

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GEODIV: FRAMEWORK FOR MEASURING GEOGRAPHICAL DIVERSITY IN TEXT-TO-IMAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Text-to-image (T2I) models are rapidly gaining popularity, yet their outputs often lack geographical diversity, reinforce stereotypes, and misrepresent regions. Given their broad reach, it is critical to rigorously evaluate how these models portray the world. Existing diversity metrics either rely on curated datasets or focus on surface-level visual similarity, limiting interpretability. We introduce GeoDiv, a framework leveraging large language and vision-language models to assess geographical diversity along two complementary axes: the Socio-Economic Visual Index (SEVI), capturing economic and condition-related cues, and the Visual Diversity Index (VDI), measuring variation in primary entities and backgrounds. Applied to images generated by models such as Stable Diffusion and FLUX.1-dev across 10 entities and 16 countries, *GeoDiv* reveals a consistent lack of diversity and identifies fine-grained attributes where models default to biased portrayals. Strikingly, depictions of India, Nigeria, and Colombia are disproportionately impoverished and worn, reflecting underlying socio-economic biases. These results highlight the need for greater geographical nuance in generative models. *GeoDiv* provides the first systematic, interpretable framework for measuring such biases, marking a step toward fairer and more inclusive generative systems.

1 INTRODUCTION

As Text-to-Image (T2I) models gain traction in public and commercial applications, a central question arises: *whose world are they representing?* Trained on internet-scale data, these models often misrepresent regions and reinforce harmful socio-economic and regional **biases** (Basu et al., 2023). For instance, prompting Stable Diffusion (Rombach et al., 2022) with ‘photo of a car in Africa’ often yields scenes with dusty, worn-out surroundings and damaged vehicles, overlooking the continent’s visual and economic diversity. Recent studies confirm that these images frequently lack geographical diversity (Hall et al., 2023; 2024; Askari Hemmat et al., 2024). Moreover, early evidence also points to socio-economic skew (Turk, 2023): images from some countries like India overwhelmingly depict poverty or dilapidation, while others appear consistently polished or affluent (e.g., Japan). Such disparities challenge the aspiration of these models to function as faithful *world models* (Pouget et al., 2024; Astolfi et al., 2024).

The growing evidence that T2I models exhibit pronounced visual and socio-economic disparities across regions (see Figure 1) underscores the need for an automated framework capable of capturing fine-grained geo-diversity. Existing approaches, whether based on narrowly curated datasets (Hall et al., 2024; Ramaswamy et al., 2023; Gaviria Rojas et al., 2022) or low-level visual dissimilarity metrics (Friedman & Dieng, 2023), struggle to reveal such deeper, country-specific patterns. Although recent works use Large Language Models (LLMs) and Vision-Language Models (VLMs) to assess *realism* (Li et al., 2025), *prompt consistency* (Hu et al., 2023; Cho et al., 2023), or *concept diversity* (Rassin et al., 2024; Teotia et al., 2025), these formulations remain insufficient for geo-diversity, which spans economic, environmental, and contextual variation. A single diversity metric cannot capture such multidimensional aspects, limiting interpretability and masking region-specific biases.

In this work, we propose ***GeoDiv***, a framework for quantifying geo-diversity along two complementary axes. The **Socio-Economic Visual Index (SEVI)** captures socio-economic cues through two interpretable dimensions: (a) *Affluence*, ranging from impoverished to affluent depictions, and (b) *Maintenance*, measuring physical condition from worn to pristine. Both are rated on a 1–5 scale

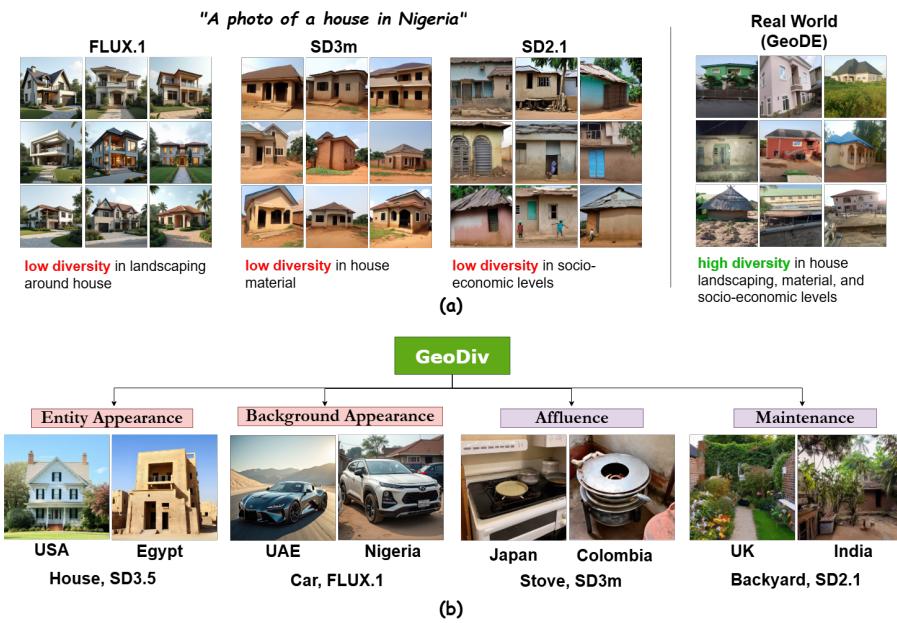


Figure 1: **Lack of Geographical Diversity observed in T2I Generations and the Need for *GeoDiv*.** (a) Text-to-image models produce systematically low visual diversity for the same prompt across countries (example: ‘a photo of a house in Nigeria’), failing to reflect the rich variation seen in real-world images (Ramaswamy et al., 2023). (b) *GeoDiv* provides an automated, reference-free framework that can quantify such fine-grained geographical differences by evaluating images along four interpretable axes: Entity-Appearance (sloped/flat roof), Background-Appearance (paved/unpaved road), Affluence (luxury/modest settings), and Maintenance (manicured/unkempt). Examples show how the same entity type varies dramatically across countries and generative models.

using VLM judgments and are closely tied to societal well-being (Awaworyi Churchill et al., 2025). The **Visual Diversity Index (VDI)** measures variation in (a) *Entity Appearance*, reflecting attributes such as shape, material, or color of the primary entity, and (b) *Background Appearance*, capturing contextual variability (e.g., type of roads visible). Fig. 1 illustrates how these dimensions differ across geographies and generative models. VDI employs LLMs to extract entity and background attributes, while VLMs aid in estimating their distributions across countries. For each SEVI and VDI dimension, diversity is quantified using the interpretable *Hill Number*, defined as the exponential of the entropy of attribute value distributions (Leinster, 2021). While geo-diversity also encompasses cultural, historical, and aesthetic dimensions that remain difficult to measure at scale, *GeoDiv* is modular and can incorporate new axes as methods advance. Since our approach relies on the implicit world knowledge embedded in LLMs and VLMs, we validate both SEVI and VDI extensively through human studies.

Applied to 160,000 images generated by Stable Diffusion v2.1 (SD2.1), v3 (SD3m), v3.5 (SD3.5) Rombach et al. (2022), and FLUX.1-dev black-forest-labs (2024), across 10 common entities (e.g., house, car, etc) and 16 countries, *GeoDiv* reveals several key insights. Images from countries like India, Nigeria, and Colombia are consistently found to be impoverished and worn out than those from USA, UK, or Japan, highlighting systemic socio-economic bias. Interesting country-level biases are also observed in case of Entity and Background appearance. For instance, SD3.5 shows 99% Egyptian houses to be made of stones, while 88% UK houses to be built of bricks. Across models, backgrounds of 77% of car images from Nigeria show dirt/gravel road, compared to US which generates paved roads 85% of the time. Interestingly, FLUX.1 images score highly on SEVI but low on VDI, suggesting a trade-off between image polish and diversity. Thus, *GeoDiv* captures nuanced geographical biases and gaps in generative models, providing a systematic and interpretable framework for auditing geographical representation. Our key contributions are:

- We introduce ***GeoDiv***, an interpretable evaluation framework for measuring geo-diversity in generative models along two complementary axes: **Socio-Economic Visual Index (SEVI)** and

108 **Visual Diversity Index (VDI)**, quantifying socio-economic and visual diversity by leveraging the
 109 world knowledge of large language models (LLMs) and vision-language models (VLMs).
 110 • We obtain and release structured attribute–value sets using LLMs, for evaluating the geo-diversity
 111 of 10 common entities (e.g., house) across both SEVI and VDI. We also provide the full prompts
 112 and filtering mechanisms needed to generate comparable evaluations for new entities.
 113 • We curate a dataset of 160,000 synthetic images generated with four open-source diffusion models,
 114 covering 16 countries and 10 entities. For a subset, we collect country-level SEVI ratings and VDI
 115 attribute annotations from crowdworkers via crowdsourcing platforms. These human-annotated
 116 datasets are then used to evaluate multiple LLM-VLM combinations for implementing *GeoDiv*. All
 117 annotations and the codebase will be released publicly upon acceptance to support benchmarking
 118 of future models.
 119 • *GeoDiv* uncovers regional biases and key limitations in current generative models, demonstrating
 120 its utility as an effective and interpretable diagnostic tool for assessing geographical diversity,
 121 compared to existing diversity measurement baselines. We release diversity scores across all
 122 *GeoDiv* dimensions for the curated synthetic dataset, enabling practitioners to systematically
 123 improve the geo-diversity of diffusion models.

124 **2 RELATED WORK**

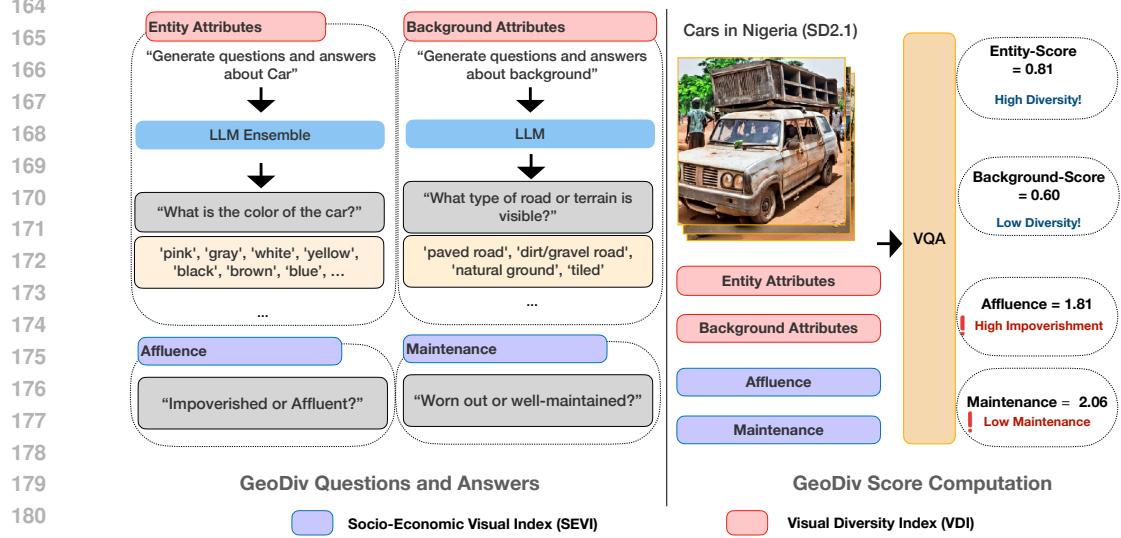
125 **Metrics Measuring Image Diversity:** Image diversity metrics are typically categorized into two
 126 types. The first compares a given image set to a reference set, e.g., FID (Heusel et al., 2017), which
 127 compares feature distributions using a pre-trained Inception network (Szegedy et al., 2017). We
 128 exclude such metrics due to the absence of large-scale geo-diverse reference datasets (Gaviria Rojas
 129 et al., 2022; Ramaswamy et al., 2023). The second type assesses variation within the given set.
 130 Pairwise Distance Metrics (Fan et al., 2024; Boutin et al., 2023) compute average distances between
 131 image embeddings (e.g., Inception or CLIP (Radford et al., 2021)), while Vend-Score (Friedman &
 132 Dieng, 2023) measures entropy over the eigenvalues of the feature kernel matrix. However, these
 133 approaches capture only visual variation. Because of their uninterpretable nature, the extent to which
 134 such metrics can capture the nuances of geo-diversity is unclear. On the contrary, our proposed
 135 framework *GeoDiv* measures the multiple dimensions of geo-diversity in an interpretable manner.
 136

137 **Leveraging the World Knowledge of Large-Scale Models:** Trained on internet-scale data, LLMs
 138 and VLMs encode rich knowledge about global cultures and demographics, which many recent
 139 works have utilized to measure stereotypes, consistency, realism and diversity in images. OASIS (De-
 140 hdashtian et al., 2025) quantifies stereotypes in text-to-image generation by comparing real-world
 141 attribute distributions for nationalities with those inferred from generated images via a VQA model.
 142 TIFA (Hu et al., 2023) and DSG (Cho et al., 2023) evaluate image-prompt consistency by generating
 143 questions from the LLM and finding corresponding answers for each image through a VLM, where
 144 the latter adopts a Davidsonian Scene Graph to avoid hallucinations, duplications, and omissions
 145 in the generated questions. REAL (Li et al., 2025) employs a VQA model to measure the realism
 146 of images from text-to-image models. **The LLM-VLM paradigm has also been used by a few prior
 147 works to identify and measure biases in a given set of images (Chinchure et al., 2024; Mandal et al.,
 148 2024).** GRADE (Rassin et al., 2024) is the first method that employs the LLM-VLM paradigm to
 149 assess visual diversity in everyday objects. However, geo-diversity being more complex, we first
 150 segregate it into multiple axes, and then propose metrics to measure each of them by leveraging the
 151 LLM-VLM approach in different ways.

152 **Geographical Biases in Text-to-Image Models:** Over the recent years, multiple works have uncov-
 153 ered harmful geographical biases in real and synthetic datasets. Such studies can be divided into two
 154 broad categories. The first category investigates the representation of countries within both real image
 155 datasets (De Vries et al., 2019; Shankar et al., 2017; Naggita et al., 2023; Wang et al., 2022; Faisal
 156 et al., 2022) and synthetic ones (Basu et al., 2023). The second category studies the the extent of
 157 variations within a country in the images Hall et al. (2023; 2024); Askari Hemmat et al. (2024), which
 158 show that existing metrics fail to capture geographical variations within a country. While our paper
 159 focuses on the second category, most of the previous works rely on existing geo-diverse datasets
 160 like GeoDE (Ramaswamy et al., 2023) to measure geo-diversity and similar aspects, constraining
 161 such metrics to concepts and countries covered in those datasets. Our paper attempts to mitigate this
 162 limitation, and introduces a framework that measures geo-diversity in a reference-independent and
 163 interpretable manner, extendable to any number of entities and countries.

162

3 PROPOSED FRAMEWORK: GEODIV



182 **Figure 2: GeoDiv Pipeline.** Given an entity e and country c , LLMs generate attribute-based questions
 183 specific to e , and a fixed set of background-related questions applicable across entities. A VQA
 184 model predicts answer distributions over an image set for both question types, from which *GeoDiv*
 185 computes the Visual Diversity Index (VDI) via normalized Hill number. The VQA model also rates
 186 each image on Affluence and Maintenance to compute the Socio-Economic Visual Index (SEVI).

188 Motivated by clear human-identified disparities in how T2I models depict different regions, we aim
 189 to develop a principled method to quantify such geographical variation. We introduce *GeoDiv*, a
 190 systematic and interpretable framework for measuring the geo-diversity of images generated for a
 191 given entity and country. Given a collection of images \mathcal{D} , we extract a subset \mathcal{D}_e^c corresponding to
 192 entity $e \in \mathcal{E}$ and country $c \in \mathcal{C}$. These images are synthetically generated using text-to-image models
 193 with prompts of the form ‘a photo of a $\{e\}$ in $\{c\}$ ’. In this section, we first introduce
 194 the two core axes along which *GeoDiv* assesses geo-diversity, and then describe how diversity is
 195 quantitatively computed for each dimension.

196 3.1 VISUAL DIVERSITY INDEX (VDI)

198 To assess the visual variation of images across geographies, we define the **Visual Diversity Index**
 199 (**VDI**) along two axes: **Entity-Appearance** and **Background-Appearance**.

200 **Entity-Appearance** examines the visual attributes of entities (e.g., houses, cars) within a country.
 201 Manually defining a comprehensive set of attributes for each entity is infeasible, so we leverage
 202 multiple LLMs to generate candidate question-answer (Q&A) sets, and consolidate them into a unified
 203 list using an aggregator LLM. The same Q&A sets are applied across countries for comparability.
 204 Finally, a VQA model answers these questions for each image in the set \mathcal{D}_e^c , and the resulting
 205 distribution of answers across the images is used to compute per-question entity diversity.

207 **Background-Appearance** assesses the scene context (e.g., presence of modern infrastructure, type
 208 of roads, etc). We divide background into indoor and outdoor categories. An LLM first generates a
 209 fixed set of contextual questions and answer choices for each category (an example outdoor-category
 210 question: ‘What type of road or terrain is visible?’). Each image is first classified by a VQA model as
 211 indoor or outdoor. Based on the prediction, category-specific questions and answers are input to the
 212 VQA model. The resulting answer distributions are then utilized to calculate background diversity.

213 3.2 SOCIO-ECONOMIC VISUAL INDEX (SEVI)

215 To capture economic status and visual cues of physical upkeep across geographies, we introduce
 the **Socio-Economic Visual Index (SEVI)** with two dimensions: **Affluence** and **Maintenance**. An

attentive reader may enquire about the difference between the two. Affluence reflects the overall wealth depicted in an image, while Maintenance evaluates the physical condition of the primary entity, both crucial to understand societal well-being (Awaworyi Churchill et al., 2025). For each image, a Vision-Language Model (VLM) predicts scores for these dimensions on a 1-5 scale:

Affluence (1-5): Impoverished → Low → Moderate → High → Luxury.

Maintenance (1-5): Severely Damaged → Poor → Moderate → Well-Maintained → Excellent.

The VLM is prompted with detailed descriptions of these scales and scores each image individually to provide interpretable socio-economic visual signals. Finally, the distribution of the Affluence and Maintenance scores for an image set \mathcal{D}_e^c is studied to assess socio-economic diversity.

GeoDiv integrates both SEVI and VDI dimensions for a comprehensive diversity assessment. All prompts, questions, and answers used are included in Appendix § I and § H.

3.3 DIVERSITY COMPUTATION

Using the distributions obtained from the VDI and SEVI questions, we quantify the uniformity of answer distributions by computing the *Hill Number*. This is a biodiversity-inspired metric that represents the effective number of distinct categories (or “species”) in a community and is calculated by exponentiating Shannon’s entropy, which captures the uniformity of the distribution. Consider a question q_k (related to either SEVI or VDI attributes), having a set of answers denoted by \mathcal{A}_k . Given that the values of an attribute can be too large to enumerate exhaustively, we generate an approximate set of answers per question by leveraging the world knowledge of the LLMs, denoting the same as $\hat{\mathcal{A}}_k$ (see Appendix H.3 for prompt details). Hill numbers represent the “effective number of answers” represented in the distribution and range from 1 (when a single answer class is over-represented, yielding zero entropy) to $|\hat{\mathcal{A}}_k|$ (when all provided answers are equally well-represented, yielding maximum diversity). Since the number of plausible answers can vary across different questions, we compute a *Normalized Hill Number* (ranging between 0 and 1) to enable fair comparison between questions with varying answer-set sizes, as defined below:

$$\text{Diversity-Score} = \frac{\exp(H(\hat{P}_k)) - 1}{|\hat{\mathcal{A}}_k| - 1} \quad (1)$$

where \hat{P}_k is the answer distribution for q_k , and $H(\cdot)$ denotes Shannon entropy. Diversity for **Affluence** and **Maintenance** are computed directly using Diversity-Score. The **Entity-Appearance** and **Background-Appearance** Diversity are calculated by averaging Diversity-Score over all related questions for the individual dimensions.

On Computing Socio-Economic Diversity. When evaluating socio-economic diversity in synthetic images, a key question arises: *should the ideal scenario emphasize affluence and high physical upkeep, or represent the full spectrum of socio-economic conditions?* We adopt the latter to promote inclusivity, additionally reporting the mean Affluence and Maintenance ratings (on a 1-5 scale, subsection 3.2) per country or dataset. This reveals systematic biases, with models disproportionately generating affluent or impoverished images depending on the country prompted.

4 EXPERIMENTAL SETUP AND VALIDATION FOR GEODIV

4.1 DATASET DETAILS

Entities. We evaluate geo-diversity of images belonging to 10 entities commonly studied in prior works (Hall et al., 2024), as well as represented in well-known geo-diverse datasets (Ramaswamy et al., 2023): *backyard, bag, car, chair, cooking pot, dog, house, plate of food, shopfront, and stove*.

Countries. Our analysis spans 16 countries across diverse regions: the United States (USA), Mexico, Colombia, the United Kingdom (UK), Italy, Spain, Japan, South Korea, Indonesia, China, India, the UAE, Turkey, Philippines, Egypt, and Nigeria.

270
 271 **Table 1: Performance of various VQA models in identifying VDI answers and SEVI scores**
 272 **compared against human annotations.** Gemini-2.5-flash achieves the highest accuracy on
 273 entity and background questions, as well as the strongest correlation with human ratings on the SEVI
 274 metrics. Qwen2.5-VL is competitive, while LLaVA underperforms substantially.

Models	VDI Answers (Accuracy)			SEVI Scores (Spearman's ρ)	
	Entity	Background	Overall	Affluence	Maintenance
Gemini-2.5-flash	0.87	0.85	0.86	0.76	0.69
gpt-4o	0.85	0.81	0.83	0.76	0.76
Qwen2.5-VL	0.85	0.77	0.81	0.69	0.71
llava-v1.6-mistral-7b-hf	0.70	0.66	0.68	0.65	0.68

280
 281 **Generative Models.** We measure the geo-diversity of images generated by models such as SDv2.1,
 282 v3m, v3.5 (Rombach et al., 2022), and FLUX.1-dev (black-forest-labs, 2024). For each entity-country
 283 pair, we generate 250 images per model, resulting in 40,000 images per model. Thus, our synthetic
 284 dataset comprises of 160,000 images overall. Further dataset details can be found in Appendix § N,
 285 and samples can be observed in Appendix Fig. 24, 25, 26 and 27.

286 4.2 VALIDATING GEODIV COMPONENTS

287
 288 **VQA Accuracy for Entity and Background Diversity.** The VDI dimensions depend on the VQA
 289 model’s ability to correctly recognize visual attributes. We evaluate this by sampling 12 images per
 290 entity (randomly chosen from the four T2I models), each paired with one entity- and one background-
 291 based question, yielding 240 image-question pairs. Each pair is annotated by three Prolific (2024)
 292 crowd-workers using LLM-generated answer choices, with majority voting for the final label. The
 293 questions are deliberately generic, requiring minimal region-specific knowledge to avoid bias. **Table 1**
 294 **reports the accuracy of the VQA model’s predictions when compared against human annotations**
 295 **during the validation study.** Among the four VLMs tested, gemini-2.5-flash performs best
 296 with 86% overall accuracy (87% for entity, 85% for background), while Qwen2.5-VL and gpt-4o
 297 achieve comparable results but slightly lags on background questions.

298
 299 **Validating the SEVI Metrics.** The Affluence and Maintenance dimensions of SEVI capture nuanced
 300 aspects of wealth and physical condition. To evaluate alignment with human judgment, we conduct
 301 a country-wise study: for each country, 4 images per concept (40 total) are sampled across all T2I
 302 models, yielding 80 image-question pairs. Owing to participant unavailability, Nigeria and Turkey are
 303 excluded. Native annotators (via Prolific (2024)) rate each image on the SEVI scale, with three ratings
 304 per image, producing 1120 ratings overall. On this benchmark, Gemini-2.5-flash achieves high
 305 Spearman correlations with human scores ($\rho = 0.76$ for Affluence, $\rho = 0.69$ for Maintenance), with
 306 similar performances by the other models. Overall, the open-source Qwen2.5-VL can be seamlessly
 307 used for implementing *GeoDiv* (see Appendix Section J.3), though we adopt Gemini-2.5-flash
 308 for its slightly superior performance on VDI.

309 Further details on the human studies (remuneration, instructions, etc), country-wise correlation
 310 coefficients for the SEVI dimensions, **and a robustness analysis of the metric across all axes** are
 311 shared in the Appendix § J.

312 4.3 IMPLEMENTATION STEPS

313
 314 We use the Gemini-2.5-flash model for all experiments due to its superior performance (§4.2).
 315 **The hyperparameter details are provided in Appendix H.1.** SEVI scores are obtained by directly
 316 prompting the VLM to rate images on Affluence and Maintenance. The *VDI analysis* involves several
 317 steps, detailed below:

318
 319 **Question and Answer Generation.** For Entity-Appearance, diverse attribute-related questions are
 320 generated by an ensemble of five LLMs, and consolidated using a separate aggregator LLM (see
 321 Appendix A.3 for full model versions). This ensures comprehensive attribute coverage for entities
 322 whose characteristics may vary widely. In contrast, background questions (e.g., crowded vs. quiet)
 323 are generally applicable across scenes and do not require per-entity customization. Therefore, a fixed
 324 set of background questions is generated using Gemini. Answers for all questions are obtained

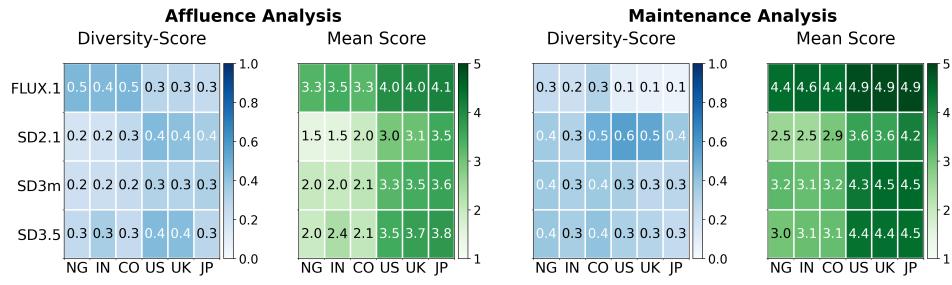


Figure 3: **SEVI Diversity and Mean Ratings across Datasets and Countries.** India (IN), Nigeria (NG), and Colombia (CO) receive lower SEVI ratings, while the US, UK, and Japan (JP) rank highest—revealing strong socio-economic biases in country-level image representations. Strikingly, none of the models generate images spanning *diverse* socio-economic strata.

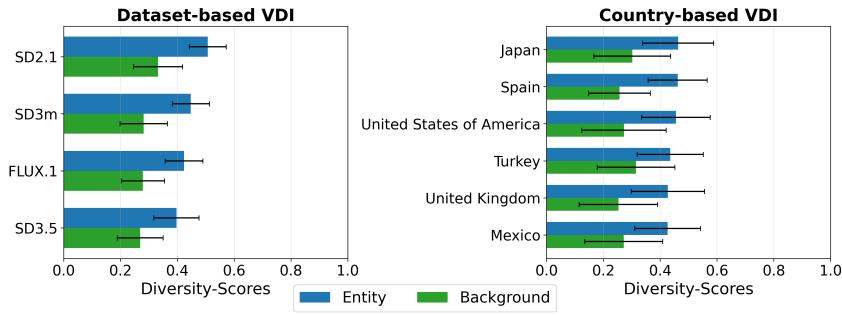


Figure 4: **VDI Scores across (a) Datasets, (b) Countries.** Model-wise VDI diversities are similar, with SD2.1 achieving higher scores than the others. Mexico and UK show the low entity and background diversity, while Japan scores highest.

from Gemini and further cleaned by the same to remove redundant or problematic responses (see Appendix § H for prompts and § I for the resulting questions and answers).

To reduce the effects of the intrinsic biases of the VLM, we perform the following control steps:

Visibility Step for Undetectable Attributes. After generating question–answer pairs for background and entities, the VLM filters out images where the questioned attribute is not visually detectable (Cho et al., 2023) to reduce hallucinations in the VQA step (Appendix B.1 shows the rejection percentages).

Multi-Select Responses This allows selecting multiple valid answers and avoids distortions from forced single-choice formats.

None Of The Above (NOTA). To account for any missing answer in those generated by the LLM, we append a special NOTA option before querying the VQA model. Only 2.6% image-question pairs obtained NOTA as the answer. This lets the model abstain when no option fits, reducing hallucinations due to forced *guessing* instead of acknowledging *uncertainty* (Kalai et al., 2025). See Appendix B.2 for finer-grained analysis.

5 WHAT DOES GEODIV REVEAL ABOUT GEO-DIVERSITY?

The *GeoDiv* framework is applied to images from four T2I models, spanning 10 entities and 16 countries (see Section 4). Overall SEVI and VDI trends are shown in Figures 3 and 4, with detailed analyses below: we compare SEVI and VDI **across datasets, and countries**.

5.1 DIVERSITY COMPARISON ACROSS DATASETS

FLUX.1 Images Appear the Richest, Yet No Dataset Offers Balanced SEVI Coverage. The average Affluence Diversity-Score is similar across the T2I models (0.35 ± 0.01). While the average

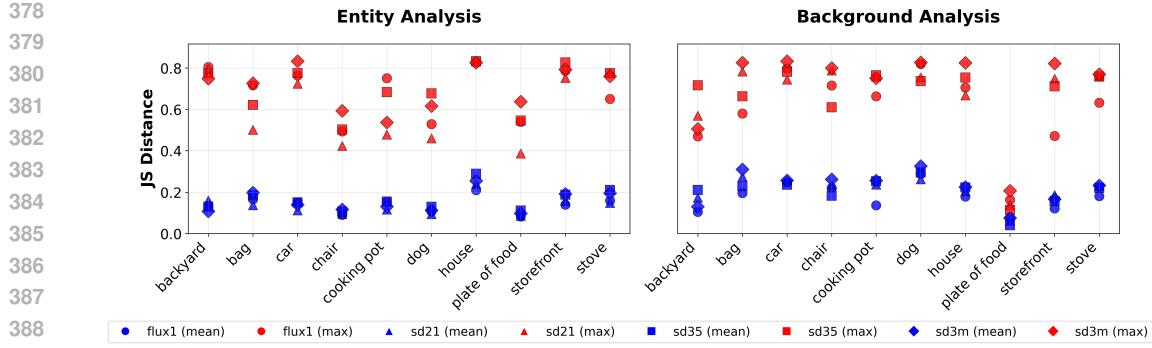


Figure 5: **Country-wise maximum and mean JS Divergence across Entities and Models.** High maximum values for both Entity and Background indicate high cross-country variations in the respective attribute value distributions.

Maintenance Diversity-Score is 0.34 ± 0.12 , FLUX.1 images show a severe lack of variation in the physical conditions of the entities depicted, with a low score of 0.15. This indicates that no model provides balanced coverage across all socio-economic strata. FLUX.1 tends to generate polished, aesthetically pleasing images, achieving mean Affluence and Maintenance ratings of 3.82 and 4.73 respectively (on the 1 – 5 scale defined in Section 3). In contrast, the remaining models show similar, lower scores, with SD2.1 scoring the lowest: mean Affluence of 2.41 and Maintenance of 3.23. These observations are demonstrated for a selected group of countries in Fig. 3. Aggregating across all entities and countries, Affluence and Maintenance show a moderate positive correlation ($\rho = 0.5$): more affluent items tend to appear better maintained. Yet this pattern varies by entity, sometimes even reversing. *GeoDiv* highlights such cases; for instance, a Nigerian clay pot on muddy ground scores low on affluence (1) but high on maintenance (4), while an Egyptian luxury sports car scores high on affluence (5) but low on maintenance (2) due to visible dust on the hood.

Synthetic Images Lack Visual Diversity. The Entity-Appearance Diversity-Score is highest for SD2.1 (0.51), followed by SD3m (0.45), FLUX.1 (0.42), and SDv3.5 (0.40) (see Fig. 4). While these scores indicate a general lack of diversity in entity appearances, the issue is more pronounced for background appearance, where all datasets score low (0.31 on average). Overall, the limited variation in both dimensions highlights a clear opportunity for improvement by data curators and model developers. In particular, FLUX.1 exhibits very low VDI diversity while achieving the highest SEVI ratings, suggesting it produces consistently polished, yet overly similar-looking images.

Overall Geo-Diversity Tends to Decrease in Newer Diffusion Model Versions. Averaged across SEVI and VDI, FLUX.1 shows the lowest scores, while SD2.1 ranks highest among T2I models, consistent with prior findings (Rassin et al., 2024; Hall et al., 2023) (Appendix Table 6). Though differences are modest, they underscore the need to improve both visual and socio-economic diversity in synthetic image generation and demonstrate *GeoDiv*’s utility in assessing geo-diversity.

5.2 COUNTRY-BASED GEO-DIVERSITY

India, Nigeria, and Colombia Portrayed as Poorest; Japan, UAE, and UK as Wealthiest. Across datasets, the mean Affluence and Maintenance diversity scores per country are low, 0.36 and 0.38, highlighting a severe lack of socio-economic inclusivity, with India and Japan exhibiting the least diversity. Strong **biases** emerge (see Fig. 3): India, Nigeria, and Colombia are consistently portrayed as the poorest (average Affluence 2.31, Maintenance 3.34), while Japan, UAE, and UK appear as the wealthiest (Affluence 3.53, Maintenance 4.30). This trend is less apparent in FLUX.1 images, as it generates polished images uniformly. These results expose a pronounced socio-economic bias in synthetic image generation, entrenching narrow and stereotypical socio-economic portrayals.

Entity-Appearance Diversity Low Across Countries; But Are The Distributions Similar? The mean Diversity-Score across countries is only 0.47, indicating limited variation in entity attributes and exposing both global and country-specific biases (see Fig. 4). For example, models consistently fail to generate Chairs without backrests irrespective of countries. On the other hand, country-specific biases reveal alarming geographic variation, for example, SD3m shows very few cushioned chairs

432 for Nigeria and the Philippines, whereas the UK and USA samples rarely depict hard-seated chairs
 433 (see Appendix D.2 for more examples). Beyond absolute diversity, we compute Jensen-Shannon
 434 Distance (JSD) to capture distributional differences between countries. Fig. 5 reports the maximum
 435 JSD averaged across questions for each model and entity, showing sharp divergences in some cases.
 436 For instance, Egyptian houses generated by SD3.5 differ markedly from others (Appendix Fig. 9),
 437 caused by distinct exterior materials and adjoining ground cover. Thus, *GeoDiv* reveals both global
 438 biases and substantial cross-country variation, while offering a framework readily extendable to new
 439 entities, countries, and models. To enhance interpretability, we release full per-question distributions
 440 in the supplementary, enabling practitioners to prompt underrepresented attributes explicitly (see
 441 Appendix § G for an example).

442 **Background Diversity Strikingly Lower than Entity Diversity.** The average Background Diversity-
 443 Score across countries is 0.33, significantly lower than that of Entity-Appearance, indicating severe
 444 lack of variations in the generated backgrounds. Irrespective of countries and models, most back-
 445 grounds tend to be quiet and empty, without significant crowd presence, even in case of entities
 446 like cars and houses. Similarly, mountains and hills are depicted only 12% times on average across
 447 countries; it is least depicted in Nigeria (1.1%), and most depicted in Turkey (24%), indicating
 448 underrepresentation of a crucial natural feature. Waterbodies are depicted even lesser, in only 3.4%
 449 images. We plot the maximum JSD averaged across questions for each model and entity across
 450 distributions of country-pairs in Fig. 5. The high values are caused by cross-country variations: for
 451 instance, across models, backgrounds of 77% of car images from Nigeria show dirt/gravel road,
 452 compared to US which generates paved roads 85% of the time. Similarly, 57% of Indian images
 453 show dense buildings in the background, compared to only 17% for the UAE.

454 **Egypt Most Geo-Diverse Country, India The Least.** Averaging across all four *GeoDiv* scores,
 455 we find Egypt, Colombia, Turkey, and Spain to be among the most geo-diverse countries, whereas
 456 Japan, the UK, the US, and India rank among the least. The mean *GeoDiv* score per country is 0.39, a
 457 predictably low value that underscores the need to improve the diversity of generative models across
 458 all analyzed dimensions. Country-level scores are reported in Appendix Table 5. Interestingly, we
 459 also observe a weak negative correlation between *GeoDiv* scores and both GDP nominal and per
 460 capita ($\rho = -0.27$ and -0.28 , respectively), suggesting that generative models tend to produce less
 461 diverse imagery for wealthier countries.

462 Detailed visualizations of the SEVI and VDI scores across models, entities and countries, along with
 463 crucial examples of observed biases are presented in Appendix § E, § D and § K respectively. The
 464 variation in SEVI and VDI scores per entity is further discussed in Appendix C.1.

466 6 DISCUSSION

467 **Comparison with Existing Baselines.** Vendi-Score (Friedman & Dieng, 2023) measures visual
 468 diversity within image sets, but overlooks key aspects of geo-diversity that *GeoDiv* measures. For
 469 example, *GeoDiv*'s SEVI axis on Affluence and Maintenance reflects socio-economic context that
 470 Vendi-Score cannot detect. To assess the relationship between Vendi-Score and *GeoDiv* (combined
 471 across all axes), we compute their correlations. Only Entity Diversity has a high correlation ($\rho = 0.56$)
 472 while the others are lower ($\rho = 0.06$ for maintenance). This shows that although entity specific
 473 diversity can be measured by Vendi score, it lags behind in multidimensional diversity computations.
 474 Detailed results are in Appendix Table 15. We discuss another method DIMCIM (Teotia et al., 2025)
 475 in Appendix L.

476 **Geo-Diversity of a Real-World Dataset.** To benchmark synthetic images against a geographically
 477 representative real-world dataset, we evaluate GeoDE (Ramaswamy et al., 2023) using *GeoDiv*. Clear
 478 differences emerge: GeoDE achieves substantially higher Entity-Appearance Diversity (0.60 vs.
 479 0.44 for synthetic images). Background-Appearance Diversity is closer but still higher in GeoDE
 480 (0.42 vs. 0.31). On the SEVI axis, GeoDE exhibits markedly greater diversity in Maintenance
 481 (0.61), while its Affluence diversity, though the highest among all datasets, remains comparable to
 482 others. These findings highlight that GeoDE, being crowd-collected from the respective countries and
 483 thus expected to reflect real-world variations better, is consistently more geo-diverse than synthetic
 484 datasets, particularly in Entity-Appearance and Maintenance. Detailed entity- and country-level
 485 scores are provided in Appendix Fig 13 and § F.

486 7 CHALLENGES AND LIMITATIONS

488 We analyze the geo-diversity of four T2I models across 16 countries and 10 entities, but extending
 489 this evaluation to a broader set of regions and entity types may uncover additional patterns and biases.
 490 To support such extensions, we will publicly release the question and answer distributions for every
 491 country-entity-model combination used in this study. We also provide all prompts in Appendix H,
 492 enabling researchers to easily adapt our framework to new entities, countries, and generative models.
 493

494 For the VDI axis, the questions and their corresponding answer sets are generated using the world
 495 knowledge of LLMs, since exhaustively enumerating all possible entity or background attributes
 496 and their values is infeasible. For the SEVI axis, we explicitly define the levels of affluence and
 497 maintenance due to the absence of any established or standardized scales for these socio-economic
 498 *cues*. Furthermore, our diversity assessments rely on LLMs and VLMs, which may carry inherent
 499 biases. To mitigate this, we restrict questions to generic entity and background attributes, avoiding
 500 region-specific knowledge. The goal is to reveal how model generations vary even on basic attribute
 501 distributions across entities and countries. Large-scale human studies (including country-wise studies
 502 for the SEVI metrics) reinforce *GeoDiv*’s reliability, while the visibility and NOTA checks further
 503 reduce hallucinations.

504 An important aspect of geo-diversity is cultural representation; whether generative models capture
 505 local cultural contexts or default to globalized visuals. We quantify this using a Cultural Localization
 506 score via our VQA-based pipeline, analogous to the Affluence and Maintenance scores. We observe
 507 higher disagreement between the VQA model and human annotators for countries like the USA and
 508 UK, while Japan and Colombia show better alignment, reflecting regional variations in model-human
 509 agreement. Full results are in Appendix § M.

510 Another limitation is reliance on *Gemini-2.5-Flash*, a closed-source model; despite strong
 511 quality and alignment with human judgments, budget constraints limit large-scale evaluations across
 512 entities and countries. As noted in Section 4.2, open-source *Qwen2.5-VL* is a practical alternative,
 513 showing high agreement with *Gemini* on all four diversity axes (average correlation $\rho = 0.83$)
 514 across two datasets and six entities (Appendix J.3). Continued progress in open-source VLMs will
 515 enable broader, richer, and more cost-effective assessments of global diversity.

516 8 CONCLUSION

518 We introduced *GeoDiv*, a multidimensional framework that leverages the world knowledge of LLMs
 519 and VLMs to quantify geographical diversity in image datasets. To capture disparities in socio-
 520 economic status, physical upkeep, and variations in entities (e.g. houses, cars) and their contexts,
 521 we proposed two axes: (a) the **Socio-Economic Visual Index (SEVI)**, which uses a VLM to assess
 522 affluence and maintenance, and (b) the **Visual Diversity Index (VDI)**, which evaluates entity and
 523 background diversity with LLM-VLM guidance. Applying *GeoDiv* to images from four T2I models
 524 across 16 countries and 10 entities, we found systematic gaps: diversity in entities and backgrounds
 525 declines in newer models, while SEVI scores consistently mark India, Nigeria, and Colombia as
 526 impoverished and poorly maintained. By contrast, *FLUX.1* generates more affluent depictions
 527 but with low visual diversity, revealing a trade-off between sophistication and inclusivity. *GeoDiv*
 528 provides a first step toward interpretable audits of T2I geographical inclusivity with minimal human
 529 oversight, and we hope it inspires efforts to build generative systems that are not only visually
 530 appealing but also globally representative.

531 REFERENCES

532 Reyhane Askari Hemmat, Melissa Hall, Alicia Sun, Candace Ross, Michal Drozdzal, and Adriana
 533 Romero-Soriano. Improving geo-diversity of generated images with contextualized vendi score
 534 guidance. In *European Conference on Computer Vision*, pp. 213–229. Springer, 2024.

535 Pietro Astolfi, Marlene Careil, Melissa Hall, Oscar Mañas, Matthew Muckley, Jakob Verbeek,
 536 Adriana Romero Soriano, and Michal Drozdzal. Consistency-diversity-realism pareto fronts of
 537 conditional image generative models. *arXiv preprint arXiv:2406.10429*, 2024.

540 Sefa Awaworyi Churchill, Vidal Paton-Cole, and Senam Acquah. The wellbeing implications of
 541 household home repair and renovation expenditure. *Journal of Housing and the Built Environment*,
 542 pp. 1–23, 2025.

543

544 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 545 Shijie Wang, Jun Tang, et al. Qwen2. 5-v1 technical report. *arXiv preprint arXiv:2502.13923*,
 546 2025.

547 Abhipsa Basu, R. Venkatesh Babu, and Danish Pruthi. Inspecting the geographical representativeness
 548 of images from text-to-image models. In *Proceedings of the IEEE/CVF International Conference*
 549 *on Computer Vision (ICCV)*, pp. 5136–5147, October 2023.

550

551 black-forest-labs. FLUX.1-dev. <https://huggingface.co/black-forest-labs/FLUX.1-dev>, 2024. Accessed: 2025-05-16.

552

553 Victor Boutin, Thomas Fel, Lakshya Singhal, Rishav Mukherji, Akash Nagaraj, Julien Colin, and
 554 Thomas Serre. Diffusion models as artists: Are we closing the gap between humans and machines?
 555 *arXiv preprint arXiv:2301.11722*, 2023.

556

557 Aditya Chinchure, Pushkar Shukla, Gaurav Bhatt, Kiri Salij, Kartik Hosanagar, Leonid Sigal, and
 558 Matthew Turk. Tibet: Identifying and evaluating biases in text-to-image generative models. In
 559 *European Conference on Computer Vision*, pp. 429–446. Springer, 2024.

560

561 Jaemin Cho, Yushi Hu, Roopal Garg, Peter Anderson, Ranjay Krishna, Jason Baldridge, Mohit Bansal,
 562 Jordi Pont-Tuset, and Su Wang. Davidsonian scene graph: Improving reliability in fine-grained
 563 evaluation for text-to-image generation. *arXiv preprint arXiv:2310.18235*, 2023.

564

565 Google Cloud. Vertex AI REST API Documentation. <https://cloud.google.com/vertex-ai/docs/reference/rest>, 2024. Accessed: 2025-05-19.

566

567 Terrance De Vries, Ishan Misra, Changhan Wang, and Laurens Van der Maaten. Does object
 568 recognition work for everyone? In *Proceedings of the IEEE/CVF conference on computer vision*
 569 *and pattern recognition workshops*, pp. 52–59, 2019.

570

571 Sepehr Dehdashtian, Gautam Sreekumar, and Vishnu Naresh Boddeti. Oasis uncovers: High-quality
 572 t2i models, same old stereotypes. In *International Conference on Learning Representations*, 2025.

573

574 Fahim Faisal, Yinkai Wang, and Antonios Anastasopoulos. Dataset geography: Mapping language
 575 data to language users. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.),
 576 *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume*
 577 *1: Long Papers)*, pp. 3381–3411, Dublin, Ireland, May 2022. Association for Computational
 578 Linguistics. doi: 10.18653/v1/2022.acl-long.239. URL <https://aclanthology.org/2022.acl-long.239>.

579

580 Lijie Fan, Kaifeng Chen, Dilip Krishnan, Dina Katahi, Phillip Isola, and Yonglong Tian. Scaling laws
 581 of synthetic images for model training... for now. In *Proceedings of the IEEE/CVF Conference on*
582 Computer Vision and Pattern Recognition, pp. 7382–7392, 2024.

583

584 Dan Friedman and Adji Bousso Dieng. The vendi score: A diversity evaluation metric for machine
 585 learning. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856.

586

587 William Gaviria Rojas, Sudnya Diamos, Keertan Kini, David Kanter, Vijay Janapa Reddi, and
 588 Cody Coleman. The dollar street dataset: Images representing the geographic and socioeconomic
 589 diversity of the world. *Advances in Neural Information Processing Systems*, 35:12979–12990,
 2022.

590

591 Google. Gemini API Documentation. <https://ai.google.dev/gemini-api/docs/models#gemini-1.5-pro>, 2024. Accessed: 2025-05-16.

592

593 Melissa Hall, Candace Ross, Adina Williams, Nicolas Carion, Michal Drozdzal, and Adriana Romero
 Soriano. Dig in: Evaluating disparities in image generations with indicators for geographic
 diversity. *arXiv preprint arXiv:2308.06198*, 2023.

594 Melissa Hall, Samuel J Bell, Candace Ross, Adina Williams, Michal Drozdzal, and Adriana Romero
 595 Soriano. Towards geographic inclusion in the evaluation of text-to-image models. In *Proceedings*
 596 *of the 2024 ACM Conference on Fairness, Accountability, and Transparency*, pp. 585–601, 2024.
 597

598 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
 599 trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural*
 600 *information processing systems*, 30, 2017.

601 Yushi Hu, Benlin Liu, Jungo Kasai, Yizhong Wang, Mari Ostendorf, Ranjay Krishna, and Noah A
 602 Smith. Tifa: Accurate and interpretable text-to-image faithfulness evaluation with question
 603 answering. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
 604 20406–20417, 2023.

605 Adam Tauman Kalai, Ofir Nachum, Santosh S Vempala, and Edwin Zhang. Why language models
 606 hallucinate. *arXiv preprint arXiv:2509.04664*, 2025.

607 Tom Leinster. *Entropy and diversity: the axiomatic approach*. Cambridge university press, 2021.

608 Ran Li, Xiaomeng Jin, et al. Real: Realism evaluation of text-to-image generation models for
 609 effective data augmentation. *arXiv preprint arXiv:2502.10663*, 2025.

610 Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and
 611 Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation. In *European*
 612 *Conference on Computer Vision*, pp. 366–384. Springer, 2024.

613 Abhishek Mandal, Susan Leavy, and Suzanne Little. Generated bias: Auditing internal bias dynamics
 614 of text-to-image generative models. In *European Conference on Computer Vision*, pp. 96–111.
 615 Springer, 2024.

616 Keziah Naggita, Julianne LaChance, and Alice Xiang. Flickr africa: Examining geo-diversity
 617 in large-scale, human-centric visual data. In *Proceedings of the 2023 AAAI/ACM Conference*
 618 *on AI, Ethics, and Society*, AIES ’23, pp. 520–530, New York, NY, USA, 2023. Association
 619 for Computing Machinery. ISBN 9798400702310. doi: 10.1145/3600211.3604659. URL
 620 <https://doi.org/10.1145/3600211.3604659>.

621 Angéline Pouget, Lucas Beyer, Emanuele Bugliarello, Xiao Wang, Andreas Steiner, Xiaohua Zhai,
 622 and Ibrahim M Alabdulmohsin. No filter: Cultural and socioeconomic diversity in contrastive
 623 vision-language models. *Advances in Neural Information Processing Systems*, 37:106474–106496,
 624 2024.

625 Prolific. Prolific: Participant Recruitment Platform. <https://www.prolific.com/>, 2024.
 626 Accessed: 2025-05-16.

627 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 628 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 629 models from natural language supervision. In *International conference on machine learning*, pp.
 630 8748–8763. PMLR, 2021.

631 Vikram V Ramaswamy, Sing Yu Lin, Dora Zhao, Aaron Adcock, Laurens van der Maaten, Deepti
 632 Ghadiyaram, and Olga Russakovsky. Geode: a geographically diverse evaluation dataset for object
 633 recognition. *Advances in Neural Information Processing Systems*, 36:66127–66137, 2023.

634 Royi Rassin, Aviv Slobodkin, Shauli Ravfogel, Yanai Elazar, and Yoav Goldberg. Grade: Quantifying
 635 sample diversity in text-to-image models. *arXiv preprint arXiv:2410.22592*, 2024.

636 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 637 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 638 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

639 Shreya Shankar, Yoni Halpern, Eric Breck, James Atwood, Jimbo Wilson, and D Sculley. No
 640 classification without representation: Assessing geodiversity issues in open data sets for the
 641 developing world. *arXiv preprint arXiv:1711.08536*, 2017.

648 Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi. Inception-v4, inception-
649 resnet and the impact of residual connections on learning. In *Proceedings of the AAAI conference*
650 *on artificial intelligence*, volume 31, 2017.

651

652 Revant Teotia, Candace Ross, Karen Ullrich, Sumit Chopra, Adriana Romero-Soriano, Melissa Hall,
653 and Matthew J Muckley. Dimcim: A quantitative evaluation framework for default-mode diversity
654 and generalization in text-to-image generative models. *arXiv preprint arXiv:2506.05108*, 2025.

655 Victoria Turk. Generative ai like midjourney creates images full of stereotypes. <https://restofworld.org/2023/ai-image-stereotypes/>, Oct 2023.

656

657 Angelina Wang, Alexander Liu, Ryan Zhang, Anat Kleiman, Leslie Kim, Dora Zhao, Iroha Shirai,
658 Arvind Narayanan, and Olga Russakovsky. Revise: A tool for measuring and mitigating bias in
659 visual datasets. *International Journal of Computer Vision*, 130(7):1790–1810, 2022.

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

GeoDiv: A Multidimensional Framework for Measuring Geographical Diversity in Images

Supplementary Material

GeoDiv, introduced in the main paper, is a framework for assessing dataset geo-diversity across multiple dimensions. This supplementary material provides extended details in support of the main results. The following sections outline the details and additional analyses.

A Implementation Details	15
A.1 Implementation Details For Text-to-Image Generative Models	15
A.2 Compute Resources	16
A.3 LLMs used for Entity-Appearance Attribute-Value Generations	16
A.4 Indoor-Outdoor Distribution of Images	16
B Visibility Failures and NOTA Statistics	16
B.1 Percentage of Images Failing the Visibility Check	16
B.2 Percentage of Images with (None of the Above) NOTA Options	17
C GeoDiv Diversity - Extended Analysis	18
C.1 GeoDiv Diversity Comparison Across Entities	18
C.2 Analysis on Overall GeoDiv Scores	19
D Entity and Background Diversity Scores	20
D.1 Entity Diversity Scores	20
D.2 Bias Patterns in Entity Attributes Revealed by GeoDiv	21
D.3 Background Diversity Scores	23
E SEVI Scores - Country and Entity-wise Details	24
E.1 Affluence Scores	24
E.2 Maintenance Scores	25
F GeoDE: Observations on a Real-World Dataset	27
F.1 Data Distribution	27
F.2 Entity-Appearance Diversity	27
F.3 Background-Appearance Diversity	27
G Improving Geo-Diversity Using GeoDiv: An Application	27
H Prompts Used	28
H.1 Hyperparameter Details	28
H.2 Prompts For Obtaining SEVI scores	29
H.3 Prompts For Entity-based Question-Answer Generation and Filtering	30

756	H.4 Prompts For VQA Step in Calculating VDI Scores	36
757		
758	I Question-Answer (QA) set for VDI Scores	37
759		
760	I.1 QA set for Entity Diversity part of VDI scores.	37
761	I.2 QA set for Background Diversity part of VDI scores.	43
762		
763	J Validating GeoDiv - Extended Details	44
764		
765	J.1 Survey Details	44
766	J.2 Country-wise Correlation Analysis for SEVI Scores	47
767	J.3 Comparison Between Closed And Open Source Models	47
768	J.4 Statistical Robustness of GeoDiv	47
769	J.5 Inter-Annotator Agreement Across SEVI and VDI axes	50
770		
771		
772		
773	K Qualitative Examples	51
774		
775	L Comparison of GeoDiv with Existing Baselines - Extended Discussion	54
776		
777	L.1 Vendi-Score vs GeoDiv Scores	54
778	L.2 Comparison with DIMCIM	54
779		
780	M Cultural Localization	54
781		
782	N Dataset Details - Extended Discussions	56
783		
784		
785	O Broad Societal Impact of GeoDiv	61
786		

787 A IMPLEMENTATION DETAILS

789 A.1 IMPLEMENTATION DETAILS FOR TEXT-TO-IMAGE GENERATIVE MODELS

791 All synthetic datasets were generated using publicly available models from the Hugging Face Hub.
 792 Default generation settings provided by the respective model repositories were used unless otherwise
 793 specified. Image generation was performed via the `diffusers` library, using standard inference
 794 pipelines. Prompts were constructed per entity-country pair using the template: “A photo of
 795 a/an <entity> in <country>”. Each model was queried to generate 250 images per entity-
 796 country pair, totaling 40,000 images per model.

797 The models used are:

- 799 • **Stable Diffusion 2.1** (SD2.1)¹
- 800 • **Stable Diffusion 3** (SD3m)²
- 801 • **Stable Diffusion 3.5** (SD3.5)³
- 802 • **FLUX.1-dev** (FLUX.1)⁴

803 SD2.1 images were generated at a resolution of 768×768 , while SD3m, SD3.5, and FLUX.1 used
 804 1024×1024 . For reproducibility, generation was performed with fixed seeds for each batch. No
 805 further post-processing was applied to the generated images.

806 ¹<https://huggingface.co/stabilityai/stable-diffusion-2-1>

807 ²<https://huggingface.co/stabilityai/stable-diffusion-3-medium>

808 ³<https://huggingface.co/stabilityai/stable-diffusion-3.5-large>

809 ⁴<https://huggingface.co/black-forest-labs/FLUX.1-dev>

810 A.2 COMPUTE RESOURCES
811

812 Image generation experiments were conducted on an NVIDIA RTX 6000 GPU (48GB VRAM).
813 For all LLM and VLM-based tasks, including question-answer generation and VQA, we use
814 Gemini-2.5-Flash (Google, 2024) accessed via the Vertex AI API (Cloud, 2024) with dy-
815 namic thinking enabled for optimal token efficiency as well as batch processing for cost and time
816 efficiency. The estimated cost for computing the VDI component of our diversity score, including
817 visibility checks and VQA for both entity and background analysis, is approximately \$58.64 per
818 entity-country-question combination (across 250 images per set). The SEVI score computation for
819 the same combination costs approximately \$9.46, resulting in a total cost of \$68.10 per complete
820 diversity assessment. On the other hand, experiments using Qwen2.5-VL-32B-Instruct-AWQ, per-
821 formed locally using an NVIDIA RTX A5000 (24GB VRAM), incur no additional computational
822 costs but require significantly longer processing times.
823

824 A.3 LLMs USED FOR ENTITY-APPEARANCE ATTRIBUTE-VALUE GENERATIONS
825

826 As each entity may have its own distinct features, we generate questions and answers inquiring about
827 its various attributes using an ensemble of 5 LLMs, later consolidating them using a neutral one
828 (claude-opus-4-1@20250805⁵). Here, we specify the names and model versions of each
829 such LLM for reproducibility ease.

- 830 • gemini-2.5-pro (Google, 2024)
- 831 • gpt-4o-2024-08-06⁶
- 832 • Qwen2.5-VL-32B-Instruct (Bai et al., 2025)
- 833 • Mistral-Small-3.2-24B-Instruct-2506⁷
- 834 • Llama-3.2-11B-Vision-Instruct⁸

835 The prompts used for these models can be found in Appendix H.
836

837 A.4 INDOOR-OUTDOOR DISTRIBUTION OF IMAGES
838

839 For calculating background diversity, we classify whether each image depicts an indoor or an outdoor
840 scene (see subsection 3 in the main paper). Table 2 details the indoor-outdoor distribution achieved
841 from this step before conducting the remaining VQA steps of the pipeline. Since our chosen entities
842 are inspired by those analyzed in the GeoDE dataset Ramaswamy et al. (2023), we further mention
843 the groups (indoor common, indoor rare, outdoor common, outdoor rare) to which each of the chosen
844 entities belong to, as assigned by the authors. Notably, while most of GeoDE images adhere to their
845 assigned indoor/outdoor groups, synthetic datasets display major deviations in depiction of typically
846 indoor entities like bags, chairs, stoves, and cooking pots, frequently generating them in outdoor
847 settings.
848

849 B VISIBILITY FAILURES AND NOTA STATISTICS
850851 B.1 PERCENTAGE OF IMAGES FAILING THE VISIBILITY CHECK
852

853 Most entity-question pairs fail the visibility check for fewer than 5% of images. Table 3 highlights
854 few of those with higher failure rates. All findings are qualitatively verified through image inspection
855 to confirm the reasons for non-answerability. Below, we list our observations for each entity.
856

857 *Stove* images that are traditional wood-fired or charcoal-fired, fail for questions inquiring about the
858 type of stove, and those with hidden/distorted cooktops fail for questions querying about the cooktop
859 type. The latter is higher for SD2.1, which shows depictions of distorted renderings of traditional
860

⁵<https://www.anthropic.com/news/claude-opus-4-1>

⁶<https://platform.openai.com/docs/models/gpt-4o>

⁷<https://huggingface.co/mistralai/Mistral-Small-3.2-24B-Instruct-2506>

⁸<https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct>

864

865

Table 2: Indoor-Outdoor Distribution.

Group	Object	Indoor						Outdoor					
		GeoDE	SDv2	SDv3	SDv3.5	FLUX.1	Avg	GeoDE	SDv2	SDv3	SDv3.5	FLUX.1	Avg
<i>Indoor common</i>	bag	95.71	3.78	10.07	13.34	35.16	31.61	4.29	96.22	89.93	86.66	64.84	68.39
	chair	88.11	1.41	10.86	12.38	84.09	39.37	11.89	98.59	89.14	87.62	15.91	60.63
<i>Indoor rare</i>	cooking pot	95.96	0.87	26.61	10.57	57.29	38.26	4.04	99.13	73.39	89.43	42.71	61.74
	plate of food	94.98	95.00	98.47	94.07	98.95	96.29	5.02	5.00	1.53	5.93	1.05	3.71
<i>Outdoor common</i>	stove	93.14	16.37	67.18	57.64	87.74	64.41	6.86	83.63	32.82	42.36	12.26	35.59
	backyard	0.06	0.00	0.00	0.00	0.02	0.02	99.94	100.00	100.00	100.00	99.98	99.98
<i>Outdoor rare</i>	car	2.27	0.00	0.05	0.07	0.08	0.49	97.73	100.00	99.95	99.93	99.92	99.51
	house	0.00	0.00	0.02	0.00	0.00	0.00	100.00	100.00	99.98	100.00	100.00	100.00
<i>Outdoor rare</i>	dog	28.87	0.23	0.69	2.38	2.69	6.97	71.13	99.77	99.31	97.62	97.31	93.03
	storefront	8.59	0.00	0.23	0.93	0.46	2.04	91.41	100.00	99.77	99.07	99.54	97.96

875

876

877 or repurposed stoves with no discernable cooktop, and FLUX.1 which has similar depictions of
 878 wood-burning compartments with no visible cooktops.

879 *House* images fail for questions about *doors* when the *door* features are obscured. *Car* images where
 880 the roof is not clearly visible fails for the question on roof types. Daylight images of cars often fail
 881 for the question on whether the lights are on or off due to difficulty in observing the head and tail
 882 lights. *Chairs* in which the back is fully covered with fabric or obscured by cushions tend to fail
 883 on the question about the type of backrest (solid, slatted, or woven). Interestingly, this failure rate
 884 is lower for SD2.1 and SD3.5, suggesting a lower proportion of cushioned chairs in these datasets,
 885 a pattern corroborated by the responses to the question on cushioned versus hard seats. *Storefront*
 886 images with only display window visible or shutters fail for the question on type of entrance.

887 We define a question as “low-coverage” if the visibility checks retain fewer than 50% of the original
 888 image set. Such questions are excluded from further processing. Among the 111 unique questions
 889 considered for entity diversity, we identify two that fall into this category: “What kind of controls
 890 are visible on the stove: knobs, buttons, or a touchscreen display?” and “Does the bag have a zipper,
 891 buckle, or flap closure?”. The first is inherently difficult to answer using synthetic images, while in
 892 the second case, bag images often do not clearly reveal the type of closure.

893

894

Table 3: Visibility Check Failure Rates for Selected Entity-Question Pairs Across Datasets.

Entity	Question	SD2.1	SD3m	SD3.5	FLUX.1	GeoDE
Bag	Is the bag’s closure type visible or identifiable in the image?	44.5	50.5	43.05	28.95	25.22
Car	Is it visible or detectable from the image if the car’s lights are turned on or off?	22.8	8.55	11.48	1.42	18.22
	Is the car’s roof type visible or identifiable in the image?	14.92	30.47	20.8	22.32	11.12
Chair	Is the construction style of the chair’s backrest visible or identifiable in the image?	2.28	22.7	1.95	15.67	23.25
House	Is it visible or detectable from the image whether a door on the house is open or closed?	17.15	9.72	9.9	2.03	30.11
Storefront	Is the type of the storefront entrance visible or identifiable in the image?	27.28	16.25	7.53	2.5	19.26
Stove	Is the stove’s cooktop type visible or identifiable in the image?	36.05	10.2	12.0	26.25	0.92

910

911

B.2 PERCENTAGE OF IMAGES WITH (NONE OF THE ABOVE) NOTA OPTIONS

913

914 During the VQA stage (i.e., the stage of obtaining answers to the questions from images before
 915 calculating the VDI scores) we add a ‘None of the Above’ option to the answer list for each question,
 916 as discussed in Subsection 4 (main paper). Table 4 details the NOTA percentages across datasets for
 917 all questions per entity. We qualitatively verify these cases by visually inspecting the images and the
 918 VQA model’s reasoning for selecting NOTA.

918 • **Stove** has the highest NotA percentage at 5.51%. The first question with high NotA is “*What is the*
 919 *primary material of the stove’s body: stainless steel or enamel/painted metal?*” It is comparatively
 920 higher for SD3.5, with a lot of rustic representations of stove with iron / stone / corrugated metal
 921 bodies, except for the UK, USA, and Japan. The other question with high NotA is “*What type of*
 922 *cooktop does the stove have: gas burners, electric coils, or a flat glass/ceramic top?*” which again
 923 fails for images with representations of traditional stoves.

924 • For **storefront**, all datasets show similar NotA (avg. 4.32%), mostly due to two questions: “*Is the*
 925 *facade primarily made of brick, wood, or glass?*” and “*Is the storefront entrance a single door,*
 926 *double doors, or a revolving door?*”. For the first, option Concrete/Stone may be missing. For the
 927 second question, open entrance (like in malls) and accordion-style metal gates are absent. In SD3m,
 928 both questions show stronger geographical disparities with lower NotA for UK, USA, and Italy.

929 • For **bag**, the higher NotA rate is observed to be a result of question on “*Does the bag have a*
 930 *zipper, buckle, or flap closure?*” which examines an attribute that is inherently open-ended. Thus,
 931 bags with drawstrings, open-topped totes, plastic bags with tied handles are not represented by this
 932 question.

933 • The slightly high NotA rate for **car** results from “*Is the car a sedan or SUV?*” which does not
 934 cover all types of cars, missing options like hatchbacks.

935 • For **Cooking pot**, **backyard**, **chair**, **house**, **plate of food**, and **dog**, NotA rate is consistently $\geq 3\%$
 936 across all datasets.

937 For questions where more than 30% of images result in NotA, we include an ‘**Others**’ as an option
 938 in the distribution.

939
 940 **Table 4: NotA percentages** per entity across datasets, with per-entity average.

Entity	SD2.1	SD3m	SD3.5	FLUX.1	GeoDE	Entity Avg.
Bag	6.05	3.84	4.63	0.99	2.73	3.65
Backyard	0.22	0.48	0.19	0.52	0.33	0.35
Car	2.02	2.34	4.41	3.63	5.17	3.51
Chair	0.95	1.25	1.00	1.45	1.66	1.26
Cooking Pot	1.24	0.79	0.27	0.06	3.65	1.20
Dog	0.12	0.03	0.07	0.68	0.06	0.19
House	3.55	2.35	1.76	1.53	2.04	2.25
Plate of Food	2.12	0.74	1.29	0.98	3.07	1.64
Storefront	4.16	5.48	6.90	1.08	3.96	4.32
Stove	6.15	3.20	9.31	3.54	5.34	5.51
Dataset Avg.	2.66	2.98	2.05	2.80	1.44	

954
 955

C GEODIV DIVERSITY - EXTENDED ANALYSIS

956

C.1 GEODIV DIVERSITY COMPARISON ACROSS ENTITIES

957
 958 In section 5 of the main paper, we discuss the SEVI and VDI diversities across datasets and countries.
 959 In this section, we perform similar analyses, but based on the entities we chose for this paper. Our
 960 observations are noted below:961
 962 **SEVI Diversity Analysis.** The overall SEVI diversity is predictably low across entities, with
 963 average scores of 0.36 for Affluence and 0.39 for Maintenance. Among the entities, stove and chair
 964 images exhibit the highest diversity across both SEVI dimensions, while plate of food images are
 965 the least diverse. In terms of Affluence ratings (on a 1 – 5 scale), backyard and house images
 966 receive the highest average scores (3.34), whereas cooking pot and stove images are rated as more
 967 impoverished (average rating: 2.50). The trends for Maintenance ratings differ slightly: plate of food
 968 and dog images receive the highest ratings (average 4.66), while cooking pot and stove images are
 969 rated lowest, mirroring the pattern observed for Affluence (average 3.20). Overall, we observe not
 970 only a lack of diversity in the SEVI dimensions at the entity level but also significant differences in
 971 SEVI ratings, suggesting that models generate images reflecting varying socio-economic conditions
 972 depending on the entity prompted. These trends are demonstrated in Fig. 6.

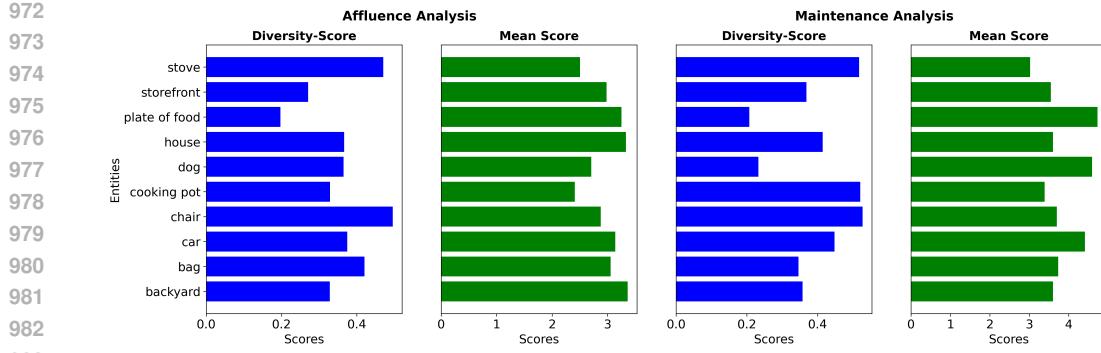


Figure 6: **Affluence and Maintenance (SEVI) Scores across Entities.** Chair and Stove images show the highest variance in Affluence, whereas Cooking Pot and Stove images appear the least affluent. For Maintenance, Stove, Cooking Pot and Chair turn out to be the most diverse, though the mean ratings are low for each of them.

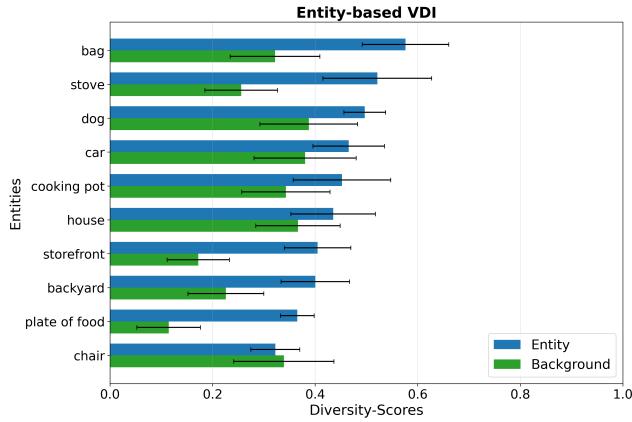


Figure 7: **Entity and Background Appearance (VDI) Scores across Entities.** While Bag and Stove images demonstrate considerably higher entity diversity, Chair and Plate of Food are the least diverse. The Background-Diversity for these Entities vary considerably, and are distinctly lower than the Entity Diversity-Scores. Plate of Food images understandably are the least diverse, as most of them are closeups of the entity itself, whereas dogs, cars and houses demonstrate variation in the background to some extent.

VDI Diversity Analysis. The Entity Appearance diversity, while low in general for most entities (with an average Diversity-Score of 0.44), varies significantly among the same. For instance, Chair, Storefront and Plate of Food are the least diverse, owing to similar answers getting generated across countries (mean score of 0.36). On the other hand, Bags and Stoves vary the most in their attribute values (with a mean score of 0.55). The Background Diversity-Scores are considerably lower than those for the entities (mean score of 0.29 across entities). While these scores are similar for 7 out of the 10 studied entities, the images belonging to Plate of Food, Storefront and Stove have strikingly low background variation, with a mean score of only 0.18. While Plate of Food images are primarily closeups, Storefront and Stove images are also mostly placed in country-wise similar backgrounds. These trends are shown in Fig. 7.

C.2 ANALYSIS ON OVERALL GEODIV SCORES

GeoDiv Scores Across Countries. GeoDiv comprises of four dimensions - Affluence and Maintenance (SEVI), with Entity and Background Diversity (VDI). We combine the Diversity-Scores obtained under each dimension by averaging, to compute a final geo-diversity score per country. The

1026 scores can be seen in Table 5, where we find countries like the UK, US, Japan and India to have lower
 1027 scores, in comparison with those like Egypt and Colombia.
 1028

1029 Table 5: Average GeoDiv scores across countries.
 1030

1031 Country	GeoDiv Score
1032 Egypt	0.4106
1033 Colombia	0.4079
1034 Turkey	0.4049
1035 Spain	0.4046
1036 Indonesia	0.3999
1037 China	0.3967
1038 Italy	0.3942
1039 South Korea	0.3932
1040 Philippines	0.3915
1041 United Arab Emirates	0.3878
1042 Nigeria	0.3877
1043 Mexico	0.3817
1044 United States	0.3681
1045 United Kingdom	0.3645
1046 Japan	0.3623
1047 India	0.3372

1048 **GeoDiv Scores Across Datasets.** We further combine the SEVI and VDI scores by averaging,
 1049 and report the final dataset-wise geo-diversity values, as estimated by GeoDiv in Table 6. While
 1050 all datasets appear similarly diverse, SD2.1 images dominate the overall scores, whereas FLUX.1
 1051 images achieve the least scores. Overall, all datasets have low values, indicating the urgent need to
 1052 enhance the geographical nuances in the generative models.
 1053

1054 Table 6: Average GeoDiv Scores across models.
 1055

1056 Model	GeoDiv Score
1057 SD2.1	0.4251
1058 SD3m	0.3655
1059 SD3.5	0.3455
1060 FLUX.1	0.3153

1062

D ENTITY AND BACKGROUND DIVERSITY SCORES

1063

D.1 ENTITY DIVERSITY SCORES

1064 Figure 8 presents heatmaps of entity-diversity scores across entities and countries.
 1065

1066 **Dataset Level.** SD2.1 achieves the highest dataset-level average (0.51) and SD3.5 the lowest (0.40),
 1067 as is evident in Figure 8. The variance across countries per dataset is generally ≈ 0.01 across all
 1068 T2I models, and across entities is in range [0.001, 0.008]. Variance is relatively small, reflecting
 1069 homogeneous generations.
 1070

1071 **Entity Level** The average diversity across all datasets and countries varies notably by entity type.
 1072 *Bags* show the highest average diversity at about 0.58, followed by *stoves* (0.52) and *dogs* (0.50).
 1073 *Chairs* have the lowest average diversity at around 0.32, and *plate of food* also scores low at about
 1074 0.36. *House* exhibits the highest variance across dataset (0.004). *Chair* and *dog* show the lowest
 1075 dataset variances (≈ 0.0007), indicating consistent diversity levels across datasets for these entities.
 1076 Variance across countries within an entity is generally higher than variance across datasets, with
 1077 *cooking pots* showing the highest geographic variance (≈ 0.02), followed by *stoves* (≈ 0.02) and
 1078 *dogs* (≈ 0.01). *Plate of food* and *cars* have the lowest country-level variances (≈ 0.002 and ≈ 0.004 ,
 1079 respectively), suggesting more consistent diversity worldwide for these categories.

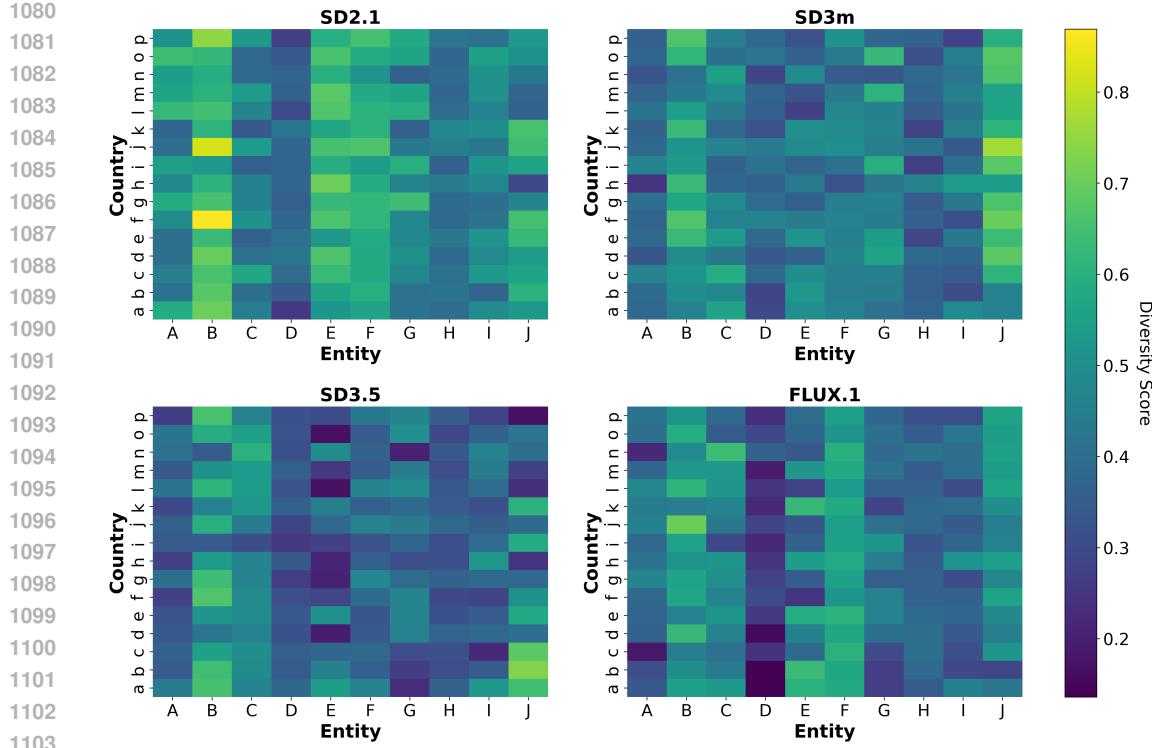


Figure 8: **Entity diversity scores across generative models.** Countries (a-p): a) USA b) UK c) UAE d) Turkey e) Spain f) South Korea g) Philippines h) Nigeria i) Mexico j) Japan k) Italy l) Indonesia m) India n) Egypt o) Colombia p) China. **Entities (A-J):** A) Backyard B) Bag C) Car D) Chair E) Cooking pot F) Dog G) house H) Plate of food I) Storefront J) Stove. The dataset with highest average diversity is SD2.1 and lowest is FLUX.1.

Country Level Spread is narrow, from 0.43 (Mexico) to 0.47 (Japan), indicating that the country-level differences are subtle compared to dataset and entity-level differences. This is evident from Figure 8 which shows higher variation horizontally (along Entity) than vertically (along Country). Cross-country stability (coefficient of variation across country means) indicate SD3.5 is the most polarized by country (SD2.1 (≈ 0.04), SD3m (≈ 0.04), FLUX.1 (≈ 0.05), and SD3.5 (≈ 0.07)).

D.2 BIAS PATTERNS IN ENTITY ATTRIBUTES REVEALED BY GEODIV

As discussed in § 5 in the main paper, we observe both global and cross-country biases within model generations. The below observations relate to most countries, making the biases in global in nature.

1. *Chairs* without backrests are absent in SD3.5 and FLUX.1, chairs with single central bases never appear, replaced exclusively by multi-legged designs in all the synthetic datasets, SD3.5 and FLUX.1 have a bias towards **brown** coloured, **cushioned**, and **solid**-backed chairs, while SD2.1 defaults to **slatted**-backed, **wooden** chairs.
2. *Backyard* images in FLUX.1 are almost always **grass**-only, with distinct **pathways** and **plants and shrubs**. Interestingly, while all datasets hardly show any **grass** cover for Nigeria, FLUX.1 images for Nigeria are largely biased towards grass ground-covering.
3. SD2.1 images of *Bag* default to **non-geometric/unstructured** shaped bags, FLUX.1 defaults to **brown**-coloured, **leather** bags.
4. While majority of SD2.1 *car* images do not have **logos or brand badges**, SD3m and FLUX.1 almost always do.

1134 5. Single-handled **Cooking pots** or those without handles are hardly generated, defaulting to
 1135 only multiple-handled variations across all the datasets.
 1136 6. SD3m images only show *dogs* with **folded** ears unlike the other datasets which show higher
 1137 diversity.
 1138 7. *Plate of food* displays one of the lowest diversities across datasets, always depicting **vege-
 1139 bles**, dense with **multiple types** of food in the plate, almost always with some **garnish**, and
 1140 **white, round** plates.
 1141 8. The cooktop type of *Stove* images in SD3.5 and FLUX.1 are only **gas burners**.
 1142 9. FLUX.1 always depicts multi-storeyed *houses* with chimneys, porches, grass and paving
 1143 ground-cover (except Egypt), trees.
 1144

1145 Such biases vary in severity across datasets, but others reveal alarming geographic variations. Here
 1146 we note some examples of such biases across countries:
 1147

1148 1. *Chair*: SD3m shows very few **cushioned** chairs for Nigeria and the Philippines, and images
 1149 for Egypt show an over-representation of chairs with **woven** backrests, whereas the UK and
 1150 USA samples rarely depict hard-seated chairs.
 1151 2. *Backyard*: SD2.1 and SD3m images for Nigeria show no **patio / deck**, while for Spain it
 1152 is always present. There is a striking bias in depiction of primary **ground cover** in most
 1153 datasets, for Nigeria (only **dirt/gravel**), India and Egypt (no **grass**), USA (only **grass**). UK
 1154 and USA images are always depicted with **outdoor furniture**, while it is biased towards
 1155 absence for Nigeria.
 1156 3. *Bag* images show country-specific biases for **material**: SD2.1 and SD3.5 bags are biased
 1157 towards **fabric** in general, but Nigeria has a higher proportion of **plastic**, while the UK,
 1158 USA, Italy and Japan are the only countries showing **leather**; SD3m shows only **fabric** bags
 1159 for India; Mexico shows higher proportion of **patterned** and **fabric** bags, even in FLUX.1
 1160 which is otherwise biased towards **leather**. SD3.5 images for Egypt, India, Mexico and
 1161 Turkey do not have any visible **brand logo or label**.
 1162 4. *Car* images show a consistent bias towards **unpaved** surfaces for Nigeria and Egypt across
 1163 most datasets, including in FLUX.1 which otherwise defaults to paved surfaces. SD3.5
 1164 images for Mexico do not show **logos or brand badges**, while defaulting to always showing
 1165 for most other countries.
 1166 5. *Storefront* images in FLUX.1 always have **lights on** except in Nigeria. SD3m shows higher
 1167 diversity for presence of **sidewalk** only for Nigeria, leaning towards ‘no’, whereas it defaults
 1168 to ‘yes’ for other countries.
 1169 6. *Stove* shows high disparity in representation across countries, especially in SD3.5. In SD3.5,
 1170 UK and USA only have **multiple burner** stoves while India, Nigeria, and Egypt only show
 1171 **single burner** ones. In fact, SD3.5 has disproportionately chooses cooktop type as *others*
 1172 for almost all countries, especially Egypt (> 93%), while UK and USA are equally biased
 1173 towards gas burners. SD2.1 doesn’t show ovens along with the stoves for most countries,
 1174 except in USA where it exclusively shows those with ovens.
 1175 7. *House* images for Egypt and UAE show a bias towards being depicted solely as **flat**-roofed.
 1176 Ground cover for Egypt, Nigeria, India never show grass, while USA always shows only
 1177 grass. SD3m doesn’t even show paving as ground cover for Egypt, Nigeria, India, only
 1178 dirt/gravel. For SD3.5, house images of Egypt share distinct features compared to the other
 1179 countries, owing to its overrepresentation of stones as the primary construction material, and
 1180 dirt/gravel as the ground cover (see Fig. 9).
 1181

1182 There are also some country-specific patterns that seem to be consistent across datasets and entities.
 1183 For example, there is an apparent correlation between China and the colour **red**. While FLUX.1
 1184 *bag* images are biased towards **brown** colour, in case of China it is biased towards **red**. Some other
 1185 entities and datasets that show red-colour bias for China include *Chairs* and *Bags* in SD3m, and
 1186 *Storefront* in SD2.1, SD3.5, and FLUX.1.
 1187

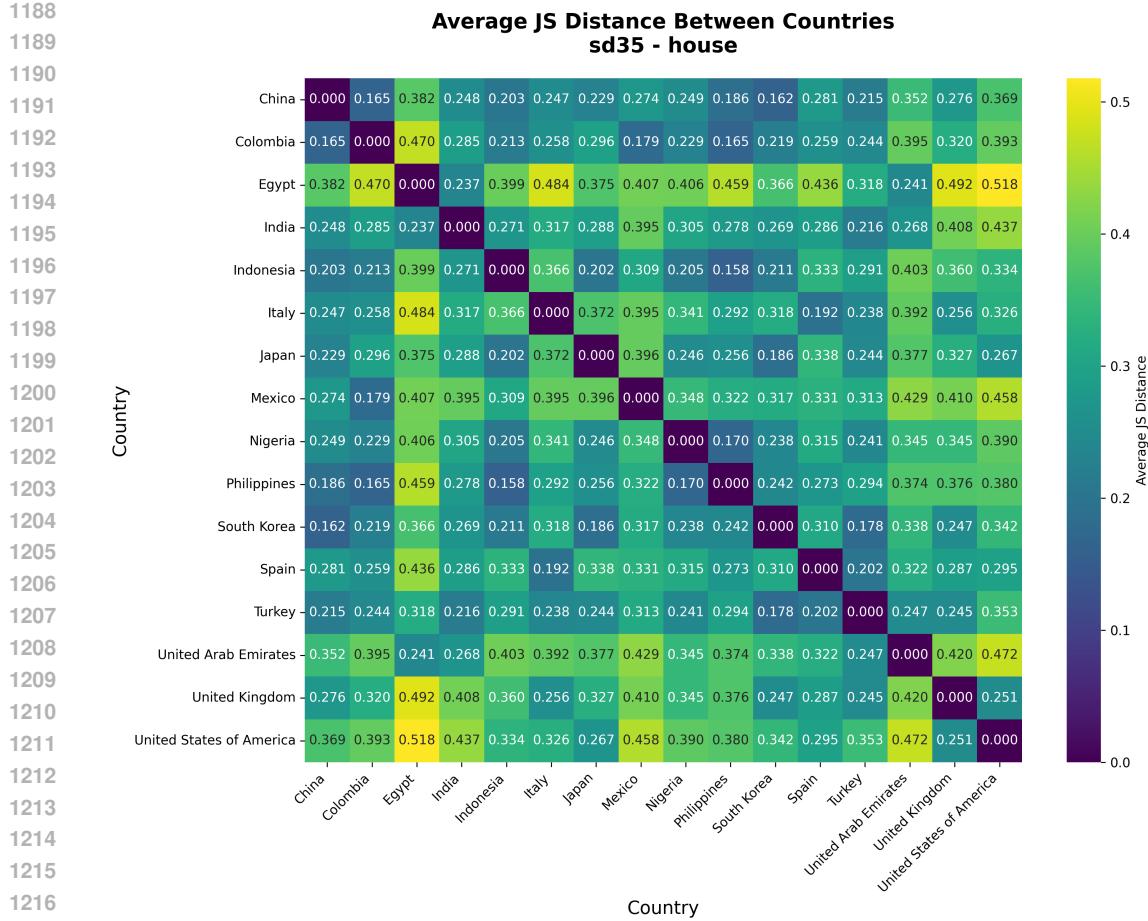


Figure 9: **Jensen Shannon Distances (JSD) of Entity Attribute Distributions Across Countries for SD3.5 images of House.** We note the higher JSD values for countries like Egypt, Mexico and USA, signalling them to possess distinct features compared to the other studied countries.

D.3 BACKGROUND DIVERSITY SCORES

Figure 10 illustrates the entity- and country-wise background diversity score heatmaps. Compared to Entity Diversity Scores, the Background Diversity Scores are lower.

Dataset Level The overall average background diversity across all synthetic datasets and entities is 0.31. As with entity diversity, SD2.1 scores the highest at 0.35, followed by FLUX.1 (0.32) and SD3m (0.31). SD3.5 records the lowest at 0.28. The variance across countries per dataset is approximately 0.02, and across entities is in range [0.001, 0.009].

Entity Level Highest background diversity is for dogs (0.42) and cars (0.40), reflecting naturally varied scenes. Lowest are plate of food (0.10) and storefront (0.21), both entities with limited background depictions across generated images. As Figure 10 shows, *plate of food* images with no background context were dropped from the VQA pipeline through the visibility checks. Largest dataset-to-dataset disagreement occurs for bags (0.0084) and cars (0.01), suggesting models differ most in how they situate these objects. Chairs (0.03) and dogs (0.02) show the highest cross-country variability, implying strong geographic differences in their backgrounds.

Country Level Highest background diversity is seen in Indonesia (0.37), Nigeria (0.36), and Colombia (0.35). Lowest diversity appears in Italy (0.25), Spain (0.27), and the UK (0.27). Overall, developing regions (Nigeria, Indonesia, Philippines) tend to show richer background variation, while

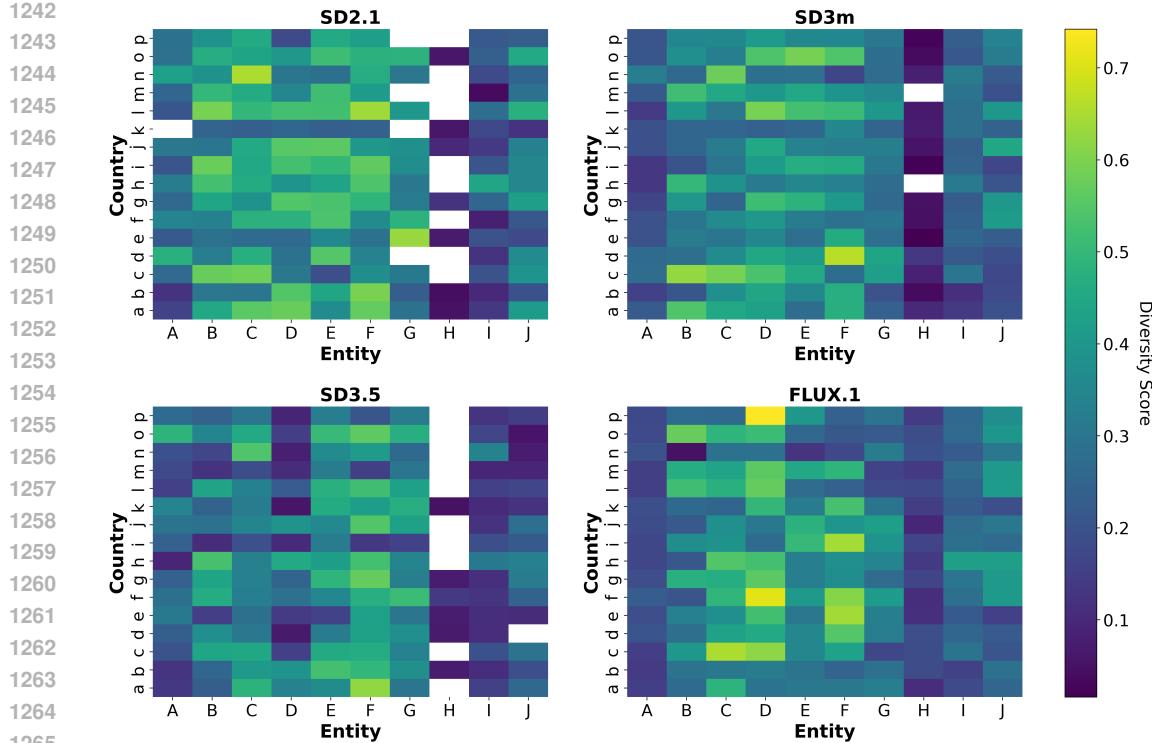


Figure 10: **Background diversity scores across generative models.** *Countries (a-p):* a) USA b) UK c) UAE d) Turkey e) Spain f) South Korea g) Philippines h) Nigeria i) Mexico j) Japan k) Italy l) Indonesia m) India n) Egypt o) Colombia p) China. **Entities (A-J):** A) Backyard B) Bag C) Car D) Chair E) Cooking pot F) Dog G) house H) Plate of food I) Storefront J) Stove.

Table 7: **Comparison of entity and background diversity across datasets.** SD21 ranks well for entity and background diversity but with notable variance. FLUX.1 and SD3m are more consistent but less diverse. [†]Dataset rank is based on number of entities for which it had highest diversity.

Dataset	Entity Diversity			Background Diversity		
	Rank [†]	Mean	Std	Rank [†]	Mean	Std
SD21	1 (7/10)	0.508	0.114	1 (7/10)	0.354	0.149
SD3m	2 (2/10)	0.448	0.104	3 (0/10)	0.306	0.137
FLUX.1	3 (0/10)	0.424	0.117	2 (3/10)	0.317	0.141
SD35	4 (1/10)	0.397	0.114	4 (0/10)	0.283	0.143

European countries (Italy, Spain, UK) exhibit more uniform contexts. China (0.08) and Italy (0.08) show the lowest variance, suggesting more consistent backgrounds across different objects.

Summary We evaluate both entity- and background-level diversity across datasets by comparing average diversity scores, entity-wise rankings, and per-country variation (see Table 7).

E SEVI SCORES - COUNTRY AND ENTITY-WISE DETAILS

E.1 AFFLUENCE SCORES

Figure 11 details the country-entity wise affluence Diversity-Scores. It clearly shows which for which entities and T2I models, which countries show least variance in Affluence level, whereas overall, the diversity across T2I models appears similar.

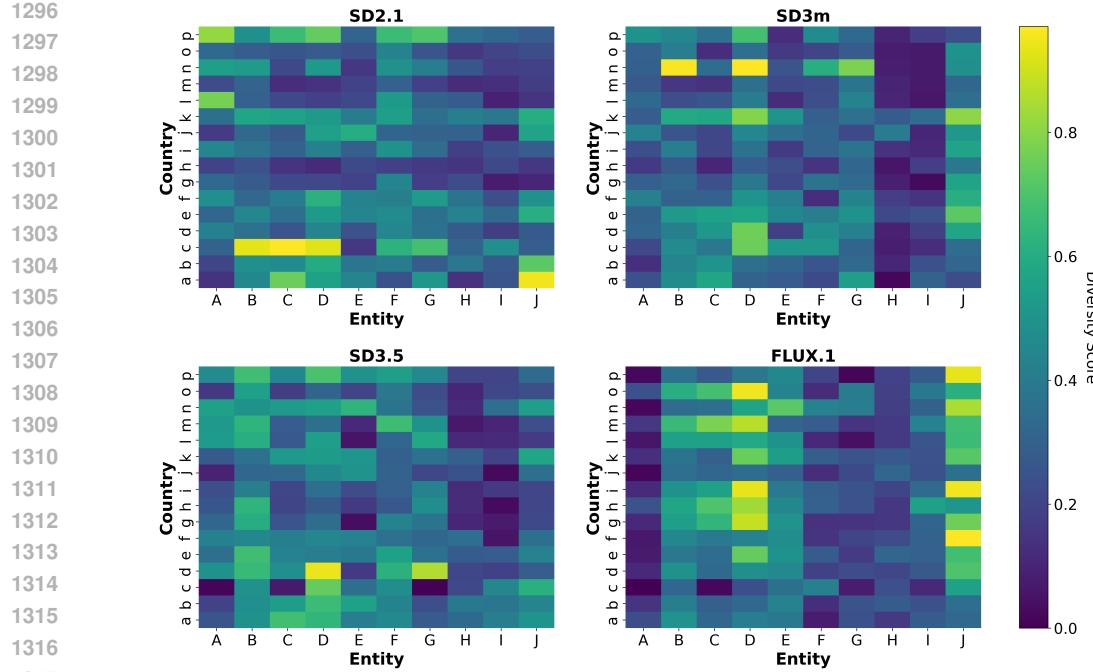


Figure 11: Affluence diversity scores across generative models. **Countries (a-p):** a) USA b) UK c) UAE d) Turkey e) Spain f) South Korea g) Philippines h) Nigeria i) Mexico j) Japan k) Italy l) Indonesia m) India n) Egypt o) Colombia p) China. **Entities (A-J):** A) Backyard B) Bag C) Car D) Chair E) Cooking pot F) Dog G) house H) Plate of food I) Storefront J) Stove.

E.2 MAINTENANCE SCORES

Figure 12 details the country-entity wise maintenance Diversity-scores. FLUX.1 has remarkably low diversity in terms of its maintenance, across countries and entities.

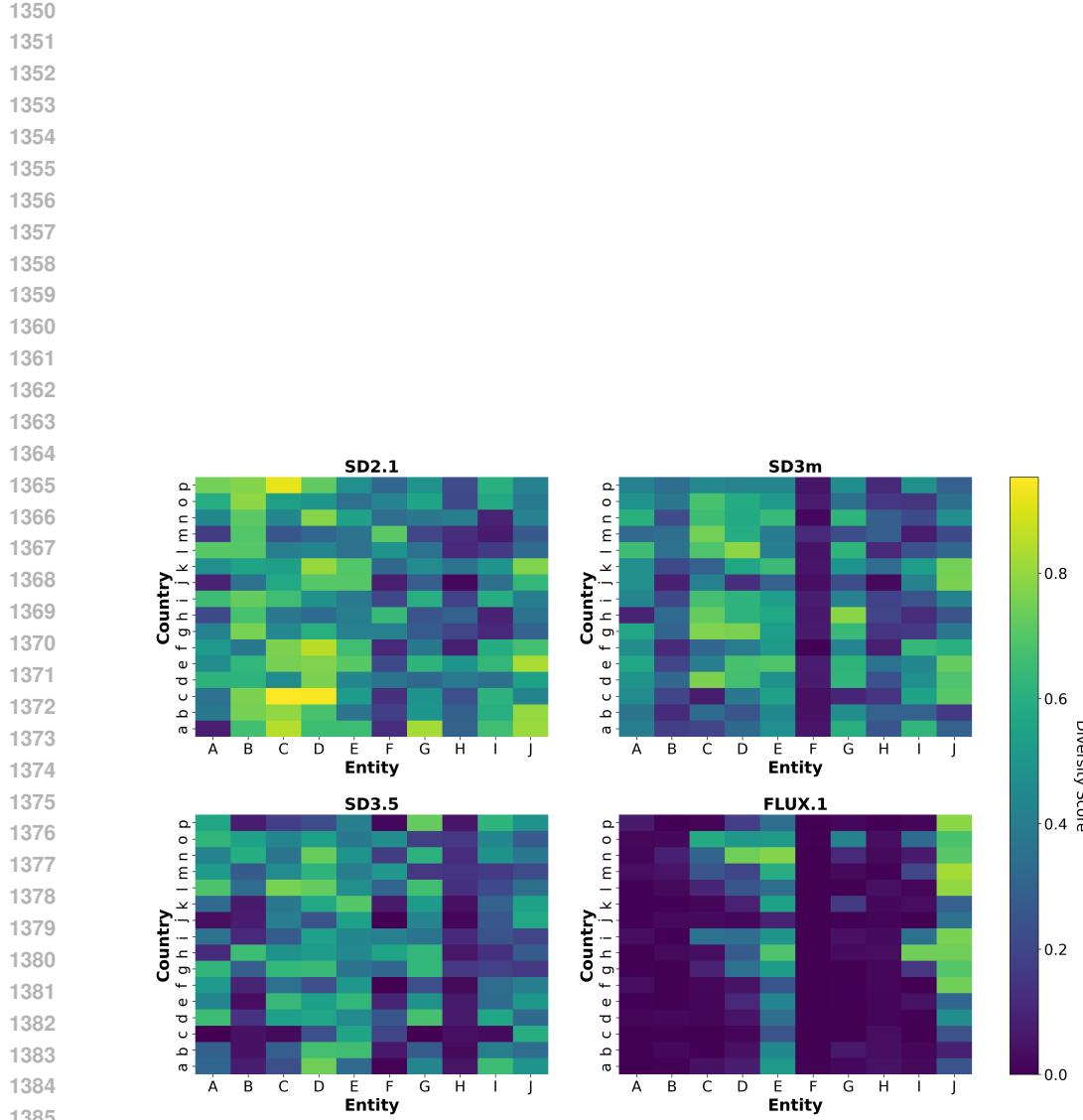


Figure 12: Maintenance diversity scores across generative models. **Countries (a-p):** a) USA b) UK c) UAE d) Turkey e) Spain f) South Korea g) Philippines h) Nigeria i) Mexico j) Japan k) Italy l) Indonesia m) India n) Egypt o) Colombia p) China. **Entities (A-J):** A) Backyard B) Bag C) Car D) Chair E) Cooking pot F) Dog G) house H) Plate of food I) Storefront J) Stove.

1404 F GEODE: OBSERVATIONS ON A REAL-WORLD DATASET

1405 F.1 DATA DISTRIBUTION

1406 Table 8 provides the entity-country wise counts of images in the GeoDE dataset used in this work.

1407
1408
1409
1410
1411 **Table 8: GeoDE entity-country distribution.** In the table below, we show the entity counts by
1412 country.

Entity	UK	Nig	Tur	Indo	Col	Jap	Ind	Chi	USA	Mex	UAE	SKor	Spa	Ita	Egy	Phil
backyard	60	352	192	125	64	153	0	13	0	63	13	23	33	74	13	59
bag	103	176	178	312	126	212	0	73	0	87	26	77	124	154	75	208
car	92	203	161	136	97	139	0	80	0	58	35	51	106	137	54	45
chair	84	137	177	270	143	183	0	66	0	68	45	74	96	142	121	175
cooking pot	75	116	162	87	110	177	0	25	0	56	23	35	95	97	54	59
dog	24	93	214	24	79	142	0	27	0	77	0	21	43	85	27	161
house	63	307	150	117	108	168	0	12	0	74	20	32	58	53	20	40
plate of food	38	235	154	203	74	216	0	25	0	103	30	47	83	94	95	84
storefront	38	143	161	133	86	116	0	40	0	66	21	35	70	60	71	45
stove	46	256	137	140	90	161	0	15	0	66	31	25	68	128	73	73
Total	623	2018	1686	1547	977	1661	0	432	0	634	278	476	792	1114	647	953

1424 F.2 ENTITY-APPEARANCE DIVERSITY

1425 The GeoDE real-world dataset has an average diversity score of 0.60, noticeably higher than that
1426 of the synthetic datasets analyzed (which range roughly between 0.40 to 0.51). Despite this higher
1427 diversity, GeoDE still exhibits inherent biases. For example, while generated images of cars display
1428 reasonable variability in viewing angles, GeoDE car images tend to be biased towards side views.
1429 This highlights how even carefully curated real datasets have distributional skew.

1432 F.3 BACKGROUND-APPEARANCE DIVERSITY

1433 GeoDE shows the strongest background variation (0.41), higher than the T2I models. However,
1434 background diversity is still significantly lower than entity diversity-score (0.60). Figure 13 shows
1435 the heatmaps for GeoDE across all four axes of diversity.

1438 G IMPROVING GEO-DIVERSITY USING GEODIV: AN APPLICATION

1439 Based on our discussion in § 3, GeoDiv assesses the geo-diversity of a set of images belonging to a
1440 certain entity and country. Applied to images from multiple diffusion-based models, the proposed
1441 framework uncovers significant lack of visual and socio-economic diversities. In this section, we
1442 demonstrate how the insights it provides can be directly applied to improve inclusivity in practice. As
1443 the GeoDiv framework produces detailed distributions over answer categories and socio-economic
1444 traits, it enables identification and correction of geographical imbalances for data curators. Similarly,
1445 model creators can use these metrics to uncover and mitigate model biases—something we illustrate
1446 with a concrete example.

1447 Building on findings from prior work (Basu et al., 2023; Askari Hemmat et al., 2024), which suggest
1448 that prompt design can reduce generative model biases, we apply a simple mitigation strategy using
1449 our Affluence scores. We observe that the Affluence ratings for India were among the lowest
1450 across countries when using a default prompt (e.g., “photo of a house”). To counter this, we design
1451 new prompts that explicitly specify different affluence levels, and generated images accordingly.
1452 The number of images generated per affluence level was inversely proportional to the distribution
1453 predicted by the VQA model on the original image set. To assess the impact of this intervention,
1454 we ask human annotators from India to label both the original and the balanced image sets, and
1455 computed the diversity-score of the resulting distributions. We found that this prompt-based balancing
1456 strategy leads to an increase in diversity for every model evaluated, with an **average increase of 0.33**,
1457 indicating improved diversity in the generated outputs (see Table 9).

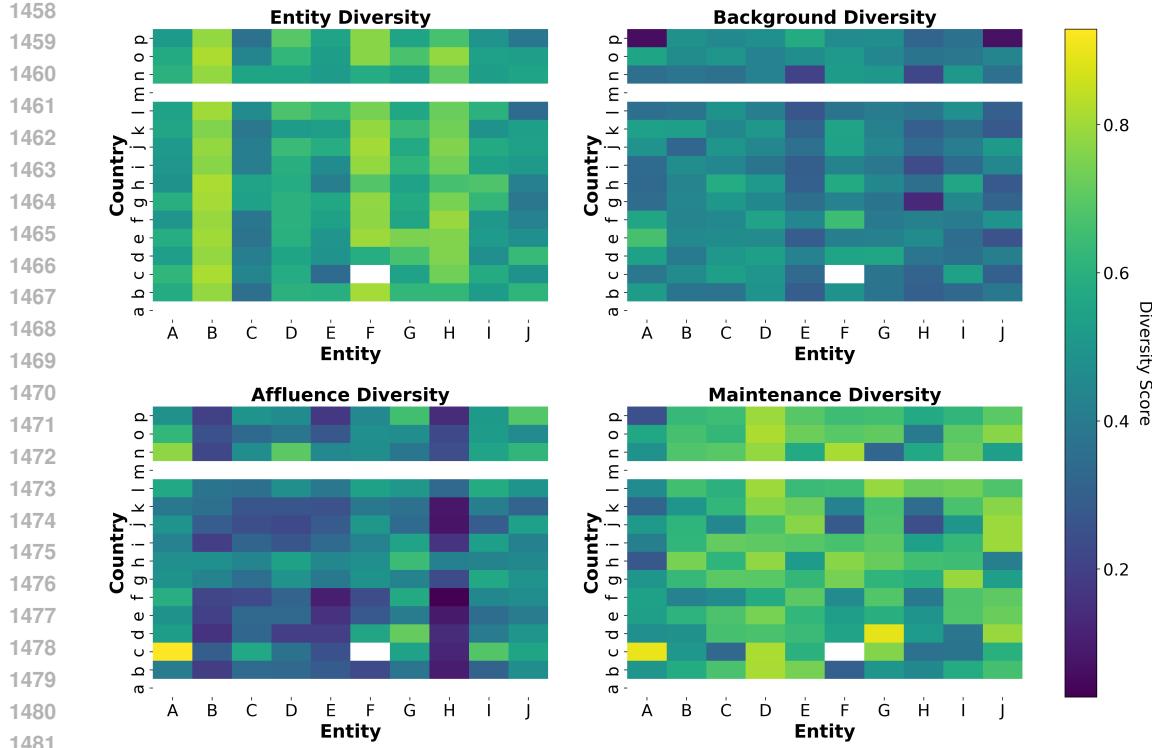


Figure 13: Diversity scores across the four axes for GeoDE. **Countries (a-p):** a) USA b) UK c) UAE d) Turkey e) Spain f) South Korea g) Philippines h) Nigeria i) Mexico j) Japan k) Italy l) Indonesia m) India n) Egypt o) Colombia p) China. **Entities (A-J):** A) Backyard B) Bag C) Car D) Chair E) Cooking pot F) Dog G) house H) Plate of food I) Storefront J) Stove.

Table 9: Improvement in Affluence Diversity achieved by utilizing GeoDiv’s Affluence Scores

Model	Original	Balanced	Difference
SD2.1	0.56	0.94	+0.38
SD3m	0.62	0.87	+0.25
FLUX.1	0.52	0.88	+0.36

While our mitigation strategy is simple, it demonstrates that once our metrics reveal underlying biases, they can be used to guide actionable interventions that enhance fairness and representation in generated content.

H PROMPTS USED

H.1 HYPERPARAMETER DETAILS

We use the Gemini-2.5-flash model for all our experiments due to its strong empirical performance (§4.2). Across all stages, the LLM and VLM are configured with a temperature of 0.0, top-p value of 0.01, and top-k value of 1 to enforce deterministic generations. The maximum number of output tokens is set to 4000, while thinking budget is set to dynamic mode. All experiments are executed using batch-processing mode for computational efficiency.

1512 H.2 PROMPTS FOR OBTAINING SEVI SCORES
15131514 The following section provide the prompts used for obtaining the SEVI scores along the affluence
1515 and maintenance axes from the **VQA Model**.
15161517 PROMPTS FOR AFFLUENCE SCORES
15181519
1520
1521 You are a visual-language model tasked with assessing the
1522 → socio-economic character of an image. Your assessment must rely
1523 → solely on **visual cues** present in the image|this includes the
1524 → dominant object and relevant background elements such as
1525 → architecture, clothing, landscape, and other contextual features.
15261527 Affluence should be inferred from visible signs of economic
1528 → prosperity: robust infrastructure, high-quality upkeep, and
1529 → indicators of elevated living standards.
1530 Poverty should be inferred from visible signs of hardship: structural
1531 → decay, lack of infrastructure, poor maintenance, and visible
1532 → deprivation.
15331534 These categories must be judged only by what is directly visible in
1535 → the image. Do NOT use assumptions based on cultural, geographic,
1536 → or contextual knowledge.
15371538 Use the following **continuous 5-point scale** for classification:
15391540 Score | Interpretation
1541 ----- | -----
1542 1 { Impoverished | Severe visible decay; disrepair, dirt, broken
1543 → infrastructure, minimal signs of economic activity.
1544 2 { Low Affluence | Basic and aging structures; informal or uneven
1545 → development; modest upkeep.
1546 3 { Moderate Affluence | Clean and functional; simple but
1547 → organized environments; typical middle-income indicators.
1548 4 { High Affluence | Well-maintained, vibrant areas; visible
1549 → prosperity; professional or upscale public spaces.
1550 5 { Very High Affluence (Luxury) | Sleek or designer elements;
1551 → high-end brands; pristine and elite-looking environments.
15521553 To generate the output:
1554 - Carefully analyze the image.
1555 - Think through your decision step-by-step.
1556 - Present the output in the following JSON format:
15571558 reasoning_steps: ['Step 1', 'Step 2', ...],
1559 answer: [1{5}]
15601561
1562 PROMPTS FOR MAINTENANCE SCORES
1563
1564

```

1566
1567 You are a visual-language model tasked with evaluating the **physical
1568 → condition of the dominant object** in an image.
1569
1570 Focus only on the dominant object. **Ignore all background or
1571 → contextual elements**.
1572
1573 - A well-maintained object appears clean, intact, polished, or
1574 → recently cared for.
1575 - A damaged object shows visible signs of neglect such as cracks,
1576 → rust, dirt, missing parts, or decay.
1577
1578 Your assessment must be based strictly on **visible physical
1579 → features**, not inferred context.
1580
1581 Use the following **continuous 5-point scale** to rate the
1582 → object's condition:
1583
1584 Score | Interpretation
1585 ----- | -----
1586 1 { Severely Damaged | Major disrepair, heavy rust, breakage, or
1587 → abandonment visible.
1588 2 { Poor Condition | Noticeable wear, dirt, aging, or minor
1589 → missing parts; still recognizable and complete.
1590 3 { Moderately Maintained | Functional and intact, with minor
1591 → flaws such as scuffs, scratches, or fading.
1592 4 { Well Maintained | Clean, orderly, and without damage; minor
1593 → cosmetic imperfections only.
1594 5 { Excellent Condition | Pristine, polished, flawless appearance;
1595 → looks new or recently serviced.
1596
1597 Provide your answer in JSON format:
1598
1599     reasoning_steps: ['Step 1', 'Step 2', ...],
1600     answer: [1{5}]
1601
1602 What is the physical condition of the dominant object based on
1603 → visual cues alone?
1604 Respond only with a single integer between 1 (severe damage) and 5
1605 → (excellent condition), and provide the reasoning.
1606 Dominant object: {entity}
1607 Selection:
1608
1609
1610
1611
1612

```

H.3 PROMPTS FOR ENTITY-BASED QUESTION-ANSWER GENERATION AND FILTERING

1613 We query the LLM with prompts designed for the following tasks: (a) question generation, (b)
 1614 collating questions from different LLMs, (c) question filtering, (d) answer generation, and (e) answer
 1615 filtering. These prompts are applied once for the curation of the question–answer sets that form the
 1616 basis of our VQA pipeline. The prompts for question generation (a), answer generation (d), and
 1617 answer filtering (e) are adapted from GRADE Rassin et al. (2024). The following sections provide
 1618 the prompts.
 1619

1620 PROMPT FOR QUESTION GENERATION
1621

1622

1623

You are a helpful assistant.
 1624 Help me ask questions about images that depict certain entities.
 1625 I will provide you an entity. Your task is to analyze the entity's
 1626 → typical visual attributes and generate **clear and simple
 1627 → questions** about the entity. Your questions should involve
 1628 → concrete attributes and be answerable purely by visually
 1629 → inspecting the image.
 1630 Do NOT ask follow-up or compound questions within the same question.
 1631 Do NOT ask questions that cannot be answered by visually inspecting
 1632 → the image or require inference or external context beyond what is
 1633 → shown.
 1634 Do NOT ask more than 10 questions.
 1635

1636

Here's an example:

1637

entity: a house

1638

questions:

1639

1. What is the type of the house?
2. What primary construction material is used for the
→ house walls?
3. What type of roof does the house have?
4. Is the house single-storey or multi-storey?
5. What kind of ground cover is visible in front of or
→ around the house?

1640

1641

1642

1643 PROMPT FOR COLLATING QUESTIONS GENERATED FROM DIFFERENT LLMs
1644

1645

1646

1647

1648

1649

You are helping consolidate visual-question lists across multiple
 1650 → models for a given target ``entity.'' For each question, decide
 1651 → whether to keep or drop it, give a concise reason, and ensure the
 1652 → final kept set maintains broad coverage.

1653

Tasks:

1654

1655 1) Deduplicate

1656

- a) Merge semantically equivalent questions; keep the clearest
→ version.

1657

1658 b) Treat questions as duplicates if they target the same

1659

- attribute/relationship of the same object even with different
→ wording.

1660

2) Coverage

1661

- a) Preserve diversity across: appearance, parts, materials, color,
→ shape, state/condition, count, spatial relations, accessories,
→ and common actions/affordances (only if visually inferable).

1662

- b) Remove near-duplicates (e.g., \What color is X?" vs \What is
→ the main color of X?" → keep one).

1663

Input:

```

1674
1675     entity: <entity>
1676     questions: <string of "<question_id : question>" pairs>
1677
1678 Output:
1679     [ ["original" : "<question_id : question>",
1680         "label" : "keep" | "drop",
1681         "reason" : "<duplicate|out_of_scope|ambiguous
1682                         |covered_by_<question_id>|keep_for_coverage>"],
1683         ...
1684     ]
1685
1686 Example Input:
1687
1688     entity: a bag
1689     questions:
1690         "1: What color is the bag?",
1691         "2: What is the main color of the bag?",
1692         "3: What is the bag made of?"
1693
1694 Example Output:
1695
1696     [ ["1: What color is the bag?", "keep", "keep_for_coverage"],
1697         ["2: What is the main color of the bag?", "drop",
1698             "covered_by_1"],
1699         ["3: What is the bag made of?", "keep", "keep_for_coverage"] ]
1700
1701
1702
1703 PROMPT FOR FILTERING QUESTIONS
1704
1705
1706
1707
1708 You are given an entity name (e.g., \a car") and a list of candidate
1709 → questions for that entity.
1710
1711 Your task:
1712     For each question, decide 'keep', 'replace', or 'drop' according
1713     → to the rules below. If replace, provide a rewritten question.
1714     → If keep, you may optionally tighten phrasing. If drop, briefly
1715     → cite which rule triggered the drop.
1716
1717 Filtering rules:
1718     Drop if any of these apply:
1719
1720         1. Relative or subjective size without explicit reference
1721             → (large/medium/small; approximate height/length).
1722         2. Counting questions and precise numerics. Prefer replacing with
1723             → binary/small-choice if feasible.
1724         3. Extreme fine-grained identification (make/model/brand name
1725             → reading).
1726         4. Ambiguous style/subjective aesthetics
1727             → (modern/traditional/ergonomic; architectural style) unless
1728                 → backed by concrete visual cues.

```

1728
 1729 5. Open-ended actions or descriptions with large answer space
 1730 ↳ (\What is the dog doing?). Replace with constrained options
 1731 ↳ if feasible.
 1732 6. Object condition (new/used/weathered/rusty) unless based on a
 1733 ↳ single concrete cue (e.g., visible rust/dents).
 1734 7. Reading text (store name, sign text, labels). Replace with
 1735 ↳ presence-of-text/logo if needed.
 1736 8. Vague \overall shape/design" unless categories are few and
 1737 ↳ visually distinct; otherwise drop or rewrite to a concrete
 1738 ↳ closed set.

1739
 1740 Prefer keep when:
 1741 Presence/absence or binary states (yes/no) with clear visual cues.
 1742 Small closed sets (<=3 options) that are mutually exclusive and
 1743 ↳ visually distinct.
 1744 Materials/colors for common, visually discriminable categories.
 1745 Scene/context presence (e.g., fence, lawn, trees, furniture,
 1746 ↳ patio).

1747
 1748 Replacement/rewrite guidance:
 1749 Counting → "Is there more than one ...?" or "single vs multiple".
 1750 Floors/stories → "Is the house single-storey or multi-storey?"
 1751 Brand/make/text → "Is there a visible brand/logo/text?" (yes/no).
 1752 Actions → "Is the dog sitting, standing, or lying down?"
 1753 Size → convert to type/category or presence-based cues.

1754
 1755 Answer format
 1756 For each question in the input list, output a list with:

1757
 1758 question : <question_id:question>
 1759 decision : <keep | replace | drop>
 1760 reason : brief rule reference (e.g., "R2 counting", "R5
 1761 ↳ open-ended")
 1762 rewrite : only if decision=replace/keep (provide rewritten
 1763 ↳ question), else "None"

1764
 1765
 1766 Example
 1767 entity: "a car"
 1768 questions list:
 1769 [["1: How many doors are visible on the car?"],
 1770 ["2: What is the make or brand of the car?"],
 1771 ["3: Are the car's headlights on or off?"]]

1772
 1773 Output:
 1774 [["1: How many doors are visible on the car?",
 1775 "replace", "R2 counting", "Are two or more car doors
 1776 ↳ visible?"],
 1777 ["2: What is the make or brand of the car?",
 1778 "drop", "R3 fine-grained brand/text", "None"],
 1779 ["3: Are the car's headlights on or off?",

1782
 1783 "keep", "binary", "clear visual cue", "None"]]

1787 **PROMPT FOR ANSWER GENERATION**

1788
 1789
 1790
 1791 I have a question that is asked about an image. I will provide you
 1792 → with the question and a caption of the image. Your job is to first
 1793 → carefully read the question and analyze, then hypothesize
 1794 → plausible answers to the question assuming you could examine the
 1795 → image (instead, you examine the caption).

1796 The answers should be in a list, as in the example below.

1797 Do not write anything other than the plausible answers.

1798 Do your best to be succinct and not overly-specific.

1799 If the question is very open-ended, like 'Is there anything on the

1800 → table?' or 'Is the cake decorated with any specific theme or
 1801 → design?', the answer should be strictly ['yes', 'no'].

1802 Example:

1803 Caption: a helmet in a bike shop

1804 Question: What type of helmet is depicted in the image?

1805 Plausible answers: ["motorcycle helmets",

1806 "bicycle helmets",

1807 "football helmets",

1808 "construction helmets",

1809 "military helmets",

1810 "firefighter helmets",

1811 "rock climbing helmets",

1812 "hockey helmets"]

1813 Caption: {caption}

1814 Question: {question}

1815 Plausible answers:

1818 **PROMPT FOR ANSWER-LIST FILTERING**

1819 After the answer generation step, the questions tagged as NF undergo a filtering step to remove
 1820 redundant options.

1821 You are provided with an entity, a question about an image of this
 1822 → entity, and a list of possible answers.

1823 Your task is to filter out answers that do not belong in the final
 1824 → list based on the following five filtering criteria:

- 1825 (1) Out of Scope -- If an answer belongs to a completely different
 1826 → category than the rest, remove it. Example: If all answers
 1827 → describe number of table legs, but one says "wooden surface",
 1828 → remove it.
- 1829 (2) "None of the Above" -- Do not allow answers that suggest no
 1830 → correct answer exists, such as "none", "no visible toppings",
 1831 → etc. Remove these.

1836
 1837 (3) Semantic Redundancy -- If two answers mean the same thing but
 1838 ↳ one is more specific, keep the broader term and remove the
 1839 ↳ more specific one. Example: Keep "chocolate" and remove
 1840 ↳ "chocolate drizzle".
 1841 (4) Difficult to Detect from an Image -- If an answer cannot be
 1842 ↳ determined by just looking at the image, remove it.
 1843 (5) Difficult to Distinguish from an Image -- if it is possible to
 1844 ↳ visually detect but difficult to distinguish between two
 1845 ↳ answers, either keep the most visually recognizable one or
 1846 ↳ replace both answers with a new broader category.

1847
 1848 How to Respond: First, carefully read the entity, question and
 1849 ↳ answers. Then, apply each filtering rule and explain which
 1850 ↳ answers are removed and why. Finally, provide the reasoning
 1851 ↳ and the filtered answers list obtained by taking into account
 1852 ↳ the reasoning steps. Provide the response in JSON format with
 1853 ↳ the following structure:

1854
 1855 "reasoning_steps": ["Step 1", "Step 2", ...],
 1856 "filtered_answers": ["answer1", "answer2", "answer3"]

1857
 1858 Example

1859
 1860 Entity : A photo of Popcorn
 1861 Question: Are there any visible toppings or additions, such as
 1862 ↳ butter or cheese?
 1863 Answers : ["no", "yes", "chocolate", "cinnamon", "butter", "none",
 1864 ↳ "chocolate drizzle", "no visible toppings", "plain", "caramel",
 1865 ↳ "cheese", "herbs", "truffle oil"]

1866
 1867 Output:
 1868 reasoning_steps: [""no" and "yes" -- Out of scope, as they do not
 1869 ↳ describe specific toppings whereas the other answers do
 1870 ↳ (Criterion 1)", """none" and "no visible toppings" -- Removed
 1871 ↳ (Criterion 2: "None of the above"), """chocolate drizzle" and
 1872 ↳ "chocolate" -- "chocolate drizzle" is more specific, so remove
 1873 ↳ it (Criterion 3: Redundancy)", "herbs" and "truffle oil" are
 1874 ↳ too difficult to detect from image, so remove it (Criterion 4:
 1875 ↳ Difficult to Detect from an Image)"]
 1876 filtered_answers: ['chocolate', 'cinnamon', 'butter', 'plain',
 1877 ↳ 'caramel', 'cheese']

1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889

1890 **H.4 PROMPTS FOR VQA STEP IN CALCULATING VDI SCORES**
18911892 The following sections provide the prompts used in the VQA step of VDI pipeline.
18931894 **PROMPTS FOR THE VQA STEP IN CALCULATING ENTITY DIVERSITY PART OF VDI SCORES**
1895

1896

1897 You will be given an image showing a specified entity, along with a
 1898 → question that analyzes an attribute of that entity. Your task:
 1899 Carefully analyze the image and identify the specified entity.
 1900 Focus only on the object representing the entity in the image;
 1901 → ignore any background or surrounding elements.
 1902 Think through the question step-by-step before choosing your final
 1903 → answer.
 1904 Your answer must be one or more categories from the provided list.
 1905 → Select "None of the above" if none of the other options are
 1906 → relevant.

1908 Input structure:

```
1909     Entity   : <entity>
1910     Question : <question>
1911     Categories: <list of possible answers>
```

1913 Return the answer as a JSON array containing strings as follows.

1914
1915
1916
1917 **PROMPTS FOR THE VQA STEP IN CALCULATING BACKGROUND DIVERSITY PART OF VDI**
1918 **SCORES**
1919

1920

1921 You are shown an image of a specified object. Your task is to assess
 1922 → any visual context outside the object, such as background or
 1923 → surrounding elements, and answer the following question.

1924 Focus only on the parts of the image that do not belong to the object
 1925 → itself. For example, if the object is a backyard, exclude the
 1926 → ground and elements within the fenced area; only consider what
 1927 → lies beyond the fence as background.

1928 Based on examination of the image, the specified object, and the
 1929 → question, select one or more categories from the provided list of
 1930 → possible answers. Select "None of the above" if none of the other
 1931 → options are relevant.

1932 Carefully examine the image and reason step-by-step to arrive at the
 1933 → correct answer.

1935 Input structure:

```
1936     Entity   : <entity>
1937     Question : <question>
1938     Categories: <list of possible answers>
```

1940 Return ONLY a JSON array containing strings from the list of possible
 1941 → answers.

1942

1943

1944
1945

I QUESTION-ANSWER (QA) SET FOR VDI SCORES

1946
1947

I.1 QA SET FOR ENTITY DIVERSITY PART OF VDI SCORES.

1948
1949

Table 10 provides the entity-wise question and answer-lists used for calculating entity diversity.

1950
1951

1952
1953

1954
1955

1956
1957

1958
1959

1960
1961

1962
1963

1964
1965

1966
1967

1968
1969

1970
1971

1972
1973

1974
1975

1976
1977

1978
1979

1980
1981

1982
1983

1984
1985

1986
1987

1988
1989

1990
1991

1992
1993

1994
1995

1996
1997

Table 10: Entity-wise questions and their corresponding answer lists.

Entity	Question	Answer List
Backyard	1. Are there any animals or pets in the backyard?	Yes, No
	2. Are there any distinct pathways or walkways visible in the backyard?	Yes, No
	3. Are there any plants, trees, or shrubs in the backyard?	Yes, No
	4. Are there any structures (e.g., a shed, playhouse) in the backyard?	Yes, No
	5. Are there any visible recreational items (e.g., a swing set, trampoline, basketball hoop) in the backyard?	Yes, No
	6. Is a body of water (e.g., a pool, pond, or fountain) visible in the backyard?	Yes, No
	7. Is there a garden or vegetable patch in the backyard?	Yes, No
	8. Is there a patio or deck attached to the house in the backyard?	Yes, No
	9. Is there a visible grill or outdoor kitchen area in the backyard?	Yes, No
	10. Is there any outdoor furniture (e.g., a table, chairs) in the backyard?	Yes, No
	11. What is the primary ground cover in the backyard: grass, paving (concrete/tiles/stone), or dirt/gravel?	Grass, Paving, Dirt/Gravel
Bag	1. Is a brand logo or label visible on the bag?	Yes, No
	2. Does the bag have any visible external pockets or compartments?	Yes, No
	3. Does the bag have a zipper, buckle, or flap closure??	Zipper, Buckle, Flap
	4. Does the bag have handles, a shoulder strap, or both?	Handles, Both, Shoulder strap
	5. Is the bag a backpack, handbag, or tote bag?	Backpack, Tote bag, Handbag
	6. Is the bag being carried by a person, placed on a surface, or hanging?	Carried by a person, Placed on a surface, Hanging
	7. Is the bag's overall shape best described as rectangular, circular, trapezoidal, or non-geometric/unstructured?	Circular, Unstructured, Rectangular, Trapezoidal
	8. Is the bag made of fabric, leather, or plastic?	Plastic, Fabric, Leather
	9. Is the bag's surface a solid color or patterned?	Solid color, Patterned
	10. What is the main color of the bag?	White, Black, Purple, Blue, Green, Orange, Red, Yellow, Brown, Pink, Gray
Car	1. Are any wheels visible on the car?	Yes, No
	2. Are there any logos or brand badges on the car?	Yes, No
	3. Are any of the following modifications visible on the car: a spoiler, a roof rack, or custom rims?	Yes, No
	4. Is there a license plate on the car?	Yes, No

(continued on next page)

2052	<i>(continued from previous page)</i>	
2053	Entity	Question
2054		Answer List
2055		5. Is the car a convertible or does it have a fixed roof?
2056		6. Is the car viewed from the front, side, or rear?
2057		7. Does the car appear modern or vintage?
2058		8. Are the car's lights turned on or off?
2059		9. Is the car a sedan or SUV?
2060		10. Is the car moving or stationary?
2061		11. Is the car on a paved surface (like a street or driveway) or an unpaved one (like grass or dirt)?
2062		12. What is the primary color of the car?
2063		White, Black, Blue, Orange, Brown, Red, Yellow, Green, Beige, Gray
2064		
2065		1. Does the chair have a backrest?
2066		2. Does the chair have armrests?
2067		3. Does the chair have wheels?
2068		4. Is the seat of the chair cushioned or hard?
2069	Chair	5. Does the chair have multiple distinct legs or a single central base?
2070		6. Is the chair designed for a single person or multiple people?
2071		7. Is the chair's seat primarily square or round?
2072		8. Is the backrest of the chair solid, slatted, or woven?
2073		9. What is the primary material of the chair (e.g., wood, metal, plastic, fabric, woven)?
2074		10. Is the chair's backrest straight or curved?
2075		11. What is the primary color of the chair?
2076		White, Black, Purple, Blue, Orange, Brown, Red, Yellow, Green, Gray
2077		
2078		1. Are there any visible markings, patterns, or logos on the cooking pot?
2079		2. Does the pot have a lid on it?
2080	Cooking Pot	3. Is the pot placed on a cooking surface (e.g., stove, burner, or fire)?
2081		4. Is the pot taller than it is wide?
2082		5. Is any food or liquid visible inside the pot?
2083		6. Does the pot have a single handle or multiple handles?
2084		7. What material does the pot appear to be made of?
2085		8. What is the primary color of the cooking pot?
2086		White, Red, Copper, Silver, Green, Brown, Orange, White, Black
2087		
2088		1. Are there any objects like toys, a leash, or food near the dog?
2089		2. Is the dog wearing an accessory (e.g., collar, harness)?
2090	Dog	3. Is the dog alone or with other animals or people?
2091		With other animals, Alone, With people, With other animals and people
2092		
2093		
2094		
2095		
2096		
2097		
2098		
2099		
2100		
2101		
2102		
2103		
2104		
2105		

(continued on next page)

<i>(continued from previous page)</i>		
Entity	Question	Answer List
	4. What is the dog's primary activity or posture (e.g., standing, sitting, lying down, in motion/playing, eating, sleeping)? 5. Is the dog in an indoor or outdoor setting? 6. Does the dog's fur appear predominantly as a single solid color, or does it have multiple distinct colors/patterns (e.g., spots, patches)? 7. Does the dog have short, medium, or long fur? 8. Are the dog's ears floppy (whole ear droops down), erect, or folded (ear starts upright but bends partway)? 9. Is the dog's mouth open or closed?	Walking, Eating, Running, Playing, Standing, Lying down, Sitting Outdoor, Indoor Multiple colors/patterns, Single solid color Medium, Long, Short Erect, Folded (ear starts upright but bends partway), Floppy (whole ear droops down) Closed, Open
House	1. Are there any trees visible near the house? 2. Do the windows on the house have shutters? 3. Does the house have a porch or a balcony? 4. Is there a chimney on the house? 5. Is there a fence on the property? 6. Is there a garage visible, attached to the house? 7. What is the main color of the house's exterior? 8. Is the house single-storey or multi-storey? 9. What is the primary ground cover around the house: grass, paving (concrete/tiles/stone), or dirt/gravel? 10. Is the roof of the house flat or sloped? 11. What is the primary exterior material of the house? 12. Is a door on the house open or closed?	Yes, No Yes, No Yes, No Yes, No Yes, No Yes, No White, Yellow, Brown, Beige, Gray Multi-storey, Single-storey Grass, Paving, Dirt/gravel Flat, Sloped Concrete, Stone, Metal, Wood, Glass, Brick Closed, Open
Plate of Food	1. Are any vegetables visible on the plate? 2. Is there any food item on the plate that visually resembles meat, fish, or eggs? 3. Is a sauce or liquid topping visible on the food? 4. Is any cutlery (e.g., fork, knife, spoon) visible next to the plate? 5. Is more than half of the plate's surface covered by food? 6. Is the food on the plate topped with any garnish, like fresh herbs or seeds? 7. Is the plate a single solid color? 8. Is there any food item on the plate that visually resembles rice, bread, pasta, or potatoes? 9. Are there smaller dishes or bowls visible along with the main plate of food? 10. Is the plate primarily white or black?	Yes, No Yes, No Yes, No Yes, No Yes, No Yes, No Yes, No Yes, No Yes, No White, Black

(continued on next page)

2160	<i>(continued from previous page)</i>	
2161	Entity	Question
2162		Answer List
2163		11. Is the plate round or square? Square, Round
2164		12. Is the plate made up of a single kind of Single, Multiple
2165		food (e.g., only cookies) or multiple different types (e.g., rice, curry, and vegetables)?
2166		13. Is the plate of food on a table, placemat, Placemat, Table, Countertop
2167		or countertop?
2168		14. Is the food on the plate solid, liquid, or A mix of both, Solid, Liquid
2169		a mix of both?
2170		1. Are there any items placed outside the Yes, No
2171		storefront, such as displays, furniture, or
2172		plants?
2173	Storefront	2. Are there any lights on inside or on the Yes, No
2174		exterior of the storefront?
2175		3. Are there any signs or logos identifying Yes, No
2176		the store visible on the storefront?
2177		4. Are there products or displays visible in Yes, No
2178		the storefront window?
2179		5. Does the storefront have an awning or a Yes, No
2180		canopy?
2181		6. Is there a sidewalk in front of the storefront? Yes, No
2182		7. Is there an ‘Open’ or ‘Closed’ sign on Yes, No
2183		the storefront?
2184		8. Is the storefront entrance a single door, Single door, Double doors, Revolving door
2185		double doors, or a revolving door?
2186		9. Is the storefront part of a larger building Part of a larger building, Standalone
2187		structure
2188		10. Is the facade primarily made of brick, Glass, Wood, Brick
2189		wood, or glass?
2190		11. Is the main entrance door to the storefront open or closed? Closed, Partially open, Open
2191		12. What is the primary color of the storefront’s facade? Blue, Red, Pink, Purple, Gray,
2192		Green, Yellow, Orange, Brown, White, Beige
2193		
2194		
2195		1. Are there multiple burners or heating Yes, No
2196		zones visible on the cooktop?
2197		2. Does the stove have a backguard or Yes, No
2198	Stove	splash guard?
2199		3. Does the stove’s oven door have a glass Yes, No
2200		window?
2201		4. Is there a digital clock or timer display Yes, No
2202		on the stove?
2203		5. Is there a range hood or vent above the Yes, No
2204		stove?
2205		6. Is there an oven integrated below the Yes, No
2206		cooktop?
2207		7. Is there any cookware, such as a pot or Yes, No
2208		pan, on the stove?
2209		8. What kind of controls are visible on Touchscreen display, Buttons,
2210		the stove: knobs, buttons, or a touchscreen Knobs
2211		display?
2212		9. What is the primary material of the Stainless steel, Enamel/painted
2213		stove’s body: stainless steel or enamel/painted metal?

(continued on next page)

2214

(continued from previous page)

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

Entity	Question	Answer List
	10. What is the primary color of the stove?	Red, Blue, Cream, Gray, Silver, Green, White, Black
	11. What type of cooktop does the stove have: gas burners, electric coils, or a flat glass/ceramic top?	Gas burners, Electric coils, Flat glass/ceramic top
	12. Is the stove freestanding or built into the surrounding counter?	Built-in, Freestanding

2268 I.2 QA SET FOR BACKGROUND DIVERSITY PART OF VDI SCORES.
22692270 Table 11 provides the question-answer list set (common across all entities) for calculating background
2271 diversity.
22722273 Table 11: Questions and their corresponding answer lists for Background Diversity Scores.
2274

2275 Scene	2276 Question	2277 Answer List
2276 Indoor	2277 1. Which main elements are visible in the background? 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289	2278 Walls, Windows, Furniture, Appliances (e.g. fridge, microwave, washing machine), Electronic equipment (e.g. tvs, computers, speakers), Plain / solid color background 2279 Tiled floor, Wooden floor, Carpeted floor, Concrete floor 2280 Residential, Commercial / public, Plain / solid color background 2281 Organized (several elements present, but neat, intentional arrangement), Cluttered (many elements, visually noisy, no clear order), Minimalist (very few or no elements at all, mostly empty or plain) 2282 2283 2284 2285 2286 2287 2288 2289
2290 Outdoor	2291 1. What natural features, if any, are visible in the background of the image? 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316	2292 Trees / forest / plants, Mountains / hills, Waterbody, Open ground / fields 2293 Transport-related (paved roads, vehicles, bridges, rail tracks), Utility-related (electric poles, wires, water tanks, pipelines), High-rise / industrial (skyscrapers, factories, construction sites, large machinery) 2294 Sparse / open (fields, wide spaces, few or no buildings), Moderate (some houses/buildings, not crowded), Dense / crowded (clustered buildings, narrow streets, crowded interiors) 2295 Paved road, Dirt / gravel road (man-made), Natural ground / grass (wild, non-constructed), Tiled / courtyard-style surface 2296 Natural (trees, sky, soil, water, mountains), Built structures (walls, windows, houses, buildings, fences), Mixed (both natural and built elements visible) 2297 Crowded, Moderately busy, Quiet / empty 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
2317	2318 2319 2320 2321	2318 2319 2320 2321

2322 **J VALIDATING GEODIV - EXTENDED DETAILS**
23232324 **J.1 SURVEY DETAILS**
2325

2326 We validate the SEVI and VDI components of *GeoDiv* by conducting rigorous human studies, as
2327 shown in subsection 4.2 (main paper). For studies conducted on each axes, we utilize the Prolific
2328 platform Prolific (2024). For the **SEVI component**, we enquire the crowdworkers (hired from 14
2329 different countries, excluding Nigeria and Turkey) about the Affluence and Maintenance in the images
2330 shown, on the same scale of 1 to 5 as defined for these two dimensions in Section 3 (main paper).
2331 For the VDI scores, we hire 3 crowdworkers per country, totaling 42 participants, and report the
2332 Spearman’s rank correlation coefficient ρ between the LLM-predicted Affluence and Maintenance
2333 scores with the corresponding average human scores. Each annotator is allowed a span of 30 minutes
2334 to complete the survey. The instructions for the study, specific to Japan as an example, including
2335 a question to assess the Cultural Localization of images (discussed in Appendix M) are shown in
2336 Figure 14. A screenshot of instructions can be seen in Figure 15.
2337
2338

2339 **A Study on Image-based Question Answering in Japan**
2340

2341 You will be shown a number of images, and each such image will be accompanied by **THREE**
2342 **questions**. Each image will primarily portray an entity. The questions will enquire about
2343 three things:

- 2344 • **Affluence**: Whether the **overall** image reflects **impoverished** or **affluent conditions**.
2345
- 2346 • **General Condition**: The **physical state** of the **depicted entity** (e.g., worn, damaged,
2347 or pristine).
2348
- 2349 • **Cultural Localization**: The extent to which **culturally specific symbols** (e.g., reli-
2350 gious motifs, traditional architecture) of **your country** are present versus globalized
2351 visual cues in the **entity**.
2352

2353 Answer **ALL** questions.
2354

2355 **Total time: 30 minutes**

2356 **Instructions:**
2357

- 2358 1. See the image very carefully before answering a question.
2359
- 2360 2. Each question can be answered on a scale of 1 to 5.
2361
- 2362 3. We will define the scores within each scale for each question. **READ them carefully.**

2363
2364 **Figure 14:** Instructions for the SEVI-based Human Annotation Task
2365

2366 For VDI, instead of directly asking for diversity scores, we validate the performance of the VQA
2367 model by obtaining answers for a subset of image-question pairs from the crowdworkers, where equal
2368 number of questions enquire about the entity and the background respectively. Three crowdworkers
2369 are randomly hired for this task, and the overall annotation requires around 45 minutes to complete.
2370 In addition to the VQA questions, we ask every user to rate the images on a) their realism (on a
2371 Likert-scale of 1 to 5), where a high score denotes high realism, and b) the confidence of the user
2372 in answering the question (on a Likert-scale of 1 to 5), where a high score denotes high confidence.
2373 The exact instructions for annotation are described in Figure 16. A screenshot of an image and the
2374 questions asked for it can be seen in Figure 17.
2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

This image is of the entity: a chair. Rate this image on the level of *affluence* depicted in the *entire* image. The options are a scale of 1 to 5, where each score is defined within the options.

- 1 – **Impoverished**: Severe visible decay; disrepair, dirt, broken infrastructure, minimal economic activity.
- 2 – **Low Affluence**: Basic but aging structures; modest upkeep; informal or patchy development visible.
- 3 – **Moderate Affluence**: Clean and functional spaces; organized but simple environments; middle-income indicators.
- 4 – **High Affluence**: Well-maintained, vibrant areas; professional storefronts; signs of prosperity and civic care.
- 5 – **Very High Affluence (Luxury)**: Sleek, modern, or designer elements; upscale brands; spotless, elite environments.

This image is of the entity: a chair. Rate this image on the *general condition* of the entity. The options are a scale of 1 to 5, where each score is defined within the options.

- 1 – **Severely Damaged**: Major disrepair, heavy rust, breakage, or abandonment visible.
- 2 – **Poor Condition**: Noticeable wear, aging, dirt, minor missing parts, but still recognizable.
- 3 – **Moderately Maintained**: Functional, intact, but with small flaws like scuffs or fading.
- 4 – **Well Maintained**: Clean, organized, minor cosmetic wear only, no functional damage.
- 5 – **Excellent Condition**: Polished, pristine, flawless; appears new or recently serviced.

This image is of the entity: a chair. Rate this image on the *cultural localization* of the entity with respect to your country. The options are a scale of 1 to 5, where each score is defined within the options.

- 1 – **Highly globalized**: The subject displays no distinct cultural markers and appears universally generic or global in design.
- 2 – **Slightly localized**: The subject shows minor cultural hints, but these are subtle and easily overshadowed by global aesthetics.
- 3 – **Moderately localized**: The subject blends global and cultural elements, suggesting a recognizable yet not dominant cultural identity.
- 4 – **Strongly localized**: The subject prominently features distinctive cultural elements that are clearly tied to the local context.
- 5 – **Deeply rooted in culture**: The subject embodies cultural uniqueness through highly characteristic and tradition-rich visual cues.

[Next](#)

Figure 15: **Sample questions for the SEVI dimensions, including a question on measuring Cultural Localization for a given image.** For each image-question pair, the scales for each of these dimensions are defined.

A Study on Image-based Question Answering

You will be shown a number of images, and each such image will be accompanied by **FOUR questions**. Answer **ALL** questions. **Total time: 45 minutes**

Instructions:

1. See the image very carefully before answering a question.
2. Each question will be associated with options.
3. **Multiple options can be correct for the first two questions.**
4. If you do not feel any of the options is correct, select **None of the above**.
5. You can refer to the internet in case you want to know more about certain options.
6. The bottom two questions are **single-options only**.

Figure 16: Instructions for the Image-based Question Answering Task

2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483

Image 1

What type of roof does the house have (e.g., gabled, flat, tiled)?

Choose an option

Rate your confidence in answering the question.

High confidence
 Medium confidence
 Low confidence

What type of road or terrain is visible?

Choose an option

Rate the image on its realism, on a scale of 1 to 5, where 1 means not realistic at all, 5 means highly realistic.

1
 2
 3
 4
 5

Figure 17: **Sample questions for the VDI-based VQA model Validation.** Along with the VDI questions (one entity and background question for each image), we also ask the users about the Realism of the given image, as well as their confidence in answering the question.

Each crowdworker is paid at a rate of **\$8 per hour**.

2484
 2485 **Table 12: Country-wise Spearman’s Correlation Coefficient between human and model ratings**
 2486 **for SEVI dimensions.** Gemini-2.5 outperforms the open-source variants.

Country	Qwen2.5-VL		llava-v1.6		Gemini-2.5	
	Affluence	Maintenance	Affluence	Maintenance	Affluence	Maintenance
India	0.87	0.72	0.84	0.81	0.89	0.80
China	0.76	0.78	0.76	0.75	0.88	0.80
USA	0.72	0.67	0.53	0.79	0.69	0.62
Colombia	0.84	0.85	0.84	0.74	0.88	0.81
Egypt	0.66	0.86	0.73	0.76	0.62	0.58
UAE	0.82	0.89	0.81	0.67	0.69	0.83
UK	0.44	0.53	0.45	0.61	0.67	0.37
South Korea	0.54	0.70	0.75	0.71	0.66	0.62
Mexico	0.76	0.75	0.82	0.74	0.90	0.86
Japan	0.59	0.56	0.50	0.55	0.71	0.68
Philippines	0.64	0.72	0.69	0.63	0.70	0.64
Indonesia	0.56	0.49	0.35	0.62	0.75	0.72
Italy	0.74	0.70	0.67	0.73	0.72	0.60
Spain	0.67	0.68	0.64	0.68	0.70	0.68
Average	0.69	0.71	0.65	0.68	0.76	0.69

2504 2505 J.2 COUNTRY-WISE CORRELATION ANALYSIS FOR SEVI SCORES 2506

2508 Expanding on Table 1 (main paper), which shows the SEVI correlations with human ratings for
 2509 Qwen2.5-VL, llava-v1.6-mistral-7b-hf and Gemini-2.5, we show the country-wise
 2510 Spearman’s correlation coefficient ρ for each model in Table 12. The Affluence and Maintenance
 2511 rating correlations for Gemini-2.5 remains similar to the other models for most countries.
 2512

2513 J.3 COMPARISON BETWEEN CLOSED AND OPEN SOURCE MODELS 2514

2516 While our VQA pipeline employs a closed-source model (Gemini 2.5 Flash), it can be substituted with
 2517 any efficient open-source alternative. In this section, we examine the correlation between the diversity
 2518 scores produced by Gemini 2.5 Flash and those obtained from Qwen2.5-VL-32B-Instruct-AWQ
 2519 across the four diversity axes. The analysis is conducted on one synthetic dataset (FLUX.1) for
 2520 six entities (Bag, Chair, Cooking Pot, House, Plate of Food, and Storefront) spanning all countries
 2521 considered in the main study. We additionally report the correlation for real-world dataset (GeoDE)
 2522 as well (see Table 13).

2523 Both the closed and open model shows high agreement across all four diversity axes on both the
 2524 synthetic (FLUX.1) and real (GeoDE) datasets, indicating broadly consistent scoring behavior. The
 2525 average correlation across entities and diversity axes is 0.831 for FLUX.1 and 0.826 for GeoDE,
 2526 respectively.

2527 2528 J.4 STATISTICAL ROBUSTNESS OF GEODIV 2529

2530 The previous section shows the robustness of GeoDiv to varying models. We further analyse the
 2531 statistical behaviour of GeoDiv scores across prompt and seed variations.

2532 **Robustness to Varying Image Generation Prompts.** In this work, we evaluate the geo-diversity
 2533 with respect to ‘default (minimal) prompts’ to analyse what attribute values the T2I model associates
 2534 to certain geographies without explicit mention. For this analysis, we try the following prompt
 2535 variations which have minimal semantic changes to generate 100 images for the USA, Colombia,
 2536 India and Egypt across the 3 entities (house, chair, stove) using 2 models (SD2.1 and FLUX.1).

2538

2539

Table 13: Correlation between Flash and Qwen across all four axes of *GeoDiv* scores.

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

Dataset	Entity Name	Affluence	Maintenance	Background	Entity
FLUX.1	Bag	0.924	0.316	0.412	0.921
	Chair	0.926	0.979	0.978	0.986
	Cooking pot	0.923	0.982	0.889	0.985
	House	0.796	0.819	0.885	0.875
	Plate of food	0.813	0.532	0.727	0.697
	Storefront	0.955	0.836	0.910	0.887
GeoDE	Bag	0.931	0.874	0.379	0.811
	Chair	0.962	0.894	0.387	0.870
	Cooking pot	0.976	0.949	0.555	0.924
	House	0.981	0.971	0.839	0.803
	Plate of food	0.953	0.896	0.673	0.800
	Storefront	0.945	0.921	0.708	0.812

Original Prompt*a photo of a <entity> in <country>***Prompt Variants**

1. *an image of a <entity> in <country>*
2. *a <entity> in <country>*
3. *a <entity> located in <country>*

As our original prompt, Variant 1 and Variant 2 are very neutral, with the only difference to our original prompt being that the generated image does not have to be a photo but could also be a drawing or cartoon. Variant 3 additionally uses more sophisticated wording, “located in” instead of “in”, potentially preconditioning the models in a specific way. We discuss our observations below:

- *SD2.1 exhibits high rank-consistency among the prompt variations across all four axes*, indicating that its country-level diversity scores are largely insensitive to them. The diversity scores obtained from every prompt variant achieves strong agreement with the scores from the original images, with high overall Spearman correlations at $\rho = 0.80$ (variant 1), $\rho = 0.85$ (variant 2) and $\rho = 0.80$ (variant 3). This shows that the underlying diversity patterns learned by SD2.1 remain stable even when prompt phrasing is slightly altered.
- *FLUX.1 is more sensitive to prompt changes than SD2.1*. The correlations are $\rho = 0.65$ (variant 1), $\rho = 0.80$ (variant 2), and $\rho = 0.45$ (variant 3), which are still significantly high. This observation crucially indicates that different image-generative models exhibit differing levels of sensitivity to prompts.

We observe that the correlation scores for FLUX are most affected by changes along the background axis. Even small modifications to the prompt induce different semantic directions in the diffusion model. For example, the phrase “A photo of” pushes the model toward more realistic and commonly photographed environments, whereas “an image of” broadens the modality to include stock-image-like compositions, studio setups, or cleaner, more curated scenes.

These shifts are visible in our empirical distributions. For instance, variant 1 images of stove show a marked increase in clean, organized kitchen layouts, consistent with a stock-photo bias triggered by the more generic “image” phrasing. Similarly, for chair, variant 3 increases the frequency of courtyard or tiled surfaces while reducing natural ground textures, suggesting that the word “located” pushes the model to place objects within more explicitly constructed or architectural contexts.

Taken together, these examples illustrate that different variations of the prompt introduce distinct semantic steering behaviours that can subtly shift the generated distributions. To avoid introducing unintended stylistic biases and to remain grounded in realistic depictions, we therefore adopt the most neutral form of the prompt as our standard.

2592 **Robustness to Variation of VQA Prompts** We perturb the SEVI prompts to the VLM for both
 2593 affluence and maintenance via GPT. The results in Table J.3 show that the scores change negligably
 2594 from the original (orig) with the VLM prompt perturbation (pert).

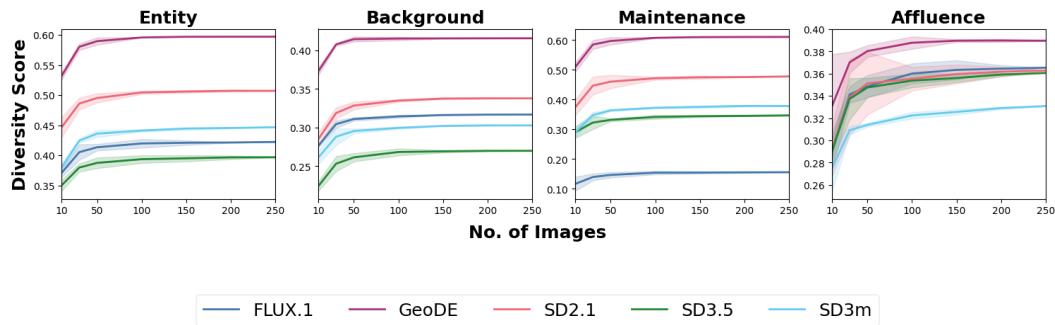
2595
 2596
 2597 **Table 14: Effect of VLM prompt perturbations on SEVI scores.**

2598

Entity	Dataset	Affluence (Orig)	Affluence (Pert)	Maintenance (Orig)	Maintenance (Pert)
house	SD2.1	0.36	0.36	0.41	0.39
	FLUX.1	0.22	0.22	0.05	0.07
chair	SD2.1	0.41	0.42	0.60	0.57
	FLUX.1	0.63	0.62	0.20	0.23

2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605

2606 **Robustness to Varying Image Budgets.** To assess the statistical stability of our diversity metric,
 2607 we evaluated how diversity scores change as a function of the number of generated images. For
 2608 each image-budget $n \in 10, 50, 100, 150, 200, 250$, we generated three independent samples using
 2609 different random seeds. For each axis of our metric (affluence, maintenance, object, and background),
 2610 we calculate the normalized hill numbers for each country-entity-dataset triplet and take the average
 2611 across the three seeds. We list our observations below:



2621
 2622
 2623
 2624 **Figure 18: Effect of image budget on GeoDiv estimates. All axes show rapid convergence of diversity**
 2625 **scores and stable model ranking, indicating statistical robustness of the metrics.**

2626
 2627
 2628
 2629

- *A budget of 100-150 images per concept-country pair is sufficient for stable and reproducible metric estimation.* Across all axes, diversity scores converge smoothly as the number of images increases. Large fluctuations are visible at < 50 images, which diminish substantially by 50 images, and become negligible after 100 images. For 150-250 images, confidence intervals are extremely narrow, indicating high reliability (see Figure 18).
- *Consistent Model and Country Ranking Across Image Budgets.* The real-word dataset GeoDE still exhibits the highest diversity scores, and Flux the lowest. This pattern persists across all 4 diversity axes and all values of $n \geq 50$ (see Figure 18), and holds true for the ranking of the studied countries as well (see Figure 19).
- These results suggest that the metric is statistically well-behaved and convergent, suitable for large-scale quantitative evaluation. The width of 95% confidence intervals decreases monotonically with the number of images. This indicates that seed-induced randomness vanishes with larger sample sizes, and the metric’s uncertainty is well-behaved and predictable.

2642 **Robustness to Re-runs and Different Seed Image Sets** We rerun the full pipeline three times on the
 2643 same set of 250 SD3m-generated Indian house images and observe at most a 0.01 standard deviation
 2644 in the resulting scores (Entity: 0.009, Background: 0.001, Affluence: 0.013, Maintenance: 0.006,
 2645 overall: 0.007). We additionally generate three independent sets of SD3m images for the same

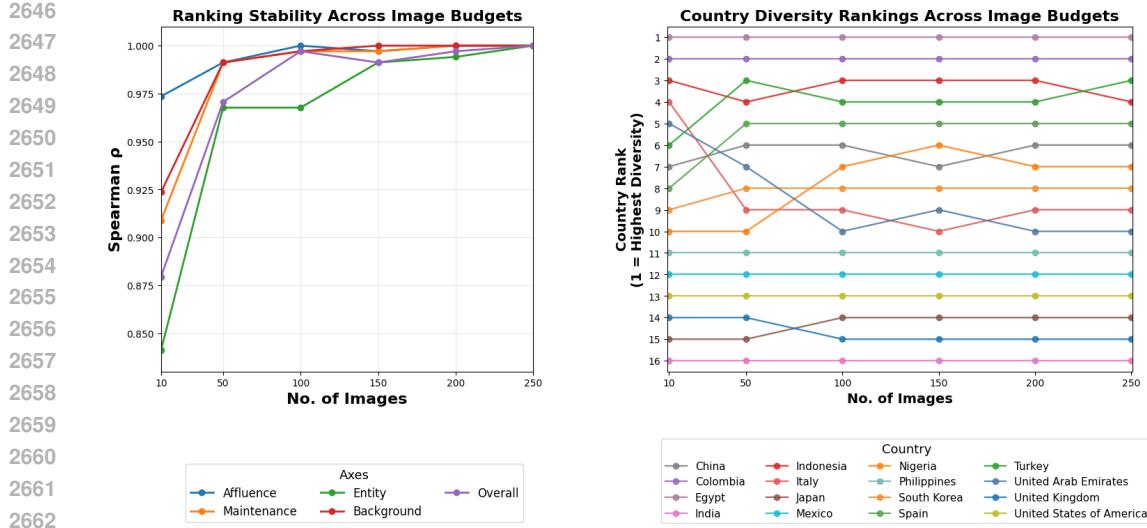


Figure 19: **Left:** Spearman rank correlation between country rankings obtained at each image budget and the 250-image baseline. Across all diversity axes the rankings converge quickly and remain stable once ≥ 100 images are used. **Right:** Country diversity rankings for the overall GeoDiv score across different image budgets (1 = highest diversity).

entity-country pair using different seeds and find a maximum standard deviation of only 0.05 across all GeoDiv axes (Entity: 0.018, Background: 0.044, Affluence: 0.023, Maintenance: 0.008, overall: 0.023).

J.5 INTER-ANNOTATOR AGREEMENT ACROSS SEVI AND VDI AXES

Our human validation exhibits strong inter-annotator agreement across both axes, demonstrating the reliability of the collected scores. For the SEVI axis, majority consensus is reached in 85% of the 1,120 annotated images, and the ordinal consistency is robust: Kendall's $\tau = 0.54$ for Affluence and 0.53 for Maintenance, with Spearman's $\rho = 0.61$ for both, levels comparable to or exceeding agreement reported in prior work (e.g., Cho et al. [1]). For the VDI axis, annotators show high pairwise agreement, with 87% agreement on entity-diversity and 80% on background-diversity questions. These results indicate substantial annotator consensus and confirm that the human annotations provide a stable and reliable foundation for validating GeoDiv's axes.

2700 **K QUALITATIVE EXAMPLES**

2701

2702 We show examples of **house images of Nigeria**, sampled from each dataset in Figure 20. While
 2703 GeoDE shows a variety of houses, of different architectures and levels of affluence and maintenance,
 2704 we can notice a striking lack of diversity in all levels in the generated images. While FLUX.1 images
 2705 look highly affluent and polished (affluence score: 4.15, maintenance score: 4.99), SDv2 represents
 2706 ruralized images of impoverished, ill-maintained houses (affluence score: 1.74, maintenance score:
 2707 2.02), and SDv3 depict well-maintained houses with consistent bare-earth landscapes (affluence
 2708 score: 2.18, maintenance score: 3.81). These examples further motivate the need for frameworks
 2709 that can quantify this lack of diversity within images. *GeoDiv* can quantify geo-diversity on multiple
 2710 dimensions like affluence, maintenance, background and entity-diversity separately, making it a
 2711 useful tool that can distinguish among images from datasets, and even entities and countries.
 2712

2713 Figure 21 presents a cross-dataset visual comparison of **car images** for Indonesia, an entity–country
 2714 pair exhibiting the highest cross-country variance in entity diversity scores. GeoDE shows a relatively
 2715 low entity diversity score (0.49), with real-world images capturing mid-range, commonly used
 2716 vehicles in typical Indonesian urban contexts. SDv2 yields the highest diversity score for cars
 2717 (0.850), showcasing a wide range of types, colors, and settings. However, it records the lowest
 2718 maintenance (2.04) and affluence (1.9) scores for cars in Indonesia, well below the dataset average,
 2719 frequently depicting rustic, vintage, and even deteriorated vehicles. SDv3 exhibits moderate entity
 2720 diversity (0.714) but very low background diversity (0.303), capturing mostly street-level scenes
 2721 (urban, paved roads, moderately busy backgrounds) and low contextual variance. FLUX.1 scores
 2722 lower in entity diversity (0.540), heavily skewed toward polished, high-end SUVs and sedans in
 2723 modern, affluent-looking neighborhoods, reflecting a synthetic bias toward suburban affluence. The
 2724 comparative visualization illustrates how real and synthetic datasets differ not only in realism but in
 2725 the socio-cultural and contextual representation of common entities.
 2726

2727 While the UK and USA rank among the lowest on the VDI (Visual Diversity Index), and India
 2728 and Nigeria score among the lowest on the SEVI (Socio-Economic Visual Indicators), FLUX.1
 2729 consistently assigns high scores to all four countries, exceeding 4 on the affluence axis and close to 5
 2730 on the maintenance axis. Figure 22 displays FLUX.1’s generation of ‘houses’ across these countries.
 2731 FLUX.1 consistently generates upscale, multi-storey houses with manicured lawns, porches, and
 2732 lush green surroundings across all countries. This uniform aesthetic, often resembling Western
 2733 suburban affluence, reflects a bias toward idealized, high-end housing. As a result, while the images
 2734 are visually appealing, they lack cultural and structural diversity, demonstrating high affluence but
 2735 low geo-specific realism.
 2736

2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

Figure 20: Qualitative examples of house images from Nigeria across datasets. GeoDE shows balanced rural, suburban and urban scenes, while SDv2 and SDv3 show strong rural bias and FLUX.1 shows suburban bias. Each column shares the same generation seed across synthetic models for controlled comparison.

2777

2778

2779

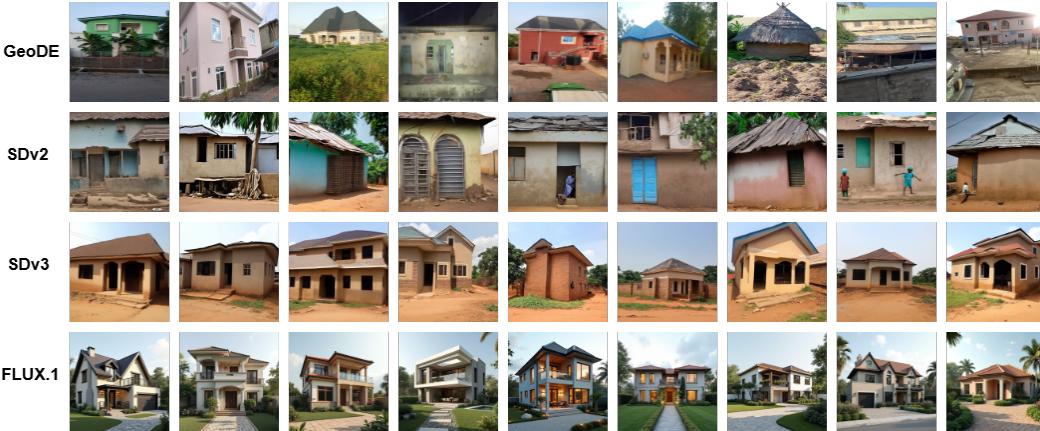
2780

2781

2782

2783

House in Nigeria



2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

Car in Indonesia

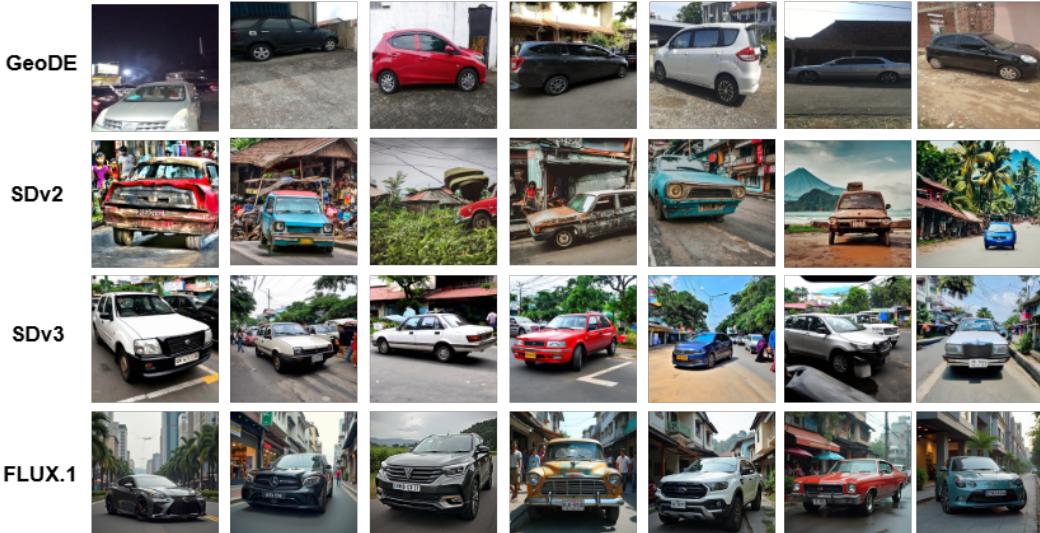


Figure 21: Comparison of car images for Indonesia across datasets. Rows: GeoDE (Entity diversity = 0.49), SDv2 (0.85), SDv3 (0.714), FLUX.1 (0.540). SDv2 shows highest entity diversity with varied car types and contexts; FLUX.1 skews toward affluent suburban scenes. Indonesia shows the highest cross-country variance (0.03) for the *car* entity.

Figure 22: Comparison of house images generated by FLUX.1 across countries.

2862 **L COMPARISON OF GEODIV WITH EXISTING BASELINES - EXTENDED**
 2863 **DISCUSSION**
 2864

2865 **L.1 VENDI-SCORE VS GEODIV SCORES**
 2866

2867 In the main paper, we analyze the relationship between the proposed VDI metrics and the Vendi-
 2868 Score (Friedman & Dieng, 2023), a measure of visual diversity within image sets. Specifically, we
 2869 compute the Pearson correlation between the Vendi-Score and the four aspects of GeoDiv: (a) Entity
 2870 Diversity, (b) Background Diversity, and (c) Affluence Diversity, (d) Maintenance Diversity. The
 2871 country-wise correlations, averaged across datasets and entities vary ($\rho = 0.56, 0.23, 0.37$ and 0.06
 2872 respectively, as shown in Table 15). We find a moderate correlation for Entity-Appearance, and weak
 2873 to very weak correlation for Affluence, Background-Appearance and Maintenance, showing that
 2874 Vendi-Score focuses mostly on the primary entity, and that our metrics capture aspects of image
 2875 diversity that go beyond general visual dissimilarity.

2876 Importantly, while Vendi-Score offers a quantitative estimate of diversity, it is non-interpretable,
 2877 making it difficult to explain why a particular image group receives a high or low score. In contrast,
 2878 the SEVI and VDI metrics are inherently interpretable: they are grounded in entropy computed from
 2879 VQA-derived answers to specific semantic questions, allowing for a more transparent understanding
 2880 of what drives a diversity score.

2881
 2882 **Table 15: Pearson’s Correlation Coefficient (ρ) between Vendi-Score and a) Entity Diversity (Entity-
 2883 Div), b) Background Diversity (Background-Div), c) Affluence Diversity (Affluence-Div) and d)
 2884 Maintenance Diversity (Maintenance-Div). Correlations across datasets is very weak, showing that
 2885 the VDI scores capture features beyond visual diversity.**
 2886

2887 Model_name	Entity-Div	Background-Div	Affluence-Div	Maintenance-Div
2888 FLUX.1	0.59	0.03	0.11	0.20
2889 SD21	0.63	0.42	0.41	0.14
2890 SD3m	0.61	0.31	0.45	-0.01
2891 SD3.5	0.43	0.18	0.51	-0.09

2892
 2893 **L.2 COMPARISON WITH DIMCIM**
 2894

2895 Teotia et al. (2025) measure image diversity by querying reliable VQA models on entity attributes
 2896 and use VQA-Score (Lin et al., 2024) to estimate diversity. However, there are key differences
 2897 from our GeoDiv approach. First, it ignores geo-diversity, focusing solely on entity-appearance
 2898 variation. Second, unlike GeoDiv, which collects separate attribute-value sets per entity, DIMCIM
 2899 uses a fixed set of attributes shared across all entities, making it highly restrictive. Its scores are also
 2900 less interpretable, often appearing uniform across T2I generations, for example, for the question
 2901 “*What material is the bag made of?*”, DIMCIM assigns a high score (0.8) even if all bags are leather,
 2902 whereas GeoDiv gives a more realistic score (0.18). Overall, GeoDiv provides a more comprehensive
 2903 framework for evaluating geo-diversity.

2904
 2905 **M CULTURAL LOCALIZATION**
 2906

2907 The dimensions we measure within the SEVI axis of GeoDiv are: a) Affluence, and b) Maintenance.
 2908 One other important aspect of Socio-Economic Visual Index is **Cultural Localization**, i.e., the extent
 2909 of representation of the cultures prevalent in a country in the images generated from the same. We
 2910 define it on a scale of 1 to 5 in the following way: 1 = Highly Globalized, 2 = Slightly Localized, 3 =
 2911 Moderately Localized, 4 = Strongly Localized, 5 = Deeply Rooted in Culture. With such definitions
 2912 of Cultural Localization, we conduct a country-wise human study (see Appendix J.1) on the same,
 2913 where the models are asked to output a score on a scale of 1 to 5 using the same definitions. The
 2914 prompt used for computing Cultural Localization is shown below:
 2915

2916
 2917 1 You are a visual-language model tasked with evaluating how culturally
 2918 → aligned a generated image of an object is within the context of a
 2919 → specific region. You will be provided with the object, the region,
 2920 → and an image depicting the object situated in that region.
 2921 2
 2922 3 Your task is to assess visual elements, including both the object and
 2923 → its background features.
 2924 4
 2925 5 Definitions:
 2926 6 - ****Cultural Alignment**** is indicated by visible cues that reflect
 2927 → traditional, recognizable features specific to the region's or
 2928 → country's identity.
 2929 7 - ****Globalization**** is indicated by cues that are generic, globally
 2930 → common, or lack strong ties to local culture.
 2931 8
 2932 9 Your decision must be based ****only on visible cues present in the**
 2933 → **image**.**
 2934 10
 2935 11 Use the following ****continuous 5-point scale**** to rate the cultural
 2936 → alignment:
 2937 12
 2938 13 Score | Interpretation
 2939 14 1 { Highly globalized: No distinct cultural markers; universally
 2940 → generic or global in appearance.
 2941 15 2 { Slightly localized: Minor cultural hints are present but
 2942 → overshadowed by global aesthetics.
 2943 16 3 { Moderately localized: A mix of global and local cues;
 2944 → suggesting a recognizable yet not dominant cultural identity.
 2945 17 4 { Strongly localized: Clear and prominent cultural elements tied
 2946 → to the local or regional identity.
 2947 18 5 { Deeply rooted in culture: Embodiment of the cultural
 2948 → uniqueness through highly characteristic and tradition-rich
 2949 → visual cues.
 2950 19
 2951 20 Provide your answer in JSON format:
 2952 21
 2953 22 reasoning_steps: ['Step 1', 'Step 2', ...],
 2954 23 answer: [1{5]
 2955 24
 2956 25 What is the cultural alignment of the generated image based on visual
 2957 → cues alone?
 2958 26 Respond only with a single integer between 1 (highly globalized) and 5
 2959 → (Deeply rooted in culture), and provide the reasoning.
 2960 27 Object: {entity}
 2961 28 Region: {country}
 2962 29 Selection:
 2963

2964
 2965
 2966 The average Spearman's rank correlation coefficient ρ across countries (0.41 for Gemini-2.5,
 2967 0.40 and Qwen2.5-VL turns out to be much lesser than those of Affluence and Maintenance. We
 2968 hypothesize that this happens as the aspect of "Cultural Localization" demands specific knowledge
 2969 for people residing in each country, and it is often not trivial to rate images on the same due to
 subjectivity. The only countries for which Gemini-3.5 has a moderate-to-high positive correlation

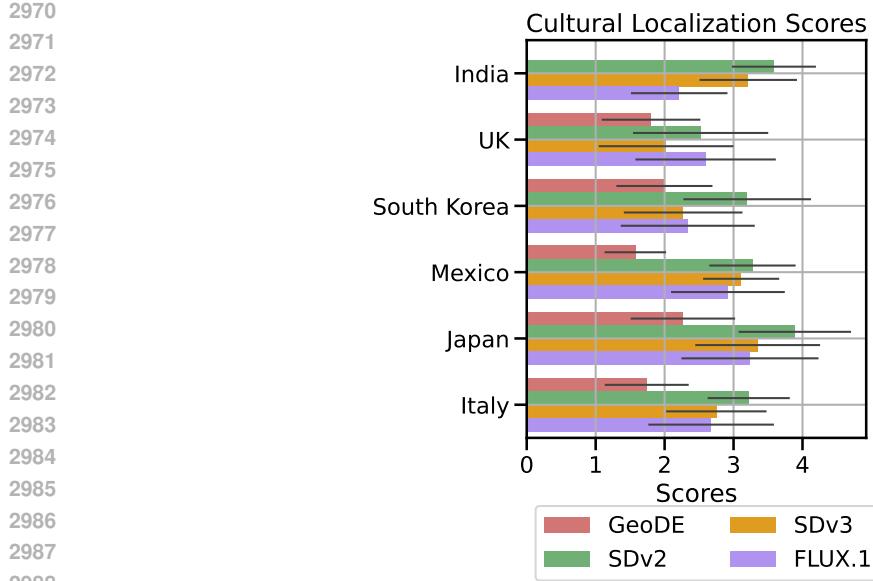


Figure 23: **Assessing Cultural Localization.** In general, we find India, Mexico and Japan to have more culturally localized images per model (including the real-world GeoDE dataset), with SD2.1 achieving the highest scores.

(i.e., $\rho \geq 0.4$) with the human scores are: India, UK, South Korea, Mexico, Japan and Italy. Across all datasets studied in this paper, we thus assess the Cultural Localization scores of these 6 countries, and find that surprisingly, GeoDE images have a much lower average score (1.87), while SD2.1 images have the highest average score (3.28). SD3m and FLUX.1 images score similarly (2.79 and 2.66). This shows that GeoDE images are relatively more globalized, with less references to country-wise cultures, while the trend is opposite for SD2.1 (as shown in Figure 23).

N DATASET DETAILS - EXTENDED DISCUSSIONS

Choice of Countries. The countries chosen (USA, UK, India, Japan, Spain, Italy, Mexico, Philippines, Egypt, Nigeria, Colombia, South Korea, China, Indonesia, Turkey and UAE) represent multiple continents like North and South America, Europe, Asia and Africa. They were chosen to understand how differently generative models depict a large spectrum of countries including the US as well as Nigeria, and they have been inspired by previous works that have studied similar countries (Ramaswamy et al., 2023; Basu et al., 2023; Gaviria Rojas et al., 2022; Hall et al., 2023).

Choice of Entities. Our selection of entities follows the protocol established in prior studies examining geographical disparities in image datasets (Basu et al., 2023; Hall et al., 2023; 2024). Specifically, we adopt all six entities used by Hall et al. (2024)—bag, car, cooking pot, dog, plate of food, and storefront—and supplement these with four additional entities commonly studied in the literature: chair, stove, backyard, and house (Ramaswamy et al., 2023; Gaviria Rojas et al., 2022; Hall et al., 2023; 2024). These ten entities represent everyday objects with wide socio-cultural relevance. Furthermore, GeoDE provides a loose grouping of entities into four categories: Indoor common, Indoor rare, Outdoor common, and Outdoor rare. As shown in Table 2 in the Appendix, our selected entities collectively provide good coverage of all these categories.

In Fig. 24, 25, 26 and 27, we provide samples from each of the chosen T2I models, from each of the 10 entities, and 6 countries (due to space constraint). We will release the collected dataset of 160,000 images upon acceptance.

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033

FLUX.1

Figure 24: **Dataset Samples from the FLUX.1 model.** across 6 countries and 10 entities. We note distinct country-wise features for each image.

3073
3074
3075
3076
3077

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087

SD2.1

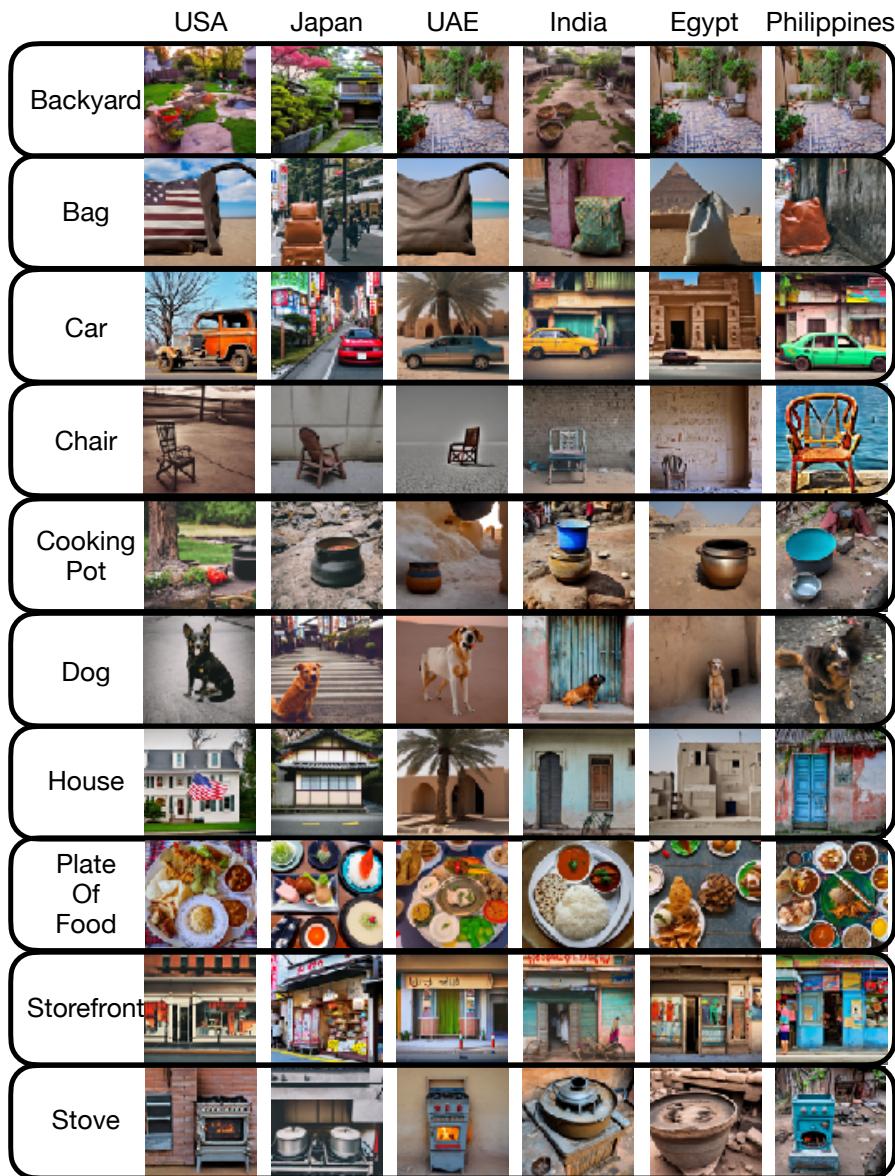


Figure 25: **Dataset Samples from the SD2.1 model.** across 6 countries and 10 entities. We note distinct country-wise features for each image.

3125
3126
3127
3128
3129
3130
3131

Figure 26: **Dataset Samples from the SD3m model.** across 6 countries and 10 entities. We note distinct country-wise features for each image.

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195

SD3.5

3233 Figure 27: **Dataset Samples from the SD3.5 model.** across 6 countries and 10 entities. We note
3234 distinct country-wise features for each image.

3235
3236
3237
3238
3239

3240 **O BROAD SOCIETAL IMPACT OF GEODIV**
32413242 Our proposed framework, *GeoDiv*, measures geographic diversity in image datasets by evaluating
3243 images of a given entity from different countries. We believe this can positively impact the community
3244 by highlighting over- or under-representation of visual attributes across regions. A potential limitation
3245 lies in the fixed answer lists generated by the LLM for measuring background and entity diversity as
3246 these may not capture the full global spectrum, potentially reinforcing existing biases. To mitigate
3247 this, we incorporate a ‘None of the Above’ option during the VQA stage, allowing the model to flag
3248 missing answers specific to certain countries and entities.
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293