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Abstract

We assess the application of code generation via LLMs to a specific task in the
mathematical field of combinatorial design. This field studies diverse types of
combinatorial designs, many of which have lists of open instances for which
existence has not yet been determined. While systematic constructions and proofs
are preferred approaches to addressing open instances, a complementary approach
is to develop computational search heuristics specific to each type of design. We
introduce a Constructive Protocol (CPro1) that uses LLMs to generate search
heuristics. Starting with only a textual definition and a validity verifier for a
particular type of design, CPro1 guides LLMs to select and implement strategies,
while providing automated hyperparameter tuning and execution feedback. CPro1
successfully solves long-standing open instances for 7 of 16 combinatorial design
problems selected from the 2006 Handbook of Combinatorial Designs, as well
as open instances for 3 of 4 problems from recent (Feb. 2025) literature. We
conclude that LLM-based code generation can contribute to mathematical research
by solving open instances of combinatorial design problems using heuristic search.

1 Introduction

Combinatorial designs are systems of finite sets that satisfy specified constraints. The particular finite
sets and constraints involved define the type of combinatorial design (e.g. Balanced Incomplete Block
Design, Packing Array). The existence problem (or combinatorial design problem) for a particular
type of design has a small number of input parameters (e.g. size), and asks whether it is possible to
construct a design that satisfies the constraints for these parameters. The existence problem is often
addressed by systematic mathematical constructions that are proven correct and show existence for
large classes of instances, and by proofs of impossibility that show certain instances cannot exist. But
these may leave behind parameters for which existence is unknown; these remain as open instances.

As an example, a Symmetric Weighing Matrix is an n × n matrix W with entries in {0, 1,−1},
satisfying WWT = wI and W = WT . For w = 9, the last two open instances were n = 19 and
n = 21 [4, 6]. This paper’s results include the first constructions of these two previously unknown
matrices, completing the result that a w = 9 Symmetric Weighing Matrix exists for every n ≥ 12.

One standard approach to small open instances is heuristic computational search ([4] chapter VII.6).
It requires adapting various heuristics to the combinatorial design problem, experimentally tuning
each to determine whether they can construct the desired instances. In this paper, we develop a
Constructive Protocol CPro1 that uses LLMs to generate heuristic search code for diverse candidate
methods. The protocol automates an experimental process to identify and optimize heuristic strategies,
and has the potential to accelerate resolution of open instances for combinatorial design problems.

Related Work: FunSearch [26] uses code-generating LLMs in an evolutionary algorithm to search
for greedy functions. It solved an open problem by constructing a new Cap Set, and was used to
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Packing Array (PA): an N × k array with entries in the set {0, 1, . . . v− 1}, such that every N × 2
subarray contains every ordered pair of symbols at most once.

(N,k,v): (24,7,6) (18,8,6) (28,10,8) (24,11,8) (32,11,9) (28,12,9)
(21,14,9) (19,15,9)

Symmetric Weighing Matrix (SymmW): an n × n matrix W with entries in the set {0, 1,−1},
satisfying WWT = wI and W = WT .

(n,w): (19,9)† (21,9)† (22,16)
Skew Weighing Matrix (SkewW): an n× n matrix W with entries in the set {0, 1,−1}, satisfying
WWT = wI and WT = −W .

(n,w): (18,9)
Bhaskar Rao Design (BRD): a v × b array with entries in the set {−1, 0, 1}. Each row contains r
nonzero entries and each column contains k nonzero entries. For any pair of distinct rows, the
pairwise element products contain −1 and +1 each L/2 times.

(v,b,r,k,L): (15,42,14,5,4) (15,126,42,5,12) (16,48,15,5,4)
Balanced Ternary Design (BTD): an arrangement of V elements into B multisets, or blocks,
each of cardinality K ≤ V , satisfying: 1. Each element appears R = p1 + 2 ∗ p2 times, with
multiplicity one in p1 blocks and multiplicity two in p2 blocks. 2. Every pair of distinct elements
appears L times.

(V,B;p1,p2,R;K,L): (17,17;8,2,12;12,8) (14,21;6,3,12;8,6) (12,16;4,4,12;9,8)
(16,16;7,3,13;13,10) (12,21;4,5,14;8,8) (16,22;9,1,11;8,5) (21,21;12,1,14;14,9)

Equidistant Permutation Array (EPA): m rows, each a permutation of {0, 1, . . . n− 1}. Each pair
of distinct rows must differ in exactly d positions.

(n,d,m): (12,8,21)†
Florentine Rectangle (FR): r rows, each a permutation of S = {0, 1, . . . n − 1}. For distinct
a, b ∈ S and m ∈ {1, 2, ..., n− 1}, at most one row has b positioned m steps to the right of a.

(r,n): (7,20) (7,24) (7,25) (7,26) (7,27)
(a) Open instances from 2006 Handbook, that were solved and found to exist by CPro1. († indicates the 3
instances that were initially solved by manually-developed local search during creation of the prototyping set.)

Covering Sequence (CS): A cyclic sequence x0, x1, . . . xL−1 of length L over the binary
alphabet, such that for any length-n binary word there exists a j such that subsequence
xj , x(j+1) mod L, x(j+2) mod L, . . . x(j+n−1) mod L is Hamming distance at most R from the word.

(n,R,L): (9,1,71) (10,1,138) (11,1,224) (11,2,64) (12,2,127)
(12,3,36) (13,2,276) (13,3,61) (14,3,122) (15,3,230) (16,3,426)
(17,2,3938) (17,3,795) (18,1,52390) (18,2,7605) (18,3,1481) (19,1,104498)
(19,2,14797) (19,3,2734) (20,1,207000) (20,2,28901) (20,3,5102)

Johnson Clique Cover (JCC): The Johnson Graph J(N, k) has a vertex for each k-element subset
of {1, 2, . . . N}. Two subsets A,B are connected by an edge if |A∩B| = k−1. A size-C Johnson
Clique Cover has C cliques in J(N, k) such that their union includes all vertices in J(N, k).

(N,k,C): (13,4,105) (13,6,248) (14,4,138) (14,6,410) (15,4,177)
Uniform Nested Steiner Quadruple System (UNSQS): A Steiner Quadruple System (SQS) is a set
of blocks, each a size-4 subset of V = {0, 1, ..., v − 1}, such that each subset of 3 elements of V
is contained in exactly one block. A Uniform Nested SQS splits each block into two ND-pairs of 2
elements each, such that each distinct ND-pair appears the same number of times. Let p denote
the number of distinct ND-pairs that appear among the blocks.

(v,p): (14,91)
(b) Open instances from Feb. 2025 articles [3, 18, 2], that were solved and found to exist by CPro1.

Deletion Code (DC): a set of m binary words of length n. Given word x, D(x) is the length-(n−s)
words obtained by deleting s distinct bits. For any two distinct words x, y: |D(x) ∩D(y)| = 0.

(n,s,m): (12,2,36) (13,2,55) (14,2,85) (15,2,132) (16,2,208)
(13,3,16) (14,3,21) (15,3,29) (16,3,42)

(c) Deletion Codes found to exist by CPro1, improving on results from Apr. 2025 article using FunSearch [37].

Table 1: Main Results. Combinatorial design problems by source, each with brief definition and a
list of the open instances (in bold italic) solved by CPro1. For each of these open instances, the code
generated by CPro1 constructed a verified solution. The Appendix includes solutions (Figs. 7 to 17)
and full definitions as used by CPro1 (Tables 5 to 8).
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obtain novel Deletion Codes [37]. Compared to FunSearch, CPro1 generates fewer candidates, allows
open-ended strategies rather than just greedy functions, and omits FunSearch’s iterative evolution.

In work concurrent with ours, AlphaEvolve [23] also built on FunSearch by allowing open-ended
strategies. Compared to AlphaEvolve, CPro1 is distinguished by a uniform approach to automated
hyperparameter tuning on candidate solutions [35], a focus on producing fast implementations in C
with an explicit code optimization step [12, 25], and the application to combinatorial design problems.

The work presented here is also described in earlier preprints [27, 28].

2 Method

Figure 1: Constructive Protocol CPro1

Selection of Combinatorial De-
signs (see Table 2): We select 16
types of combinatorial designs for
which the 2006 Handbook of Com-
binatorial Designs [4] (henceforth
Handbook) lists open instances, elim-
inating instances already solved in
the literature [30, 22, 14, 9, 6, 13,
15, 7]. From recent (Feb. 2025) arti-
cles, we select those presenting open
instances of combinatorial designs:
this selects 2 of 6 articles from Jour-
nal of Combinatorial Design, and
2 of 447 arXiv math.CO combina-
torics articles. We also include Cap
Sets from the original FunSearch pa-
per [26] and Deletion Codes from an
April 2025 FunSearch paper [37].

For each selected problem, we pro-
vide a textual definition, a Verifier
in Python that determines whether a
proposed solution is correct, Open
Instances for which existence is
not yet known, and Dev Instances
known to exist. Candidates are ex-
ecuted on Dev Instances for short
amounts of compute time, with re-
sults checked by the Verifier, to iden-
tify the most promising approaches
to try on the Open Instances using
longer compute times.

Selected problems from the Handbook Chapter
Balanced Incomplete Block Design II.1
Packing Array (PA) III.3
Orthogonal Array III.6
Symmetric Weighing Matrix (SymmW) V.2
Skew Weighing Matrix (SkewW) V.2
Bhaskar Rao Design (BRD) V.4
Balanced Ternary Design (BTD) VI.2
Costas Array VI.9
Covering Design VI.11
Difference Triangle Set VI.19
Perfect Mendelsohn Design VI.35
Equidistant Permutation Array (EPA) VI.44

Florentine Rectangle (FR) VI.62
Circular Florentine Rectangle VI.62
Tuscan-2 Square VI.62
Supersimple Design VI.57

Feb. 2025 problems Source
Covering Sequence [3]
Johnson Clique Cover [18]
UNSQS [2]
Covering Array [29]

FunSearch Problems Source
Cap Sets [26]
Deletion Codes [37]

Table 2: Problem Selection: 16 combinatorial designs with open instances from 2006 Handbook of
Combinatorial Designs [4]; 4 recent problems from Feb. 2025 papers; 2 FunSearch problems
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PA SymmW SkewW BTD FR EPA BRD
o3-mini-high Tabu DFS DFS Tabu GRASP cSA cSA,2p
- Reduce runtime Tabu DFS DFS Tabu cSA cSA,2p
- No final dev test Tabu DFS DFS Tabu cSA,2p
- No optimization Tabu DFS DFS Tabu 2p
- No hyper tuning Tabu DFS DFS Tabu,RG 2p
GPT-4o cSA rSA cSA GA DFS cSA
- Reduce runtime cSA rSA cSA GA DFS
- No final dev test cSA rSA cSA GA DFS
- No optimization cSA SA cSA GA
- No hyper tuning rSA GA
Mistral Large cSA cSA cSA
- Reduce runtime cSA cSA cSA
- No final dev test cSA cSA cSA
- No optimization cSA cSA
- No hyper tuning cSA

Table 3: Problem-Specific Results and Ablation. Each row is an experiment, each column a type
of combinatorial design from the Handbook. Colored cells show where the experiment solved at
least one open instance: green indicates the experiment solved all the open instances that the initial
run did, and yellow indicates an ablation experiment solved only a subset. The first set of rows
use o3-mini-high, and the “-” rows stack up successive ablations: Reduce runtime reduces from
48 hours to 2 for open instances, No final dev test eliminates final 2 hour testing on dev instances
(instead using original 50-second test results), No optimization eliminates the code optimization
step, and No hyper tuning eliminates hyperparameter tuning (instead using defaults given by the
LLM). The second set of rows use GPT-4o, and the third use Mistral Large. Each cell shows the
strategies that obtained success: DFS: backtracking depth-first search, GA: genetic algorithm, SA:
simulated annealing with slow cooling schedule, rSA: simulated annealing with periodic resets,
cSA: constant-temperature simulated annealing, Tabu: Tabu search [10], RG: randomized greedy
(randomized DFS within row, restart if any row fails), 2p: 2-phase method for BRD: find binary
incidence matrix, then add signs, GRASP: Greedy randomized adaptive search procedure [8].

Prototyping Set: We manually develop local search methods for 5 types of combinatorial designs,
solving 1 open instance of EPA and 2 of SymmW; these two problems form our prototyping set for
use during protocol development.

Protocol Development: In our protocol, an LLM takes a combinatorial design’s definition as
input and implements candidate solutions in C. The protocol executes the generated code on dev
instances, checks results with the verifier, and selects the most promising candidates for use on open
instances. We iteratively developed the protocol while testing only on the prototyping set, establishing
protocol elements: prompting for diverse strategies separately from code generation [36], performing
automated grid-based hyperparameter tuning for each candidate [35], testing candidates using multiple
random seeds to encourage randomized strategies, and using an explicit code optimization step.

Fig. 1 outlines the final protocol CPro1. During initial testing, 1000 candidate programs are each
scored on the basis of 50 seconds of execution using the tuned hyperparameters. Score is the number
of instances solved, plus a tie-breaking bonus for faster solutions. The 5 top-scoring candidates
proceed to optimization (also 50 seconds). For final testing on dev instances, the same 5 candidates
(after optimization) are given 2 hours. The 2 top-scoring candidates from this then run for 48 hours
on the open instances. The Appendix has details (Algorithm 1) and full prompts. Of several LLMs
tested on the prototyping set, OpenAI o3-mini-high [24] performed best (Table 4), so the main results
use it. We also report results using GPT-4o and the open-weights Mistral Large (Table 3).

3 Results

Table 1 shows the main results. CPro1 solves long-standing open instances for 7 types of combinatorial
designs of the 16 selected from the Handbook. From recent combinatorial design literature, CPro1
improves upon Feb. 2025 results by solving open instances from 3 of the 4 selected papers. For
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the Deletion Codes problem, FunSearch was reported to improve on state-of-the-art codes for 3
sets of parameters [37]. CPro1 finds further improvement for all 3, plus 6 other sets of parameters,
substantially improving on the state of the art for small Deletion Codes. All of the open instance
solutions, and the code that constructed them, are available on github. 1

Ablation and Scaling: Ablation tests (Table 3) show all considered elements of the protocol are
needed to obtain the full results. Scaled-down runs (Fig. 2) show success rates remain high at smaller
scale for the o3-mini reasoning model, whereas GPT-4o performs relatively poorly.

Strategies Implemented by Generated Code: All successful strategies are randomized, and most ap-
pear well-optimized. Successful programs are 120-540 lines of C code, with o3-mini-high generating
larger programs. Most use simulated annealing, genetic algorithms, tabu search, or depth-first search
(Table 3). Each run has a total of 1000 candidates; common strategies are each proposed dozens of
times during a run, giving adequate room to explore alternatives (e.g. various cost functions).

In general, the application of simulated annealing and tabu search to combinatorial designs is well
established (Handbook chapter VII.6). However, from reviewing the literature, the application of
these specifically to Balanced Ternary Designs, Bhaskar Rao Designs, and Equidistant Permutation
Arrays appears to be novel. For Packing Arrays, CPro1’s new solutions improve upon prior results
obtained using simulated annealing [30] and SAT solvers [22].

For the UNSQS problem, CPro1’s approach succeeds by addressing different constraints in two
phases: first create an SQS using Knuth’s Algorithm X [19], then perform tabu search for nested pairs.
A two-phase approach also arises for Bhaskar Rao Designs: first find a 0/1 matrix that meets incidence
constraints, then add +1/-1 signs. These two-phase approaches seem somewhat surprising; one might
have anticipated that constraint interaction would prevent success. Prior two-phase approaches for
the Covering Arrays problem [33, 34] have both phases addressing the same constraints.

Limitations: CPro1’s positive results arise from automating computational experimentation that
could have been done manually. The research community has only undertaken limited effort on such
experimentation for some of the designs with positive results here; this may have left low-hanging
fruit for CPro1. Some of the designs with no positive results here have received much greater attention.
For example, CPro1 was unsuccessful on Covering Arrays, which have seen sustained development
of progressively better computational techniques and mathematical constructions [32, 34].

The combinatorial design research community has greater focus on systematic mathematical con-
structions (e.g. using algebraic methods), rather than direct computational search for small designs.
CPro1 doesn’t necessarily exclude systematic constructions – for example, for Costas Arrays, some
of the generated code implements systematic constructions such as the Welch method [11], solving
larger dev instances than are solved by direct search. However, CPro1 was never able to extend
these systematic constructions to solve open instances. The solutions produced by CPro1-generated
heuristics generally do not have any obvious structure that could give insight into new systematic
constructions.

CPro1 can only show existence by constructing a solution. For some of the open instances included
here, there may exist no solution, but non-existence proofs are outside the scope of CPro1.

In work that appeared after this project was completed, other researchers also reported a UNSQS
with v = 14 [20], and a Symmetric Weighing Matrix with n = 22 w = 16 [31], as we report here.

4 Conclusion

The protocol CPro1 uses LLMs to generate search heuristics, and successfully solves open instances
of the existence problem for 7 types of combinatorial designs from the Handbook of Combinatorial
Designs, 3 more from the Feb. 2025 combinatorial design literature, and also yields state of the art
results for the Deletion Codes problem that was previously addressed by FunSearch. The code for
CPro1 is available,1 and the protocol can be run on additional types of combinatorial designs by
supplying a textual definition, a Python verifier, and small collections of parameters for dev instances
and open instances. For the task of showing existence of small open instances of combinatorial
designs using heuristic computational search, LLMs with protocols like CPro1 are ready to contribute
in an automated fashion.

1https://github.com/Constructive-Codes/CPro1
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A Appendix: Additional Tables and Figure, Protocol Pseudocode, Prompts,
Definitions Used for Prompting, and Solutions to Open Instances

Table 4 and Figure 2 provide additional details and are included below. The protocol CPro1 that is
outlined in Fig. 1 is specified in more detail in Algorithm 1.

The prompts that are used are shown in Figures 3 to 6. These are shown instantiated for the Packing
Array (PA) combinatorial design problem; the text that can vary between problems is shown in italics
and the rest of the prompt text is constant. Problem definitions, as used in prompting, are in Tables 5
to 8.

Figures 7 to 17 show verified designs that resolve open instances of combinatorial design problems
as noted in Table 1. Each of these was constructed by code that was generated by protocol CPro1.
One instance solution is provided here for each type of combinatorial design. Refer to the definitions
in Tables 5 to 8 to interpret these solutions. The github repo for this paper contains the full set of
solutions (https://github.com/Constructive-Codes/CPro1).

LLM Ver. Date #cand. SymmW open solved EPA open solved
GPT-4o [17] 2024-05-13 100 0 1
GPT-4o 2024-05-13 300 1 0
GPT-4o 2024-05-13 1000 2 1
Claude 3.5 Sonnet [1] 20241022 1000 2 0
Mistral Large [21] 2407 1000 2 0
DeepSeek v2.5 [5] 2024/09/05 1000 0 0
Qwen2.5-72B-Instruct [38] 11-2024 1000 0 0
o3-mini-high [24] 2025-01-31 1000 3 1
DeepSeek R1 [16] 2025-01-20 1000 2 1

Table 4: Prototyping Set Results. For each LLM and total number of candidate programs: the
number of distinct open instances that are solved by CPro1 on each Prototyping Set problem. The
open solved numbers are out of 4 open instances tested for SymmW, and 6 for EPA.

PA SymmW SkewW BTD
0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

ra
te

o3-mini-high GPT-4o

Figure 2: Results from scaled-
down 40-candidate runs. With re-
duced runtime (2 hours) on open
instances, no final dev test, and
no optimization. Each bar shows
the rate of successfully solving at
least one open instance, across 25
repeated runs, with 95% Clopper-
Pearson confidence interval. Each
problem’s difference between o3-
mini-high and GPT-4o is significant
(p<0.0001, Z-test).
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Algorithm 1 Protocol CPro1. Note prompt(x) returns LLM result when prompted with x.
Input: Definition (of the problem), Dev & Open (instance parameter lists), Verifier (Python code)
Config for Code Generation: N = 20 strategies per rep, R = 50 reps
Config for Execution: Devseeds & Openseeds (so that #seeds * #instances = 32 parallel threads),

Fulldevtime = 2 hours, Opentime = 48 hours (full run time limits)
Config for Hyperparameter Tuning: Init_gridsize = 1000, Init_runtime = 0.5 sec., Scale = 10
Config for Optimization: Opt_cand = 50, Opt_rounds = 5, Opt_delta = 0.1
Config for Selection: Devcand = 5 (for opt. & final Dev testing), Opencand = 2 (for Open instances)
Output: Verified designs for the Open instances (if found)

// Parallel sandboxed execution of candidate executable E for maximum time T:
def ex(E,HyperP,Inst,Seeds,T): return output & runtime of E with HyperP for T, on #Seeds × Inst
// Result scoring: number of verified correct results, plus speed bonus in the range of [0, 1]:
def sc(Results,T): return

∑
r∈Results[1 + (r’s time/(T*|Results|))] if r passes Verifier check

// Hyperparameter tuning functions:
def one_grid(Min,Max,P): return coarse linear grid ( 13 of P), logarithmic/fine-grained to Min&Max
def hypergrid(Ranges): // Ranges has Min,Max,Default for each hyperparameter.

// Allocate Init_gridsize points equally across |Ranges|+ 1 grids as follows:
Gbalanced = cross product of one_grid(Min,Max,#points) for each hyperparameter
Gi = cross product of one_grid for hyperparameter i with 3 vals {Min,Max,Default} for others
return union of Gbalanced and all Gi

def run_grid(E,Grid,T): return [Parms&sc(ex(E,Parms,Dev inst.,Devseeds,T),T) for Parms in Grid]
def hypertune(E,Grid,T):

Results = run_grid(E,Grid,T)
if |Grid| ≤ Scale: return single best-scoring Parms in Results
else: return hypertune(E, (|Grid|/Scale) best Parms in Results, T*Scale) // smaller grid/more time
// Final tests in hypertune always run for Init_runtime*Scale(logScale Init_gridsize)−1 = 50 sec.

// Main protocol; Candidates is initialized to empty array
for R(=50) reps do

Strategies = prompt(Definition + "Please suggest " + N(=20) + " different approaches...")
for S in Strategies do

Details = prompt(Definition + "We have selected..." + S + "...Describe the elements...")
Code,Hyperparm_ranges = prompt("Now implement...") //Continued chat; Details in context
append Code,Hyperparm_ranges to Candidates

end for
end for // We now have R*N=1000 candidates
for C in Candidates do

Compile C’s source code to executable E
Set C’s Hyper_settings,Score = hypertune(E,hypergrid(C’s Hyperparm_ranges),Init_runtime)

end for
truncate Candidates to the best Devcand according to their Score
for C in Candidates do

for i=1 to Opt_rounds(=5) do
O = [prompt("...improve the performance..." + C + "...") * Opt_cand(=50) times]
C’ = highest-scoring single result of compiling, ex(), and sc() each of Opt_cand candidates
if C’ scores better than C by at least Opt_delta: replace C by C’, else: break

end for
end for
for C in Candidates do: Devsc = sc(ex(C’s E,C’s Hyper_settings,Dev inst,Devseeds,Fulldevtime))
truncate Candidates to the best Opencand according to their Devsc
for C in Candidates do

Results = ex(C’s executable E,C’s Hyper_settings,Open instances,Openseeds,Opentime)
output each design in Results that passes Verifier check

end for

9



A "Packing Array" PA(N,k,v) is an N x k array (N rows and k columns), with each entry from the
v-set {0,1,...v-1}, so that every N x 2 subarray contains every ordered pair of symbols at most once.
Given (N,k,v), we want to construct PA(N,k,v). Please suggest 20 different approaches we could
implement in C. For now, just describe the approaches. Then I will pick one of the approaches,
and you will write the C code to test it. We will start testing on small parameters like N=4 k=6
v=3, and then once those work we will proceed to larger parameters like N=32 k=5 v=6. Format
your list items like this example: "12. **Strategy Name**: Sentences describing strategy, all on
one line..."

Figure 3: Strategies prompt to the LLM, instantiated (italicized text) for Packing Arrays.

A "Packing Array" PA(N,k,v) is an N x k array (N rows and k columns), with each entry from the
v-set {0,1,...v-1}, so that every N x 2 subarray contains every ordered pair of symbols at most once.
Given (N,k,v), we want to construct PA(N,k,v).

We have selected the following approach:
Simulated Annealing: Use simulated annealing to slowly improve a randomly initialized array by
making small changes and accepting them based on a cooling schedule. Do not terminate until a
valid solution is found.

Describe the elements of this approach to constructing a Packing Array. Do not yet
write code; just describe the details of the approach.

Figure 4: Details prompt to the LLM, instantiated (italicized text) for Packing Arrays with a Simulated
Annealing strategy resulting from the prompt in Fig. 3. Note "Do not terminate until a valid solution
is found" is not italicized and is a fixed part of the template that is always appended to the strategy
description generated by the LLM.

Now implement this approach in C, following in detail the plan described above. Provide the
complete code. The code should only print out the final Packing Array once a valid solution is
found.

I will be running the code from the Linux command line. Please have the C code take
command-line parameters: N k v seed (in that order), followed by additional parameters as needed
which represent hyperparameters of your approach. The seed is the random seed (if no random
seed is needed, still accept this parameter but ignore it).

After giving the complete code, for each hyperparameter that is an extra command-line
parameter, provide a specification in JSON with fields "name","min","max","default" specifying
the name, minimum value, maximum value, and default value for the hyperparameter. For
example: "name":"gamma", "min":0.0, "max":2.0, "default":0.5. If no hyperparameters are
required then just state "No Hyperparameters Required" after giving the complete code. I will
be using Linux timeout to set a time limit on execution of your program, and for challenging
PA parameters this will be a long timeout (hours). So to maximize chances of finding a solution
your code should keep running indefinitely until it finds a valid solution. Therefore, eliminate
hyperparameters that would control termination, since your program needn’t terminate until it
succeeds.

We will start testing with small problem parameters like N=4 k=6 v=3. Once those
work, we can then test further refinements and move towards larger problem parameters like N=32
k=5 v=6.

Figure 5: Code generation prompt to the LLM, instantiated (italicized text) for Packing Arrays. Note
this continues the chat following on from the Details prompt in Fig. 4; so the Details prompt and
response are in context when the LLM responds to this prompt.
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A "Packing Array" PA(N,k,v) is an N x k array (N rows and k columns), with each entry from the
v-set {0,1,...v-1}, so that every N x 2 subarray contains every ordered pair of symbols at most once.
Given (N,k,v), we want to construct PA(N,k,v).

We have selected the following approach:
Simulated Annealing: Use simulated annealing to slowly improve a randomly initialized array by
making small changes and accepting them based on a cooling schedule. Do not terminate until a
valid solution is found.

The C code below implements this approach. It takes command-line parameters: N k v
seed (in that order) where seed is the random number generator seed, followed by additional
parameters which represent hyperparameters of the approach.

We are seeking to make one small change to significantly improve the performance of
this code.

#include <stdio.h>
#include <stdlib.h>
...

With these hyperparameters chosen by hyperparameter tuning: T0=0.1575068233468584,
cooling_rate=1.0. This code solves N=4 k=6 v=3 in an average of 0.0026 seconds across 2
attempts, solves N=6 k=5 v=3 in an average of 0.0028 seconds across 2 attempts, solves N=9 k=6
v=4 in an average of 0.0686 seconds across 2 attempts, solves N=20 k=6 v=5 in an average of
0.0789 seconds across 2 attempts, solves N=25 k=6 v=5 in an average of 0.0306 seconds across 2
attempts, solves N=25 k=5 v=6 in an average of 0.0139 seconds across 2 attempts, solves N=30
k=5 v=6 in an average of 0.9323 seconds across 2 attempts, solves N=31 k=5 v=6 in 1 out of 2
attempts with a time limit of 50.0 seconds each, solves N=16 k=7 v=6 in an average of 0.011
seconds across 2 attempts, solves N=23 k=7 v=6 in 1 out of 2 attempts with a time limit of 50.0
seconds each, solves N=17 k=10 v=8 in an average of 0.014 seconds across 2 attempts, solves
N=22 k=10 v=8 in an average of 0.1002 seconds across 2 attempts, solves N=25 k=10 v=8 in an
average of 6.9132 seconds across 2 attempts, solves N=14 k=11 v=8 in an average of 0.0095
seconds across 2 attempts, solves N=19 k=11 v=8 in an average of 0.0396 seconds across 2
attempts, and solves N=22 k=11 v=8 in an average of 4.2044 seconds across 2 attempts. We want
to make one small change to the code to significantly improve performance, without parallelizing
or changing the algorithm or the hyperparameter handling. Describe your plan for making one
small change to significantly improve performance. Then, implement your plan and provide the
complete updated code.

Figure 6: Optimization prompt to the LLM for generating candidate optimized code, instantiated
(italicized text) for a Packing Arrays run with a Simulated Annealing strategy resulting from the
prompt in Fig. 3, code (shown in abbreviated form) resulting from the prompt in Fig. 5, and results
from automated hyperparameter tuning.
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A "Balanced Incomplete Block Design" BIBD(v,b,r,k,L) is a pair (V,B) where V is a v-set and
B is a collection of b k-subsets of V (blocks) such that each element of V is contained in exactly r
blocks and any 2-subset of V is contained in exactly L blocks.
The BIBD is represented by a v by b incidence matrix (v rows and b columns) with elements in
0,1. The matrix element m_{ij} in the i’th row and j’th column is 1 iff element i is contained in
block j. The sum of each row is r, and the sum of each column is k. For each pair of distinct
elements y and z, sum_{j=1}^{b} m_{yj} m_{zj} = L.
Given (v,b,r,k,L) we want to find the incidence matrix for a valid BIBD(v,b,r,k,L).
A "Packing Array" PA(N,k,v) is an N x k array (N rows and k columns), with each entry from
the v-set 0,1,...v-1, so that every N x 2 subarray contains every ordered pair of symbols at most
once. Given (N,k,v), we want to construct PA(N,k,v).
An "Orthogonal Array" OA(N,k,s) of size N, degree k, and order s, is a k x N array (k rows
and N columns) with entries from the s-set {0,1,...,s-1} having the property that in every 2 x N
submatrix, every 2 x 1 column vector appears the same number (lambda) of times. lambda is
called the index of the OA, and lambda = N/s^2. Given (N,k,s,lambda), we want to construct an
OA(N,k,s) with index lambda.
A "weighing matrix" W(n,w) with parameters (n,w) is an n by n square matrix (n rows and n
columns) with entries in {0,1,-1} that satisfies W W^T = wI. That is, W times its transpose is equal
to the constant w times the identity matrix I. The weighing matrix will have w nonzero entries in
each row and each column. And each pair of distinct rows is orthogonal (dot product zero). Given
(n,w), we want to construct "SymmW", a symmetric weighing matrix W(n,w) that satisfies these
properties and is also a symmetric matrix.
A "weighing matrix" W(n,w) with parameters (n,w) is an n by n square matrix (n rows and n
columns) with entries in {0,1,-1} that satisfies W W^T = wI. That is, W times its transpose is equal
to the constant w times the identity matrix I. The weighing matrix will have w nonzero entries
in each row and each column. And each pair of distinct rows is orthogonal (dot product zero).
Given (n,w), we want to construct "SkewW", a skew weighing matrix W(n,w) that satisfies these
properties and is also a skew matrix: that is, W^T = -W.
A "Bhaskar Rao Design" BRD(v,b,r,k,L) is represented by a v by b array (v rows and b columns)
with elements a_{ij} in {-1,0,1}. Each row contains exactly r nonzero elements, and each column
contains exactly k nonzero elements. For any pair of distinct rows, the list of pairwise element
products must contain -1 L/2 times, and must contain +1 L/2 times. That is, for distinct rows f and
g, the set of pairwise element products {a_{fj}*a_{gj}} contains -1 L/2 times, +1 L/2 times, and 0
b-L times.
Given (v,b,r,k,L) we want to find a valid BRD(v,b,r,k,L).
A "Balanced Ternary Design" BTD(V,B;p1,p2,R;K,L) is an arrangement of V elements into B
multisets, or blocks, each of cardinality K (K<=V) satisfying:
1. Each element appears R=p1 + 2*p2 times altogether, with multiplicity one in exactly p1 blocks
and multiplicity two in exactly p2 blocks.
2. Every pair of distinct elements appears L times; that is, if m_{vb} is the multiplicity of the
v’th element in the b’th block, then for every pair of distinct elements v and w, sum_{b=1}^{B}
m_{vb} m_{wb} = L.
The BTD is represented by a V by B incidence matrix with elements in 0,1,2. The matrix element
m_{vb} in the v’th row and b’th column is the multiplicity of the v’th element in the b’th block.
The sum of each row is R, and the sum of each column is K.
Given (V,B,p1,p2,R,K,L) we want to find BTD(V,B;p1,p2,R;K,L).
A "Costas Array" of order n is an n by n array of dots and blanks that satisfies:
(1) There are n dots and n(n-1) blanks, with exactly one dot in each row and each column.
(2) All the segments between pairs of dots differ in length or slope.
We will represent the Costas Array by a one-dimensional list "CA" of length n, that contains a
permutation of {0,1,...,n-1}. CA[i] identifies the row for the dot that is in column i of the grid.
Condition (1) is automatically satisfied by this representation. Condition (2) is satisfied if the
tuples (j-i,CA[j]-CA[i]) are unique across all j>i with 0<=i,j<n.
Given n, we want to construct the one-dimensional list CA that represents a valid Costas Array of
order n.

Table 5: Definitions for use in prompting: Handbook combinatorial design problems part 1. Note
the definitions use ASCII symbols for the sake of prompting.
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A "Covering" Cov(t,v,k,n) is a pair (X,B), where X is a v-set of elements and B is a collection
of k-subsets of X, such that every t-subset of X occurs in at least one block in B. B has n blocks,
and it is required that t<k. We represent the Covering by an n by v incidence matrix (n rows and
v columns) with elements in {0,1}; a 1 in row i column j indicates that block i contains the j’th
element. There are k 1’s per row. Given (t,v,k,n) we want to construct a Cov(t,v,k,n) and provide
the incidence matrix.
A "Difference Triangle Set" (n,k)-DTS is a set X={X_1,...,X_n} where for 1<=i<=n,
X_i={a_{i0}, a_{i1},..., a_{ik}} with a_{ij} an integer and with 0 = a_{i0} < a_{i1} <a_{i2} < ...
< a_{ik}. The differences a_{il}-a_{ij} for 1<=i<=n, 0<=j!=l<=k are all distinct and nonzero. The
"scope" of a DTS is the max of all a_{ij} in the DTS.
Given (n,k) and s, we want to construct an (n,k)-DTS with scope s. The (n,k)-DTS should be
represented by an n by k+1 array (n rows and k+1 columns) of elements a_{ij} with 1<=i<=n and
0<=j<=k.
Given a k-tuple (x_0, x_1, x_2, ..., x_{k-1}), elements x_i, x_{i+t} are t-apart in the k-tuple,
where i+t is taken modulo k.
A "Perfect Mendelsohn Design" with parameters v and k is denoted as a (v,k)-PMD. It is a set
V={0,1,...,v-1} of size v together with a collection B of blocks of ordered k-tuples of distinct
elements from V, such that for every i=1,2,3,...,k-1 each ordered pair (x,y) of distinct elements
from V is i-apart in exactly one block. Note since there are v*(v-1) pairs of distinct elements that
must be 1-apart in exactly one block, and each block has k pairs that are 1-apart, the design will
contain b=v*(v-1)/k blocks. We will use b to denote the number of blocks.
Given (v,k,b), we want to construct a (v,k)-PMD with b blocks. We will represent the PMD with a
b by k array (b rows and k columns), with each element of the array chosen from {0,1,...,v-1}.
An "equidistant permutation array" (EPA) with parameters (n,d,m) can be represented as an m
by n matrix (m rows and n columns), where each row is the permutation of the numbers 0 to n-1.
Each pair of distinct rows must differ in exactly d positions. Given (n,d,m), we want to construct
an equidistant permutation array (EPA) with these parameters.
A "Florentine Rectangle" FR(r,n) is an r x n array (r rows and n columns), with each row having
a permutation of the set of symbols S={0,1,2,...,n-1}, such that for any two distinct symbols a and
b in S and each m in {1,2,3,...,n-1} there is at most one row in which b appears in the position
which is m steps to the right of a. A single row will have n-m pairs of symbols a,b with b being m
steps to the right of a; so n-1 pairs with b directly to the right of a, n-2 with b 2 steps to the right of
a, and only 1 pair with b n-1 steps to the right of a. Given (r,n) we want to construct a FR(r,n).
A "Circular Florentine Rectangle" CFR(r,n) is an r x n array (r rows and n columns), with each
row having a permutation of the set of symbols S={0,1,2,...,n-1}, such that for any two distinct
symbols a and b in S and each m in {1,2,3,...,n-1} there is at most one row in which b appears in
the position which is m steps to the right of a. "Steps to the right" is taken circularly - so if a is at
position i then b is at position (i+m) mod n. Given (r,n) we want to construct a CFR(r,n).
A "Tuscan-2 Square" T2(n) of size n is an n x n array (n rows and n columns), with each row
having a permutation of the set of symbols S={0,1,2,...,n-1}, such that any two distinct symbols a
and b in S have exactly one row in which b appears in the position directly to the right of a, and at
most one row in which b appears two positions to the right of a (with one symbol between). Given
n, we want to construct a T2(n).
A "Supersimple Balanced Incomplete Block Design" SBIBD(v,b,r,k,L) is a pair (V,B) where
V is a v-set and B is a collection of b k-subsets of V (blocks) such that each element of V is
contained in exactly r blocks, any 2-subset of V is contained in exactly L blocks, and any two
distinct blocks have at most two elements in common.
The SBIBD is represented by a v by b incidence matrix (v rows and b columns) with elements in
{0,1}. The matrix element m_{ij} in the i’th row and j’th column is 1 iff element i is contained
in block j. The sum of each row is r, and the sum of each column is k. For each pair of distinct
elements y and z, sum_{j=1}^{b} m_{yj} m_{zj} = L. For each pair of distinct blocks g and h,
sum_{i=1}^{v} m_{ig} m_{ih} <= 2.
Given (v,b,r,k,L) we want to find the incidence matrix for a valid SBIBD(v,b,r,k,L).

Table 6: Definitions for use in prompting: Handbook combinatorial design problems part 2. Note
the definitions use ASCII symbols for the sake of prompting.
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An "(n,R)-Covering Sequence" (abbreviated "(n,R)-CS") of length L is a cyclic sequence
x_0,x_1,...,x_{L-1} of length L, over the binary alphabet (x_i is in {0,1} for all j) such that for any
length-n binary word y_0,y_1,...,y_{n-1} there exists a j such that subsequence x_j,x_{(j+1) mod
L},x_{(j+2) mod L}...,x_{(j+n-1) mod L} of length n is Hamming distance at most R away from
the word. That is, y_0,...,y_{n-1} and x_j,...,x_{(j+n-1) mod L} differ in at most R positions. For
our purposes, n <= 16 and R <= 3 and L <= 1200. Given (n,R,L) we want to construct a (n,R)-CS
of length at most L. Output (n,R)-CS as a list of values in {0,1} separated by spaces, all on one
line.
The Johnson Graph J(N,k) with k<=N/2 is the graph whose vertices are k-element subsets of
[N]={1,2,...,N}, with two subsets connected by an edge if their intersection has size exactly k-1.
A "Johnson Clique Cover" JCC(N,k,C) of size C is a set of C cliques in J(N,k), such that the
union of these cliques includes all vertices in J(N,k). Note the cliques in the clique cover do not
need to be disjoint; they may share vertices. For our purposes, N<=15 and C<800. Given (N,k,C)
we want to construct a JCC(N,k,C). It is a theorem that it suffices to consider clique covers that
consist only of maximal cliques, and that all maximal cliques of J(N,k) are either type 0 or type
1, defined as follows. A type 0 clique specifies a k-1 element subset S of [N], and consists of all
vertices corresponding to the subset S plus x, for each x that is an element of [N] that is not in S.
A type 1 clique specifies k+1 elements in [N], and consists of all vertices corresponding to the
subset S excluding x, for each x that is an element of S. Specify a clique as a space-separated
list of integers where the first integer is the type (0 or 1) and the remaining integers specify the
elements of S. For example in J(5,2) the type 0 clique "0 1" consists of vertices for the subsets
1,2, 1,3, 1,4, and 1,5; and the type 1 clique "1 3 4 5" consists of vertices for the subsets {4,5},
{3,4}, and {3,5}. Output the clique cover as C lines, with one clique per line, where each line is a
space-separated list of integers starting with the type (0 or 1).
A "Steiner Quadruple System" (or SQS) of order v consists of a set of blocks, with each block
containing 4 elements of the set V={0,1,...,v-1}, such that each subset of 3 elements of V is
contained in exactly one block. There are v*(v-1)*(v-2)/6 subsets of 3 elements of V, and each
block covers 4 of these subsets, so the SQS will have v*(v-1)*(v-2)/24 blocks. A "Uniform
Nested Steiner Quadruple System" of order v splits each block into two "ND-pairs" of two
elements each, such that each distinct ND-pair appears the same number of times. Set p denote
the number of distinct ND-pairs that appear among the blocks; it may be that each of the v*(v-1)/2
subsets of 2 elements from V appears as an ND-pair so that p = v*(v-1)/2, or it may be that some
subsets of 2 elements from V don’t appear as an ND-pair and then we have p < v*(v-1)/2. There
are v*(v-1)*(v-2)/12 ND-pairs, so each of the p distinct ND-pairs appears v*(v-1)*(v-2)/(12*p)
times. We call such a design a UNSQS(v,p). Given (v,p) we want to construct a UNSQS(v,p).
For our purposes, 8<=v<=58 and 28<=p<=1260. Output the UNSQS(v,p) as v*(v-1)*(v-2)/24
lines, one block per line, with each line having a space-separated list of 4 numbers identifying the
elements of V in the block. The first ND-pair in a block should be the first two elements listed for
the block, and the second ND-pair is the last two elements listed. Order does not matter within an
ND-pair.
A "Covering Array of Strength 3" CA3(N,k,v) is an N x k array (N rows and k columns), with
each entry from the v-set of symbols {0,1,...v-1}, so that every N x 3 subarray contains every
ordered triple of symbols at least once. Given (N,k,v), we want to construct CA3(N,k,v). For our
purposes, N<1000, k<1000, and v<6. Output the CA3(N,k,v) as N lines with one row per line,
with each line a space-separated list of k columns where each column is an integer in {0,1,...,v-1}.

Table 7: Definitions for use in prompting: Feb. 2025 combinatorial design problems. Note the
definitions use ASCII symbols for the sake of prompting.
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A "Cap Set" CS(n,s) is a subset S of Z_3^{n}, such that S has at least s distinct points, and
no three points {x,y,z} in S satisfy x+y+z=0 (vector addition over Z_3^{n}, so addition is taken
modulo 3). We represent the cap set by an array with at least s rows, and n columns in each row.
Elements of the array are from Z_3={0,1,2}, and each row represents a point in Z_3^{n} which is
an element of S. Given (n,s) we want to construct a Cap Set CS(n,s).
A "Deletion Code" DC(n,s,m) with parameters (n,s,m) is a set m binary words of length n, such
that any two distinct words from the set do not share any any length n-s word obtained by deleting
s bits from each of the two words. Given a length n word x, let D(x) be the set of length n-s words
obtained from x by deleting two distinct bits (at positions which need not be adjacent). Note
D(x) has (n choose s) members. Our requirement is that, for any two distinct words x and y in
DC(n,s,m), D(x) and D(y) have the empty intersection. Given (n,s,m) we want to construct a
DC(n,s,m). For our purposes, 7<=n<=16, s is 2 or 3, and m<250. Output the DC(n,s,m) as an m
by n array, where each row is a space-separated list of n bits in {0,1} representing one word in the
Deletion Code.

Table 8: Definitions for use in prompting: FunSearch problems. Note the definitions use ASCII
symbols for the sake of prompting.
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1 3 2 5 5 2 1
5 1 3 1 0 5 1
4 2 0 1 2 2 4
0 2 1 4 5 5 0
2 4 0 5 1 1 0
2 5 5 2 0 2 5
5 0 1 3 1 2 2
1 5 3 3 2 0 0
3 4 3 2 5 3 4
4 1 1 2 3 1 3
2 2 2 3 4 3 3
1 0 5 0 3 5 4
4 4 2 0 0 0 2
4 5 4 4 1 3 1
2 3 3 4 3 4 2
1 4 1 1 4 4 5
3 1 4 0 4 2 0
3 3 5 1 1 0 3
5 5 0 0 5 4 3
0 1 5 5 2 3 2
3 0 2 4 2 1 5
0 3 4 3 0 1 4
5 2 4 5 3 0 5
0 0 0 2 4 0 1

Figure 7: Packing Array with N=24 k=7 v=6

0 0 0 −1 −1 −1 −1 0 0 0 1 −1 0 −1 −1 −1 0 0 0
0 1 0 1 −1 0 0 −1 0 1 0 −1 −1 1 0 0 −1 0 0
0 0 1 −1 0 −1 1 0 −1 1 −1 0 −1 0 0 0 1 0 0

−1 1 −1 1 −1 0 0 1 0 0 −1 0 0 −1 0 0 1 0 0
−1 −1 0 −1 −1 0 −1 0 0 0 −1 0 0 0 1 1 −1 0 0
−1 0 −1 0 0 −1 1 0 −1 0 1 1 0 0 0 0 −1 1 0
−1 0 1 0 −1 1 0 0 −1 0 1 0 1 1 0 0 1 0 0
0 −1 0 1 0 0 0 −1 −1 0 0 0 0 −1 −1 1 0 −1 −1
0 0 −1 0 0 −1 −1 −1 0 0 0 1 0 1 0 0 1 −1 1
0 1 1 0 0 0 0 0 0 1 0 1 1 −1 0 0 −1 −1 1
1 0 −1 −1 −1 1 1 0 0 0 0 0 0 0 −1 1 0 0 1

−1 −1 0 0 0 1 0 0 1 1 0 1 −1 0 −1 −1 0 0 0
0 −1 −1 0 0 0 1 0 0 1 0 −1 1 0 1 −1 0 −1 0

−1 1 0 −1 0 0 1 −1 1 −1 0 0 0 0 0 0 0 −1 −1
−1 0 0 0 1 0 0 −1 0 0 −1 −1 1 0 −1 0 0 1 1
−1 0 0 0 1 0 0 1 0 0 1 −1 −1 0 0 1 0 −1 1
0 −1 1 1 −1 −1 1 0 1 −1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 −1 −1 −1 0 0 −1 −1 1 −1 0 0 1
0 0 0 0 0 0 0 −1 1 1 1 0 0 −1 1 1 1 1 0

Figure 8: Symmetric Weighing Matrix with n=19 w=9
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0 0 −1 0 0 −1 −1 0 −1 0 0 1 1 −1 1 1 0 0
0 0 1 −1 0 1 −1 1 0 0 0 0 1 1 0 1 0 −1
1 −1 0 0 0 0 −1 1 1 −1 0 0 0 0 1 −1 0 1
0 1 0 0 −1 1 1 0 0 −1 0 1 1 0 0 0 1 1
0 0 0 1 0 0 0 1 −1 −1 1 −1 −1 0 0 1 1 0
1 −1 0 −1 0 0 1 −1 0 −1 1 0 0 0 0 1 −1 0
1 1 1 −1 0 −1 0 0 −1 0 −1 −1 0 0 0 0 0 1
0 −1 −1 0 −1 1 0 0 0 1 −1 −1 0 0 0 1 0 1
1 0 −1 0 1 0 1 0 0 0 −1 0 0 1 1 0 1 −1
0 0 1 1 1 1 0 −1 0 0 0 −1 1 −1 1 0 0 0
0 0 0 0 −1 −1 1 1 1 0 0 −1 1 −1 0 0 0 −1

−1 0 0 −1 1 0 1 1 0 1 1 0 0 0 1 0 0 1
−1 −1 0 −1 1 0 0 0 0 −1 −1 0 0 −1 −1 0 1 0
1 −1 0 0 0 0 0 0 −1 1 1 0 1 0 −1 −1 1 0

−1 0 −1 0 0 0 0 0 −1 −1 0 −1 1 1 0 −1 −1 0
−1 −1 1 0 −1 −1 0 −1 0 0 0 0 0 1 1 0 1 0
0 0 0 −1 −1 1 0 0 −1 0 0 0 −1 −1 1 −1 0 −1
0 1 −1 −1 0 0 −1 −1 1 0 1 −1 0 0 0 0 1 0

Figure 9: Skew Weighing Matrix with n=18 w=9
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1 0 0 1 0 −1 1 0 0 0 0 0 1 0 0
1 0 0 0 1 0 0 1 0 0 0 0 −1 0 −1
0 0 0 0 0 0 0 1 −1 1 −1 0 1 0 0
0 0 −1 0 0 0 0 0 1 0 1 0 0 −1 1
0 0 0 0 1 1 0 0 0 1 0 0 1 −1 0
0 −1 0 −1 0 −1 0 1 0 0 0 0 0 1 0
0 −1 0 0 −1 0 0 0 0 0 1 0 1 0 −1
0 1 −1 1 0 0 0 0 0 0 1 0 1 0 0
0 0 −1 −1 0 1 0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 1 1 0 0 1 1 0 1 0
0 0 0 1 −1 0 0 0 1 1 −1 0 0 0 0
0 1 0 0 0 −1 −1 −1 0 0 0 0 0 0 −1
1 0 0 0 0 0 1 0 1 0 0 0 −1 1 0
0 0 −1 0 0 0 0 0 0 0 0 −1 −1 −1 −1
1 −1 0 1 0 0 0 0 0 −1 0 0 0 −1 0
1 1 0 0 1 0 0 0 0 −1 0 1 0 0 0
0 0 0 0 0 1 0 0 1 −1 0 −1 0 0 1
0 −1 −1 0 0 −1 0 0 1 1 0 0 0 0 0
1 0 0 0 0 1 0 0 1 0 −1 1 0 0 0

−1 0 1 0 1 0 0 0 1 0 0 0 0 −1 0
1 0 0 0 0 0 −1 0 0 1 1 0 0 0 1
0 0 0 1 0 0 1 0 −1 0 0 −1 −1 0 0
1 0 0 0 −1 1 −1 0 0 0 0 0 0 0 −1
0 1 0 −1 −1 0 0 0 −1 0 0 0 0 0 1
0 0 1 0 0 0 1 −1 0 −1 0 0 1 0 0
0 0 1 0 −1 −1 0 0 0 0 0 0 −1 −1 0
1 0 1 −1 0 0 0 −1 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 1 −1 0 1
0 0 0 0 1 −1 0 −1 0 0 −1 1 0 0 0
0 0 0 −1 0 0 0 1 0 0 −1 0 0 −1 1
0 0 −1 0 0 −1 −1 0 0 −1 −1 0 0 0 0

−1 −1 −1 0 0 0 0 −1 0 0 0 1 0 0 0
0 −1 0 0 0 1 0 −1 −1 0 0 0 −1 0 0

−1 0 1 0 0 0 0 1 1 0 0 0 0 0 −1
0 0 0 1 1 0 −1 1 −1 0 0 0 0 0 0
0 0 −1 −1 1 0 1 0 0 0 0 −1 0 0 0
0 1 −1 0 −1 0 1 0 0 0 −1 0 0 0 0
0 1 0 0 0 0 1 0 0 1 0 0 0 −1 −1
1 0 0 −1 0 −1 0 0 0 0 1 0 0 −1 0
0 −1 0 0 0 0 1 0 −1 0 0 1 0 −1 0
1 −1 0 0 0 0 0 0 0 0 −1 −1 1 0 0
0 0 0 0 −1 0 0 1 0 −1 0 1 0 −1 0

Figure 10: Bhaskar Rao Design with parameters (15,42,14,5,4). Note the transpose is shown.
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2 1 1 0 1 0 0 1 0 0 0 1 1 0 1 2 1
0 2 1 1 0 0 1 0 1 1 1 1 0 0 2 1 0
1 0 0 0 0 2 0 1 2 1 1 1 1 0 1 1 0
1 1 1 0 0 0 1 2 1 0 2 1 0 1 0 0 1
0 0 1 0 1 1 2 0 0 1 1 2 1 0 0 1 1
0 1 2 0 1 1 1 1 1 0 0 0 2 1 1 0 0
1 0 1 2 1 1 1 2 0 1 0 1 0 0 1 0 0
0 1 0 1 1 1 1 1 1 0 0 1 0 2 0 2 0
0 2 0 1 1 1 0 1 1 1 0 1 1 0 0 0 2
1 1 2 1 0 2 0 0 0 1 1 0 0 1 0 1 1
1 0 1 1 0 0 0 0 1 1 0 2 1 2 1 0 1
1 0 1 2 1 0 1 0 2 0 1 0 1 0 0 1 1
1 1 0 1 2 1 0 0 0 0 2 1 1 1 1 0 0
1 1 0 1 0 0 1 1 0 2 1 0 2 1 0 1 0
0 0 0 1 0 1 1 1 0 0 1 0 1 1 2 1 2
2 1 0 0 1 1 2 0 1 1 0 0 0 1 1 0 1
0 0 1 0 2 0 0 1 1 2 1 0 0 1 1 1 1

Figure 11: Balanced Ternary Design with parameters (17,17;8,2,12;12,8)

6 5 7 9 1 4 11 2 10 8 0 3
0 9 2 8 1 4 11 3 10 6 7 5
4 5 7 8 1 0 6 3 10 2 9 11
6 7 3 8 1 0 11 9 10 5 2 4
6 5 0 8 9 7 11 3 10 1 4 2
6 5 2 8 1 9 7 11 10 4 3 0
4 5 3 0 1 9 11 7 10 6 8 2
0 5 4 6 1 7 11 9 10 2 3 8
7 5 1 8 4 0 11 2 10 6 3 9
4 6 9 8 1 7 11 2 10 3 5 0
0 5 7 8 6 9 11 4 10 3 2 1
3 5 7 8 1 10 11 9 2 6 4 0
7 5 8 4 1 6 11 3 10 9 2 0
4 5 2 8 0 6 11 9 10 7 1 3
9 5 3 8 7 4 11 1 10 2 6 0
7 5 6 8 1 4 0 9 10 3 11 2
0 5 3 8 1 6 9 2 10 11 4 7
9 5 2 7 1 0 11 8 10 3 4 6
9 5 11 8 1 7 4 0 10 6 2 3
7 0 5 8 1 9 11 6 10 2 4 3
9 4 7 8 1 6 11 5 10 0 3 2

Figure 12: Equidistant Permutation Array with n=12 d=8 m=21

8 2 9 16 15 18 19 10 1 4 6 3 17 7 12 13 5 14 0 11
11 3 19 1 2 18 8 7 14 10 16 17 9 13 4 0 15 5 12 6
13 11 4 3 2 16 9 0 6 8 5 19 7 10 12 15 1 18 14 17
19 13 12 16 2 8 1 5 15 14 3 0 18 17 11 7 6 9 4 10
8 6 17 14 5 9 12 0 7 16 4 13 18 1 19 3 15 11 10 2
12 11 0 13 10 7 1 15 17 2 4 5 6 19 16 18 3 14 9 8
18 10 3 5 0 4 15 13 9 11 14 1 7 8 16 12 19 17 6 2

Figure 13: Florentine Rectangle with r=7 n=20
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01011101010011100001000000110110011001101101000101011000111101111110010

Figure 14: Covering Sequence with n=9 R=1 L=71
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0 2 3 4
1 1 3 4 9 13
0 3 9 12
0 1 2 3
1 1 3 5 6 11
0 5 7 10
0 2 8 9
0 2 5 12
0 6 7 8
0 3 6 13
0 2 6 9
0 2 9 13
0 1 11 13
0 1 6 8
0 9 10 11
0 1 4 6
1 5 9 10 12 13
0 3 6 10
1 1 2 6 10 11
0 3 10 13
1 1 6 7 9 13
1 6 8 9 12 13
1 4 5 6 11 12
1 3 7 9 11 13
0 6 7 11
0 2 8 12
0 1 2 7
1 3 5 7 11 12
0 4 5 9
0 4 7 12
0 3 8 13
0 6 8 11
0 5 7 9
0 2 8 10
0 6 9 12
0 1 4 10
0 6 10 13
1 2 5 7 11 13
0 4 7 9
0 2 5 6
1 1 5 6 7 12
0 11 12 13
0 7 12 13
1 1 3 8 10 11
1 1 2 4 9 12
0 2 6 13
0 7 8 11
0 8 10 13
0 4 7 13
1 2 7 9 11 12
0 1 3 7
0 3 5 8
0 2 10 12

0 1 9 11
0 3 8 9
0 8 10 12
0 1 7 10
0 1 5 9
1 2 3 5 9 10
0 3 5 13
0 3 10 12
0 2 10 13
0 1 12 13
0 7 10 11
0 4 12 13
1 2 3 6 8 9
1 5 6 8 9 10
1 4 5 8 11 13
0 1 5 10
0 2 6 12
0 2 4 11
0 4 9 10
1 3 4 7 8 10
1 2 4 5 7 8
0 3 6 9
1 3 4 5 6 7
0 7 9 10
0 2 8 13
1 1 7 8 9 12
1 4 8 9 11 12
0 6 10 12
1 1 5 7 8 13
0 2 3 7
0 8 9 13
1 1 3 4 5 12
0 3 8 12
0 5 9 11
0 1 11 12
0 1 4 8
0 1 9 10
1 4 6 9 11 13
0 3 4 11
0 2 3 11
0 4 6 8
1 1 2 5 8 11
1 2 3 9 12 13
0 3 6 12
0 4 10 11
0 5 10 11
0 4 5 10
1 1 4 5 7 11
0 5 8 12
1 1 2 4 5 13
1 2 4 6 7 10
0 5 6 13

Figure 15: Johnson Clique Cover with N=13 k=4 C=105
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0 1 2 3
0 4 1 5
0 6 1 7
0 9 1 8
0 10 1 11
0 1 12 13
0 4 2 6
0 7 2 5
0 10 2 8
0 2 9 12
0 2 11 13
0 8 3 4
0 5 3 9
0 3 6 10
0 3 7 13
0 11 3 12
0 11 4 7
0 13 4 9
0 12 4 10
0 5 6 12
0 8 5 11
0 13 5 10
0 6 8 13
0 9 6 11
0 12 7 8
0 7 9 10
1 4 2 7
1 2 5 6
1 2 8 11
1 13 2 9
1 10 2 12
1 4 3 10
1 3 5 12
1 9 3 6
1 3 7 11
1 8 3 13
1 6 4 13
1 12 4 8
1 9 4 11
1 7 5 8
1 5 9 10
1 11 5 13
1 10 6 8
1 6 11 12
1 12 7 9
1 13 7 10

2 13 3 4
2 8 3 5
2 11 3 6
2 3 7 12
2 10 3 9
2 4 5 10
2 4 8 9
2 11 4 12
2 5 9 11
2 12 5 13
2 9 6 7
2 6 8 12
2 10 6 13
2 13 7 8
2 7 10 11
3 11 4 5
3 12 4 6
3 7 4 9
3 13 5 6
3 5 7 10
3 7 6 8
3 8 9 12
3 8 10 11
3 11 9 13
3 10 12 13
4 6 5 7
4 5 8 13
4 12 5 9
4 8 6 11
4 10 6 9
4 7 8 10
4 13 7 12
4 11 10 13
5 8 6 9
5 11 6 10
5 9 7 13
5 7 11 12
5 12 8 10
6 7 10 12
6 13 7 11
6 12 9 13
7 9 8 11
8 9 10 13
8 12 11 13
9 11 10 12

Figure 16: Uniform Nested Steiner Quadruple System with v=14 p=91

22



0 1 1 1 1 1 1 0 0 0 0 1
1 1 0 0 0 0 0 0 1 1 1 1
0 1 1 0 1 1 1 1 1 1 0 1
1 1 1 0 1 1 0 0 0 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 0 1 0 1 0 1
0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0
1 0 0 1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 0
0 0 1 1 0 0 0 0 0 0 1 0
1 1 1 0 1 1 0 0 1 1 1 1
1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 1 1 1 1 0
1 1 1 1 0 0 0 0 1 1 1 0
1 0 0 1 1 0 0 1 1 0 0 0
0 1 0 0 1 1 1 0 1 0 1 0
1 0 0 0 0 1 0 0 0 1 1 0
1 0 0 0 0 1 1 1 1 1 0 0
0 0 0 1 0 1 1 1 0 0 1 1
0 1 1 1 0 0 1 0 0 0 1 1
0 0 0 0 0 0 1 1 1 0 0 0
0 0 1 1 1 1 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 1 1 1
1 0 1 0 1 0 0 0 0 1 0 1
1 1 1 0 0 1 1 1 1 0 0 1
0 0 1 0 1 0 1 0 0 1 0 0
1 1 0 0 0 1 1 0 1 0 1 1
0 0 1 1 1 0 0 0 1 1 0 1
0 1 0 0 0 1 1 0 0 0 0 1
0 1 1 0 0 0 1 0 1 1 0 0
0 1 0 1 0 1 0 1 0 1 1 1
0 0 0 0 0 1 0 1 0 1 0 1
1 0 1 1 1 1 1 0 0 1 1 0

Figure 17: Deletion Code with n=12 s=2 m=36
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