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ABSTRACT

Output reachability and adversarial robustness are among the most relevant safety
properties of neural networks. We show that in the context of Message Passing
Neural Networks (MPNN), a common Graph Neural Network (GNN) model, for-
mal verification is impossible. In particular, we show that output reachability of
graph-classifier MPNN, working over graphs of unbounded, but finite size, non-
trivial degree and sufficiently expressive node labels, cannot be verified formally:
there is no algorithm that answers correctly (with yes or no), given an graph-
classifier MPNN, whether there exists some valid input to the MPNN such that
the corresponding output satisfies a given specification. However, we also show
that output reachability and adversarial robustness of node-classifier MPNN can
be verified formally when a limit on the degree of input graphs is given a priori.
We discuss the implications of these results, for the purpose of obtaining a com-
plete picture of the principle possibility to formally verify GNN, depending on the
expressiveness of the involved GNN models and input-output specifications.

1 INTRODUCTION

The Graph Neural Network (GNN) framework, i.e. models that compute functions over graphs, has
become a goto technique for learning tasks over structured data. This is not surprising since GNN
application possibilities are enormous, ranging from natural sciences (Kipf et al. (2018); Fout et al.
(2017)) over recommender systems (Fan et al. (2019)) to general knowledge graph applications
which itself includes a broad range of applications (Zhou et al. (2020)). Naturally, the high interest
in GNN and their broad range of applications including safety-critical ones, for instance in traffic
situations, impose two necessities: first, a solid foundational theory of GNN is needed that describes
possibilities and limits of GNN models. Second, methods for assessing the safety of GNN are
needed, in the best case giving guarantees for certain safety properties.

Compared to the amount of work on performance improvement for GNN or the development of
new model variants, the amount of work studying basic theoretical results about GNN is rather
limited. Some general results have been obtained as follows: independently, Xu et al. (2019) and
Morris et al. (2019) showed that GNN belonging to the model of Message Passing Neural Net-
works (MPNN) (Gilmer et al. (2017)) are non-universal in the sense that they cannot be trained
to distinguish specific graph structures. Furthermore, both relate the expressiveness of MPNN to
the Weisfeiler-Leman graph isomorphism test. This characterisation is thoroughly described and
extended by Grohe (2021). Loukas (2020) showed that MPNN can be Turing universal under cer-
tain conditions and gave impossibility results of MPNN with restricted depth and width for solving
certain graph problems.

Similarly, there is a lack of work regarding safety guarantees for GNN, or in other words work
on formal verification of GNN. Research in this direction is almost exclusively concerned with
certifying adversarial robustness properties (ARP) of node-classifying GNN (see Sect. 1.1 for
details). There, usually considered ARP specify a set of valid inputs by giving a center graph and
a bounded budget of allowed modifications and are satisfied by some GNN if all valid inputs are
classified to the same, correct class. However, due to the nature of allowed modifications, these
properties cover only local parts of the input space, namely neighbourhoods around a center graph.

1



Published as a conference paper at ICLR 2023

This local notion of adversarial robustness is also common in formal verification of classical neural
networks (NN). However, in NN verification, the absence of misbehaviour of a more global kind
is adressed using so called output reachability properties (ORP) (Huang et al. (2020)). A common
choice of ORP specifies a convex set of valid input vectors and a convex set of valid output vectors
and is satisfied by some NN if there is a valid input that leads to a valid output. Thus, falsifying ORP,
specifiying unwanted behaviour as valid outputs, guarantees the absence of respective misbehaviour
regarding the set of valid inputs. To the best of our knowledge there currently is no research directly
concerned with ORP of GNN.

This work adresses both of the above mentioned gaps: we present fundamental results regarding the
(im-)possibility of formal verification of GNN. We prove that – in direct contrast to formal verifi-
cation of NN – there are non-trivial classes of ORP and ARP used for MPNN graph classification,
that cannot be verified formally. Namely, as soon as the chosen kind of input specifications allows
for graphs of unbounded, but finite size, non-trivial degree and sufficiently expressive labels, formal
verification is no longer automatically possible in the following sense: there is no algorithm that,
given an MPNN and specifications of valid inputs and outputs, answers correctly (yes/no) whether
some valid input is mapped to some (in-)valid output. Additionally, we show that ORP and ARP
of MPNN used for node classification are formally verifiable as soon as the degree of valid input
graphs is bounded. In the ARP case, this extends the previously known bounds.

The remaining part of this work is structured as follows: we give necessary definitions in Sect. 2
and a comprehensive overview of our results in Sect.3. In Sect. 4 and Sect. 5, we cover formal
arguments, with purely technical parts outsourced to App. A and B. Finally, we discuss and evaluate
our possibility and impossibility results in Sect.6.

1.1 RELATED WORK

This paper adresses fundamental questions regarding formal verification of adversarial robustness
and output reachability of MPNN and GNN in general.

Günnemann (2022) presents a survey on recent developments in research on adversarial attack, de-
fense and robustness of GNN. We recapitulate some categorizations made in the survey and rank
the corresponding works in our results. First, according to Günnemann (2022) most work consid-
ers GNN used for node-classification (for example, Zügner et al. (2018); Dai et al. (2018); Wang
et al. (2020); Wu et al. (2019)) and among such most common adversarial modifications are edge
modifications of a fixed input graph (Zügner et al. (2018); Zügner & Günnemann (2019); Ma et al.
(2020)), but also node injections or deletions are considered (Sun et al. (2020); Geisler et al. (2021)).
In all cases, the amount of such discrete modifications is bounded, which means that the set of input
graphs under consideration is finite and, thus, the maximal degree is bounded. Any argument for the
possibility of formal verification derivable from these works is subsumed by Theorem 2 here.

Additionally, there is work considering label modifications (Zügner et al. (2018); Wu et al. (2019);
Takahashi (2019)), but only in discrete settings or where allowed modifications are bounded by box
constraints. Again, this is covered by Theorem 2. There is also work on adversarial robustness of
graph-classifier GNN (Jin et al. (2020); Chen et al. (2020); Bojchevski et al. (2020)). In all cases,
the considered set of input graphs is given by a bounded amount of structural pertubations to some
center graph. Therefore, this is no contradiction to the result of Corollary 1 as the size of considered
graphs is always bounded.

As stated above, to the best of our knowledge, there currently is no work directly concerned with
output reachability of MPNN or GNN in general.

2 PRELIMINARIES

Undirected, labeled graphs and trees. A graph G is a triple (V,D, L) where V is a finite set of
nodes, D ⊆ V 2 a symmetric set of edges and L : V → Rn is a labeling function, assigning a vector
to each node. We define the neighbourhood Neigh(v) of a node v as the set {v′ | (v, v′) ∈ D}. The
degree of G is the minimal d ∈ N s.t. for all v ∈ V we have |Neigh(v)| ≤ d. If the degree of G is d
then G is also called a d-graph. A tree B is a graph with specified node v0, called the root, denoted
by (V,D, L, v0) and the following properties: V = V0 ∪ V1 ∪ · · · ∪ Vk where V0 = {v0}, all Vi

2



Published as a conference paper at ICLR 2023

are pairwise disjoint, and whenever (v, v′) ∈ D and v ∈ Vi then v′ ∈ Vi+1 or vice-versa, and for
each node v ∈ Vi, i ≥ 1 there is exactly one v′ ∈ Vi−1 such that (v′, v) ∈ D. We call k the depth
of graph B. A d-tree is a d-graph that is a tree.

Neural networks. We only consider classical feed-forward neural networks using ReLU activa-
tions given by re(x) = max(0, x) across all layers and simply refer to these as neural networks
(NN). We use relatively small NN as building blocks to describe the structure of more complex
ones. We call these small NN gadgets and typically define a gadget by specifying its computed
function. This way of defining a gadget is ambiguous as there could be several, even infinitely many
NN computing the same function. An obvious candidate will usually be clear from context. Let N
be a NN. We call N positive if for all inputs x we have N(x) ≥ 0. We call N upwards bounded if
there is n̂ with n̂ ∈ R such that N(x) ≤ n̂ for all inputs x.

Message passing neural networks. A Message Passing Neural Network (MPNN) Gilmer et al.
(2017) consists of layers l1, . . . , lk followed by a readout layer lread, which gives the overall output
of the MPNN. Each regular layer li computes li(x,M) = combi(x, aggi(M)) where M is a multiset,
a usual set but with duplicates, aggi an aggregation function, mapping a multiset of vectors onto a
single vector, combi a combination function, mapping two vectors of same dimension to a single
one. In combination, layers l1, . . . , lk map each node v ∈ V of a graph G = (V,D, L) to a vector xk

v
in the following, recursive way: x0

v = L(v) and xi
v = li(x

i−1
v ,Mi−1

v ) where Mi−1
v is the multiset

of vectors xi−1
v′ of all neighbours v′ ∈ Neigh(v). We distinguish two kinds of MPNN, based on the

form of lread: the readout layer lread of a node-classifier MPNN computes lread(v,Mk) = read(xk
v)

where v is some designated node, Mk is the multiset of all vectors xk
v and read maps a single

vector onto a single vector. The readout layer of a graph-classifier MPNN computes lread(Mk) =
read(

∑
v∈V xk

v). We denote the application of a node-classifier MPNN N to G and v by N(G, v)
and the application of a graph-classifier N to G by N(G). In this paper, we make common choices
(cf. Gilmer et al. (2017); Barceló et al. (2020); Wu et al. (2021)) for the form of the aggregation,
combination and readout parts: aggi(M) =

∑
x∈M x, combi(x,M) = Ni(x, aggi(M)) where Ni

is a NN and read(M) = Nr(
∑

x∈M x) respectively read(x) = Nr(x) where, again, Nr is a NN.

Input and output specifications. An input specification over graphs (resp. pairs of graphs and
nodes) φ is some formula, set of constraints, listing etc. that defines a set of graphs (resp. pairs of
graphs and nodes) Sφ. If a graph G (resp. pair (G, v)) is included in Sφ we say that it is valid regard-
ing φ or that it satisfies φ, written G |= φ, resp. (G, v) |= φ. Analogously, an output specification
over vectors ψ defines a set of valid or satisfying vectors of equal dimensions. Typically, we denote
a set of input specifications by Φ and a set of output specifications by Ψ.

Formal verification of adversarial robustness and output reachability properties. An adver-
sarial robustness property (ARP) P is a triple P = (N,φ, ψ) where N is a GNN, φ some input
specification and ψ some output specification. We say that P holds iff for all inputs I |= φ we have
N(I) |= ψ. We denote the set of all ARP with φ ∈ Φ, ψ ∈ Ψ and graph-classifier or node-classifier
by ARPgraph(Φ,Ψ) respectively ARPnode(Φ,Ψ). We simply write ARP(Φ,Ψ) when we make no
distinction between graph- or node-classifiers. Analogously, an output reachability property (ORP)
Q is a tripleQ = (N,φ, ψ), which holds iff there is input I |= φ such thatN(I) |= ψ, and we define
ORPgraph(Φ,Ψ), ORPnode(Φ,Ψ) and ORP(Φ,Ψ) accordingly. Let P be a set of safety properties
like ARPgraph(Φ,Ψ) or ORPnode(Φ,Ψ). We say that P is formally verifiable1 if there is an algo-
rithm A satisfying two properties for all P ∈ P: first, if P holds then A(P ) = ⊤ (completeness)
and, second, if A(P ) = ⊤ then P holds (soundness).

3 OVERVIEW OF RESULTS

This work presents fundamental (im-)possibility results about formal verification of ARP and ORP
of MPNN. Obviously, such results depend on the considered sets of specifications. All specification
sets used in this work are described in detail in Appendix A.

1In other words, the problem of determining, given an MPNN N and descriptions of valid inputs and
outputs, whether the corresponding property holds, is decidable.
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First, we establish a connection between ORP and ARP. For a set of output specifications Ψ we
define Ψ = {ψ | ψ ∈ Ψ} where ψ defines exactly the set of vectors which do not satisfy ψ. We have
that Ψ = Ψ.

Lemma 1. ORP(Φ,Ψ) is formally verifiable if and only if ARP(Φ,Ψ) is formally verifiable.

Proof. Note that the ARP (N,φ, ψ) holds iff the ORP (N,φ, ψ) does not hold. Hence, any al-
gorithm for either of these can be transformed into an algorithm for the other problem by first
complementing the output specification and flipping the yes/no answer in the end.

This connection between ARP and ORP, while usually not given fomally, is folklore. For example,
see the survey by Huang et al. (2020), describing the left-to-right direction of Lemma 1.

Our first core contribution is that, in contrast to verification of ORP of classical NN, there are natural
sets of graph-classifier ORP, which cannot be verified formally. Let Φunb be a set of graph specifica-
tions, allowing for unbounded, but finite size, non-trivial degree and sufficiently expressive labels,
and let Ψeq be a set of vector specifications able to check if a certain dimension of a vector is equal
to some fixed integer.

Theorem 1 (Section 4). ORPgraph(Φunb,Ψeq) is not formally verifiable.

Let Ψleq be a set of vector specifications, satisfied by vectors where for each dimension there is
another dimension which is greater or equal. Now, Ψclass := Ψleq is a set of vector specifications,
defining vectors where a certain dimension is greater than all others or, in other words, outputs which
can be interpreted as an exact class assignment. We can easily alter the proof of Theorem 1 to argue
that ORPgraph(Φunb,Ψleq) is also not formally verifiable (see Section 4). Then, Lemma 1 implies
the following result for ARP of graph-classifier MPNN.

Corollary 1. ARPgraph(Φunb,Ψclass) is not formally verifiable.

Thus, as soon as we consider ORP or ARP of graph-classifier MPNN over parts of the input space,
including graphs of unbounded, but finite size, with sufficient degree and expressive labels, it is no
longer guaranteed that they are formally verifiable.

To better understand the impact of our second core contribution, we make a short note on classical
NN verification. There, a common choice of specifications over vectors are conjunctions of linear
inequalities

∑
I cixi ≤ b where ci, b are rational constants and xi are dimensions of a vector. Such

specifications define convex sets and, thus, we call the set of all such specifications Ψconv. Let Φbound

be a set of graph-node specifications, bounding the degree of valid graphs and using constraints on
labels in a bounded distance to the center node which can be expressed by vector specifications as
described above.2 Now, it turns out that as soon as we bound the degree of input graphs, ORP of
node-classifier MPNN with label constraints and output specifications from Ψconv can be verified
formally.

Theorem 2 (Section 5). ORPnode(Φbound,Ψconv) is formally verifiable.

Again, Lemma 1 implies a similar result for ARP of node-classifier MPNN. Obviously, we have
Ψclass ⊆ Ψconv.

Corollary 2. ARPnode(Φbound,Ψclass) is formally verifiable.

This byproduct of Theorem 2 considerably extends the set of input specifications for which ARP
of node-classifier MPNN is known to be formally verifiable. In particular, the literature (see Sec-
tion 1.1) gives indirect evidence that ARPnode(Φneigh,Ψclass) can be verified formally where Φneigh

is a set of specifications defined by a center graph and a bounded budget of allowed structural modi-
fications as well as label alternations restricted using box constraints, which can be expressed using
vector specifications of the form given above. Thus, Φneigh ⊆ Φbound.

The results above, in addition to some immediate implications, reveal major parts of the landscape
of MPNN formal verification, depicted in Figure 1. The horizontal, resp. vertical axis represents sets

2We assume that model checking of specifications from Φbound is decidable. Otherwise, verification of
corresponding ORP becomes undecidable due to trivial reasons.
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Figure 1: Overview of core results.

of input, resp. output specifications, loosely ordered by expressiveness. The three most important
impressions to take from this visualisation are: first, the smaller the classes of specifications, the
stronger an impossibility result becomes. Note that Theorem 1 and Corollary 1 naturally extend to
more expressive classes of specifications (indicated by the red, squiggly arrows up and to the right).
Second, results about the possibility to do formal verification grow in strength with the expressive
power of the involved specification formalisms; Theorem 2 and Corollary 2 extend naturally to
smaller classes (indicated by the green, squiggly arrows down and to the left). Third, the results
presented here are not ultimately tight in the sense that there is a part of the landscape, between
Φbound and Φunb, for which the status of decidability of formal verification remains unknown.

Remark An interesting observation is that formal verification of ORP of node-classifier MPNN
is impossible as soon as we allow for input specifications that can express properties like
∃v∀v′E(v, v′), stating that a valid graph must contain a “master node” that is connected to all
other nodes. Then the same reduction idea as seen in Section 4 can be used to show that formal
verification is no longer possible.

4 THE IMPOSSIBILITY OF FORMALLY VERIFIYING ORP AND ARP OF
GRAPH-CLASSIFIER MPNN OVER UNBOUNDED GRAPH CLASSES

The ultimate goal of this section is to show that ORPgraph(Φunb,Ψeq) is not formally verifiable. Note
that we use a weak form of Φunb here. See Appendix A for details. To do so, we relate the formal
verification of ORPgraph(Φunb,Ψeq) to the following decision problem: given a graph-classifier N
with a single output dimension, the question is whether there is graph G such that N(G) = 0. We
call this problem graph-classifier problem (GCP).

Lemma 2. If GCP is undecidable then ORPgraph(Φunb,Ψeq) is not formally verifiable.

Proof. By contraposition. Suppose ORPgraph(Φunb,Ψeq) was formally verifiable. Then there is an
algorithm A such that for each (N, true, y = 0) ∈ ORPgraph(Φunb,Ψeq) we have: A returns ⊤ if
and only if (N, true, y = 0) holds. But then A can be used to decide GCP.

Using this lemma, in order to prove Theorem 1, it suffices to show that GCP is undecidable, which
we will do in the remaining part of this section. The proof works as follows: first, we define a satisfi-
ability problem for a logic of graphs labeled with vectors, which we call Graph Linear Programming
(GLP) as it could be seen as an extension of ordinary linear programming on graph structures. We
then prove that GLP is undecidable by a reduction from Post (1946)’s Correspondence Problem
(PCP). From the form of the reduction we infer that the graph linear programs in its image are of
a particular shape which can be used to define a – therefore also undecidable – fragment, called
Discrete Graph Linear Programming (DGLP). We then show how this fragment can be reduced to
GCP, thus establishing its undecidability in a way that separates the structural from the arithmetical
parts in a reduction from PCP to GCP. As a side-effect, with GLP we obtain a relatively natural
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a a b b a a a b b

a a b b a a a b b

Figure 2: A solution for the PCP instance P0.

undecidable problem on graphs and linear real arithmetic which may possibly serve to show further
undecidability results on similar graph neural network verification problems.

4.1 FROM PCP TO GLP

We begin by defining the Graph Linear Programming problem GLP. Let X = {x1, . . . , xn} be a set
of variables. A node condition φ is a formula given by the syntax

φ ::=
∑n

i=1 aixi + bi(⊙xi) ≤ c | φ ∧ φ | φ ∨ φ

where aj , bj , c ∈ Q. Intuitively, the xi are variables for a vector of n real values, constituting a
graph’s node label, and the operator ⊙ describes access to the node’s neighbourhood, resp. their
labels.

We write sub(φ) for the set of subformulas of φ and Var(φ) for the set of variables occurring inside
φ. We use the abbreviation t = c for t ≤ c ∧ −t ≤ −c.
Let G = (V,D, L) be a graph with L : V → Rn. A node condition φ induces a set of nodes of G,
written [[φ]]G , and is defined inductively as follows.

v ∈ [[
∑n

i=1 aixi + bi(⊙xi) ≤ c]]G iff
∑n

i=1 aiL(v)i + bi(
∑

v′∈Nv
L(v′)i) ≤ c

v ∈ [[φ1 ∧ φ2]]
G iff v ∈ [[φ1]]

G ∩ [[φ2]]
G

v ∈ [[φ1 ∨ φ2]]
G iff v ∈ [[φ1]]

G ∪ [[φ2]]
G

If v ∈ [[φ]]G then we say that v satisfies φ. A graph condition ψ is a formula given by the syntax
ψ ::=

∑n
i=1 aixi ≤ c | ψ ∧ ψ, where ai, c ∈ Q. The semantics of ψ, written [[ψ]], is the subclass of

graphs G = (V,D, L) with L : V → Rn ƒsuch that

G ∈ [[
∑n

i=1 aixi ≤ c]] iff
∑n

i=1 ai(
∑

v∈V L(v)i) ≤ c,

G ∈ [[ψ1 ∧ ψ2]] iff G ∈ [[ψ1]] ∩ [[ψ2]].

Again, if G ∈ [[ψ]] then we say that G satisfies ψ.

The problem GLP is defined as follows: given a graph condition ψ and a node condition φ over
the same set of variables X = {x1, . . . , xn}, decide whether there is a graph G = (V,D, L) with
L : V → Rn such that G satisfies ψ and all nodes in G satisfy φ. Such an L = (ψ,φ) is called
a graph linear program, which we also abbreviate as GLP. It will also be clear from the context
whether GLP denotes a particular program or the entire decision problem.

As stated above, we show that GLP is undecidable via a reduction from Post’s Correspondence
Problem (PCP): given P = {(α1, β1), (α2, β2), . . . , (αk, βk)} ⊆ Σ∗ × Σ∗ for some alphabet Σ,
decide whether there is a non-empty sequence of indices i1, i2, . . . , il from {1, . . . , k} such that
αi1αi2 · · ·αil = βi1βi2 · · ·βil . The αi, βi are also called tiles. PCP is known to be undecidable
when |Σ| ≥ 2, i.e. we can always assume Σ = {a, b}. For example, consider the solvable instance
P0 = {(aab, aa), (b, abb), (ba, bb)}. It is not hard to see that I = 1, 3, 1, 2 is a solution for P0.
Furthermore, the corresponding sequence of tiles can be visualised as shown in Figure 2. The upper
word is produced by the αi parts of the tiles and the lower one by the βi. The end of one and
beginning of the next tile are visualised by the vertical part of the step lines.
Theorem 3. GLP is undecidable.

Proof sketch. We sketch the proof here and give a full version in Appendix B.1. The proof is done
by establishing a reduction from PCP. The overall idea is to translate each PCP instance P to a
GLP LP with the property that P is solvable if and only if LP is satisfiable. Thus, the translation
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Figure 3: Encoded solution I of PCP instance P0.

must be such that LP is only satisfiable by graphs that encode a valid solution of P . The encoding
is depicted for the solution of P0 shown in Figure 2 in form of solid lines and nodes in Figure 3.
The word wα = α1α3α1α2 is represented by the chain of yellow nodes from left to right in such
way that there is a node for each symbol wi of wα. If wi = a then xa = 1 and xb = 0 of the
corresponding node and vice-versa if wi = b. Analogously, β1β3β1β2 is represented by the blue
chain. The borders between two tiles are represented as edges between the yellow and blue nodes
corresponding to the starting positions of a tile. The encoding as a graph uses additional auxiliary
nodes, edges and label dimensions, in order to ensure that the labels along the yellow and blue nodes
indeed constitute a valid PCP solution, i.e. the sequences of their letter labels are the same, and they
are built from corresponding tiles in the same order. In Figure 3, these auxiliary nodes and edges are
indicated by the dashed parts.

GLP seems to be too expressive in all generality for a reduction to GCP, at least it does not seem
(easily) possible to mimic arbitrary disjunctions in an MPNN. However, the node conditions φ
resulting from the reduction from PCP to GLP are always of a very specific form: φ = φ′ ∧ φdiscr
where φdiscr =

∧
i∈I

∨
m∈M xi = m with M ⊂ N enforces dimensions xi to be discrete and φ′

has the following property. Let X be the set of dimensions not discretized by φdiscr. For each
φ1 ∨φ2 ∈ sub(φ′) it is the case that Var(φ1)∩X = ∅ or Var(φ2)∩X = ∅. In other words, in each
disjunction in φ′ at most one disjunct contains non-discretised dimensions. We call this fragment
of GLP Discrete Graph Linear Programming (DGLP). The observation that the reduction function
from PCP constructs graph linear programs which fall into DGLP (see Appendix B.1 for details)
immediately gives us the following result.
Corollary 3. DGLP is undecidable.

4.2 FROM DGLP TO GCP

Theorem 4. GCP is undecidable.
Proof. By a reduction from DGLP. Given a DGLP L = (φ,ψ) we construct an MPNNNL that gives
a specific output, namely 0, if and only if its input graph G satisfies L and therefore is a witness for
L ∈ GLP. Let m,n ∈ R with m ≤ n and M = {i1, i2, . . . , ik} ⊆ N such that ij ≤ ij+1 for all
j ∈ {1, . . . , k − 1}. We use the auxiliary gadget ⟨x ∈ [m;n]⟩ := re(re(x − n)− re(x − (n+ 1)) +
re(m− x) + re((m− 1)− x)) to define the gadgets

⟨x ≤ m⟩ := re(re(x −m)− re(x − (m+ 1))) and

⟨x ∈ M⟩ := re
(
⟨x ∈ [i1; ik]⟩+

∑k−1
j=1 re(

(ij+1−ij)
2 − (re(x − ij+ij+1

2 ) + re(
ij+ij+1

2 − x)))
)
.

Each of the gadgets above fulfils specific properties which can be inferred from their functional
forms without much effort: let r ∈ R. Then, ⟨r ≤ m⟩ = 0 if and only if r ≤ m, and ⟨r ∈ M⟩ = 0
if and only if r ∈ M. Furthermore, both gadgets are positive and ⟨x ≤ m⟩ is upwards bounded for
all m by 1 with the property that |r − m| ≥ 1 implies ⟨r ≤ m⟩ = 1. We give a formal proof in
Appendix B.2. We use ⟨x = m⟩ as an abbreviation for ⟨−x ≤ −m⟩+ ⟨x ≤ m⟩.
The input size of NL equals the amount of variables occurring in φ and ψ. NL has one layer with
two output dimensions y1discr and y1cond and the readout layer has a single output dimension yr. The
subformula φdiscr =

∧
i∈I

∨
m∈Mi

xi = m is represented by y1discr =
∑

i∈I ⟨xi ∈ Mi⟩ and then
checked using

〈
y1discr = 0

〉
in the readout layer.

The remaining part of φ is represented in output dimension y1cond in the following way. Obviously,
an atomic ≤-formula is represented using a ⟨x ≤ m⟩ gadget. A conjunction φ1 ∧ φ2 is represented
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Figure 4: Tree-model property of a two-layered MPNN.

by a sum of two gadgets f1 + f2 where fi represents φi. For this to work, we need the properties
that all used gadgets are positive and that their output is 0 when satisfied.

To represent a disjunction φ1∨φ2 where f1 and f2 are the gadgets representing φ1 resp. φ2, we need
the fact that L is a DGLP. W.l.o.g. suppose that φ1 only contains discrete variables and that φdiscr is
satisfied. Then we get: if φ1 is not satisfied then the output of f1 must be greater or equal to 1. The
reason for this is the following. If the property of some ⟨x ≤ m⟩-gadget is not satisfied its output
must be 1, still under the assumption that its input includes discrete variables only. Furthermore, as
⟨x ≤ m⟩ is positive and upwards bounded, the value of f2 must be bounded by some value k ∈ R>0.
Therefore, we can represent the disjunction using re(f2 − k re(1 − f1)). Note that this advanced
gadget is also positive and upwards bounded. Again, the value of y1

cond is checked in the readout
layer using

〈
y1cond = 0

〉
. The graph condition ψ is represented using a sum of ⟨x ≤ m⟩ gadgets.

Thus, we can effectively translate a DGLP L into an MPNN NL such that there is a graph G with
NL(G) = 0 if and only if G satisfies L, i.e. L ∈ DGLP. This transfers the undecidability from
DGLP to GCP.

Proof of Theorem 1. The statement is an immediate consequence of the results of Theorem 4 and
Lemma 2.

The proof for Corollary 1 follows the exact same line of arguments, but we consider the following
decision problem: given a graph-classifier N with two output dimension, the question is whether
there is graph G such that (N(G)1 ≤ N(G)2)∧ (N(G)1 ≤ N(G)2). We call this GCP≤. Obviously,
the statement of Lemma 2 also holds for GCP≤ and ORPgraph(Φbound,Ψleq). Proving that GCP≤ is
undecidable is also done via reduction from DGLP with only minimal modifications of MPNN NL
constructed in the proof of Theorem 4: we add a second output dimension to NL which constantly
outputs 0. The correctness of the reduction follows immediately.

5 THE POSSIBILITY OF FORMALLY VERIFIYING ORP AND ARP OF
NODE-CLASSIFIER MPNN OVER DEGREE BOUNDED GRAPH CLASSES

In order to prove Theorem 2, we argue that there is a naive algorithm verifying
ORPnode(Φbound,Ψconv) formally. Consider a node-classifier N with k layers and consider some
graph G with specified node v such that N(G, v) = y. The crucial insight is that there is a tree B
of finite depth k and with root v0 such that N(B, v0) = y. The intuitive reason for this is that N
can update the label of node v using information from neighbours of v of distance at most k. For
example, assume that k = 2 and G, v are given as shown on the left side of Figure 4 where the
information of a node, given by its label, is depicted using different colours y (yellow), b (blue), r
(red), g (green) and p (pink). As N only includes two layers, information from the unfilled (white)
nodes are not relevant for the computation of N(G, v) as their distance to v is greater than 2. Take
the tree B on the right side of Figure 4. We get that N(G, v) = N(B, v0).

Proof of Theorem 2. First, we observe the tree-model property for node-classifier MPNN over
graphs of bounded degree: let (N,φ, ψ) ∈ ORPnode(Φbound,Ψconv) where N has k′ layers and φ
bounds valid graphs to degree d ∈ N and constraints nodes in the k′′-neighbourhood of the center
node. We have that (N,φ, ψ) holds if and only if there is a d-tree B of depth k = max(k′, k′′) with
root v0 such that (B, v0) |= φ and N(B, v0) |= ψ. We prove this property in Appendix B.3.
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We fix the ORP (N,φ, ψ) as specified above and assume that combi as well as the readout function
read of N are given by the NN N1, . . . , Nk′ , Nr where N1 has input dimension 2 ·m and output
dimension n. Furthermore, assume that φ bounds valid graphs to degree d ∈ N. For each unlabeled
tree B = (V,D, v0) with V = {v0, . . . , vl} of degree at most d and depth k, of which there are only
finitely many, the verification algorithm A works as follows.

By definition, the MPNN N applied to B computes N1(xv,
∑

v′∈Nv
xv′) as the new label for each

v ∈ V after layer l1. However, as the structure of B is fixed at this point we know the neighbourhood
for each node v. Therefore, A constructs NN N1 with input dimension l ·m and output dimension
l · n1 given by (N1(id(xv0), id(

∑
v′∈Nv0

(xv′)), . . . , N1(id(xvl), id(
∑

v′∈Nvl
(xv′)))), representing

the whole computation of layer l1, where id(x) := re(re(x)−re(−x)) is a simple gadget computing
the identity. In the same way A transforms the computation of layer li, i ≥ 2, into a network
Ni using the output of Ni−1 as inputs. Then, A combines Nl and Nr, by connecting the output
dimensions of Nl corresponding to node v0 to the input dimensions of Nr, creating an NN N
representing the computation of N over graphs of structure B for arbitrary labeling functions L.

This construction reduces the question of whether (N,φ, ψ) holds to the following question: are
there labels for v0, . . . , vl, the input of N , satisfying the constraints given by φ such that the output
of N satisfies ψ. As the label constraints of φ and the specification ψ are defined by conjunctions
of linear inequalities this is in fact an instance of the output reachability problem for NN, which
is known to be decidable, as shown by Katz et al. (2017) or Sälzer & Lange (2021). Therefore, A
incorporates a verification procedure for ORP of NN and returns ⊤ if the instance is positive and
otherwise considers the next unlabeled d-tree of depth k. If none has been found then it returns ⊥.
The soundness and completeness of A follows from the tree-model property, the exhaustive loop
over all candidate trees and use of the verification procedure for output reachability of NN.

6 SUMMARY AND APPLICABILITY OF RESULTS

This work presents two major results: we proved that formal verification of ORP and ARP of graph-
classifier MPNN is not possible as soon as we consider parts of the input space, containing graphs
of unbounded, but finite size, non-trivial degree and sufficiently expressive labels. We also showed
that formal verification of ORP and ARP of node-classifier MPNN is possible, as soon as the degree
of the considered input graphs is bounded. These results can serve as a basis for further research on
formal verification of GNN but their extendability depends on several parameters.

Dependency on the GNN model. We restricted our investigations to GNN from the MPNN
model, which is a blueprint for spatial-based GNN (Wu et al. (2021)). However, the MPNN model
does not directly specify how the aggregation, combination and readout functions are represented.
Motivated by common choices, we restricted our considerations to MPNN where the aggregation
functions compute a simple sum of their inputs and the combination and readout functions are rep-
resented by NN with ReLU activation only. Theorem 1 and Corollary 1 only extend to GNN models
that are at least as expressive as the ones considered here. For some minor changes to our setting,
like considering NN with other piecewise-linear activation functions, it is easily argued that both
results still hold. However, as soon as we leave the MPNN or spatial-based model the question
of formal verifiability opens anew. Bridging results about the expressiveness of GNN from differ-
ent models, for example spatial- vs. spectral-based, is ongoing research like done by Balcilar et al.
(2021), and it remains to be seen which future findings on expressiveness can be used to directly
transfer the negative results about the impossibility of formal verification obtained here. Analo-
gously, Theorem 2 and Corollary 2 only extend to GNN that are at most as expressive as the ones
considered here. It is not possible, for example, to directly translate these results to models like
DropGNN (Papp et al. (2021)), which are shown to be more expressive than MPNN. Hence, this
also remains to be investigated in the future.

Dependency on the specifications. Obviously, the results presented here are highly dependent
on the choice of input as well as output specifications (see Appendix A for details). We refer to
future work for establishing further (im-)possibility results for formal verification of ORP and ARP
of GNN, with the ultimate goal of finding tight bounds.
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Vector Specifications Ψconv. Motivated by common choices in formal verification of classical
NN, we often use the following form: a vector specification φ for a given set of variables X is
defined by the grammar

φ ::= φ ∧ φ | t ≤ b , t ::= c · x | t+ t

where b, c ∈ Q and x ∈ X is a variable. A vector specification φ with occurring variables
x0, . . . , xn−1 is satisfied by x = (r0, . . . , rn−1) ∈ Rn if each inequality in φ is satisfied in real
arithmetic with each xi set to ri. We denote the set of all such specifications by Ψconv. A vector
specification that also includes ∨ and < operators is called extended. Extended vector specifications
are not included in Ψconv.

Graph specifications from Φunb. In the arguments of Section 4 and Appendix B.1 we refer to any
set of graph specifications which contains a specification φ satisfiable by finite graphs of arbitrary
size and degree as well as arbitrary labels, as Φunb, for instance a specification like φ = true.
However, as indicated in Section 3, this weak form of Φunb is not necessary. The arguments for
Theorem 1, given in Section 4 and Appendix B.1, are also valid if Φunb contains at least one
specification φ, satisfiable by graphs of arbitrary size, degree 4 (indicated by Figure 3) and labels
expressive enough to represent those used in PCP-structures (Appendix B.1), mainly labels using
positive integer values. For example, φ(G) = deg(G) ≤ 4 ∧ ∀v ∈ V.ψPCP(v), where ψPCP is an
extended vector specification, checking if the label of a node is valid for a PCP-structure. However,
the exact conditions are highly dependent on the construction used in the reduction from PCP to
GLP and can easily be optimised. But the aim of this work is to show that there are fundamental
limits in formal verification of ORP (and ARP), and optimising the undecidability results presented
in Section 4 in this way would only obscure the understanding of such limits. Thus, we use the
above described weaker Φunb in the formal parts, leading to uncluttered arguments and proofs.

Graph-node specifications from Φbound. First, we define for each d, k ∈ N a set Φd,k
bound of graph-

node specifications. Φd,k
bound is the set graph-node specifications φ bounding the degree of satisfying

graphs to d and constraining only nodes in the k-neighbourhood of the center node using vector
specifications, for instance φ(G, v) = deg(G) ≤ 4∧∀v′ ∈ Neighk(v).ψ(v

′) where Neighk includes
all nodes of distance up to k of v and ψ is a vector specification. Then, Φbound =

⋃
d,k∈N Φd,k

bound.

Graph or graph-node specifications from Φneigh. We consider Φneigh as a set of graph specifica-
tions or a set of graph-node specifications. Φneigh consists of graph or graph-node specifications φ,
given by some fully-defined center graph G (or pair (G, v)) and a finite modification-budget B. A
finite modification budget specifies a bounded number of structural modifications, namely inserting
or deleting nodes and edges, as well as allowed label modifications of nodes in G, bounded by vec-
tor specifications, for instance φ = (G, B) or φ = ((G, v), B). Then, a graph or graph-node pair
satisfies φ if it can be generated from G respectively (G, v) respecting the bounded budget B.

Vector specifications Ψeq. The set Ψeq consists of vector specifications of the form xi = b, thus,
vector specifications expressing that a single dimension is equal to some fixed, rational value.

Extended vector specifications Ψleq,Ψclass. The Ψleq consists of extended vector specifications
of the form

∧
i∈I

∨
j∈I\{i} xi ≤ xj . Analogously, Ψclass consists of extended vector specifications

of the form
∨

i∈I
∧

j∈I\{i} xi > xj . Note that for the argument of Corollary 1 it is sufficient that
(x1 ≤ x2) ∧ (x2 ≤ x1) is included in Ψleq.

B PROOF DETAILS

B.1 PROVING THAT GLP AND DGLP ARE UNDECIDABLE

We use the following abbreviations for GLP. For a set C of colours we define colour(C) =
∧

C(xc =
0) ∨ (xc = 1) and exactly one(C) =

∧
C(c → (

∧
c′ ̸=c ¬c′)) ∧ (¬c →

∨
c′ ̸=c c

′) where c := (xc =
1), ¬c := (xc = 0), c → φ := (xc = 0) ∨ φ and ¬c → φ := (xc = 1) ∨ φ. We use → as
having a weaker precedence than all other GLP operators. To keep the notation clear we denote – if
unambiguous – some variable xi in node and graph conditions by its index i.

13
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Let G = (V,D, L) be a graph. For some node set V′ ⊆ V and node v we define Neighv(V′) =
Neigh(v)∩V′. We call a subset of nodes V′ = {v1, . . . , vk} ⊆ V, k ≥ 2, a chain if Neighv1

(V′) =
{v2}, Neighvi(V

′) = {vi−1, vi+1} for 2 ≤ i ≤ k − 1 and Neighvk(V
′) = {vk−1}. We call v1

start, vi a middle node and vk end of V′ and assume throughout the following arguments that index
1 denotes the start and the maximal index k denotes the end of a chain. Let V1 = {v1, . . . , vk} and
V2 = {u1, . . . , uk} be subsets of V and both be chains. We say that V1∪V2 is a ladder if for all vi, ui
we have Neighvi(V1 ∪V2) = Neighvi(V1)∪ {ui} and Neighui

(V1 ∪V2) = Neighui
(V2)∪ {vi}.

First, we show that DGLP can recognise graphs G that consist of exactly one ladder and one
additional chain. If this is the case we call G a chain-ladder. Let C3 = {c1, c2, c3}, T =
{(c, s), (c,m), (c, e) | c ∈ C3} be sets of of symbols we call colours. Let (φCL, ψCL) be the
following DGLP over variables VarCL = {xc | c ∈ C3 ∪ T} ∪ {xc,id, xc,e,id | c ∈ C3}:

φCL :=φcond ∧ colour(C3 ∪ T) ∧
∧

M∈{C3,T} exactly one(M)

φcond :=
∧

C3
(¬ci →

∧
T ¬(ci, t) ∧ (ci, id) = 0 ∧ (ci, e, id) = 0) ∧ (ci → ⊙ci = 1 ∨ ⊙ci = 2)

∧ ((ci, s) → ⊙ci = 1 ∧ (ci, id) = 1 ∧ ⊙(ci, id) = 2 ∧ (ci, e, id = 0))

∧ ((ci,m) → ⊙ci = 2 ∧ 2(ci, id) = ⊙(ci, id) ∧ (ci, e, id = 0))

∧ ((ci, e) → ⊙ci = 1 ∧ (ci, id) ≤ ⊙(ci, id)− 1 ∧ (ci, e, id) = (ci, id))
∧ (c1 → ⊙c2 = 1 ∧ (c1, id) = ⊙(c2, id)) ∧ (c2 → ⊙c1 = 1 ∧ (c2, id) = ⊙(c1, id))

ψCL :=
∧

C3
(ci, s) = 1 ∧ (ci, e) = 1 ∧ ci = (ci, e, id)

Lemma 3. If G = (V,D, L) satisfies (φCL, ψCL) then G is a chain-ladder and if G′ = (V′,D′) is an
unlabeled chain-ladder then there is L′ such that G = (V′,D′, L′) satisfies (φCL, ψCL).

Proof. Assume that G satisfies (φCL, ψCL). By definition, it follows that all nodes v ∈ V satisfy φCL
and G satisfies ψCL.

Let v ∈ V be a node. Due to
∧

M∈{C3,T} exactly one(M) ∧ colour(C3 ∪ T) we have that v has
exactly one colour c1, c2 or c3 and exactly one from T. Furthermore, the subformula

∧
C3
(¬ci →∧

T ¬(ci, t) ∧ · · · implies that there is i ∈ {1, 2, 3} such that v is of colour ci and (ci, t) for some t.

We divide V into three sets V1, V2 and V3 such that v ∈ Vi if and only if v is of colour ci and
argue that each Vi is a chain. Note that the Vi are disjunct sets. Let v ∈ Vi. The subformula
(ci → ⊙ci = 1 ∨ ⊙ci = 2) implies that v has 1 or two neighbours from Vi. From the argument
above, we know that v must be of exactly one colour (ci, s), (ci,m) or (ci, e). The → subformulas
in φcond regarding these three colours imply: if v is of colour (ci, s) or (ci, e) it must have exactly
one neighbour from Vi and if v is of colour (ci,m) it must have exactly two neigbours from Vi. The
graph condition ψCL implies that there is exactly one node with colour (ci, s) and one with colour
(ci, e). In combination, we have that there is a start vs and end ve in Vi both having one neighbour
in Vi and all middle nodes vm having two.

Next, consider the (ci, id) and (ci, e, id) label dimensions. We call (ci, id) the id of a node with
colour ci. The subformula (¬ci → · · · ∧ (ci, id) = 0 ∧ (ci, e, id) = 0) ∧ · · · ) implies that if a node
is not of colour ci then the corresponding dimensions must be 0 and ((ci, s) → · · · ∧ (ci, e, id = 0))
and ((ci,m) → · · · ∧ (ci, e, id = 0)) imply that if it is not an end node then (ci, e, id) is 0 as well.
Next, we see in the subformula ((ci, s) → · · · ∧ (ci, id) = 1 ∧ ⊙(ci, id) = 2 ∧ · · · ) that vs has id 1
and its neighbour has id 2. This implies that the only neighbour of vs is not itself. The same holds
for ve due to the subformula ((ci, e) → · · · ∧ (ci, id) ≤ ⊙(ci, id)− 1). Furthermore, the subformula
((ci, e) → · · · ∧ (ci, e, id) = (ci, id)) implies that the id of ve is stored in (ci, e, id). This is used in
the graph condition subformula ci = (ci, e, id) to ensure that the amount of nodes in Vi is equal to
the id of ve. We make a case distinction: if ve is the neighbour of vs then the id of ve is 2 and, thus,
V1 = {vs, ve} which obviously is a chain. If ve is not the neighbour of vs then it must be some
vm. The subformula ((ci,m) → · · · ∧ 2(ci, id) = ⊙(ci, id) ∧ · · · ) implies that vm is not its own
neighbour and that the other neighbour v′m must have id 3. Now, if v′m = ve then we can make the
same argument as in the other case. If not then we get that v′m must have a neighbour v′′m ̸= v′m. The
node v′′m must have id 4 and, thus, it did not occur earlier on the chain. As Vi is finite, this sequence
must eventually reach ve and we get that Vi must be a chain.

So far, we argued that V = V1∪V2∪V3 with Vi disjunct and chains. It is left to argue that V1∪V2

forms a ladder. From our previous arguments we know that the nodes of Vi have incrementing
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ids from vs to ve starting with 1. Therefore, the ladder property is ensured by the subformulas
(c1 → ⊙c2 = 1 ∧ (c1, id) = ⊙(c2, id)) and (c2 → ⊙c1 = 1 ∧ (c2, id) = ⊙(c1, id)).

The other statement of the lemma, namely that there is a labeling function L′ for G′ such that
(φCL, ψCL) is satisfied, is a straightforward construction of L′ following the arguments above.

Let G be a chain-ladder with ladder V1 ∪ V2 = {v1, . . . , vk} ∪ {u1, . . . , uk} and chain V3 =
{w1, . . . , wl}. We call G a PCP-structure if for all wi we have Neighwi

(V1 ∪ V2 ∪ V3) =
Neighwi

(V3) ∪ {vhi
, uji} for some hi, ji ∈ {1, . . . , k} such that for all 2 ≤ i ≤ l − 1 we have that

hi−1 < hi < hi+1 and ji−1 < ji < ji+1. Intuitively, this property ensures that connections from
chain V3 to V1 or V2 do not intersect.

We show that there is a DGLP that recognizes PCP-structures. Let L,M,R be colours, called
directions. We define L+ 1 :=M,M + 1 := R,R+ 1 := L and direction − 1 symmetrically. Let
C3 be as above and F = {(c, d) | c ∈ C3, d ∈ {L,M,R}}. The DGLP (φPS, ψPS) over the variables
VarPS = VarCL ∪ {xc | c ∈ F} ∪ {xd,ci,id | d ∈ {L,M,R}, ci ∈ {c1, c2}} is defined as follows:

φPS :=φcond ∧ colour(F) ∧ exactly one(F) ∧ φCL

φcond :=(
∧

C3
¬ci →

∧
F ¬(ci, d))

∧
∧

C3
((ci, s) → (ci, L) ∧ ⊙(ci,M) = 1)

∧ ((ci,m) →
∨

F(ci, d) ∧
∧

d′ ̸=d ⊙(ci, d
′) = 1)

∧ (
∧

{c1,c2} ci → ⊙c3 ≤ 1) ∧ (c3 → ⊙c1 = 1 ∧ ⊙c2 = 1)

∧
∧

F(¬(c3, d) →
∧

{c1,c2}(d, ci, id) = 0) ∧ ((c3, d) →
∧

{c1,c2} ⊙(ci, id) = (d, ci, id))

∧
∧

F((c3, d) →
∧

{c1,c2} ⊙(d− 1, ci, id) ≤ (d, ci, id) ∧ (d, ci, id) ≤ ⊙(d+ 1, ci, id))

ψPS :=ψCL

Lemma 4. If G = (V,D, L) satisfies (φPS, ψPS) then G is a PCP-structure and if G′ = (V′,D′)
is an unlabelled PCP-structure then there is labelling function L′ such that (V′,D′, L′) satisfies
(φPS, ψPS).

Proof. Assume that G satisfies (φPS, ψPS). As φCL occurs as a conjunct in φPS and ψCL in ψPS
Lemma 3 implies that G is a chain-ladder. Let V1 ∪ V2 be the ladder and V3 the chain.

The subformula exactly one(F) and colour(F) in combination with (
∧

C3
¬ci →

∧
F ¬(ci, d)) im-

ply that a node is of colour ci if and only if it is of exactly one color (ci, d). From the arguments
of Lemma 3 we know that each node v has exactly one colour ci and, thus, v also has a corre-
sponding direction d ∈ {L,M,R}. The subformulas ((ci, s) → (ci, L) ∧ ⊙(ci,M) = 1) and
((ci,m) →

∨
F(ci, d) ∧

∧
d′ ̸=d ⊙(ci, d

′) = 1) imply that start node of chain Vi has direction L and
its neighbour M and that the neighbours of each middle node of direction d, characterised by colour
(ci,m), must have directions d − 1 and d + 1. In combination, this implies that each chain V1, V2

and V3 is coloured from start to end with the pattern (L,M,R)∗.

The subformulas (
∧

{c1,c2} ci → ⊙c3 ≤ 1) and (c3 → ⊙c1 = 1 ∧ ⊙c2 = 1) imply that nodes
from ladder V1 ∪ V2 have at most one neighbour from V3 and each node from chain V3 has ex-
actly one neighbour from V1 and one from V2. Consider the dimensions (d, ci, id). First, the
subformula (¬(c3, d) →

∧
{c1,c2}(d, ci, id) = 0) and the conditions of φCL imply that dimen-

sion (d, ci, id) of node v are nonzero only if v is from V3 and of direction d. The subformula
((c3, d) →

∧
{c1,c2} ⊙(ci, id) = (d, ci, id)) leads to the case that each node v ∈ V3 of direction

d has stored the id of its one neighbour from V1 in (c1, d, id) and the id of its one neighbour from
V2 in (c2, d, id). Now, the subformulas ((c3, d) →

∧
{c1,c2} ⊙(d − 1, ci, id) ≤ (d, ci, id)) and

((d, ci, id) ≤ ⊙(d+ 1, ci, id)) imply the main property of a PCP-structure, namely that the connec-
tions between V3 and V1 as well as V2 are not intersecting. Note that ≤ is sufficient as each node
from V1 and V2 can have at most 1 neighbour from V3.

Finally, we are set to prove that DGLP is undecidable. Let P = {(α1, β1), . . . , (αk, βk)} be
a PCP instance over alphabet Σ = {a, b} and let m̃ = max(

⋃k
i=1{|αi|, |βi|}). Let B =

{(ci, d, a, j), (ci, d, b, j) | ci ∈ {c1, c2}, d ∈ {L,M,R}, j ∈ {0, . . . , m̃ − 1}} and S =
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{(ci, d, p, j) | ci ∈ {c1, c2}, d ∈ {L,M,R}, p ∈ {1, . . . , k, e,⊥}, j ∈ {0, . . . , m̃}} colours. Addi-
tionally, we define S⊤ = S \ {(ci, d,⊥, j) | (ci, d,⊥, j) ∈ S}, S0 = {(ci, d, p, 0) | (ci, d, p, 0) ∈ S}
and B0 = {(ci, d, p, 0) | (ci, d, p, 0) ∈ B}. We define the following DGLP (φP , ψP ) over the
variables VarPS ∪ {xc | c ∈ B ∪ S}:

φP :=φcond ∧ (
∧

{c1,c2} ci →
∧

M∈{B0,S0} exactly one(M)) ∧ φPS ∧ colour(B ∪ S)
φcond := ∧

∧
F(¬(ci, d) →

∧
B∪S ¬(ci, d, p, j))

∧
∧

F(ci, d) →
∧

B,j<m̃−1(ci, d, p, j + 1) = ⊙(ci, d+ 1, p, j))

∧
∧

F(ci, d) →
∧

S,j<m̃(ci, d, p, j + 1) = ⊙(ci, d+ 1, p, j))

∧
∧

{c1,c2}(ci, e) →
∧

B∪S,p̸=e ¬(ci, d, p, j) ∧
∨

F(ci, d, e, 0)

∧
∧

{c1,c2} ¬(ci, e) →
∧

F ¬(ci, d, e, 0)

∧
∧

S⊤,p̸=e(c1, d, p, 0) → ⊙c3 = 1 ∧ (
∧|αp|−1

j=0 (c1, d, αp[j], j) ∧ (c1, d,⊥, j))

∧
∨k

p′=1(c1, d, p
′, |αp|) ∨ (c1, d, e, |αp|)

∧
∧

S⊤,p̸=e(c2, d, p, 0) → ⊙c3 = 1 ∧ (
∧|βp|−1

j=0 (c2, d, βp[j], j) ∧ (c2, d,⊥, j))

∧
∨k

p′=1(c2, d, p
′, |βp|) ∨ (c2, d, e, |βp|)

∧
∧

{c1,c2}(ci, s) →
∨

S⊤(ci, d, p, 0)

∧
∧

{L,M,R}((c1, d) → (c1, d, a, 0) = ⊙(c2, d, a, 0) ∧ (c1, d, b, 0) = ⊙(c2, d, b, 0))

∧ c3 → (
∧

S0
∧

d′∈{L,M,R} ⊙(c1, d, p, 0) = ⊙(c2, d
′, p, 0)) ∧

∨
S⊤ ⊙(c1, d, p, 0) = 1

ψP :=ψPS

Proof of Theorem 3. We prove this via reduction from PCP. Let P = {(α1, β1), . . . , (αk, βk)}
and (φP , ψP ) be like above. Assume that (φP , ψP ) is satisfied by G.

From the describtion above, we can see that φPS and ψPS are conjunctive subformulas of φP re-
spectively ψP . Therefore, Lemma 4 implies that G is a PCP-structure. Let V1 ∪ V2 be the ladder
and V3 the additional chain in G. In addition to the colours resulting from φPS, the subformulas
colour(B ∪ S) and (

∧
{c1,c2} ci →

∧
M∈{B0,S0} exactly one(M)) ensure that B and S are colours

and that each ladder node has exactly one colour from B0 ⊂ B and S0 ⊂ S. The idea of these colours
is the following: a colour (ci, d, p, j) ∈ B with p ∈ {a, b} and j ∈ {0, . . . , m̃ − 1} represents the
symbol (a or b) of a node in distance j of a node coloured with (ci, d). Similarly, colour (ci, d, p, j)
with p ∈ {1, . . . , k,⊥, e} and j ∈ {0, . . . , m̃} represents that a node in distance j of a node coloured
with (ci, d) is the start of tilepart αp if i = 1, p ̸= ⊥, e and βp if i = 2, p ̸= ⊥, e. In case of p = e
the node in distance j is the end node of chain Vi and p = ⊥ is a placeholder for nodes which are
neither a start of some tilepart nor the end node. The case j = 0 is interpreted as its own symbol or
start of a tile part.

We argue how φP ensures the above mentioned properties of colours (ci, d, p, j) ∈ B ∪ S. The
subformula (¬(ci, d) →

∧
B∪S ¬(ci, d, p, j)) ensures that a node of some colour (ci, d, p, j) must

also be of colour (ci, d). Especially, this implies that nodes from chain V3 do not have any colour
(ci, d, p, j). The subformulas ((ci, d) →

∧
B,j<m̃−1(ci, d, p, j + 1) = ⊙(ci, d + 1, p, j)) and

((ci, d) →
∧

S,j<m̃(ci, d, p, j + 1) = ⊙(ci, d + 1, p, j)) ensure that a node with colour (ci, d)

stores the information p, j of its (ci, d+1) neighbour in form of its own colour (ci, d, p, j+1). Note
that, each chain is labeled wird L,M,R,L, . . . from start to end and, thus, the d+1 neighbour is the
right neighbour in the sense that its nearer to the end node ve. To understand how this leads to the
case that each node on chain Vi stores the information of its m̃ right neighbours, we argue beginning
from end ve of chain Vi. Subformula ((ci, e) →

∧
B∪S,p̸=e ¬(ci, d, p, j) ∧

∨
F(ci, d, e, 0)) ensures

that ve only has colour (ci, d, e, 0). That d matches its colour (ci, d) is ensured by ¬(ci, d) → · · · .
Therefore, its only and left neighbour v must have colour (ci, d − 1, e, 1) plus its own additional
colours with j = 0. Now, the left neighbour v′ of v must have colours (c1, d − 2, e, 2), the colours
equivalent to v with j = 1 and its own colours with j = 0 and so on. As the maximum j in case of
a colour from S is m̃, tilepart start, end or ⊥ colours are stored in nodes up to distance m̃ to the left
of the original node. The same holds for colours from B with distance m̃− 1.
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We are set to argue that G encodes a solution I of P . The subformula (
∧

S⊤,p̸=e(c1, d, p, 0) →
· · · ∧ (

∧|αp|−1
j=0 (c1, d, αp[j], j)∧ (c1, d,⊥, j))∧

∨k
p′=1(c1, d, p

′, |αp|)∨ (c1, d, e, |αp|)) ensures that
for each node from V1 that is a tilepart start for some αp that αp is written to the right with-
out a next tilepart starting ((

∧|αp|−1
j=0 (c1, d, αp[j], j) ∧ ∧(c1, d,⊥, j))) and that after αp is fin-

ished that either the next tile part starts or the chain ends (
∨k

p′=1(c1, d, p
′, |αp|) ∨ (c1, d, e, |αp|)).

Analogous conditions are ensured for nodes from V2 by the subformula (
∧

S⊤,p̸=e(c2, d, p, 0) →
· · · ∧ (

∧|βp|−1
j=0 (c2, d, βp[j], j) ∧ (c2, d,⊥, j)) ∧

∨k
p′=1(c2, d, p

′, |βp|) ∨ (c2, d, e, |βp|)). Now, the
subformula (

∧
{c1,c2}(ci, s) →

∨
S⊤(ci, d, p, 0)) ensures that the start nodes of V1 and V2 corre-

spond to a tilepart start. In combination with the previous conditions, this ensures that chains V1

and V2 are coloured with words wα and wβ corresponding to sequences αi1 · · ·αih and βj1 · · ·βjl .
It is left to argue that wα = wβ and that i1 · · · ih = j1 · · · jl. The first equality is ensured
by ((c1, d) → (c1, d, a, 0) = ⊙(c2, d, a, 0) ∧ (c1, d, b, 0) = ⊙(c2, d, b, 0)) and the fact that
V1 ∪ V2 is a ladder. The second equality is ensured by (c3 → (

∧
S0
∧

d′∈{L,M,R} ⊙(c1, d, p, 0) =

⊙(c2, d
′, p, 0)) ∧

∨
S⊤ ⊙(c1, d, p, 0) = 1), ((c1, d, p, 0) → ⊙c3 = 1 ∧ · · · ) and ((c2, d, p, 0) →

⊙c3 = 1∧· · · ) and the fact that G is a PCP-structure which means that connections between V3 and
V1 respectively V2 are not intersecting. Therefore, the sequence ij · · · ih = j1 · · · jl is a solution for
P which implies that P is solvable.

The vice-versa direction, namely that if P is solvable then (φP , ψP ) is satisfiable, is argued easily:
If P is solvable then there is a solution I . Figure 3 indicates how to encode I as a PCP-structure
G. Note that in contrast to the visualisation, the encoding characterized by φPS demands that the
end nodes of chain V1 and V2 are not part of solution I . Lemma 4 states that for each unlabeled
PCP-structure there is a labeling function L′ such that G satisfies (φPS, ψPS). Therefore, if we take
a matching PCP-structure G without labels, label it with L′ and then extend L′ with the colours
(ci, d, p, j) according to I and the arguments above we get that G satisfies (φP , ψP ).

We can see from the definitions of φCL, φPS and φP and corresponding graph conditions that they
belong to the DGLP fragment of GLP. This proves the statement of Corollary 3.

B.2 PROVING THAT DGLP IS REDUCIBLE TO GCP

In the proof of Theorem 4 we claimed the following properties of ⟨x ≤ m⟩ and ⟨x ∈ M⟩ gadgets.

Lemma 5. Let r ∈ R and (r1, . . . , rk) ∈ Rk for some k. It holds that ⟨r ≤ m⟩ = 0 if and only
if r ≤ m and ⟨r ∈ M⟩ = 0 if and only if r ∈ M. Furthermore, gadgets ⟨x ≤ m⟩ and ⟨x ∈ M⟩ are
positive and ⟨x ≤ m⟩ is upwards bounded.

Proof. The properties of ⟨x ≤ m⟩ are straightforward implications of its functional form.

Next, we prove that ⟨r ∈ [m;n]⟩ = 0 if and only if r ∈ [m;n]. Assume that r ∈ [m;n]. It follows
that the output of each inner ReLU node is 0 and therefore ⟨r ∈ [m;n]⟩ = 0. Next, assume r < m.
It follows that re(m − x) > 0 and as the value of all other inner ReLU nodes must be greater or
equal to 0 it follows that ⟨r ∈ [m;n]⟩ > 0. The case r > n is argued analogously as re(x − n) > 0.

Consider the ⟨x ∈ M⟩ gadget and assume that r ∈ M. It clearly holds that r ∈ [i1; ik] and therefore
that re(⟨x ∈ [i1; ik]⟩) = 0. Furthermore, w.l.o.g. let r = il for some 1 ≤ l < k. Then, it follows
that (il+1−il)

2 = re(r− il+il+1

2 )+re( il+il+1

2 −r) and (ij+1−ij)
2 < re(r− ij+ij+1

2 )+re(
ij+ij+1

2 −r)
for j ̸= l and, thus, the inner sum is equal to 0 as well. Now, assume that r ̸∈ M. If r < i1 or r > ik
it follows that re(⟨x ∈ [i1; ik]⟩) > 0. If r ∈ [i1; ik] it must be the case that r ∈ (ij ; ij+1) for some
i ≤ j < k and therefore that re( (ij+1−ij)

2 − (re(x − ij+ij+1

2 ) + re(
ij+ij+1

2 − x))) > 0. That the
gadget ⟨x ∈ M⟩ is positive is obvious as the outermost function is ReLU.

B.3 PROVING THE TREE-MODEL PROPERTY OF NODE-CLASSIFIER MPNN OVER BOUNDED
GRAPHS

In the proof of Theorem 2 we claim that node-classifier MPNN have the tree-model property. We
formally prove this statement in the following.
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Let G = (V,D, L) be a graph and v ∈ V. The set of straight i-paths Pi
v of v is defined as P0

v = {v},
P1
v = {vv′ | (v, v′) ∈ D} and Pi+1

v = {v0 · · · vi−1vivi+1 | v0 · · · vi−1vi ∈ Pi
v, (vi, vi+1) ∈

D, vi−1 ̸= vi+1}. For some path p = v0 · · · vl we define pi for i ≤ l as the prefix v0 · · · vi.
Furthermore, let P̃i

v = {(v0, p0)(v1, p1) · · · (vi, pi) | p = v0 · · · vi ∈ Pi
v} and let P̃i

v(j) = {(vj , pj) |
(v0, p0) · · · (vj , pj) · · · (vi, pi) ∈ P̃i

v}. Let N be a node-classifier MPNN. We denote the value of v
after the application of layer li with N i(G, v) for i ≥ 1. Furthermore, let N0(G, v) = L(v) for each
node v.
Lemma 6. Let (N,φ, ψ) ∈ ORPnode(Φbound,Ψconv) where N has k′ layers and φ ∈ Φd,k′′

bound. The
ORP (N,φ, ψ) holds if and only if there is a d-tree B of depth k = max(k′, k′′) with root v0 such
that (B, v0) |= φ and N(B, v0) |= ψ.

Proof. Assume that (N,φ, ψ) is as stated above. The direction from right to left is straightforward.
Therefore, assume that (N,φ, ψ) holds. By defintion, there exists a d-graph G = (V,D, L) with
node w such that (G, w) |= φ and N(G, w) |= ψ. Let B = {VB,DB, LB, (w,w)} be the tree with
node set VB =

⋃k
i=0 P̃k

w(i). The set of edges DB is given in the obvious way by {((v, p), (v′, pv′)) |
(v, p), (v′, pv′) ∈ VB} and closed under symmetrie. Note that from the definition of P̃k

w follows that
B is a well-defined d-tree of depth k. The labeling function LB is defined such that LB((v, p)) =
L(v) for all (v, p) ∈ VB. From its construction follows that (B, (w,w)) |= φ.

We show that it holds thatNk′
(B, (w,w)) = Nk′

(G, w) which directly implies thatN(B, (w,w)) =
N(G, w). We do this by showing the following stronger statement for all j = 0, . . . , k′ via induction:
for all (v, p) ∈ P̃k′

w (k′ − i) with k′ ≥ i ≥ j holds that N j(B, (v, p)) = N j(G, v). The case j = 0 is
obvious as LB is defined equivalent to L. Therefore assume that the statement holds for j ≤ k′ − 1

and all (v, p) ∈ P̃k′

w (k′ − i) with k′ ≥ i ≥ j. Consider the case j + 1 and let (v, p) ∈ P̃k′

w (k′ − i)
for some k′ ≥ i ≥ j. We argue that for each (v′, p′) ∈ Neigh((v, p)) it follows that v′ ∈ Neigh(v)
such that N j(B, (v′, p′)) = N j(G, v′) and vice-versa. Let (v′, p′) ∈ Neigh((v, p)). By definition
of DB, i ≥ 1 and the fact that all p ∈ Pk′

w are straight follows that p′ = pv′ or p = p′v but not
both. Therefore, either (v′, p′) ∈ P̃k′

w (k′ − (i − 1)) or (v′, p′) ∈ P̃k′

w (k′ − (i + 1)) and, thus,
(v′, v) ∈ D or (v, v′) ∈ D which in both cases means v′ = Neigh(v). The induction hypothesis
implies that N j(B, (v′, p′)) = N j(G, v′). As these arguments hold for all (v′, p′) ∈ Neigh((v, p))
we get that

∑
Neigh((v,p))N

j(B, (v′, p′)) ≤
∑

Neigh(v)N
j(G, v′). The vice-versa direction is argued

analogously which then implies that
∑

Neigh((v,p))N
j(B, (v′, p′)) =

∑
Neigh(v)N

j(G, v′). From
the induction hypothesis we get that N j(B, (v, p)) = N j(G, v). Then, the definition of a MPNN
layer implies that N j+1(B, (v, p)) = N j+1(G, v). Therefore, the overall statement holds for all
j ≤ k′ and by taking j = i = k′ we get the desired result.
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