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Abstract
SGD performs worse than Adam by a significant
margin on Transformers, but the reason remains
unclear. In this work, we provide an explanation
through the lens of Hessian: (i) Transformers are
“heterogeneous”: the Hessian spectrum across pa-
rameter blocks vary dramatically, a phenomenon
we call “block heterogeneity”; (ii) Heterogeneity
hampers SGD: SGD performs worse than Adam
on problems with block heterogeneity. To val-
idate (i) and (ii), we check various Transform-
ers, CNNs, MLPs, and quadratic problems, and
find that SGD can perform on par with Adam on
problems without block heterogeneity, but per-
forms worse than Adam when the heterogeneity
exists. Our initial theoretical analysis indicates
that SGD performs worse because it applies one
single learning rate to all blocks, which cannot
handle the heterogeneity among blocks. This lim-
itation could be ameliorated if we use coordinate-
wise learning rates, as designed in Adam. Our
code is available at https://github.com/
zyushun/hessian-spectrum.

1. Introduction
Transformers (Vaswani et al., 2017) have become a major
workhorse behind AI development (e.g., (Achiam et al.,
2023)). However, the understanding of Transformer train-
ing remains limited. For instance, Transformer training
largely relies on the Adam optimizer (Kingma & Ba, 2014;
Loshchilov & Hutter, 2017). In contrast, stochastic gradient
descent with momentum (SGD) (We introduce the update
rules of Adam(W) and SGD in Appendix E.1), the de-facto
optimizer for convolution neural networks (CNNs) (LeCun
et al., 1998), performs significantly worse than Adam on
Transformers (e.g., Figure 2). Yet, the reasons behind this
performance gap remain unclear. Understanding why SGD
performs worse than Adam on Transformers is an intriguing
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question. First, from a theoretical perspective, this can help
us better understand the training of Transformers and more
generally, neural networks. Second, from a computational
perspective, the understanding may inspire the design of
better algorithms for training neural networks.

In this work, we explore why SGD largely underperforms
Adam on Transformers through the lens of Hessian. We start
by investigating the full Hessian spectrum of Transformers,
i.e., the full eigenvalue density of Hessian (see Figure 7).
By theory, the full Hessian spectrum largely determines the
behavior of gradient-based methods (Nesterov, 2013; Goh,
2017; Sun, 2019; Goujaud et al., 2022), so we suspect it may
also help explain SGD’s unsatisfactory performance. Using
tools from numerical linear algebra (Bai et al., 1996), we
empirically compare the full spectra of CNNs (where SGD
is on par with Adam) and those of Transformers (where
SGD largely lags behind Adam). Due to the limited space,
we present the full spectra in Figure 7 in Appendix A.
Unfortunately, as shown in Figure 7, the spectra for CNNs
and Transformers are often largely similar despite the dif-
ferent optimizer behaviors. As such, we have not identified
critical features in the full Hessian spectra associated with
the gap between Adam and SGD on Transformers. To reveal
the cause, a more fine-grained investigation into the Hessian
is needed.

What would cause SGD to perform significantly worse than
Adam on Transformers, but not on CNNs? By dissecting
the structures of CNNs and Transformers, we notice that
CNNs are constructed by the repetitive stacking of similar
parameter blocks (convolution layers), while Transformers
involve the non-sequential stacking of disparate parameter
blocks (e.g. Query, Key, Value, Output projection blocks
in attention and MLP layers). We hypothesize that these
architectural differences might lead to different optimization
properties. Intuitively, disparate parameter blocks contribute
differently to the overall loss. So each block might benefit
from a specialized treatment by optimizers, a flexibility of-
fered by Adam but not by SGD. This observation motivates
us to investigate the Hessian spectrum of each parameter
block, which we refer to as the blockwise Hessian spectrum.

By inspecting the blockwise Hessian spectrum, we discover
a possible explanation for why SGD is worse: the “hetero-
geneity” inherent in Transformers. We provide both empiri-
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cal and theoretical evidence to support this explanation. Our
contributions can be summarized as follows:

• Why SGD underperforms Adam on Transformers. We
explain why SGD is worse than Adam on Transform-
ers by examining the blockwise Hessian spectrum. First,
we identify a phenomenon called “block heterogeneity”,
which refers to the large differences in the Hessian spec-
tra across parameter blocks. This block heterogeneity is
observed in all examined Transformers but not in CNNs.
Second, we verify that block heterogeneity hinders SGD.
Across various Transformers, CNNs, and MLPs, we show
that SGD consistently performs worse than Adam on prob-
lems with block heterogeneity but can perform similarly
to Adam, otherwise.

• Theoretical results on quadratic models. We construct
convex quadratic problems with and without block het-
erogeneity and find that gradient descent (GD) largely
underperforms Adam on problems with block heterogene-
ity, but can perform comparably otherwise. Our theoreti-
cal analysis shows that GD can be slower than Adam on
quadratic problems with block heterogeneity. We point
out GD is slower than Adam because it uses a single learn-
ing rate for all blocks. The deficiency can be mitigated by
assigning different learning rates across blocks, as Adam
does.

We emphasize that we do not claim block heterogeneity
is the only cause for the performance gap between Adam
and SGD, but just that it is at least one important cause.
We verify, both empirically and theoretically, that SGD
underperforms Adam when block heterogeneity is present.

2. Main Results
2.1. Problem Settings
Notations. We denote the training loss as L(w), where
w ∈ Rd is the neural network parameters. We denote the
gradient and Hessian of the training loss w.r.t. neural net-
work parameters as ∇L(w) ∈ Rd and ∇2L(w) ∈ Rd×d, re-
spectively. We use [d] to denote the index set {1, 2, · · · , d}.
Given an arbitrary partition {Dl}Ll=1 over [d] with dl ≜ |Dl|,
we can split w into L parameter blocks {wl}Ll=1, where
wl = Rdl consists of parameters with indexes in the l-th
block Dl. We denote [∇2L(w)]l ∈ Rdl×dl as the Hes-
sian of l-th parameter-block wl, where [∇2L(w)]l,i,j =

∂2

∂wl,i
∂wl,j

L(wl). Note that [∇2L(w)]l is the l-th principal

block sub-matrix of ∇2L(w).

Setups. Hessian of large-scale NNs are intractable to com-
pute and store. In this work, we apply a numerical tool
called Stochastic Lanczos Quadrature method (SLQ) (Bai
et al., 1996) to approximate the Hessian spectrum. A de-
tailed introduction to SLQ is provided in Appendix E.2. All
experimental setups in this section is shown in Appendix F.

We focus primarily on the following models/tasks.

• CNNs. We study ResNet18 (11M) and VGG16 (138M)
on ImageNet (He et al., 2016; Simonyan & Zisserman,
2014). On these tasks, SGD performs on par with Adam.
See Figure 11 in Appendix D for the evidence.

• Transformers. We study Transformer with various scales
and modalities, including GPT2 (125M) on OpenWeb-
Text (Radford et al., 2019); ViT-base (86M) on ImageNet
(Dosovitskiy et al., 2020); BERT (40M) on Cornell Movie-
Dialogs Corpus (Devlin et al., 2018); GPT2-nano1 (11M)
on English corpus. On these tasks, SGD performs signifi-
cantly worse than Adam. See Figure 12 in Appendix D
for the evidence.

For each model, we estimated (1) the full Hessian spec-
trum ∇2L(w), and (2) the blockwise Hessian spectrum
[∇2L(w)]l, l ∈ [L]. For the latter, we split w according to
the default partition in PyTorch implementation, e.g., Em-
bedding layer, Query in each attention layer, Key in each
attention layer, Value in each attention layer, etc. Note that
the term “block” differs from the term “layer”. For instance,
Query and Key can reside in the same layer but are different
parameter blocks.

2.2. Full Hessian Spectrum Is Not Informative Enough
We study the full Hessian spectrum of Transformers for
two reasons. First, as stated in Section 1, the Hessian spec-
trum significantly influences the behavior of gradient meth-
ods (Nesterov, 2013). Second, previous research shows
that the Hessian spectrum provides insights into neural net-
work phenomena, like BatchNorm’s effect on training speed
(Ghorbani et al., 2019). Therefore, we hypothesize that the
Hessian spectrum may also explain why SGD largely lags
behind Adam on Transformers.

We compare the full Hessian spectra of CNNs (where SGD
performs similarly to Adam) and those of Transformers
(where SGD underperforms Adam). Due to the limited
space, these results are relegated in Figure 7 in Appendix A.
Unfortunately, we find that the full Hessian spectrum alone
may not suffice to explain why SGD is worse than Adam
on Transformers. We provide more detailed explanation in
Appendix A.

2.3. Main Findings Through Blockwise Hessian Spectra
What other factors could cause SGD to perform significantly
worse than Adam on Transformers but not on CNNs? We
identify some critical features that have been overlooked
in the full Hessian spectrum analysis above.

1. Hessian structure. Existing literatures showed that the
Hessians of MLPs are close to block-diagonal matrices
(Collobert, 2004; Roux et al., 2007; Martens & Grosse,

1https://github.com/karpathy/nanoGPT/
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(a) 2-layer Transformer (b) 4-layer Transformer (c) MLP from (Collobert, 2004) (d) MLP from (Martens
& Grosse, 2015)

Figure 1: (a,b): The initial Hessian of small Transformers. We take the absolute value of each entry to highlight non-zero
entries (including negatives) and then report the average value in each block. We observe a near-block-diagonal structure. (c,
d): The block-diagonal structure is also reported in the Hessian of MLPs. More similar results are re-stated in Appendix D.
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Figure 2: (a) (c): The blockwise Hessian spectra of VGG16 (CNN) and BERT (Transformer) at initialization. The x-axis
records the eigenvalues and the y-axis records the frequency in the log scale. We sample 4 blocks in each model. The
plotted spectra are normalized by their 10th largest eigenvalues. The spectra are similar among blocks for VGG and differ
significantly across blocks for BERT. (b) (d) Adam v.s. SGD for training VGG16 and BERT.

2015). We restate their findings in Appendix D. Further,
(Collobert, 2004, Section 7) theoretically attributes the
block diagonal structure to (i) the layer-by-layer design in
NNs and (ii) the Cross-Entropy loss. Following this line
of work, we also observe a near block-diagonal Hessian
in small Transformers in Figure 1, where the variables in
each principal block correspond to the parameters of each
block in the Transformer. These results suggest that near
block-diagonal Hessian might be common in NNs.

2. Build-up rules of Transformers. As shown in Figure
2, CNNs are constructed by the repetitive stacking of
similar parameter blocks (convolution layers). In contrast,
Transformers consist of disparate parameter blocks, e.g.
Query, Key, Value in attention, and MLP layers. Further,
these blocks are stacked in a non-sequential manner. Due
to the different designs of these blocks, they may have
different properties for optimization, which can further
affect the optimizer behavior.

Combining these together, we hypothesize that the block-
wise Hessian spectrum, i.e., the spectrum of principal blocks
of Hessian [∇2L(w)]l, l ∈ [L], might provide additional in-
sights. What extra information can be contained in the
blockwise spectrum but not in the full spectrum? By

definition, the blockwise Hessians form the principal block
sub-matrix of the full Hessian. We note that Transformers
are observed to have a near block-diagonal Hessian. For
block diagonal matrices, blockwise spectra encode the lo-
cation of eigenvalues, i.e., which block an eigenvalue (of
the full matrix) resides in. In contrast, the full spectrum
overlooks this location information. In the following, we
study the blockwise Hessian spectra of various models and
show that they indeed carry more information than the full
spectrum for distinguishing CNNs and Transformers.

We here demonstrate the shape of blockwise spectra in
VGG16 (He et al., 2016) (CNN) and BERT (Devlin et al.,
2018) (Transformer). We sample four blocks for each model
and present the spectra in Figure 2. In BERT, the Hessian
spectra of embedding, attention, and MLP blocks are largely
different. In contrast, in ResNet, the spectra of convolution
layers are similar. We further verify this observation for
the rest of the parameter blocks. We calculate the Jensen-
Shannon (JS) distance between two eigenvalue densities of
all possible block pairs and show the results in Figure 3.

The results in Figure 3 showed a new phenomenon: for all
Transformers we checked, the blockwise Hessian spectra
are largely different across blocks. In the following, we
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refer to this phenomenon as “block heterogeneity”. In con-
trast, the blockwise Hessian spectra of CNNs are similar
and the block heterogeneity is not observed. We refer to this
phenomenon as “block homogeneity”. These results indi-
cate that block heterogeneity is informative in distinguishing
CNNs and Transformers. Intuitively, the block-homogeneity
in CNNs comes from the repetitively similar convolution
layers, while the block-heterogeneity in Transformers stems
from the non-sequential stacking disparate layers such as
Query, Value, and MLPs. In the following, we will show
that the block heterogeneity is strongly correlated with the
performance gap between SGD and Adam on Transformers.

2.4. SGD Performs Worse than Adam on Various Tasks
with Block Heterogeneity

Figure 2 and 3 have shown that (1) SGD is worse than
Adam on Transformers. (2) Transformers have block-
heterogeneity. Now we further link block heterogeneity
to SGD’s unsatisfactory performance on non-Transformer
models. This would directly establish a connection between
“block heterogeneity” and “why SGD is worse than Adam”,
without going through Transformers or attention blocks as
an intermediary. We consider one man-made example and
one real-world example.

Example 1: A man-made MLP. We consider a 4-layer
MLP on MNIST and change the degree of heterogeneity by
scaling each layer by constant c. Figure 4 shows SGD grad-
ually performs worse than Adam as heterogeneity grows.

Example 2: MLP-mixer. We consider MLP-mixer (Tol-
stikhin et al., 2021), a famous all-MLP architecture that
outperforms CNNs and ViTs on some vision tasks. The re-
sults are shown in the third column in Figure 6. We find that
the initial Hessian of MLP-mixer has block heterogeneity
and SGD lags behind Adam on this architecture.

2.5. Reduced Block Heterogeneity in Pre-trained
Transformers

We remark that different Transformers exhibit different lev-
els of block heterogeneity. Although all examined Trans-
formers show strong block heterogeneity, we find that this
heterogeneity can be mitigated, resulting in less perfor-
mance deterioration for SGD. As illustrated in Figure 5,
pre-trained GPT2 on SFT tasks can exhibit less block het-
erogeneity compared to pre-training GPT2 from scratch
(Figure 3 (f)). In this case, although SGD is still slower than
Adam, it achieves a similar loss at convergence. Compared
with training GPT2 from scratch (Figure 12 (d) in Appendix
D), the performance gap between SGD and Adam is sig-
nificantly narrowed down. These findings suggest that the
heterogeneity induced by architectural design can be allevi-
ated by selecting “good” weights. This partly explains why
simpler methods like SGD and even its zeroth-order version
can still be effective for fine-tuning language models, albeit

with slower convergence (Lv et al., 2023; Malladi et al.,
2023).

2.6. Implication on Choosing SGD or Adam
We have shown that SGD can largely underperform Adam
on various architectures. This leads to an intriguing question:
Can we predict the incompetence of SGD before the
training begins?

Our findings can bring up an empirical guidance: we can
compute the blockwise spectrum of initial Hessian, and
then decide whether to use Adam or SGD. Such a method
could be useful in scenarios in training large models that
are not mainstream Transformers or CNNs, e.g., Mamba
(Gu & Dao, 2023). In these cases, there is not much prior
experience in choosing optimizers.

It would be intriguing to decide whether SGD is suitable
for the task before the training is launched. One might
argue that a simple trial is enough: try both SGD and Adam;
if Adam is remarkably better, then pick Adam; if Adam
and SGD are similar, then pick SGD. Nevertheless, this
simple approach may not be easy for large models. First,
for large models, it may take days to know whether one run
of an algorithm is good or not. Second, it requires tuning
hyperparameters at least a few times to get a reasonably
good judgment, making the cost of the trial even higher.

We here propose a quantitative metric that can predict the
incompetence of SGD before the training. With the help of
this metric, we can save much expense on the trial and error
for SGD. The metric is simply the averaged JS distance
among blockwise Hessian spectra at initialization, i.e., the
averaged value in the heatmap of Figure 3. We denote it as
JS0. We present JS0 of various models in Table 1. Note
that JS0 establishes a quantitative difference between the
loss landscape of Transformers and CNNs. Further, JS0

is independent of optimizers and can be checked before
training.

To validate the effectiveness of the quantitative metric JS0,
we summarize JS0 of different models and the correspond-
ing SGD performance in Figure 6. We find that the per-
formance gap between SGD and Adam becomes greater as
JS0 increases. Thus, JS0 can serve as a potential indicator
to predict whether SGD may underperform Adam.

Table 1: JS0 denotes the average JS distance between the
initial Hessian spectra of each pair of parameter blocks. A
larger JS0 suggests that the task is more difficult for SGD.

Model ResNet18 VGG16 MLP-mixer
JS0 0.10 0.09 34.90

Model BERT GPT2 ViT-base
JS0 53.38 83.23 286.41
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Figure 3: The JS distance among blockwise Hessian spectra at initialization. We find that the JS distance of blockwise
spectra in CNNs is significantly smaller than that in Transformers.

1 8 9 10 11 12 13 14 15
 Degree of block Heterogeneity c

0.2

0.4

0.6

0.8

1.0

Fin
al

 Te
st

 A
cc

ur
ac

y

SGD
Adam

Figure 4: SGD v.s. Adam on a man-made MLP with dif-
ferent degrees of heterogeneity c. Each point records the
best-converged test accuracy under the learning rate grid
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Figure 5: (a) The JS distance among blockwise Hessian
spectra for GPT2 (pre-trained) when fine-tuning on Alpaca
Eval. (b) SGD could reach similar loss as Adam.

3. Case Study of Quadratic Models and
Preliminary Theory

We further study quadratic functions with block diagonal
Hessian, with or without block heterogeneity. Note that
insights on quadratic models could be important for under-
standing realistic NNs, as mentioned by researchers such as
LeCun et al. (2002) and OpenAI team (Kaplan et al., 2020).

We compare the performance of GD and Adam on Hessian
with and without block heterogeneity. Initial theoretical
results on these quadratic models will be provided. Due to
the limited space, we relegate these results to Appendix B.

4. Conclusion
In this work, we explore why SGD largely underperforms
Adam on Transformers. we establish a phenomenon called
block heterogeneity in Hessian and link it to the performance
gap between Adam and SGD. Initial theory is provided to
support the claim.
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A. Full Hessian Spectra of Various Architectures
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Figure 7: The full Hessian spectra of CNNs (VGG16 and ResNet18) and Transformers (GPT2, GPT2-nano, and ViT-base)
at different training stages. The x-axis records the eigenvalues and the y-axis records the frequency in the log scale. To
allow comparison in the same figure, the plotted spectra are normalized by their 10th largest eigenvalues. We find that the
spectra on CNNs and Transformers are largely similar.

We find that the full Hessian spctra (Figure 7) is not informative enough to explain the gap between Adam and SGD on
Transformers. We elaborate as follows. The primary information in the spectrum lies in its (A) dispersion, (B) shape, and
(C) evolution during training. Regarding (A), we observe that the eigenvalues are dispersed similarly across different models,
with no notably large outlier for Transformers. Thus, dispersion does not seem to be related to why SGD is worse than
Adam. We further investigate (B) and (C). For all CNNs and Transformers in Figure 7, we observe similar phenomena: the
spectrum’s shape is approximately symmetrical around 0 at initialization. As training proceeds, the majority of negative
eigenvalues disappear, and the shape evolves into a combination of a “bulk” and some “outliers”. Since the spectral shape
and evolution are quite similar for both Transformers and CNNs, they cannot explain why SGD is worse than Adam on
Transformers, either. In summary, we have not identified any critical phenomena in the full Hessian spectra that can be
linked to the performance gap between Adam and SGD on Transformers.

B. Case Study of Quadratic Models and Preliminary Theory
Now we study quadratic functions with block diagonal Hessian, with or without block heterogeneity. Note that insights
on quadratic models could be important for understanding realistic NNs, as mentioned by researchers such as LeCun et al.
(2002) and OpenAI team (Kaplan et al., 2020).

Setups and additional notations. We consider the following quadratic minimization.

min
w∈Rd

L(w) = 1

2
wTHw − hTw,

where H ∈ Rd×d is positive definite and h ∈ Rd. We denote L∗ as the minimum value of L(w). We set H as a block
diagonal matrix: H = diag(H1, · · · , HL), where Hl ∈ Rdl×dl and d =

∑L
l=1 dl. We use wl ∈ Rdl to denote the variable

in the l-th block and w = (wT
1 , · · · , wT

L)
T ∈ Rd. Similarly for hl ∈ Rdl . Similarly, we use [∇L(w)]l ∈ Rdl to denote the

gradient in the l-th block and denote [L(w)]l = 1
2 (w

t
l )

THlw
t
l − hT

l wl as the objective function w.r.t. the l-th block. Note
that L(w) =

∑L
l=1[L(w)]l. We denote λ1 ≥ λ2 · · · ≥ λd as the eigenvalues of H . Similarly for λl,1 · · ·λl,dl

. We denote
κ = λ1

λd
and κl =

λl,1

λl,dl

as the condition number of H and Hl, respectively. We say an algorithm has complexity Õ(C) if it

takes O(C log(1/ϵ)) iterations to achieve error L(w)−L∗

L(w0)−L∗ ≤ ϵ, where w0 is the initial point.
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B.1. Experimental Observations
We consider four types of Hessian H as follows. For all cases, we set condition number = 5000.

• Case 1: Hessian with Transformer-type spectra. We choose L = 4 and dl = 25. For l ∈ [L], we construct
Hl = QlΛlQ

T
l where Ql are matrices with i.i.d. standard Gassian entries and Λl are diagonal matrices. For the diagonal

elements in Λl, we sample dl numbers according to the spectrum of the embedding layer; 3rd Query, 3rd Value, 3rd
MLP (fc layer) in GPT2. Shifting and proportional scaling are performed to ensure all elements in Λl lie in the interval
[1, 5000]. This ensures strong convexity and controls the condition number of H equals 5000. The spectra of Hl are in
Figure 8. We choose h = 0 for all cases.

• Case 2: Hessian with CNN-type spectra. We use the same setup as in Case 1. For the diagonal elements in Λl, we
sample dl numbers according to the spectrum of the 1st to 4th convolution layers in ResNet18. We then shift and scale
Λl to the interval [1, 5000] to ensure strong convexity and a condition number of 5000. The spectra of Hl are shown in
Figure 9.

• Case 3: Hessian with simplified heterogeneous spectra. We choose L = 3 and dl = 3. For l ∈ [L], we construct
Hl = QlΛlQ

T
l where Ql are independent standard Gassian random matrix and Λl are diagonal matrices. We set the

diagonal elements of Λl as {1, 2, 3}, {99, 100, 101}, {4998, 4999, 5000} for l = 1, 2, 3, respectively. The spectra of Hl

are different due to their different supports. The condition number of Hessian H is 5000.

• Case 4: Hessian with simplified homogeneous spectra. We consider the same setup as Case 3. We set the diagonal
elements of Λl as {1, 99, 4998}, {2, 100, 4999}, {3, 101, 5000} for l = 1, 2, 3, respectively. The spectra of Hl are similar.
The condition number is 5000.
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Figure 8: Histogram of eigenvalues of each block in Case 1 (the heterogeneous case). The eigenvalues in the four blocks
are sampled from the spectrum of the embedding layer; 3rd Query, 3rd Value, 3rd MLP (fc layer) in GPT2, respectively.
All the eigenvalues are shifted and proportionally scaled such that: the objective function is strong convex; the condition
number of Hessian equals 5000; their relative ranges are preserved; and the block heterogeneity is preserved.
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Figure 9: Histogram of eigenvalues of each block in Case 2 (the homogeneous case). The eigenvalues in the four blocks are
sampled from the spectrum of 1st to 4th convolution layers in ResNet18, respectively. All the eigenvalues are shifted and
proportionally scaled such that: the objective function is strong convex; the condition number of Hessian equals 5000; their
relative ranges are preserved; and the block homogeneity is preserved.

Now we study two types of optimizers: one that assigns a single learning rate for all blocks, and one that assign different
learning rates across blocks.

12



Why Transformers Need Adam: A Hessian Perspective

• Single-learning-rate optimizer. We study gradient descent (GD).

wt+1 = wt − η∇L(w) = wt − η(Hwt − h) (1)

We use the optimal learning rate η = 2
µ+L (Nesterov, 2013). We use standard Gaussian initialization.

• Coordinate-wise-learning-rate optimizer. We study Adam with a constant learning rate and with no bias correction
for simplicity (Algorithm 3). We set β1 = 0 to erase the effect of momentum. This helps us to focus on the effect of
coordinate-wise learning rate (or the effect of diagonal preconditioning) in Adam. We use ϵ = 0. We consider β2 = 1
and β2 = 0.99, respectively. When β2 = 1, Adam assigns coordinate-wise learning rates according to the initial gradient,
but these learning rates are fixed along iteration. The update rule is as follows.

wt+1 = wt − η(D0
Adam)−1∇L(w) = wt − η(D0

Adam)−1(Hwt − h), (2)

where D0
Adam = diag(∇L(w0) ◦ ∇L(w0))

1
2 and ∇L(w0) = Hw0 − h. When β2 < 1, the coordinate-wise learning

rates adaptively change along iteration. The update rule is as follows (note that ∇L(wk) = Hwk − h.).

wt+1 = wt − η(Dt
Adam)−1∇L(w) = wt − η(Dt

Adam)−1(Hwt − h), where (3)

Dt
Adam = diag

(
(1− β2)

(
t∑

k=1

βt−k
2 ∇L(wk) ◦ ∇L(wk)

)
+ βt diag(∇L(w0) ◦ ∇L(w0))

) 1
2

We grid search η and use the standard Gaussian initialization. We remark that when β2 < 1, Adam would bounce among
non-optimal points. This will be shown in Proposition 2.

0 2000 4000 6000 8000 10000
Iteration

10 15

10 12

10 9

10 6

10 3

100

103

Lo
g 

Gr
ad

ie
nt

 M
or

m

GD
Adam with 2 = 0.99
Adam with 2 = 1

(a) Hessian with GPT2 block-
wise spectrum

0 2000 4000 6000 8000 10000
Iteration

10 15

10 12

10 9

10 6

10 3

100

103

Lo
g 

Gr
ad

ie
nt

 M
or

m

GD
Adam with 2 = 0.99
Adam with 2 = 1

(b) Hessian with ResNet18
blockwise spectrum

0 250 500 750 1000 1250 1500 1750 2000
Iteration

10 15

10 12

10 9

10 6

10 3

100

103

Lo
g 

Gr
ad

ie
nt

 M
or

m

GD
Adam with 2 = 0.99
Adam with 2 = 1

(c) Hessian with simplified het-
erogeneous blocks

0 250 500 750 1000 1250 1500 1750 2000
Iteration

10 15

10 12

10 9

10 6

10 3

100

103

Lo
g 

Gr
ad

ie
nt

 M
or

m

GD
Adam with 2 = 0.99
Adam with 2 = 1

(d) Hessian with simplified ho-
mogeneous blocks

Figure 10: The performance of Adam and GD on homo/heterogeneous quadratic problems. The condition numbers of
Hessian equal to 5000 for all four cases. When blocks are heterogeneous, GD largely lags behind Adam, and GD performs
similarly to Adam if otherwise.

Summary of experimental observations. Figure 10 presents two phenomena. For Hessian with heterogeneous blocks
(Case 1 and 3), GD largely lags behind Adam. For Hessian with homogeneous blocks (Case 2 and 4), GD is on par with
Adam. We emphasize that all Hessians have the same condition number. Further, Hessian of Case 3 and 4 share all the
eigenvalues (not just the extreme ones). The gap between Adam and GD is due to the different blockwise spectra caused by
the different locations of eigenvalues. We hypothesize that GD performs badly because it uses one single learning rate for
all blocks, which cannot handle the heterogeneity among blocks. Such heterogeneity can be better handled using different
learning rates across blocks, as designed in Adam.

B.2. Initial Theoretical Results
We now provide initial theoretical results to characterize how GD lags behind Adam in problems with heterogenous Hessian.
Note that classical optimization theory depicts the rate of first-order methods by the condition number of the full Hessian κ.
However, we point out that κ is not informative enough to describe the performance gap in Figure 10 since κ is the same
in all four cases. To distinguish Adam and GD, we need to utilize more fine-grained quantities like blockwise spectra of
sub-matrices.

Note that the blockwise spectrum is not common in the optimization area. The most related notion is perhaps “block
Lipschitz constant” (Beck & Tetruashvili, 2013) for studying block coordinate descent (BCD) type methods, but it was not
linked to the performance of SGD or Adam before. To our knowledge, we are not aware of any theory of Adam or GD built
on the block diagonal structures or the blockwise spectra of Hessian. We now make an initial attempt in this direction. We
first present the lower bound for GD.
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Proposition 1. (Lower bound for GD.) Consider minw L(w) = 1
2w

THw − hTw where H ∈ Rd×d is positive definite and
h ∈ Rd. Let wt

GD be the output of GD after t steps. There exists a block diagonal matrix H , h and an initial point w0, s.t.,
for any η, we have:

L(wt+1
GD )− L∗ ≥

(
1− 2

κ+ 1

)(
L(wt

GD)− L∗) (4)

where κ is the condition number of H .
Proposition 1 shows that GD has complexity Õ(κ) and such complexity is tight. Now we prove that Adam can achieves
better complexity. This is because it chooses different learning rates for different block sub-matrix Hl via its diagonal
preconditinoner D0

Adam. We consider generic random initialization that covers commonly used distributions such as
Gaussian, Uniform, etc.
Assumption 1. (Random initialization.) Assume the initialization w0 is sampled from a continuous distribution, i.e., the
probability measure (induced by w0) of any zero-Lebesgue-measure set is 0.
Theorem 1. (Upper bound for Adam with β2 = 1.) Consider the same setting as Proposition 1 and consider Adam with
β1 = 0 and β2 = 1 as in (2). Assume the initialization satisfies Assumption 1. Let wt

Adam be the output of Adam after t
steps. Let η = minl∈[L]

1
Cl,1

. Then w.p.1., we have

L(wt+1
Adam)− L∗ ≤ max

l∈[L]

(
1− 1

κAdam,l

)(
L(wt

Adam)− L∗) (5)

where κAdam,l = rκl, κl is the condition number of Hl, constant r relates to w0 defined as:

r =
maxl∈[L] C

2
l,2

minl∈[L] C2
l,1

, where Cl,1 = min
i∈[dl]

|[∇L(w0)]l,i|
λl,1

, Cl,2 = max
i∈[dl]

|[∇L(w0)]l,i|
λl,1

. (6)

The proofs of the above theorems are shown in Appendix G. Theorem 1 states that Adam (with β2 = 1) has complexity
Õ
(
r ·maxl∈[L] κl

)
. We note that coefficient r depends on the ratio between initial gradient and the principal eigenvalue

for each block, and smaller ratio would give faster convergence. We further remark that condition β2 = 1 is necessary
because any β2 < 1 causes non-convergence issue (Bock & Weiß, 2019; Da Silva & Gazeau, 2020). We restate their results
in Proposition 2. The non-convergence is also observed in Figure 10 (c), where we find that the iterates of Adam quickly
converge to near-optimal solutions, and then bounce back. As such, β2 = 1 is necessary for asymptotic analysis. The
analysis for β2 = 1 is still meaningful since it still shows the effect of Adam’s preconditioner.

As shown in (Da Silva & Gazeau, 2020), the non-convergence is due to the constant learning rate. Reducing the learning
rate reduces the gap between L(wt

Adam) and L∗, but does not remove it.
Proposition 2. (Non-convergence of constant-learning-rate Adam with β2 < 1.) (Da Silva & Gazeau, 2020, Proposition 12,
Figure 1) Consider minw∈R L(w) = 1

2w
2. Consider Adam with β1 = 0 and β2 < 1 as in (3). Let wt

Adam be the output of
Adam after t steps. There exists a discrete limit cycle for (3) and lim inft→∞

(
L(wt

Adam)− L∗) > 0.

We now compare the complexity of Adam and that of GD. By Theorem 1, Adam is faster than GD when r ·maxl∈[L] κl ≤ κ.
In the quadratic model with heterogeneous blocks (Case 3), our simulation over 1000 trials shows that r ≤ 1000 with
probability ≥ 2

3 when using standard Gaussian random initialization. Since maxl∈[L] κl ≈ 1, we have r·maxl∈[L] κl ≤ 1000,
w.h.p., and is about 5× smaller than κ = 5000. So Adam could be 5× faster than GD, w.h.p.. This is indeed observed in
Figure 10 where Adam outperforms GD by a significant margin. We summarize the complexity of GD and Adam in Table 2.

Table 2: The complexity of GD and Adam for minimizing a strongly convex quadratic function with block diagonal Hessian.
The symbol ✗ means non-convergence. κ and κl denote the condition number of the full Hessian and the block submatrix,
respectively. r is defined in (6).

Optimizer GD Adam with Adam with
β1 = 0 and β2 = 1 (2) β1 = 0 and β2 < 1 (3)

Complexity Õ(κ) Õ
(
r ·maxl∈[L] κl

)
✗

How to obtain a tighter complexity bound of Adam? It is valid to ask whether the complexity upper bound in Theorem 1
κAdam,l = rκl can be tightened, e.g., improve the factor of r. We point out it would be difficult if there is no extra structure
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on Hl. A key technical step is to bound the condition number of the preconditioned matrix κ
(
(D0

Adam,l)
−1Hl

)
. Intuitively,

a diagonal preconditioner of Hl is powerful when Hl itself has a near-diagonal structure, e.g., pure diagonal, tridiagonal or
diagonal dominant (Forsythe & Straus, 1955). Unfortunately, it is unclear whether these structures hold in Transformers.
Without any assumption on Hl, we find that the diagonal preconditioner of D0

Adam could increase the condition number.

For instance, when using standard Gaussian initialization, in case 3, we find κ
(
(D0

Adam,l)
−1Hl

)
equals 7.09κ1, 18.98κ2,

18.76κ3 for the 3 blocks, respectively (all averaged over 1000 trials). It would be interesting to explore if there are special
structures of Hl in Transformers such that Adam preconditioner can reduce κl, rather than increase it. We leave it as a future
direction.

Although Adam preconditioner might not always reduce the “local” condition number κl, the coefficient in the complexity
is now independent of the “global” condition number κ. As argued above, such changes in coefficient could lead to
considerable improvement over GD. Such improvement in complexity is attributed to the block diagonal structure in Hessian
as well as its heterogeneous blockwise spectrum. To our knowledge, such improvement is not shown in the existing literature.
In summary, our theory indicates that: for problems with block heterogeneity, the single-learning rate methods like GD can
largely lag behind coordinate-wise learning rate methods like Adam.

C. Related Works
On the unsatisfactory performance of SGD on Transformers There is an active line of works that explores why SGD
performs significantly worse than Adam on Transformers. One representative hypothesis is that SGD cannot handle the
heavy-tailed stochastic noise in language tasks (Zhang et al., 2020). However, Chen et al. (2021); Kunstner et al. (2023)
reported that the gap between Adam and SGD maintains even in the full-batch case with no stochasticity, so there might be
other reasons. Further, SGD performs worse than Adam on Vision Transformers on ImageNet (See Figure 12. Also see
(Xiao et al., 2021) for more evidence), so the data modality (e.g., language or vision tasks) might not be as crucial as the
architecture. (Zhang et al., 2019c) showed that NLP tasks have “unbounded smoothness” issue and SGD with gradient
clipping performs better than SGD in this case. Although clipping is an effective trick, we still observe a huge gap between
clipped SGD and Adam 2, so there might be other reasons. Different from these works, we find SGD underperforms Adam
because it uses one single learning rate for all blocks, which cannot handle the Hessian heterogeneity among blocks.

Understanding of Adam. There was once a long-standing debate on the possible divergence of Adam (Reddi et al., 2018).
The convergence for the unmodified versions is later established in (Shi et al., 2020; Zhang et al., 2022b) for RMSprop and
Adam. More convergence analyses of general adaptive gradient methods are listed later in this section. We here focus on the
literature that explores the benefit of Adam. Xie et al. (2022) show that Adam can help avoid saddle points, which is an
orthogonal direction to this work. Wang et al. (2022a); Crawshaw et al. (2022); Li et al. (2023) show that Adam and its
variant outperform SGD under relaxed smoothness conditions, based on the intuition that Adam can adaptively change its
learning rate along iteration (over time). We pointed out that the theory is not complete: even for quadratic functions where
the smoothness is fixed, SGD sometimes performs largely worse than Adam (Figure 10). This indicates that the benefit
of Adam is not merely due to its ability to adaptively change the learning rate (over time), and there are other reasons for
Adam’s success. We show that an important benefit of Adam is its ability to handle the heterogeneity across blocks (over
space).

Recent works (Bernstein et al., 2018; Wu et al., 2020; Kunstner et al., 2023; Liu et al., 2023; Ahn et al., 2023) build a relation
between Adam and the sign-based methods. Wu et al. (2020) further showed that sign-based methods can be effective when
the Hessian is diagonal and satisfies several other properties. However, as put by the authors, it seems “unclear to what
extent these properties hold for real problems”. Pan & Li (2023) numerically found that the Adam can reduce the directional
sharpness along trajectories, while its relation to fast convergence remains mysterious. A recent work (Jiang et al., 2023)
point out that Adam biases the trajectories towards regions where Hessian has “uniform diagonal entries” while SGD cannot.
The distribution of Hessian diagonal entries is also investigated in (Liu et al., 2023). The theory in (Jiang et al., 2023)
implies that Adam is faster when the Hessian is diagonal. However, as argued above, it is unclear whether the diagonal
Hessian structure commonly holds in real problems. In fact, we find the Hessian is closer to a block-diagonal (instead of
pure diagonal) structure on some small Transformers. In these cases, blockwise eigenvalues carry more information than
diagonal entries, providing extra details such as the location of eigenvalues. We find that these extra details are important for

2For all NLP tasks, clipping is performed immediately after backpropagation. So in Figure 12, SGD in NLP tasks essentially refers to
clipped SGD.
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distinguishing Adam and SGD.

Hessian Spectrum Analysis. There are several important attempts to explore the Hessian spectrum of MLPs and CNNs.
Early works (Sagun et al., 2016; 2017; Chaudhari et al., 2019) found that the Hessian spectra of MLPs and CNNs consist of
a “bulk” together with a few “outliers”. Papyan (2020); Wu et al. (2020); Liao & Mahoney (2021) further characterized
the bulks and outliers in theory. Papyan (2018; 2019) numerically built the relation between these ”outliers” and the
Gauss-Newton matrix. Sankar et al. (2021) numerically explored the relation between Hessian of CNNs and Gauss-Newton
matrix in each layer. They further found that most CNN layers contribute similarly to the overall loss surface. We find
that this result is restricted to CNNs and does not hold on Transformers due to the heterogeneity. Gur-Ari et al. (2018)
showed that for MLPs and CNNs, gradient descent converges to a small subspace spanned by a few top eigenvectors of the
Hessian. Yao et al. (2018); Zhang et al. (2019b) explored the relation between the Hessian spectrum of CNNs and some
training phenomena such as the effect of batch sizes. Ghorbani et al. (2019); Yao et al. (2020) focused on explaining the
effectiveness of techniques such as BatchNorm. Note that all these works are restricted to MLPs and CNNs, while we study
the Hessian of Transformers (in addition to CNNs and MLPs) as well as its impacts on different optimizers.

On the difficulties of Transformer training. Transformers are known to be difficult to train. Researchers have attributed
the training difficulties to various phenomena in different components of Transformers, including: the logits divergence or
the rank degeneracy in the outputs of attention layers (Dong et al., 2021; Noci et al., 2022; Wortsman et al., 2023; Zhai
et al., 2023; Dehghani et al., 2023; Chowdhery et al., 2023); the growth of parameter norm in attention layers (Merrill et al.,
2020); over-reliance on residue branches (Liu et al., 2020); and some negative impact of layer norm (Chen et al., 2018;
Zhang et al., 2019a; Huang et al., 2020). These phenomena have a strong correlation with gradient vanishing or explosion in
Transformers (Zhang et al., 2019a; Liu et al., 2020; Huang et al., 2020; Xiong et al., 2020; Noci et al., 2022; Wang et al.,
2022b; Wortsman et al., 2023; Molybog et al., 2023), which leads to training difficulties.

Several solutions have been proposed. Liu et al. (2020) numerically observed that adaptive gradient methods can (partly)
overcome gradient vanishing by giving “consistent update magnitude”, while it seems unclear how consistent update
magnitude would help optimization in principle. Researchers further develop training tricks such as warmup learning rate
(Liu et al., 2019; Xiong et al., 2020), temperature scaling (Noci et al., 2022), better initialization (Zhang et al., 2019a; Huang
et al., 2020; Wang et al., 2022b; Bachlechner et al., 2021; Yang et al., 2022), and variants of Layer Norm (Nguyen & Salazar,
2019; Wang et al., 2019; Xiong et al., 2020; Wang et al., 2022b; Dehghani et al., 2023). Recent researchers also suggest
using z-loss regularization (Chowdhery et al., 2023; Yang et al., 2023) and tuning hyperparameters of Adam (Zhang et al.,
2022b; Wortsman et al., 2023). All these tricks can help mitigate gradient explosion or vanishing. Nevertheless, training
large-scale Transformers remains challenging (Zhang et al., 2022a; Zeng et al., 2022; Wortsman et al., 2023; Molybog
et al., 2023; Chowdhery et al., 2023). Different from all aforementioned works, we investigate the training difficulties of
Transformers through the eigenvalues of Hessian. We establish a strong correlation between “the blockwise Hessian spectra
of Transformers” and “why SGD largely underperforms Adam on Transformers”. We realize that our attempt is just a first
step towards understanding Transformer training, and we believe there is rich information hidden in Hessian and we leave
more fine-grained analysis as future works.

Convergence analysis of general adaptive gradient methods There is extensive convergence analysis for adaptive
gradient methods. For instance, researchers study the convergence of AMSGrad (Reddi et al., 2018; Zhou et al., 2018),
RMSprop (Zaheer et al., 2018), AdaFom (Chen et al., 2019), AdaBound (Luo et al., 2018), and Adam with iterate-dependent
hyperparameters (Zou et al., 2019; Chen et al., 2022; Gadat & Gavra, 2022). The convergence of Adam is also explored
in (Défossez et al., 2022; Wang et al., 2023a). There is also an active line of theoretical research on the convergence of
AdaGrad (Duchi et al., 2011), we recommend (Wang et al., 2023b) for more detailed introduction. In this work, we do not
focus on the convergence analysis. Rather, we explore the quantitative difference between the loss landscape of CNNs and
Transformers and how it impact the behaviors of SGD and Adam.
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D. More Results and Discussions
Performance comparison of AdamW and SGD on different Architectures. Here, we show the performance comparison
of AdamW and SGD on different models. All the vision models are trained on ImageNet. Language models are trained on
different English corpus. We grid-search the learning rates for SGD and Adam under the same budget and report the best
result for each optimizer. See Appendix F.1 for more implementation details.
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Figure 11: Performance of AdamW and SGD on CNNs including ResNet18 and VGG16. SGD and Adam perform similarly
on these tasks.
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Figure 12: Performance of AdamW and SGD on Transformers including ViT, BERT, GPT2-nano, and GPT2. SGD performs
significantly worse than Adam on these tasks.

Block-diagonal structure in the existing literature. We remark that Collobert (2004); Roux et al. (2007); Martens &
Grosse (2015) also observed the block-diagonal structure in (approximated) Hessian of small-scaled MLPs. We restate their
findings in Figure 13. (Collobert, 2004, Section 7) further theoretically proved that the block diagonal structure stems from
(i) the layer-by-layer structure and (ii) the Cross-Entropy loss. These results suggest that block-diagonal structure might be
common in NNs.

E. More Preliminaries
E.1. Preliminaries on Optimizers

Here we provide a detailed description of the optimizers mentioned in the full script. We consider the minimizing
L(w) ≡ 1

n

∑n
i=1 Li(w), where n is the number of minibatches, Li(w) is the loss of i-th minibatch and w ∈ Rd is the neural

network parameters. We denote the gradient of the training loss w.r.t. neural network parameters as ∇L(w) ∈ Rd. We use
∇Li(w) ∈ Rd to denote the i-th minibatch counterparts. We use wt to denote the variable at the t-th step. In Algorithm 2
and 3, ◦, division and square-root are elementwise operations. In the line 7 and 8 of Algorithm 2, (β1)

t and (β2)
t indicates

the t-th power of β1, β2. In the PyTorch default setting, (β1, β2, ϵ) = (0.9, 0.999, 1e-8) for Adam and β1 = 0.9 for SGD.

E.2. Preliminaries on the Stochastic Lanczos Quadrature Method

Additional notations. Given a real symmetric matrix H ∈ Rd×d, we denote tr(H) as its trace and QTΛQ as its spectral
decomposition, where Q = [q1, . . . , qd] ,Λ = diag (λ1, . . . , λd) and λ1 ≥ λ2 · · · ≥ λd. We denote the condition number of
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(a) Exact Hessian of a MLP in (Collobert,
2004), Figure 7.4

(b) Approximated Hessian of a MLP in
(Roux et al., 2007), Figure 1

(c) Approximated Hessian of a
MLP in (Martens & Grosse, 2015),
Figure 6

Figure 13: The block-diagonal structure in the (approximated) Hessian of MLPs reported in the literature.

Algorithm 1 Stochastic Gradient Descent with Momentum (SGD)

1: Initialize w0 and choose 0 ≤ β1 < 1 and η0 > 0
2: for t = 1 → ∞ do
3: Uniformly sample τ t from the index set {1, 2, · · · , n}
4: mt = β1m

t +∇Lτt(xt)
5: xt+1 = xt − ηtm

t

6: end for

Algorithm 2 AdamW

1: Initialize x0, m0 = v0 = 0, 0 ≤ β1 < 1, 0 ≤ β2 < 1, ϵ > 0, η0 > 0, and weight decay coefficient λ
2: for t = 1 → ∞ do
3: Uniformly sample τ t from the index set {1, 2, · · · , n}
4: wt+1 = wt − ηtλwt

5: mt = β1m
t + (1− β1)∇Lτt(wt)

6: vt = β2v
t + (1− β2)∇Lτt(wt) ◦ ∇Lτt(wt)

7: m̂t = mt

1−(β1)t

8: v̂t = vt

1−(β2)t

9: wt+1 = wt+1 − ηt
m̂t

√
v̂t+ϵ

10: end for

Algorithm 3 Adam with no bias correction

1: Initialize x0, m0 = ∇Lτt(w0), v0 = ∇Lτt(w0) ◦ ∇Lτt(w0), 0 ≤ β1 < 1, 0 ≤ β2 < 1, ϵ > 0, η0 > 0
2: for t = 1 → ∞ do
3: Uniformly sample τ t from the index set {1, 2, · · · , n}
4: mt = β1m

t + (1− β1)∇Lτt(wt)
5: vt = β2v

t + (1− β2)∇Lτt(wt) ◦ ∇Lτt(wt)

6: wt+1 = wt+1 − ηt
mt

√
vt+ϵ

7: end for
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H as κ = λ1/λd. We define matrix function as f(H) := QT f(Λ)Q, where f(Λ) = diag (f (λ1) , . . . f (λd)) ∈ Rd×d. We
use N to denote the set of positive integers. We use ∥ · ∥2 to denote the Euclidean norm.

Approximation of the Hessian spectrum can be formulated as a trace estimation problem, as introduced in (Lin et al., 2016;
Ubaru et al., 2017). First, the spectrum (eigenvalue density) of Hessian H can written as: ϕ(t) = 1

d

∑d
i=1 δ (t− λi), where

λi are the eigenvalues of H and δ is the Dirac δ-function. Then, we replace the delta functions by a Gaussian blurring
function: ϕ(t) ≈ g(t) := 1

d

∑d
i=1 f (λi), where f(λ) := 1

σ
√
2π

exp
(
− (t−λ)2

2σ2

)
. By definition of matrix function, it is easy

to see that g(t) = 1
d tr(f(H)). As such, spectrum approximation could be formulated as a trace estimation problem, i.e.,

estimating 1
d tr(f(H)), where H ∈ Rd×d is a real symmetric matrix.

Trace estimation problems could be solved efficiently by the Stochastic Lanczos Quadrature Method (SLQ) (Golub &
Strakoš, 1994). For the ease of readers, we re-organize and summarize the existing literature ((Golub & Strakoš, 1994;
Ubaru et al., 2017; Ghorbani et al., 2019)) and provide a detailed description of SLQ in our context. SLQ consists of the
following steps.

Step 1. We Approximate the trace of matrix function as 1
d tr(f(H)) = E(vT f(H)v) ≈ 1

nv

∑nv

i vTi f(H)vi, where
v = u/∥u∥2 and u is a Rademacher random vector (each entry of u independently takes ±1 with probability 1/2). This step
is called Huchinson’s estimation (Hutchinson, 1989).

Note that we can also replace the Rademacher random vector u by a unit Gaussian vector (i.e., u ∼ N(0, Id×d)) and the
unbiasedness still holds (Avron & Toledo, 2011). In our implementation, we sample u ∼ N(0, Id×d) because there is an
efficient built-in PyTorch function for generating Gaussian vectors.

SLQ estimates vTi f(H)vi for i ∈ [nv] and then take the average. To understand SLQ, we only need to understand how it
estimates each individual quadratic form. To simplify the notation regarding i, from now on, we will discuss how to estimate
vT f(H)v, where v = u/∥u∥2 and u is a unit Gaussian vector.

Step 2-1. We rewrite vT f(H)v as a Riemann-Stieltjes integral (Golub & Meurant, 2009):

vT f(A)v =

d∑
i=1

(
vT qi

)2
f (λi) =

∫ λ1

λd

f(λ)dµ(λ), (7)

where µ is a measure on (R,B) defined as follows (µ(λ) denotes the measure of set {x;x ≤ λ}):

µ(λ) =


0 λ < λd∑k

i=1

(
vT qi

)2
λk ≤ λ < λk+1∑d

i=1

(
vT qi

)2
λ ≥ λ1

. (8)

Step 2-2. Unfortunately, this integral is difficult to compute. This is because the measure µ are related to the eigen-pairs
of H , which are unknown. It seems unclear how to directly integrate over an unknown measure. As such, we further
approximate this integral by a computationally friendly quantity, such as:

∫ λ1

λd

f(λ)dµ(λ) ≈
m∑
j=1

cjf(xj). (9)

We hope to design {(cj , xj)}mj=1 with a reasonable number of m such that the estimation error is small. Fortunately, the
Gaussian Quadrature method provides a generic design principle of {(cj , xj)}mj=1 (Golub & Meurant, 2009; Epperson,
2013). It is proved that: when f(λ) is not ”too complicated” (e.g. f(λ) is a polynomial), then there exists {(cj , xj)}mj=1

which gives a high quality estimation of integral (7). The required number of m is related to ”how complicated the f(λ) is”.
Such {(cj , xj)}mj=1 are called the Gaussian Quadrature rules. cj and xj are called the ”weights” and the ”nodes” of the
Gaussian Quadrature rules. A representative theorem is as follows: when f(λ) is a polynomial with degree < 2m, then the
Gaussian Quadrature rules give the exact approximation of integral (7).
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Theorem 2. [Rewrited based on (Wikipedia, 2023)] Suppose we have a sequence of orthogonal polynomials {pk(x)}mk=1

w.r.t. measure µ, that is:
∫ λ1

λd
pn(x)pm(x)dµ(x) = δm,n, where δm,n = 1 if m = n and δm,n = 0, otherwise. Assume

f(x) is a polynomial with degree < 2m, then there exists {(cj , xj)}mj=1 s.t.
∫ λ1

λd
f(λ)dµ(λ) =

∑m
i=j cjf (xj). The equality

holds when xj are the roots of pm(x) and cj =
∫ λ1

λd

∏
j ̸=i

x−xi

xj−xi
dµ. Such choice of {(cj , xj)}mj=1 are called the Gaussian

Quadrature rules.

Theorem 2 shows the existence of good {(cj , xj)}mj=1 and their general form. In fact, it is also shown that Gaussian
Quadrature is optimal: no other{(cj , xj)}mj=1 can achieve zero approximation error for higher degree polynomials f(λ)
(Golub & Meurant, 2009). However, it is often difficult to find these quadrature rules (Golub & Welsch, 1969). There are at
least three questions in sequel:

• 1) how to find the orthogonal polynomials {pk(x)}mk=1 w.r.t. an unknown measure µ?

• 2) how to efficiently find the roots of pm(x), which gives the nodes xj?

• 3) how to efficiently calculate the weights cj =
∫ λ1

λd

∏
j ̸=i

x−xi

xj−xi
dµ?

We first answer question 2) and 3) and leave question 1) for later discussion.

Now suppose that we have found the orthogonal polynomials {pk(x)}mk=1 w.r.t. µ. Recall that any orthogonal polynomial
has the following ”three-term” recursion (Golub & Meurant, 2009):

pk+1(x) = (x− αk+1) pk(x)− βkpk−1(x), k = 0, 1, . . . ,

where p−1(x) ≡ 0, p0(x) ≡ 1, αk+1 = ⟨xpk,pk⟩
⟨pk,pk⟩ and βk = ⟨pk,pk⟩

⟨pk−1,pk−1⟩ . Define Pm(x) = (p0(x), p1(x), . . . pm−1(x))
T ∈

Rm, we can rewrite the recursion formula in matrix form (given x): xPm = JmPm + βmpm(x)em, where em is the last
column of identity matrix Im,m and Jm is called Jacobi matrix of order m:

Jm =


α1

√
β1√

β1 α2

√
β2√

β2 α3

√
β3

. . . . . . . . .

 ∈ Rm×m

It turns out that Jm can help us find the Gaussian Quadrature rules {(cj , xj)}mj=1 and thus provide answers for question 2)
and 3). This is shown in the following theorem.
Theorem 3. (Golub & Meurant, 2009) For the Gaussian Quadrature, {xj}mj=1 are the eigenvalues of Jm and {cj}mj=1 are the
squares of the first elements of the normalized eigenvectors of Jm.

The proof of Theorem 3 is based on Christoffel-Darboux relation (Brezinski, 1990). Now, the remaining question is: how to
find the Jacobian matrix Jm of a sequence of orthogonal polynomials w.r.t. an unknown measure µ? Note that we no longer
need to answer question 1) if Jm is found, since Jm is sufficient for us to find the Gaussian quadrature rules. However, it
seems impossible to find Jm if no information of µ is provided. The good news is: when the µ is specified as in (8), there
exists an efficient way to find Jm.

Step 3. When µ is specified as in (8), Jm can be exactly found in m steps using the Lanczos algorithm (Lanczos, 1950),
as shown in Algorithm 4. This method takes a real symmetric matrix as input and returns a tridiagonal matrix. It was
originally proposed to solve eigenvalue problems. Later, researchers found a deep connection between the Lanczos algorithm
and orthogonal polynomials, which further connects this method to the Gaussian quadrature. The method (of finding the
Gaussian quadrature by the Lanczos algorithm) is called the Lanczos quadrature (Golub & Strakoš, 1994; Bai & Golub,
1996; Golub & Meurant, 2009). An extremely elegant but highly nontrivial result is as follows:
Theorem 4. (Golub & Meurant, 2009) Given a real symmetric matrix H ∈ Rd×d and an arbitrary vector v ∈ Rd with unit
Euclidean norm, we define the measure µ as in (8) based on this H and v. Then m steps of the Lanzcos algorithm return the
Jacobian matrix Jm of orthogonal polynomials w.r.t. to µ.
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After Jm is found by the Lanczos algorithm, we perform spectral decomposition of Jm ∈ Rm×m to get its eigen-pairs. Using
Theorem 3, we successfully get the Gaussian quadrature rules and thus we can approximate the quadratic form vT f(H)v.
By averaging over different random vectors v we can then approximate 1

d tr(f(H)). This concludes the derivation of SLQ
for the trace estimation problem.

The full procedure of SLQ is shown in Algorithm 5. We note that SLQ is efficient in theory. Ubaru et al. (2017) show that
SLQ converges faster than any other polynomial expansion method for spectrum estimation (e.g., Chebyshev methods used
in (Adams et al., 2018)). See (Ubaru et al., 2017, Theorem 4.1) for a formal statement.

We remark that there are at least four versions of the Lanczos algorithm in Step 3. Here, we adopt the version in Algorithm
4 since it is known to be the most numerically stable version (Cullum & Willoughby, 2002; Saad, 2011; Wikipedia, 2023).
Throughout this work, we choose f (·) as the Gaussian blurring function f(λ) := 1

σ
√
2π

exp
(
− (t−λ)2

2σ2

)
for spectrum

approximation. We plot the spectrum by sweeping t from the minimal node to the maximal node in Gaussian Quadrature
rules.

Algorithm 4 The Lanczos Algorithm

1: Input a matrix-vector product Hv1 ∈ Rd, where H is a real symmetric matrix and v1 is an arbitrary vector with
Euclidean norm 1. Choose m ∈ N

2: Initialization: Let w′
1 = Hv1, α1 = (w′

1)
T v1, w1 = w′

1 − α1v1
3: for j = 2 → m do
4: Let βj = ∥wj−1∥2 (also Euclidean norm)
5: If βj ̸= 0, then let vj = wj−1/βj ,

else pick as vj an arbitrary vector with Euclidean norm 1 that is orthogonal to all of v1, . . . , vj−1

6: Let w′
j = Avj

7: Let αj = (w′
j)

T vj
8: Let wj = w′

j − αjvj − βjvj−1

9: end for
10: Let V be the matrix with columns v1, . . . , vm

11: Let T =



α1 β2 0
β2 α2 β3

β3 α3
. . .

. . . . . . βm−1

βm−1 αm−1 βm

0 βm αm


12: Return T

Algorithm 5 The Stochastic Lanczos Quadrature Method

1: Choose numv,m ∈ N. Sample numv i.i.d. vi from normalized Rademacher distribution, i ∈ [numv]
2: for i = 1 → numv do
3: Run m steps of the Lanczos Algorithm 4 with input Hvi, returns T ∈ Rm×m

4: Compute eigenvalue decomposition T = QΛQT

5: Compute the nodes xi = (Λii)
m
i=1 and weights ci =

(
Q2

1,i

)m
i=1

6: Return qi(t) =
∑m

i=1 cif
(
xi; t, σ

2
)

7: end for
8: Return 1

numv

∑numv

i=1 f
(
ℓi; t, σ

2
)

F. More Eperimental Details
F.1. Implementation Details on SLQ and Training Configurations

Implementation and Running Time Analysis. We provide a simple PyTorch implementation of SLQ. The only query
SLQ makes to the neural network is the Hessian vector product, which is attained using the auto-differentiation framework
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(Pearlmutter, 1994). To assure the accuracy of the Lanczos algorithm, we remove all the randomness in the forward and
backward passes, including: data shuffling order, data augmentation, and dropout, etc.. Since Flash Attention (Dao et al.,
2022) does not support the calculation of Hessian-vector product, we implement all attention blocks in the naive way. For
the calculation of the blockwise Hessian spectrum ∇2L(wl), we sample ul ∼ N(0, Idl×dl

) and set vl = ul/∥ul∥2 ∈ Rdl .
Then we run Algorithm 5 by taking ∇2L(wl) and vl as inputs. We choose the hyperparameters as m = 100 and nv = 10 in
all experiments. σ is tuned based on visual effects. These hyperparameters are reported to reach highly accurate estimation
with error < 10−14 (Ghorbani et al., 2019).

We now briefly discuss the computational cost of SLQ. The major computational expense of SLQ is the repeated Hessian-
vector product operations in Lanczos algorithm in Step 3. Recall ∇2L(w)d = 1

n

∑n
i=1 ∇2Li(w)d, so each Hessian-vector

product operation requires (i) calculating ∇2Li(w)d; (ii) repeating (i) on all data. We point out that (i) can be computed
efficiently and precisely with just two backpropagation passes (Pearlmutter, 1994). The major computational bottleneck
lies in (ii) due to the large n. Our largest-scale experiment for Hesian spectrum is GPT2 (125M) on Openwebtext, where
the number of tokens n = 9 Billon. To calculate ∇2L(w)d on all these 9B tokens, it requires about 9 GPU days on eight
A100-80GB GPUs. Since SLQ requires at least 1,000 times query of ∇2L(w)d, a complete run of SLQ would take at
least 9,000 days on eight A100-80GB GPUs, which is unaffordable. In this work, we use the largest possible batch size
(with gradient accumulation tricks) to approximate ∇2L(w) under the constraints of GPU bandwidth and time limit. More
detailed setup of SLQ are shown as follows.

• ResNet18 (18M) and VGG16 (138M) on ImageNet. We use the code base of PyTorch Examples 3. We use batch size
= 1024. For the calculation of the blockwise Hessian spectra, we apply SLQ to all parameter blocks except for the
BatchNorm layers. In total, it takes about 3 days on one V100 GPU to estimate all the blockwise Hessian spectra and
the full Hessian spectrum.

• ViT-base (86M) on ImageNet. We use the code base of PyTorch Image Models 4. We use batch size = 1024. Due to
the large number of parameters, we are not able to calculate the blockwise Hessian spectra for all parameter blocks.
Instead, we apply SLQ to: the embedding layer; the output layer; the 1-st, 6-th, 12-th attention blocks; and the 1-st,
6-th, 12-th MLP blocks (note that the 12-th attention and MLP blocks are the final ones). In total, it takes about 3 days
on one V100 GPU to estimate all the blockwise Hessian spectra and the full Hessian spectrum.

• BERT(40M) on Cornell Movie-Dialogs Corpus. We use the code base from the blog 5. We use batch size = 327, 680
tokens. For the calculation of the blockwise Hessian spectra, we apply SLQ to all parameter blocks except for the
LayerNorm layers. In total, it takes about 12 hours on one V100 GPU to estimate all the blockwise Hessian spectra and
the full Hessian spectrum.

• GPT2-nano (11M) on Shakespeare. We use the code base of NanoGPT 6. We use batch size = 163, 840 tokens. For
the calculation of the blockwise Hessian spectra, we apply SLQ to all parameter blocks with even indices, except for
the LayerNorm layers. In total, it takes about 12 hours on one V100 GPU to estimate all the blockwise Hessian spectra
and the full Hessian spectrum.

• GPT2 (125M) on Openwebtext 7. We use the code base of NanoGPT. We use batch size = 245, 760 tokens. Due to
the large number of parameters, we are not able to calculate the blockwise Hessian spectra for all parameter blocks.
Instead, we apply SLQ to: the embedding layer; the output layer; the 1-st, 4-th, 8-th, 12-th attention blocks; and the
1-st, 4-th, 8-th, 12-th MLP blocks (note that the 12-th attention and MLP blocks are the final ones). In total, it takes
about 7 days on one A100 GPU to estimate all the blockwise Hessian spectra and the full Hessian spectrum.

Training configuration. In all cases, we train all the models under the default configurations in the above codebase. We
grid-search the learning rates for SGD and Adam under the same budget and report the best result for each optimizer. We
use the cosine-decay learning rate schedule for vision tasks. For SFT task, we use nanoGPT codebase. We first pre-train
GPT2 on OpenwebText for 25B tokens and then fine-tune it on a subset of Alpaca Eval 8.

3https://github.com/pytorch/examples/blob/main/imagenet/main.py
4https://github.com/huggingface/pytorch-image-models
5https://medium.com/data-and-beyond/complete-guide-to-building-bert-model-from-sratch-3e6562228891
6https://github.com/karpathy/nanoGPT/
7https://huggingface.co/datasets/Skylion007/openwebtext
8https://huggingface.co/datasets/tatsu-lab/alpaca_eval
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F.2. Implementation Details on Figure 1

We use the code base of NanoGPT to train decoder-only Transformers on 4 consecutive tokens randomly selected from
Openwebtext. We set the model configuration as: context window = 2, number of heads = 2 and the embedding dimension =
4. In MLP layers, all widths equal to 4. We choose the number of layers to be 2, 4, and 8. We remove all the LayerNorms in
the model. The rest of the model configurations are set to their default values in the code base. We compute the Hessian on
all the parameters blocks in attention and MLP layers. In Figure 1 (a), the variables each block corresponds to the parameters
in Query and Key; Value and Projection; and MLP, respectively. For better visualization, We take the absolute value of each
entry to distinguish non-zero values (including negatives) from those near 0 and then report the average value in each block.
Similarly for the rest of the figures.

Due to the intensive overhead of computing and storing the whole Hessian, we have yet to check the block-diagonal structure
on larger models. Rigorously speaking, so far we have not gotten sufficient evidence to claim this structure commonly holds
in larger Transformers. It requires new numerical methods to efficiently check the block-diagonal Hessian structure without
explicitly calculating them. We leave it as an interesting future direction.

F.3. More Details on the MLP experiments in Figure 4

We train a 4-layer MLP on MNIST. We use batch size = 128 and width = 300, 128, and 64 for the hidden layers. We use
ReLU activation. We change the degree of heterogeneity by scaling the output of each layer with constant c ∈ N. We scale c
from 1 to 15. For each c, we train SGD and Adam with default hyperparameters by grid-searching the learning rate from
1e-4 to 1e-1 and report the best test accuracy after 1 epoch.
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(a) Training curves of Adam
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(b) Training curves of SGD

Figure 14: The training curves of SGD and Adam on MNIST with 4-layer MLPs under different degrees of block
heterogeneity c. We observe that SGD performs worse as heterogeneity grows, while Adam remains unaffected.

G. Proofs
G.1. Proof of Proof of Proposition 1

Let H =

[
L 0
0 µ

]
, where L > µ > 0. We choose the initial point as w0 = (w0

1, w
0
2) = (

√
µ/L,

√
L/µ). By the update

rule of GD, we have

L(wt+1) = L
(
wt − η∇L(wt)

)
=

1

2
(wt − ηHwt)TH(wt − ηHwt)

= (wt
1)

2|1− ηL|L+ (wt
2)

2|1− ηµ|µ

= |1− ηL|tLµ

L
+ |1− ηµ|tµL

µ

= µ|1− ηL|t + L|1− ηµ|t (10)
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To proceed, we discuss the following cases:

When η ≤ 1/L, since |1− ηL|t and |1− ηµ|t are monotonically decreasing , the optimal solution is η = 1/L.

When η ≥ 1/µ, since |1− ηL|t and |1− ηµ|t are monotonically increasing , the optimal solution is η = 1/µ.

When 1/L ≤ η ≤ 1/µ, (10) can be written as gt(η) = µ(ηL− 1)t + L(1− ηµ)t. Take the first-order and the second-order
derivative of the g, we can obtain g′t(η) = tLµ(ηL − 1)t−1 − tµL(1 − ηµ)t−1 and g′′t (η) = t(t − 1)L2µ(ηL − 1)t−2 +
t(t− 1)µ2(1− ηµ). Since g′′t (η) ≥ 0 for all η ∈ [1/L, 1µ], the function g is convex. By solving the equation that g′t(η) = 0,
we can obtain η = 2

L+µ is a solution for all t. Plugging this result into (10) and rearranging the terms, we conclude the
proof of Proposition 1.

G.2. Proof of Theorem 1

We first show that Cl,2 and Cl,1 are non-zero w.p.1. under the random initialization in Assumption 1. We define set
Si = {w;hT

i w = 0} where hi ∈ Rd is the i-th row of H . Since H is positive definite, there is at least one non-zero entry
in hi, i ∈ [d]. As such, Si is a (d− 1)-dimensional subspace of Rd and thus has zero Lebesgue measure in Rd. Since w0

follows continuous distribution, we have Pr
(
{w0;hT

i w
0 = 0}

)
= 0, for i = [d]. Then we have

Pr
(
∇L(w0) has at least one zero entry

)
= Pr

(
Hw0 has at least one zero entry

)
(11)

= Pr
(
∪d
i=1{w0;hT

i w
0 = 0}

)
(12)

≤
d∑

i=1

Pr
(
{w0;hT

i w
0 = 0}

)
(13)

= 0. (14)

Therefore, ∇L(w0) is elementwise non-zero w.p.1.., so Cl,1 and Cl,2 are non-zero for all l ∈ [L], w.p.1.. In the following
analysis, We will assume Cl,1 and Cl,2 are non-zero.

Without loss of generality, we assume h = 0. This is because minimizing L(w) = 1
2w

THw − hTw is equivalent to
minimizing L(w) = 1

2 (w − w∗)
T
H (w − w∗) where w∗ = H−1h. By a linear transformation z = w − w∗, Adam

for minimizing 1
2 (w − w∗)

T
H (w − w∗) starting from w0 is equivalent to Adam for minimizing 1

2z
THz starting from

z0 = w0 − w∗. Thus we can assume w∗ = 0, or equivalently, h = 0. The update rule of Adam becomes

wt+1 = wt − η(D0
Adam)−1Hwt,

where D0
Adam = diag(∇L(w0) ◦ ∇L(w0))

1
2 = diag(|Hw0|). We denote dt = η(D0

Adam)−1Hwt and thus we have
wt = 1

ηH
−1D0

Adamdt and wt+1 = wt − dt. These relations also hold for each block by changing the notation to Hl w
t
l ,

D0
Adam, and dtl , etc.. Following the framework in (Sun & Ye, 2021), we try to bound the error yet to be optimized (a.k.a.,

cost-to-go) and the per-step improvement, respectively. The ratio of these two terms characterizes the rate of convergence.
We now express both terms using dtl . For the cost-to-go term for the l-th block, we have

[L(wt)]l − [L∗]l =
1

2
(wt

l )
THlw

t
l =

1

2η2
(dtl)

TD0
Adam,lH

−1
l D0

Adam,ld
t
l . (15)

For the per-step improvement, we have

[L(wt)]l − [L(wt+1)]l =
1

2
(wt

l )
THlw

t
l −

1

2
(wt+1

l )THlw
t+1
l

=
1

2
(wt

l )
THlw

t+1
l − 1

2
(wt

l − dt)THl(w
t
l − dtl)

= (dtl)
THlw

t
l −

1

2
(dtl)

THld
t
l
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=
1

2
(dtl)

T

(
2

η
D0

Adam,l −Hl

)
dtl . (16)

To proceed, we denote Ĥ = (D0
Adam)−1H and we denote its eigenvalues as λ̂1 ≥ λ̂2 ≥ · · · λ̂d. Similarly, we denote

Ĥl = (D0
Adam,l)

−1Hl and its eigenvalues λ̂l,1 ≥ λ̂l,2 ≥ · · · λ̂l,dl
. Let η = minl∈[L] Cl,1, we have

[L(wt)]l − [L∗]l
[L(wt)]l − [L(wt+1)]l

=

1
η2 (d

t
l)

TD0
Adam,lH

−1
l D0

Adam,ld
t
l

(dtl)
T
(

2
ηD

0
Adam,l −Hl

)
dtl

≤

∥∥∥∥∥ 1

η2

(
2

η
D0

Adam,l −Hl

)−1

D0
Adam,lH

−1
l D0

Adam,l

∥∥∥∥∥
2

(17)

(∗)
≤

C2
l,2λ

2
l,1

(minl∈[L] C
2
l,1)λl,1λl,dl

(18)

≤
maxl∈[L] C

2
l,2

minl∈[L] C
2
l,1

κl, (19)

where (∗) is due to: by Assumption 1, D0
Adam,l ≼ Cl,2λl,1I , 2

ηD
0
Adam,l − Hl ≽

(
2

Cl,1
C1l,λl,1 − λl,1

)
I ≽

λl,1I , where ≼ and ≽ are matrix inequalities. By rearranging both sides of (19), we have [L(wt+1)]l − [L∗]l ≤1− 1(
maxl∈[L] C

2
l,2

minl∈[L] C
2
l,1

)
κl

 ([L(wt)]l − [L∗]l). Summing up both sides over l ∈ [L] and we conclude the proof.

L(wt+1)− L∗ =

L∑
l=1

(
[L(wt+1)]l − [L∗]l

)

≤
L∑

l=1

1− 1(
maxl∈[L] C

2
l,2

minl∈[L] C
2
l,1

)
κl

([L(wt)]l − [L∗]l
)

≤ max
l∈[L]

1− 1(
maxl∈[L] C

2
l,2

minl∈[L] C
2
l,1

)
κl

 L∑
l=1

(
[L(wt)]l − [L∗]l

)

= max
l∈[L]

1− 1(
maxl∈[L] C

2
l,2

minl∈[L] C
2
l,1

)
κl

(L(wt)− L∗) .
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