraining Objective: Self-supervised, pixel reconstruction of masked image regions
— Training Data: ImageNet-1k (1.28M images)
— Key Strengths: Excels at texture/structure recovery; provides complementary low-level
features to DINO’s semantics.
¢ CLIP (Contrastive Language-Image Pretraining) [48]:

— Architecture: ViT-B/16 image encoder (text branch disabled)

— Pretraining Objective: Contrastive alignment of 400M image-text pairs, language is
used as weak-supervision signal

— Training Data: Web-crawled multimodal corpus
— Key Strengths: Cross-modal concept grounding; robust to distribution shifts

Our experiments use frozen foundation models without fine-tuning: ViT-B/16 variants of DINO, MAE,
and CLIP with 14x14 patch size and 224x224 input resolution. The CLIP text branch is excluded.
For SAM, we use only the image encoder, downsampling positional embeddings to align spatial
resolution with other models; the decoder is omitted as our focus is solely on representation learning.
The specific hyperparameters of other modules are included in Table 8. We follow DINOSAUR [52]
in setting the slot count for COCO and PASCAL to 6 slots, and for other datasets we use 7 slots. Both
teacher and student branches are trained with the same number of slots. Using a teacher and a student
with a different number of slots would be interesting to explore in future work.

E Dataset details

Here we extend details of all datasets used in this research:

Abdominal dataset is a public dataset from animal, phantom, and simulator abdominal surgeries [72].
We utilize 739260 frames for training, and 3000 frames with segmentation masks evaluation.

Cholec dataset [58] consists of 80 laparoscopic cholecystectomy videos. Following [35], we use
15,000 frames for training. 8,000 frames with segmentation annotations for evaluation.

Thoracic dataset includes data from 40 robot-assisted right upper lobectomies (RULSs) for lung cancer,
performed at Toronto General Hospital between 2014 and 2023. We use a total of 51,900 images for
training and 800 manually annotated frames for evaluation.”

COCO (Common Objects in Context) [36] is a widely used benchmark for object detection, segmen-
tation, and image captioning, consisting of 80 object categories. We use the 2017 split, with 118,000
images for training and 5,000 for validation.

PASCAL VOC 2012 [13] provides 11,530 images with segmentation masks for 20 object categories.
Following standard protocol, we use 10,582 images for training and 1,449 for validation.

2An open-access version of this proprietary dataset is integrated as part of the federated learning benchmark
in this work. See: https://github.com/PCASOlab/FORLA
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Table 8: Hyperparameters of different network components.

Name Type Model file size Feature dim
DINO ViT-B/16 346 MB 768
Foundati dels SAM ViT-B/16 375 MB 256
oundation modets MAE ViT-B/16 327 MB 768
CLIP(image encoder) ViT-B/16 437 MB 768
Type Input dim Model file size Feature dim
MLP 2560 56MB 256
Adapters MoE 2560 107MB 256
AFM 2560 158MB 256
Slot num Slot dim Model file size Iteration
Slot attention 6/7 256 2.3 MB 3
MLP hidden dim Input dim Model file size Output dim
Teacher decoder 1024 256 13M 2627263
Student decoder 1024 256 23M 2566 /2567

YTVIS (YouTube-VIS) [66] is a benchmark for video instance segmentation, containing 8,858 videos
spanning 40 object categories, with pixel-level masks across frames. We train on the 2,985-video
training split from the 2021 version (78,810 frames) and evaluate on 4,210 validation frames.

YTOBJ (YouTube-Objects) [47] consists of 126 YouTube videos across 10 object categories, annotated
with sparse bounding boxes for object tracking. We extract 388,050 frames from 100 videos for
training and evaluate on 9,000 frames from 26 held-out videos.

F Additional Implementation Details

F.1 Additional Details on Metrics

We evaluate our approach based on the quality of the slot attention masks using four primary metrics:
Foreground Adjusted Rand Index (FG-ARI) [17], Mean Best Overlap (mBO) [46], Mean Best
Hausdorff Distance (mBHD), and CorLoc [3]. FG-ARI, widely adopted in object-centric research,
measures the similarity between predicted object masks and ground truth segmentation, specifically
focusing on foreground regions. mBO evaluates the overlap between predicted and ground truth masks
using intersection-over-union (IoU). It computes the average IoU after Hungarian matching between
each ground truth and its best-matching predicted mask. While FG-ARI emphasizes segmentation
quality regardless the permutation, mBO offers a broader assessment by channel matched IoU. To
further assess spatial precision, we compute mBHD, which captures boundary-level accuracy and is
particularly important for clinical applications. CorLoc measures localization accuracy by counting
predicted object instances whose bounding boxes achieve IoU > 0.5 with a ground truth object.

F.2 Additional Details on Experiment setup

Our experiments are conducted under three training regimes: (i) individual training, where each
dataset is trained independently; (ii) centralized mixed training, where data from multiple datasets
(surgical or natural) are pooled; and (iii) federated training, where each dataset is treated as a separate
client without data sharing.

As each dataset can be considered as residing on a single client, we have a maximum of seven
clients corresponding to seven distinct sub-domains. All images are resized as 224224 for input
(14x14 patches after ViT-B/16). For SAM, only the image encoder is used; positional embeddings are
down-sampled to match the spatial resolution of the other models, and the decoder is omitted since
representation learning is our focus. All adapter variants reduce the input feature dimensionality to
256 and use a slot embedding size of 256, following common practice in recent slot attention models
[52, 62]. Each federated client is trained for a minimum of 100 epochs, with early stopping triggered
if the student’s reconstruction loss does not improve over 30 consecutive epochs. This stopping
criterion was consistently met, and no late convergence was observed. The teacher’s reconstruction
loss is not used for early stopping, as it tracks a dynamic and more fluctuating target. Individual and
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Table 9: Performance on surgical data using single foundation model’s raw features for slot attention.

Abdominal Cholec Thoracic
Model mBO mHD| FG-ARI CorLoc mBO mHD| FG-ARI CorLoc mBO mHD]  FG-ARI  CorLoc
DINO 47.33 51.497 57.87 52.38 28.7 62.13 38.9 30.4 3096 112.324 19.3 30.45
SAM 47.0 55.84 53.7 56.2 25775  79.43 32.62 31.81 50.28 71.94 41.14 54.88
MAE 35.0 71.17 42.6 34.0 14.37 107.21 19.23 18.7 35.08 100.57 36.35 26.53
CLIP 23.0 75.14 28.9 19.8 10.9 97.26 13.41 10.39 14.99 117.26 8.71 11.75

centralized training baselines are run for 130 epochs. Our experiments were conducted using four
NVIDIA RTX 6000 GPUs, with some GPUs assigned multiple clients. Each running client consumes
approximately 6 GB of GPU memory after feature caching. Feature caching accelerates training by a
factor of 10-20 for each client. A complete run of federated learning across all mixed sub-domains
takes approximately 12 hours.

Centralized training on 1.4 million data points (frames) across 7 datasets with 130 epochs and batch
size 16 takes 21.6 hours which is 1.8 times slower than FL. As the data can not be distributed across
too many clients since unsupervised object centric learning needs a certain amount of data to discover
meaningful concept, it would indeed be interesting to explore in more detail how one can achieve an
optimal speedup/performance ratio in a FL training regime.

For the Natural image datasets we used optimal slot counts reported in the literature [1 1, 52]. For
the surgical datasets we tuned the slot count to achieve a best score. We’ve also used some evidence
from training SA models with both types of data [34, 33]. Choosing an optimal slot number is indeed
important for slot attention algorithms. Our method is also fully compatible with SA approaches that
use an adaptive slot count, but we decided to use more traditional approaches in this work for easier
evaluation.

G Additional results

In this section, we extend experiments on using single or different combination of frozen/dapted
foundation models, distillation dynamics on different dataset using different adapters, evaluation the
performance of teacher branch (student is reported in the main paper), Comparison on Zero-shot
transfer from natural to surgical domain, FORLA inference on videos when compared to DINO
and SAM backbone, and more qualitative demonstration of feature adaptation and slot attention on
different domains.

G.1 Comprehensive Foundation Model Benchmarking

Tables 9 and 10 provide a detailed benchmark of four foundation models across surgical and natural
domains. In this experiment we use only frozen features and no adapter or fine-tuning is applied.
Each model is train on a single dataset individually. Three key insights emerge: 1) Specialization-
utility tradeoff: DINO’s self-supervised features excel on Cholec instruments (28.7 mBO) and
COCO (23.96 mBO), indicating strong general object semantics. SAM with its segmentation-
focused pretrained features achieves 50.28 mBO on Thoracic data (Table 9), outperforming DINO’s
30.96 mBO, demonstrating out of domain generalization advantages. Reconstruction-based MAE
underperforms on surgical data (-17.2 mBO vs. SAM) but shows unexpected competence on YTVIS
(20.2 mBO) which could due to YTVIS requiring less high-level semantic features. 2) Modality and
domain mismatch: CLIP’s text-image alignment provides limited value for surgical domains (14.99
mBO Thoracic), suggesting medical imaging diverges from its web-scale pretraining. MAE trained
on natural domain also transfers poorly to surgical scenes. 3) Complementary Strengths: SAM
achieves highest CorLoc (56.2) while DINO leads in FG-ARI (57.87) on Abdominal data, and no
single model dominates all metric on all data.

This analysis confirms that foundation models exhibit specialized capabilities aligned with their pre-
training objectives and training data. FORLA’s feature integration strategy (Eq. 1) allows synergistic
combination of these complementary representations.
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Table 10: Performance on natural data using single foundation model’s raw features for slot attention.

COoCcoO PASCAL YTVIS YTOBJ
Model mBO mHD| FG-ARI CorLoc mBO mHD| FG-ARI CorLoc mBO mHD| FG-ARI CorLoc mBO CorLoc

DINO 2396  81.929 29.2 20.13 3479 78853 35.17 5231 33.09 68238 36.64 54.02 4277 5478
SAM 2261  93.192 25.02 20.5 36.98  73.992 35.59 56.04 3262 68.704 35.89 53.66 4286  54.95
MAE 17.08  101.592 18.83 8.59 25.95 91.41 22.93 31.87 20.2 87.701 20.81 1594 3386 2991
CLIP 1273 109.433 14.14 3.46 14.52  109.054 9.82 27.47 14.37  107.217 19.23 23.15 2227 9.02

Table 11: Adaptation of features from a single foundation model on Abdominal, YTVIS and YTOBJ.

Abdominal YTVIS YTOBJ
Adapter  Model
mBO mHD| FG-ARI CorLoc mBO mHD| FG-ARI CorLoc mBO CorLoc
Concat  51.85 43.025 59.04 69.25 35.16 67.22 38.25 58.08 48.62 60.31

MLP DINO 4535 53.653 50.55 63.6 36.42 66.584 40.91 62.13 4610  60.02
SAM 41.78  69.091 46.08 5772 3593  64.650 39.61 63.16 37.72 5192
MAE 40.84  59.286 47.28 52.3 21.94  83.329 22.97 20.67 3352  26.83

Concat  50.34 44398 59.04 70.73 3394  66.637 37.54 54.59 18.98 65.11
AFM DINO 4199 63.738 47.46 56.73 36.52 65752 41.01 61.18 48.17 62.00
SAM 4173  66.985 46.05 56.65 36.06 64.939 39.51 64.04  41.09 51.35
MAE 4285 59.433 49.70 54.37 21.20 85.221 22.66 19.36 34.87 27.58

Table 12: Evaluation of Frozen and Adapted models using 3 vs. 4 foundation models.FM: Foundation
Model, Surgical: Abdominal, Natural: YTOBJ.

Surgical Natural
Setting FM number mBO FG-ARI Cor-Loc mBO FG-ARI Cor-Loc
Frozen 3 39.78 51.28 54.26 42.92 33.74 51.85
4 48.65 54.07 64.30 43.33 38.78 50.56
Adapted 3 49.58 58.52 69.58 47.32 41.86 58.97
P 4 50.34 59.04 70.73 48.98 45.32 65.11

G.2 Efficacy of Adaptation Layer for Single Foundation Models

Next, to assess the benefit of feature adaptation, we evaluate the performance when using a single
foundation model augmented with a lightweight adapter module. In these experiments, we attach
either a simple MLP adapter or the proposed AFM adapter on top of the frozen foundation model,
then train the adapter (keeping the foundation model weights fixed) for the downstream object-
discovery. Here MOE is not used as it is only applicable for multiple foundation models. Table 11
(middle) reveals the performance:All foundation model show improvement with both adapter on
YTVIS data, particularly AFM boost SAM’s CorLoc from 53.66 to 64.65. Adapters recover 54%
of MAE’s performance gap vs. SAM on abdominal data (35.0 to 42.8 mBO). Importantly, the
performance of foundation models when used individually lags the performance of concatenated
adapted baselines, in particular when applied to a domain that is new to foundation models (+5 mBO,
+ 9 FG-ARI, +9 Cor-Loc).

G.3 Using Different Numbers of Foundation Models

We further examine the impact of using different numbers of foundation models within FORLA. When
employing four foundation models (including ViT-B/16, the smaller ViT variant), the computational
overhead increases modestly from 1.4 ms (using only DINO) to 3.8 ms per image. Considering
recent domain-specific foundation models such as RADIOv2.5 [21], one may question whether fewer
models could provide sufficient representational power, particularly in the surgical domain.

To investigate this, we evaluated configurations using either three (DINO, SAM, and CLIP) or four
foundation models, under both frozen and adapted settings. As shown in Table 12, the configuration
with four foundation models consistently achieved the best performance, especially on surgical images,
which are typically underrepresented in the pretraining of generic foundation models. Despite the
modest increase in computational cost (an additional 2.4 ms per image), the performance gains justify
the use of four foundation models for achieving stronger generalization and robustness.
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Table 13: Additional results of self-distillation on the single data with MLP and MOE adapters.

Abdominal Thoracic
Adapter  Method mBO mHD] FG-ARI CorLoc mBO mHD| FG-ARI CorLoc
MLP w/o self-ditill ~ 51.85  43.025 59.04 69.25 54.00 72.358 43.59 58.00
w self-distill ~ 56.06  35.005 63.09 79.23 4486 85.707 36.73 49.28
MOE w/o self-ditill  51.83  42.758 57.54 72.02  51.10 74.670 41.87 55.89

w self-distill ~ 57.05  35.039 63.27 79.62  62.16 52.544 47.96 72.32

Table 14: Decoder performance of the teacher branch in comparison to student branch in FORLA.

mBO mHD | FG-ARI CorLoc

Domain Sub-domain Teacher Student Teacher Student Teacher Student Teacher Student
Abdominal 51.29 57.86 38.458 34.371 58.31 64.88 77.73 80.30
Sureical Cholec 32.52 34.20 57.247 56.942 42.31 4435 52.13 54.49
& Thoracic 56.86 61.86 52.702 50.771 43.60 47.58 76.04 75.42
Average 46.89 51.31 49.469 47.36 48.07 52.27 68.63 70.07
COCO 26.72 27.22 93.473 93.541 28.41 30.11 66.88 64.94
PASCAL 39.36 40.83 76.277 75.642 36.41 39.51 65.38 64.84
Natural YTVIS 37.96 38.51 61.396 62.472 41.63 43.08 65.50 64.92
YTOBJ 51.06 51.92 - - - - 62.03 66.87
Average 38.78 39.62 77.05 77.22 35.48 37.57 64.95 65.39

G.4 Distillation Dynamics

Table 13 (bottom) shows additional effects of self-distillation on abdominal and thoracic data with
MLP and MOE adapter: 1) MLP overfitting: Self-distillation improves Abdominal CorLoc (im-
proved performance score by 10) but harms Thoracic performance (-8.7 points performance), suggest-
ing MLP could over-fit to smaller specialized dataset with less constrains for feature reconstruction.
2) MOE Robustness: MOE adapters gain +16.4 CorLoc on Thoracic with distillation, leveraging
expert gates to preserve generalizability. This once again confirmed that MLP could be the least
suitable adapter choice in our FORLA federated object-centric learning framework, as demonstrated
in Table 2.

G.5 Teacher Decoder Analysis

In FORLA, teacher and student branch share the same global adapter and Slot attention module,
while having different decoders for reconstructing features and slot attention masks. We analyzed the
performance of the decoder branches by comparing the teacher and student models across all datasets.
As shown in Table 14, the teacher branch performance is consistently competitive and often close to
the performance of the student decoder, despite the fact that its adapter is not directly optimized but
rather updated through EMA (early stage) or local FedAvg (later stage).

Table 14 reveals nuanced performance differences between teacher and student decoders in federated
learning: 1) Dominance on surgical domain: Student decoder achieves +4.42 average mBO
improvement (51.31 vs. 46.89), demonstrating superior object discovery from federated knowledge
aggregation; it maintains boundary precision with 4.7% lower mHD (47.36 vs. 49.47), crucial for
anatomical structures; 2.44 FG-ARI gain highlights better foreground-background separation. 2)
Gains on natural domain: Student leads marginally in mBO (+0.84) FG-ARI (+2.09), and CorLoc
(0.44). This validates the effectiveness of our teacher-student design, where the student benefits from
both local and global knowledge transfer via FL and reconstruct more constrained features, while
the teacher adapts more aggressively and encourages the student to re-discover more specialized and
transferable object-centric representations.

G.6 Compared to Zero-shot transfer performance of slot attention

We performed additional testing that confirmed our hypothesis which was that, if the domain gap
is small, the zero-shot and transfer learning will guarantee good performance. However, FORLA
FL will outperform transfer learning when the domain gap is large (Table 15). We first tested zero-
shot transfer of slot attention trained on Natural images (PASCAL and YTOBJ) to surgical images
(Abdominal). In this case zeroshot performance is significantly lower compared to FORLA and even
compared to models individually trained on abdominal data.
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Table 15: Comparison of zero-shot transfer from Natural to surgical, individual training, and FORLA.

Method mBO FG-ARI Cor-Loc
Zero-shot (PASCAL — Abdominal) 35.61 39.81 35.90
Zero-shot (YTOBJ — Abdominal) 33.02 37.69 30.65
Individual 50.34 59.04 70.73
FORLA 57.86 64.88 80.30

G.7 Inference on Videos

We demonstrate that a slot attention module trained with our FORLA framework can be directly
applied to video scene decomposition by leveraging RNN-based slot inference techniques [67].
Specifically, we evaluated our FORLA-trained slot attention model on the YTOBJ video dataset
sampled at 1 frame per second (fps). For comparison, we trained individualized slot attention (SA)
models directly on YTOBIJ using adapted versions of foundation models, including DINO (equivalent
to DINOSAUR [52]) and SAM.

As shown in Figures 4 and 5, the slots produced by FORLA maintain strong temporal consistency
across different video sequences. The performance of individualized models reveals that SAM- and
DINO-based SA models exhibit distinct strengths: the SAM-based model excels at decomposing
close-up scenes such as animals or vehicles captured by a near camera, while the DINO-based model
performs better in delineating objects from the background in distant or wide-angle scenes.

FORLA however consistently tracks objects both in near and far scenes in a more fine-grained and
semantically meaningful manner. Unlike the SAM or DINO-based models, FORLA is less likely
to segment objects into implausible parts (e.g., splitting a cat or car into non-semantic regions),
demonstrating stronger object-level coherence and generalization.

H Visualization of Feature Representation

Figures 6 and 7 provide additional visualizations of PCA maps and Slot Attention (SA) masks for
surgical and natural image domains, respectively, across different methods. We visualize the first
three principal components of the feature representations using RGB channels. These include both
frozen features from foundation models and adapted features learned through our FORLA federated
learning framework.

In the surgical domain, the frozen foundation model features demonstrate a general understanding
of texture-based separation—for example, surgical instruments and tissues often appear as different
colors in the PCA map. This indicates some level of semantic separation. However, the foundation
features struggle to distinguish between multiple instances of similar instruments, as they are often
represented with the same color. In contrast, the FORLA-adapted features effectively assign distinct
semantic representations to different instrument instances, enabling clearer separation. Additionally,
FORLA representations offer greater differentiation between various tissue textures. This is reflected
in the PCA maps, where different tissues are represented by homogenous yet distinct colors, aiding
the SA module in grouping regions into semantically meaningful categories.

In the natural image domain, foundation model features can delineate some salient objects, due to their
pretraining on natural image datasets, but the representations remain relatively coarse. With FORLA’s
unsupervised adaptation, the feature representations become significantly more fine-grained. For
example, tiny objects that are otherwise overlooked in foundation features become clearly highlighted
in the PCA maps. The model also learns to extract subtle cues from cluttered backgrounds, such
as the texture of plants, and can even distinguish between visually similar objects located close to
each other. These properties of the adapted representation enable the downstream SA module to
decompose scenes into semantically coherent segments.

Such fine-grained representation and semantically meaningful decomposition suggests that FORLA-
learned representations can potentially generalize well to downstream tasks, including semi-
supervised or weakly supervised segmentation, as well as a variety of prediction tasks that benefit
from pre-segmented scene understanding [54].
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Figure 4: Inference using RNN like slot initialization [67] on YTOBJ videos. We compared to
individualized trained SA models on YTOBJ using adapted single foundation model including DINO
(as used in DINOSAUR [52]) and SAM.
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Figure 5: Additional results on YTOBIJ videos compared to individualized trained SA models with
single foundation model adaptation.
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Figure 6: PCA map of raw foundation model features and FORLA representation on surgical image
samples. Slot attention (SA) masks of FORLA are shown at 4th and 8th columns.

34



PCA PCA

Input Foundation FORLA Input Foundation FORLA SA mask

Figure 7: PCA map of raw foundation model features and FORLA representation on natural image
samples. Slot attention (SA) masks of FORLA are shown at 4th and 8th columns.

35



	Introduction
	Related work
	Method
	Overview
	Slot Attention with Adapted Foundation Features
	Feature reconstruction and loss functions
	Federated Learning with Two-Stage Knowledge Transfer

	Experiments and Results
	Conclusion
	Extended Related work
	Federated Learning (FL)
	Object-Centric Learning
	Concept Entanglement in Multi-Domain Learning
	Adaptation Layers and Feature Harmonization
	Knowledge Distillation

	Feature adapters
	Slot Attention Models
	Additional Details on FORLA 
	 Two-stage Training and Local-FedAvg
	Foundation Model Specifications

	Dataset details
	Additional Implementation Details
	Additional Details on Metrics
	Additional Details on Experiment setup

	Additional results
	Comprehensive Foundation Model Benchmarking
	Efficacy of Adaptation Layer for Single Foundation Models
	Using Different Numbers of Foundation Models
	Distillation Dynamics
	Teacher Decoder Analysis
	Compared to Zero-shot transfer performance of slot attention
	Inference on Videos

	Visualization of Feature Representation

