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Abstract
This paper introduces Diffuse-TreeVAE, a deep
generative model that integrates hierarchical clus-
tering into the framework of Denoising Diffusion
Probabilistic Models (DDPMs). The proposed ap-
proach generates new images by sampling from a
root embedding of a learned latent tree VAE-based
structure, it then propagates through hierarchical
paths, and utilizes a second-stage DDPM to re-
fine and generate distinct, high-quality images for
each data cluster. The result is a model that not
only improves image clarity but also ensures that
the generated samples are representative of their
respective clusters, addressing the limitations of
previous VAE-based methods and advancing the
state of clustering-based generative modeling.

1. Introduction
Generative modeling and clustering represent two funda-
mental and distinct approaches within the field of machine
learning. Generative modeling aims to approximate the
underlying distribution of data, thereby enabling the gener-
ation of new samples (Kingma & Welling, 2014; Goodfel-
low et al., 2014). Clustering, conversely, seeks to identify
meaningful and interpretable structures within data. This is
achieved through the unsupervised detection of intrinsic re-
lationships and dependencies (Ezugwu et al., 2022), which
can enhance data visualization and interpretation. TreeVAE
(Manduchi et al., 2023) was recently proposed to combine
these two research directions by integrating hierarchical
dependencies into a deep latent variable model. TreeVAE
models the distribution of data by learning the optimal tree
structure of latent variables. The resulting latent embeddings
are automatically organized into a hierarchical structure that
mimics the hierarchical clustering process. As a result, it
can generate new data via conditional sampling and perform
hierarchical clustering. However, its generative performance
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falls short of state-of-the-art deep generative methods, and
it exhibits common issues associated with VAEs, such as
generating blurry images (Bredell et al., 2023). In contrast,
diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) have recently gained significant attention for their
image-generation capabilities.

Our work aims to bridge this gap by (a) improving the ar-
chitectural design of TreeVAE, and (b) integrating a second-
stage Denoising Diffusion Probabilistic Model (DDPM) that
is conditioned on the cluster-specific representations learned
by TreeVAE. Our proposed approach, Diffuse-TreeVAE,
generates high-quality, distinct, and representative cluster-
specific images; i.e. images for each leaf of the learned
tree. The proposed generation process (depicted in Figure 1)
goes as follows: Diffuse-TreeVAE samples the root embed-
ding of its tree, then propagates the generations through the
leaves, and, finally, it produces high-quality leaf-specific
images by guiding the reverse process of the DDPM on
both the leaf reconstructions and the corresponding path in
the tree. The resulting leaf-specific images share common
general properties (which are sampled at the root) and differ
by cluster-specific features.

Our main contributions are as follows: We provide (i) a
holistic approach to clustering-based generative modeling,
and (ii) a novel method for controlling image synthesis in
diffusion models. We show that our approach (a) overcomes
previous generative limitations of VAE-based clustering
methods, and (b) produces newly generated samples that
are more representative of the respective clusters in the data
and closer to the true image distribution.

2. Diffuse-TreeVAE
We propose Diffuse-TreeVAE1, a two-stage generative
framework that is composed of a VAE-based generative
hierarchical clustering model (TreeVAE), followed by a
cluster-conditional denoising diffusion probabilistic model
(DDPM). This novel combination of VAEs and diffusion
models extends the generator-refiner framework introduced
by DiffuseVAE (Pandey et al., 2022) to hierarchical cluster-
ing tasks. Here, TreeVAE (Manduchi et al., 2023) serves

1The code is publicly available at https://github.com/
JoGo175/diffuse-treevae
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Figure 1. Schematic overview of the Diffuse-TreeVAE model: The reverse model of the DDPM (bottom) is conditioned on both the
reconstruction and the index of the selected leaf l obtained from the associated, pre-trained TreeVAE. The denoising function of the
DDPM learns to refine the TreeVAE-based reconstructions.

as the generator, while a DDPM (Ho et al., 2020), condi-
tioned on the TreeVAE leaves, refines the generated images.
Figure 1 illustrates the workflow of Diffuse-TreeVAE.

The first part of Diffuse-TreeVAE involves an adapted ver-
sion of the TreeVAE model (Manduchi et al., 2023). Tree-
VAE is a generative model that intrinsically learns to hierar-
chically separate data into clusters via a latent tree. During
training, the model grows a binary tree structure T . The set
V represents the nodes of the tree. Each node corresponds to
a stochastic latent variable, denoted as z0, . . . , zV . The pa-
rameters of these latent variables are determined by their par-
ent nodes through neural networks called transformations.
The set of leaves L, where L ⊂ V, represents the clusters
present in the data. Starting from the root node, z0, a given
sample traverses the tree to a leaf node, zl, in a probabilis-
tic manner. The probabilities for whether to go to the left
or right child at each internal node are determined by neu-
ral networks termed routers. Thus, the latent tree encodes
sample-specific probability distributions of paths. Each leaf
embedding, zl for l ∈ L, represents the learned data repre-
sentations, and leaf-specific decoders use these embeddings
to reconstruct or generate new images, i.e. given a dataset
X , TreeVAE reconstructs X̂ = {X̂(l) | l ∈ L}.

In this work, we improve the architectural design of the
TreeVAE model. In the original TreeVAE, an initial en-
coder projects the images to flattened representations at the
start of the bottom-up process, with the remaining compo-
nents of the model relying on MLP layers. We adapted our
TreeVAE method to use convolutional layers throughout the
model structure instead of MLP layers. Thus, our adapta-
tion avoids flattening the representations and instead utilizes
lower-dimensional representations with multiple channels
throughout the model. Additionally, we incorporated resid-

ual connections to enhance the training and performance
of the model. These modifications aim to preserve spatial
information and enable more efficient learning, contributing
to the overall effectiveness of our model. However, it is im-
portant to note that this model suffers from the typical VAE
issue of producing blurry image generations (Bredell et al.,
2023). Despite this limitation, the reconstructed images and
learned clustering still provide meaningful representations
of the data, which are utilized in the second stage of our
proposed Diffuse-TreeVAE framework.

Our model leverages the cluster assignments and image
generation capabilities of TreeVAE to guide a second-stage
diffusion model, specifically a DDPM (Ho et al., 2020). We
adopt and adapt the generator-refiner framework (Pandey
et al., 2022), where the VAE generates the initial, typically
blurred images and the conditioned DDPM refines these
reconstructions to produce sharper, higher-quality images.
Instead of employing a conventional VAE, our model in-
tegrates TreeVAE. During training and inference, the se-
lected leaf is randomly sampled based on the leaf probabili-
ties learned by TreeVAE. The selected leaf reconstruction,
along with the leaf index as the cluster signal, conditions
the DDPM reverse process, as depicted in Figure 1. For-
mally, given the input data X , here denoted as X0, we
define a sequence of T noisy representations of the input
x0, yielding x1:T . The forward process, q (x1:T | x0), that
gradually destroys the structure of each data sample fol-
lows the standard DDPM process (Ho et al., 2020). The
reverse process, on the other hand, is conditioned on the
TreeVAE reconstructions x̂0 = {x̂(l)

0 | l ∈ L} and on the
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Figure 2. (Top) Samples from the CIFAR-10 test set. (Middle) Reconstructions from the CNN-TreeVAE model. (Bottom) Refined
reconstructions from the Diffuse-TreeVAE model, conditioned on the CNN-TreeVAE reconstructions and the corresponding leaves.

leaf assignments:

l ∼ p(l|x0),

pψ

(
x0:T | x̂(l)

0 , l
)
= p (xT )

T∏
t=1

pψ

(
xt−1 |xt, x̂(l)

0 , l
)
,

(1)

where p(l|x0) is the probability that the sample x0 is as-
signed to leaf l. This method ensures that leaves with
smaller assignment probabilities are considered, encour-
aging the DDPM to perform effectively across all leaves.
Consequently, our approach addresses the distinct clusters
inherent in TreeVAE, allowing the model to adapt specifi-
cally to different clusters and encouraging cluster-specific
refinements in the images. This guidance in the image
generation process assists the denoising model in learning
cluster-specific image reconstructions. On the other hand,
the forward noising process remains unconditional. Diffuse-
TreeVAE directly utilizes the reconstructions instead of the
latent embeddings for conditioning, as there exists a de-
terministic relationship between leaf embeddings and leaf
reconstruction, provided by the leaf-specific decoder.

By using the generator-refiner framework, Diffuse-TreeVAE
maintains the same clustering performance as the under-
lying TreeVAE. The DDPM refines the generated output
samples without influencing the cluster assignments in the
TreeVAE model. This is achieved through a two-stage train-
ing strategy, where the conditional DDPM is trained using a
pre-trained CNN-TreeVAE model. Thus, Diffuse-TreeVAE
combines the effective clustering of TreeVAE with the supe-
rior image generation capabilities of diffusion models.

3. Results
We evaluate the generative performance of our model on the
MNIST (Lecun et al., 1998), FashionMNIST (Xiao et al.,
2017), and CIFAR-10 (Krizhevsky, 2009) datasets. Our
analysis compares three models: the original MLP-based
TreeVAE, referenced as MLP-TreeVAE (Manduchi et al.,
2023); our CNN-based adaptation, referred to as CNN-

TreeVAE; and our novel proposal, the Diffuse-TreeVAE
model. The latter model is conditioned on reconstructions
and clusters derived from the CNN-TreeVAE, enhancing its
capacity for generative performance. Reconstruction per-
formance is assessed through the FID score (Heusel et al.,
2017), calculated for the reconstructed images sourced from
the 10,000 samples within the test set. Similarly, genera-
tion performance is evaluated using the FID score, this time
computed for 10,000 newly generated images.

Table 1. Test set generative performances of different TreeVAE
models. Lower FID scores indicate better performance. Means
and standard deviations are computed across 10 runs with different
seeds. The best result for each dataset is marked in bold.
Dataset Method FID (rec) FID (gen)
MNIST MLP-TreeVAE 25.8± 0.4 25.3± 1.0

CNN-TreeVAE 24.9± 1.1 22.8± 1.4

Diffuse-TreeVAE 1.5± 0.1 16.2± 5.7

Fashion MLP-TreeVAE 44.7± 0.6 46.8± 0.9

CNN-TreeVAE 36.5± 0.6 39.0± 0.8

Diffuse-TreeVAE 4.1± 0.6 4.2± 0.5

CIFAR10 MLP-TreeVAE 225.5± 3.3 237.0± 4.0

CNN-TreeVAE 190.5± 2.0 200.9± 2.5

Diffuse-TreeVAE 15.4± 0.3 22.3± 0.3

Table 1 illustrates the generative performance across the
various datasets. In every case, the CNN-TreeVAE demon-
strates improvements compared to the original model. How-
ever, despite being lower, its FID scores remain at a similar
level. Hence, the CNN-TreeVAE model continues to gen-
erate visibly blurry images. On the other hand, the Diffuse-
TreeVAE significantly enhances the generative capabilities
of the model, yielding much lower FID scores, often by an
order of magnitude. This improvement is evident in the qual-
ity of the generated images, as depicted in Figure 2. Here,
we visually compare the reconstructions generated by the
Diffuse-TreeVAE model with those produced by the under-
lying CNN-TreeVAE model, which was used to condition
the Diffuse-TreeVAE along with the cluster signal. Specifi-
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Figure 3. Diffuse-TreeVAE model trained on FashionMNIST. For each cluster, random newly generated images are displayed. Below each
set of images, a normalized histogram (ranging from 0 to 1) shows the distribution of predicted classes from an independent, pre-trained
classifier on FashionMNIST for all newly generated images in each leaf with a significant probability of reaching that leaf.

Figure 4. Diffuse-TreeVAE model trained on CIFAR-10. For each cluster, random newly generated images are displayed. Below each set
of images, a normalized histogram (ranging from 0 to 1) shows the distribution of predicted classes from an independent, pre-trained
classifier on CIFAR-10 for all newly generated images in each leaf with a significant probability of reaching that leaf.

cally, it can be observed that the reconstructions generated
by the Diffuse-TreeVAE are notably sharper and thus ex-
hibit closer adherence to the true distribution of the test data.
The model demonstrates enhanced capability in reproducing
fine details within the images while preserving the overall
color and structure. However, it is important to note that
these improvements may introduce some inconsistencies,
resulting in reconstructions that appear more realistic but
deviate slightly from the original image being reconstructed.

To assess the quality of the newly generated images, we train
a classifier on the original dataset using the training data and
then utilize it to classify the newly generated images from
our Diffuse-TreeVAE. Specifically, we classify the newly
generated images for each cluster separately. Ideally, the
majority of generated images from a cluster are classified
into one or very few classes from the original dataset. The
more generations from a cluster that are classified into one

class only, the “purer” or “less ambiguous” we consider the
generations to be. For this classification task, we utilize a
ResNet-50 model (He et al., 2016) trained on each dataset.

In Figure 3, we present randomly generated images from
a Diffuse-TreeVAE model trained on FashionMNIST. No-
tably, the model in this instance has identified only seven
clusters instead of the expected ten. These clusters tend
to group various clothing items together, such as “Shirt”,
“T-Shirt”, and “Pullover”. Below the generated images, nor-
malized histograms depict the distribution of the predicted
classes by the classifier on the newly generated images. For
instance, clusters representing trousers and bags appear to
accurately and distinctly capture their respective classes, as
all their generated images are classified into one group only.
Conversely, certain clusters manifest a mixture of classes,
indicating that they are grouped together. This observation
is further supported by the histograms. Similar results can
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Figure 5. Image generations from each leaf of (top) a CNN-TreeVAE, (middle) a cluster-unconditional Diffuse-TreeVAE, and (bottom) a
cluster-conditional Diffuse-TreeVAE, all trained on CIFAR-10. Each row displays the generated images from all leaves of the specified
model, starting with the same sample from the root. The corresponding leaf probabilities are shown at the top of the image and are by
design the same for all models.

be observed for the CIFAR-10 or MNIST data, as shown in
Figure 4 and Figure 6 respectively.

To assess whether the additional conditioning on the selected
leaf index helps create more cluster-specific representations,
we perform an ablation study. This study compares the gen-
erations of two Diffuse-TreeVAE models which only differ
in one aspect: one conditioned only on the reconstructions
and the other conditioned on both the reconstructions and
the leaf index. For this ablation, we use the previously de-
fined independent classifier to create histograms for each
leaf to evaluate how cluster-specific the newly generated
images are. As previously mentioned, ideally, the major-
ity of generated images from a cluster should be classified
into one or very few classes from the original dataset. To
quantify this, we compute the average entropy for all leaf-
specific histograms. Lower entropy indicates less variation
in the histograms, and thus more leaf-specific generations.
Table 2 presents the results for the unconditional and condi-
tional Diffuse-TreeVAEs across all datasets. The conditional
model consistently shows lower mean entropy, indicating
that additional conditioning on the leaf indices indeed helps
guide the model to generate more distinct and representative
images for each leaf. Figure 5 visually presents the leaf gen-
erations for one sample of these models alongside the under-
lying CNN-TreeVAE generations, which were used to condi-
tion both models. Further examples can be found in A.2. It
can be observed that both the unconditional and conditional
models exhibit a significant improvement in image quality.
However, the images in the cluster-conditional model are
more diverse, demonstrating greater adaptability for each
cluster. This is evident as the images clearly show indica-
tions of multiple true CIFAR-10 classes, with recognizable
features such as horses, ships, or cars. Notably, across all
models, the leaf-specific images share common properties
sampled at the root while varying in cluster-specific features
from leaf to leaf within each model.

Table 2. Cluster-specificity of Diffuse-TreeVAE generations for
cluster-unconditional and cluster-conditional reverse models, mea-
sured by mean entropy. Lower entropy indicates more cluster-
specific generations. Mean entropy is computed across all leaf-
specific histograms of the predicted classes for newly generated
images. The best result for each dataset is marked in bold.
Dataset Method Mean Entropy
MNIST unconditional 1.24

conditional 0.13
Fashion unconditional 0.66

conditional 0.66
CIFAR10 unconditional 1.12

conditional 0.82

4. Conclusion
In this work, we present Diffuse-TreeVAE, a novel approach
to integrate hierarchical clustering into diffusion models. By
enhancing TreeVAE with a Denoising Diffusion Probabilis-
tic Model conditioned on the cluster-specific representations,
we have developed a model capable of generating distinct,
high-quality images that faithfully represent their respec-
tive data clusters. This approach not only improves the
visual fidelity of generated images but also ensures that
these representations are true to the underlying data distri-
bution. Diffuse-TreeVAE offers a robust framework that
bridges the gap between clustering precision and generative
performance, thereby expanding the potential applications
of generative models in areas requiring detailed and accurate
visual data interpretation.
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A. Appendix
A.1. Generations on MNIST and CIFAR-10

Figure 6 presents an additional plot similar to those in Figure 3 and Figure 4 from the main text. This plot illustrates the
generated images of the Diffuse-TreeVAE model when trained on the MNIST dataset. In each of these plots, we display
randomly generated images for each cluster. Below each set of leaf-specific images, we provide a normalized histogram
showing the distribution of predicted classes by an independent ResNet-50 classifier that has been pre-trained on the training
data of the respective dataset. This visualization helps in understanding how well the model can generate distinct and
meaningful clusters in the context of different datasets.

Figure 6. Diffuse-TreeVAE model trained on MNIST. For each cluster, random newly generated images are displayed. Below each set
of images, a normalized histogram (ranging from 0 to 1) shows the distribution of predicted classes from an independent, pre-trained
classifier on MNIST for all newly generated images in each leaf with a significant probability of reaching that leaf.
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A.2. Additional Generation Examples for Conditional vs. Unconditional Diffuse-TreeVAE

Figure 7 presents three additional examples similar to Figure 5, comparing the leaf-specific generations of the conditional
and unconditional Diffuse-TreeVAE models, alongside the underlying CNN-TreeVAE generations.

Figure 7. For each example, we show image generations from each leaf of (top) a CNN-TreeVAE, (middle) a cluster-unconditional
Diffuse-TreeVAE, and (bottom) a cluster-conditional Diffuse-TreeVAE, all trained on CIFAR-10. Each row displays the generated images
from all leaves of the specified model, starting with the same sample from the root. The corresponding leaf probabilities are shown at the
top of the image and are by design the same for all models.
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