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Abstract

The computation of Wasserstein gradient direction is essential for posterior sam-1

pling problems and scientific computing. The approximation of the Wasserstein2

gradient with finite samples requires solving a variational problem. We study the3

variational problem in the family of two-layer networks with squared-ReLU activa-4

tions, towards which we derive a semi-definite programming (SDP) relaxation. This5

SDP can be viewed as an approximation of the Wasserstein gradient in a broader6

function family including two-layer networks. By solving the convex SDP, we ob-7

tain the optimal approximation of the Wasserstein gradient direction in this class of8

functions. Numerical experiments including PDE-constrained Bayesian inference9

and parameter estimation in COVID-19 modeling demonstrate the effectiveness of10

the proposed method.11

1 Introduction12

Bayesian inference plays an essential role in learning model parameters from the observational13

data with applications in inverse problems, scientific computing, information science, and machine14

learning (Stuart, 2010). The central problem in Bayesian inference is to draw samples from a posterior15

distribution, which characterizes the parameter distribution given data and a prior distribution.16

The Wasserstein gradient flow (Otto, 2001; Ambrosio et al., 2005; Junge et al., 2017) has shown to be17

effective in drawing samples from a posterior distribution, which attracts increasing attention in recent18

years. For instance, the Wasserstein gradient flow of Kullback-Leibler (KL) divergence connects to19

the overdampled Langevin dynamics. The time-discretization of the overdamped Langevin dynamics20

renders the classical Langevin Monte Carlo Markov Chain (MCMC) algorithm. In this sense, the21

computation of Wasserstein gradient flow yields a different viewpoint for sampling algorithms. In22

particular, the Wasserstein gradient direction also provides a deterministic update of the particle23

system (Carrillo et al., 2021b). Based on the approximation or generalization of the Wasserstein24

gradient direction, many efficient sampling algorithms have been developed, including Wasserstein25

gradient descent (WGD) with kernel density estimation (KDE) (Liu et al., 2019), Stein variational26

gradient descent (SVGD) (Liu & Wang, 2016), and neural variational gradient descent (di Langosco27

et al., 2021), etc.28

Meanwhile, neural networks exhibit tremendous optimization and generalization performance in29

learning complicated functions from data. They also have wide applications in Bayesian inverse30

problems (Rezende & Mohamed, 2015; Onken et al., 2020; Kruse et al., 2019; Lan et al., 2021).31

According to the universal approximation theorem of neural networks (Hornik et al., 1989; Lu et al.,32

2017), any arbitrarily complicated functions can be learned by a two-layer neural network with33
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non-linear activations and a sufficient number of neurons. Functions represented by neural networks34

naturally provide an approximation towards the Wasserstein gradient direction.35

However, due to the nonlinear and nonconvex structure of neural networks, optimization algorithms36

including stochastic gradient descent may not find the global optima of the training problem. Recently,37

based on a line of works (Pilanci & Ergen, 2020; Sahiner et al., 2020; Bartan & Pilanci, 2021), the38

regularized training problem of two-layer neural networks with ReLU/polynomial activation can39

be formulated as a convex program. The optimal solution of the convex program renders a global40

optimum of the nonconvex training problem.41

In this paper, we study a variational problem, whose optimal solution corresponds to the Wasserstein42

gradient direction. Focusing on the family of two-layer neural networks with squared ReLU activation,43

we formulate the regularized variational problem in terms of samples. Directly training the neural44

network to minimize the loss may get the neural network stuck at local minima or saddle points and45

it often leads to biased sample distribution from the posterior. Instead, we analyze the convex dual46

problem of the training problem and study its semi-definite program (SDP) relaxation by analyzing47

the geometry of dual constraints. The resulting SDP is practically solvable and it can be efficiently48

optimized by convex optimization solvers such as CVXPY (Diamond & Boyd, 2016). We then derive49

the corresponding relaxed bidual problem (dual of the relaxed dual problem). Thus, the optimal50

solution to the dual problem yields an optimal approximation of the Wasserstein gradient direction51

in a broader function family. We also present a practical implementation and analyze the choice of52

the regularization parameter. Numerical results including PDE-constrained inference problems and53

Covid-19 parameter estimation problems illustrate the effectiveness of our proposed method.54

1.1 Related works55

The time and spatial discretizations of Wasserstein gradient flows are extensively studied in literature56

(Jordan et al., 1998; Junge et al., 2017; Carrillo et al., 2021a,b; Bonet et al., 2021; Liutkus et al., 2019;57

Frogner & Poggio, 2020). Recently, neural networks have been applied in solving or approximating58

Wasserstein gradient flows (Mokrov et al., 2021; Lin et al., 2021b,a; Alvarez-Melis et al., 2021;59

Bunne et al., 2021; Hwang et al., 2021; Fan et al., 2021). For sampling algorithms, di Langosco60

et al. (2021) learns the transportation function by solving an unregularized variational problem in the61

family of vector-output deep neural networks. Compared to these studies, we focus on a convex SDP62

relaxation of the varitional problem induced by the Wasserstein gradient direction. Meanwhile, Feng63

et al. (2021) form the Wasserstein gradient direction as the mininimizer the Bregman score and they64

apply deep neural networks to solve the induced variational problem.65

2 Background66

In this section, we briefly review the Wasserstein gradient descent and present its variational for-67

mulation. In particular, we focus on the Wasserstein gradient descent direction of KL divergence68

functional. Later on, we design a neural network convex optimization problems to approximate the69

Wasserstein gradient in samples.70

2.1 Wasserstein gradient descent71

Consider an optimization problem in the probability space:72

inf
ρ∈P

DKL(ρ‖π) =

∫
ρ(x)(log ρ(x)− log π(x))dx, (1)

Here the integral is taken over Rd and the objective functional DKL(ρ‖π) is the KL divergence from73

ρ to π. The variable is the density function ρ in the space P = {ρ ∈ C∞(Rd)|
∫
ρdx = 1, ρ > 0}.74

The function π ∈ C∞(Rd) is a known probability density function of the posterior distribution. By75

solving the optimization problem (1), we can generate samples from the posterior distribution.76
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A known fact (Villani, 2003, Chapter 8.3.1) is that the Wasserstein gradient descent flow for the77

optimization problem (1) satisfies78

∂tρt =∇ ·
(
ρt∇

δ

δρt
DKL(ρt‖π)

)

=∇ · (ρt(∇ log ρt −∇ log π))

=∆ρt −∇ · (ρt∇ log π),

where ρt(x) = ρ(x, t) and δ
δρt

is the L2 first variation operator w.r.t. ρt. In the above third equality,79

a fact ρt∇ log ρt = ∇ρt is used. Here ∇ · F denotes the divergence of a vector valued function80

F : Rd → Rd and ∆ is the Laplace operator. This equation is also known as the gradient drift81

Fokker-Planck equation. It corresponds to the following updates in terms of samples:82

dxt = −(∇ log ρt(xt)−∇ log π(xt))dt, (2)

where xt follows the distribution of ρt. Clearly, when ρt = π, the above dynamics reach the83

equilibrium, which implies that the samples xt are generated by the posterior distribution.84

To solve the Wasserstein gradient flow (2), we consider a forward Eulerian discretization in time.85

In the l-th iteration, suppose that {xnl } are samples drawn from ρl. The update rule of Wasserstein86

gradient descent (WGD) on the particle system {xnl } follows87

xnl+1 = xnl − αl∇Φl(x
n
l ), (3)

where Φl : Rd → R is a function which approximates log ρl − log π and αl > 0 is the step size.88

2.2 Variational formulation of WGD89

Given the particles {xn}Nn=1, we design the following variational problem to choose a suitable90

function Φ approximating the function log ρ− log π. Consider91

inf
Φ∈C1(Rd)

1

2

∫
‖∇Φ(x− (∇ log ρ(x)−∇ log π(x))‖22ρ(x)dx. (4)

The objective functional evaluates the least-square discrepancy between ∇ log ρ−∇ log π and∇Φ92

weighted by the density ρ. The optimal solution follows Φ = log ρ− log π, up to a constant shift. Let93

H ⊆ C1(Rd) be a finite dimensional function space. The following proposition gives a formulation94

of (4) inH.95

Proposition 1 LetH ⊆ C1(Rd) be a function space. The variational problem (4) in the domainH96

is equivalent to97

inf
Φ∈H

1

2

∫
‖∇Φ(x)‖22ρdx+

∫
∆Φ(x)ρ(x)dx+

∫
〈∇ log π(x),∇Φ(x)〉 ρ(x)dx. (5)

Remark 1 A similar variational problem has been studied in (di Langosco et al., 2021). If we replace98

∇Φ for Φ ∈ H by a vector field Ψ in certain function family, then, the quantity in (5) is the negative99

regularized Stein discrepancy defined in (di Langosco et al., 2021) between ρ and π based on Ψ. This100

problem is also similar to the varitional problem for the score matching estimator in (Hyvärinen &101

Dayan, 2005) by parameterizing Φ in a given probabilistic model. In comparison, our method can be102

viewed as a special case of score matching by using a two-layer neural network model.103

Therefore, by replacing the density ρ by finite samples {xn}Nn=1 ∼ ρ, the problem (5) in terms of104

finite samples forms105

inf
Φ∈H

1

N

N∑

n=1

(
1

2
‖∇Φ(xn)‖22 + ∆Φ(xn)

)
+

1

N

N∑

n=1

〈∇ log π(xn),∇Φ(xn)〉 . (6)

3 Optimal neural network approximation of Wasserstein gradient106

In this section, we focus on functional spaceH of functions represented by two-layer neural networks.107

We derive the primal and dual problem of the regularized Wasserstein variational problems. By108
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analyzing the dual constraints, a convex SDP relaxation of the dual problem is obtained. We also109

present a practical implementation estimation of ∇ log ρ − ∇ log π and discuss the choice of the110

regularization parameter.111

Let ψ be an activation function. Consider the case where H is a class of two-layer neural network112

with the activation function ψ(x):113

H =
{

Φθ ∈ C1(Rd)|Φθ(x) = αTψ(WTx)
}
, (7)

where θ = (W,α) is the parameter in the neural network with W ∈ Rd×m and α ∈ Rm.114

Remark 2 We can extend this model to handle the bias term by add an entry of 1 in x1, . . . , xn.115

For two-layer neural networks, we can compute the gradient and Laplacian of Φ ∈ H as follows:116

∇Φθ(x) =
m∑

i=1

αiwiψ
′(wTi x) = W (ψ′(WTx) ◦ α), (8)

117

∆Φθ(x) =
m∑

i=1

αi‖wi‖22ψ′′(wTi x). (9)

Here ◦ represents the element-wise multiplication. By adding a regularization term to the variational118

problem (6), we obtain119

min
θ

1

2N

N∑

n=1

∥∥∥∥∥
m∑

i=1

αiwiψ
′(wTi xn)

∥∥∥∥∥

2

2

+
1

N

N∑

n=1

〈
m∑

i=1

αiwiψ
′(wTi xn),∇ log π(xn)

〉

+
1

N

N∑

n=1

m∑

i=1

αi‖wi‖22ψ′′(wTi xn) +
β

2
R(θ),

(10)

where β > 0 is the regularization parameter. We focus on the squared ReLU activation ψ(z) =120

(z)2
+ = (max{z, 0})2. Note that a non-vanishing second derivative is required for the Laplacian term121

in (9), which makes the ReLU activation inadequate. For this activation function, we consider the122

regularization function R(θ) =
∑m
i=1(‖wi‖32 + |αi|3).123

Remark 3 We note that ∇Φθ(x) and ∆Φθ(x) are all piece-wise degree-3 polynomials of the124

parameters θ. Hence, we consider a specific cubic regularization term above, analogous to (Bartan &125

Pilanci, 2021). By choosing this regularization term, we can derive a simplified convex dual problem.126

By rescaling the first and second-layer parameters, the regularized variational problem (10) can be127

formulated as follows.128

Proposition 2 (Primal problem) The regularized variational problem (10) is equivalent to129

min
W,α

1

2

N∑

n=1

∥∥∥∥∥
m∑

i=1

αiwiψ
′(wTi xn)

∥∥∥∥∥

2

+
N∑

n=1

m∑

i=1

αi‖wi‖22ψ′′(wTi xn)

+
N∑

n=1

〈
m∑

i=1

αiwiψ
′(wTi xn),∇ log π(xn)

〉
+ β̃‖α‖1,

s.t. ‖wi‖2 ≤ 1, i ∈ [m],

(11)

where β̃ = 3 · 2−5/3Nβ.130

For simplicity, we write Y =



∇ log π(x1)T

...
∇ log π(xN )T


 ∈ RN×d. We introduce the slack variable zn =131

∑m
i=1 αiwiψ

′(xTnwi) for n ∈ [N ] and denote Z = [z1 . . . zN ]
T ∈ RN×d. Then, we can simplify132

the problem (11) to133

min
W,α,Z

1

2
‖Z‖2F +

N∑

n=1

m∑

i=1

αi‖wi‖22ψ′′(wTi xn) + tr(Y TZ) + β̃‖α‖1,

s.t. zn =
m∑

i=1

αiwiψ
′(xTnwi), n ∈ [N ], ‖wi‖2 ≤ 1, i ∈ [m].

(12)
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Based on the above reformulation, we can derive the dual problem of (12) as follows.134

Proposition 3 (Dual problem) The dual problem of the regularized variational problem (12) is135

max
Λ∈RN×d

− 1

2
‖Λ + Y ‖2F , s.t. max

w:‖w‖2≤1

∣∣∣∣∣
N∑

n=1

‖w‖22ψ′′(xTnw)− λTnwψ′(xTnw)

∣∣∣∣∣ ≤ β̃, (13)

which provides a lower-bound on (12).136

3.1 Analysis of dual constraints and the relaxed dual problem137

Now, we analyze the constraint

max
w:‖w‖2≤1

∣∣∣∣∣
N∑

n=1

‖w‖22ψ′′(wTxn)− λTnwψ′(xTnw)

∣∣∣∣∣ ≤ β̃

in the dual problem. We note that this constraint is closely related to the regularization parameter,138

which we will discuss later. For simplicity, we take ψ′′(0) = 0 as the subgradient of ψ′(z) at z = 0,139

i.e., taking the left derivative of ψ′(z) at z = 0. Let X = [x1, . . . , xN ]T ∈ RN×d. Denote the set of140

all possible hyper-plane arrangements corresponding to the rows of X as141

S = {D = diag(I(Xw ≥ 0))|w ∈ Rd, w 6= 0}. (14)

Here I(s) = 1 if the statement s is correct and I(s) = 0 otherwise. Let p = |S| be the cardinality142

of S, and write S = {D1, . . . , Dp}. According to (Cover, 1965), we have the upper bound p ≤143

2r
(
e(N−1)

r

)r
, where r = rank(X).144

Based on the analysis of the dual constraints, we can derive a convex SDP as a relaxed dual problem.145

It gives a lower bound for the optimal value of the dual problem (13).146

Proposition 4 (Relaxed Dual problem) Consider the following SDP:147

max − 1

2
‖Λ + Y ‖2F ,

s.t. Ãj(Λ) + B̃j +
N∑

n=0

r(j,−)
n H(j)

n + β̃ed+1e
T
d+1 � 0,

− Ãj(Λ)− B̃j +

N∑

n=0

r(j,+)
n H(j)

n + β̃ed+1e
T
d+1 � 0,

r(j,−) ≥ 0, r(j,+) ≥ 0, j ∈ [p].

(15)

The variables are Λ ∈ RN×d and r(j,−), r(j,+) ∈ Rn+1 for j ∈ [p]. For j ∈ [p], we denote148

Aj(Λ) = −ΛTDjX − XTDjΛ, Bj = 2 tr(Dj)Id, Ãj(Λ) =

[
Aj(Λ) 0

0 0

]
, B̃j =

[
Bj 0
0 0

]
,149

H
(j)
0 =

[
Id 0
0 −1

]
and H

(j)
n =

[
0 (1− 2(Dj)nn)xn

(1− 2(Dj)nn)xTn 0

]
, n ∈ [N ] The vector150

ed+1 ∈ Rd+1 satisfies that (ed+1)i = 0 for i ∈ [d] and (ed+1)d+1 = 1.151

The optimal value of (15) gives a lower bound on the dual problem (13), and hence on the primal152

problem (12).153

In the following proposition, we derive the relaxed bi-dual problem. It can be viewed as a convex154

relaxation of the primal problem (12).155

Proposition 5 (Relaxed bi-dual problem) The dual of the relaxed dual problem (15) is as follows156

min
1

2
‖Z + Y ‖2F −

1

2
‖Y ‖2F +

p∑

j=1

tr(B̃j(S
(j,+) − S(j,−))) + β̃

p∑

j=1

tr
(

(S(j,+) + S(j,−))ed+1e
T
d+1

)
,

s.t. Z =

p∑

j=1

Ã∗j (S
(j,−) − S(j,+)), tr(S(j,−)H(j)

n ) ≤ 0, tr(S(j,+)H(j)
n ) ≤ 0, n = 0, . . . , N, j ∈ [p],

(16)
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in variables Z ∈ RN×d, S(j,+), S(j,−) ∈ Sd+1
+ for j ∈ [p]. Here A∗j is the adjoint operator of the157

linear operator Aj .158

As (15) is a convex problem and the Slater’s condition is satisfied, the optimal values of (15) and159

(16) are same. We can show that any feasible solutions of the primal problem (11) can be mapped to160

feasible solutions of (16).161

Theorem 1 Suppose that (Z,W,α) is feasible to the primal problem (12). Then, there exist matrices162

{S(j,+), S(j,−)}pj=1 constructed from (W,α) such that (Z, {S(j,+), S(j,−)}pj=1) is feasible to the163

relaxed bi-dual problem (16). Moreover, the objective value of the relaxed bi-dual problem (16) at164

(Z, {S(j,+), S(j,−)}pj=1) is the same as objective value of the primal problem (12) at (Z,W,α).165

Let J(Z, {S(j,+), S(j,−)}pj=1) denote the objective value of the relaxed bi-dual problem (16) at166

a feasible solution (Z, {S(j,+), S(j,−)}pj=1). Let (Z∗,W ∗, α∗) denote a globally optimal solu-167

tion of the primal problem (12). By Theorem 1, there exist matrices {S(j,+), S(j,−)}pj=1 such168

that (Z∗, {S(j,+), S(j,−)}pj=1) is a feasible solution of the relaxed bi-dual problem (16) and169

J(Z∗, {S(j,+), S(j,−)}pj=1) is the same as the objective value of (12) at its global minimum170

(Z∗,W ∗, α∗). On the other hand, let (Z̃∗, {S̃(j,+), S̃(j,−)}pj=1) denote an optimal solution of the171

relaxed bi-dual problem (16). From the optimality of (Z̃∗, {S̃(j,+), S̃(j,−)}pj=1), we have172

J(Z̃∗, {S̃(j,+), S̃(j,−)}pj=1) ≤ J(Z∗, {S(j,+), S(j,−)}pj=1). (17)

Note that at (Z∗,W ∗, α∗) we obtain the optimal approximation of ∇ log ρ−∇ log π at x1, . . . , xN173

in the family of two-layer squared-ReLU networks (7). Smaller or equal objective value of the relaxed174

bi-dual problem (16) can be achieved at (Z̃∗, {S̃(j,+), S̃(j,−)}pj=1) than at (Z∗, {S(j,+), S(j,−)}pj=1).175

Therefore, we can view Z̃∗ gives an optimal approximation of ∇ log ρ − ∇ log π evaluated on176

x1, . . . , xN in a broader function family including the two-layer squared ReLU neural networks.177

From the derivation of the relaxed bi-dual problem, we have the relation Z̃∗ = −Λ∗ − Y , where178

(Λ∗, {r(j,+), r(j,−)) is optimal to the relaxed dual problem (15) and (Z̃∗, {S̃(j,+), S̃(j,−)}pj=1) is179

optimal to the relaxed bi-dual problem (16). Therefore, by solving Λ∗ from the relaxed dual problem180

(15), we can use −Λ∗ − Y as the approximation of∇ log ρ−∇ log π evaluated on x1, . . . , xN .181

Remark 4 We note that solving the proposed convex optimization problem 15 renders the approxi-182

mation of the Wasserstein gradient direction. Compared to the two-layer ReLU networks, it induces a183

broader class of functions represented by {S(j,+), S(j,−)}pj=1. This contains more variables than the184

neural network function.185

3.2 Practical implementation186

Although the number p of all possible hyper-plane arrangements is upper bounded by 2r((N−1)e/r)r187

with r = rank(X), it is computationally costly to enumerate all possible p matrices D1, . . . , Dp to188

represent the constraints in the relaxed dual problem (4). In practice, we first randomly sample M189

i.i.d. random vectors u1, . . . , uM ∼ N (0, Id) and generate a subset Ŝ of S as follows:190

Ŝ = {diag(I(Xuj ≥ 0)|j ∈ [M ]}. (18)
Then, we optimize the randomly sub-sampled version of the relaxed dual problem based on the subset191

Ŝ and obtain the solution Λ. We then use −Λ− Y as the direction to update the particle system X .192

If the regularization parameter is too large, then we will have −Λ− Y = 0, which makes the particle193

system unchanged. Therefore, to ensure that β̃ is not too large, we decay β̃ by a factor γ1 ∈ (0, 1).194

This also appears in (Ergen et al., 2021). On the other hand, if β̃ is too small resulting the relaxed dual195

problem (4) infeasible, we increase β̃ by multiplying γ−1
2 , where γ2 ∈ (0, 1). Detailed explanation196

of the adjustment of the regularization parameter can be found in Appendix C. The overall algorithm197

is summarized in Algorithm 1.198

We note that the randomly subsampled version of the relaxed dual problem (15) involves 2Np̂
inequality constraints and 2p̂ linear matrix inequality constraints with size (d + 1) × (d + 1).
Applying the standard interior point method (Boyd et al., 2004) leads to the computational time up to

O((max{N, d2}p̂)6).
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Algorithm 1 Convex neural Wasserstein descent

Require: initial positions {xn0}Nn=1, step size αl, initial regularization parameter β̃0, γ1, γ2 ∈ (0, 1).

1: while not converge do
2: Form Xl and Yl based on {xnl }Nn=1 and {∇ log π(xnl )}Nn=1.
3: Solve Λl from the relaxed dual problem (15) with β̃ = β̃l.
4: if the relaxed dual problem with β̃ = β̃l is infeasible then
5: Set Xl+1 = Xl for n ∈ [N ] and set β̃l+1 = γ−1

2 β̃l.
6: else
7: Update Xl+1 = Xl + αl(Λl + Yl) for n ∈ [N ] and set β̃l+1 = γ1β̃l.
8: end if
9: end while

For high-dimensional problems, i.e., d is large, the computational cost of solving (15) can be large.199

In this case, we apply the dimension-reduction techniques (Zahm et al., 2018; Chen & Ghattas, 2020;200

Wang et al., 2021) to reduce the parameter dimension d to a data-informed intrinsic dimension d̂,201

which is often very low, i.e., d̂� d.202

4 Numerical experiments203

In this section, we present numerical results to compare WGD approximated by neural networks204

(WGD-NN) and WGD approximated using convex optimization formulation of neural networks205

(WGD-cvxNN). The performance of the two methods is assessed by the sample goodness-of-fit206

of the posterior. For WGD-NN, in each iteration, it updates the particle system using (3) with a207

function Φ represented by a two-layer squared ReLU neural network. The parameters of the neural208

network is obtained by directly solving the nonconvex optimization problem (10). We note that209

it takes longer time by WGD-cvxNN (compared to WGD-NN) to solve the convex optimization210

problem. However, this optimization time is often dominated by the time in likelihood evaluation if211

the model is expensive to solve. Moreover, the induced SDPs have specific structures of many similar212

constraints, whose solution can be accelerated by designing a specialized convex optimization solver.213

This is left for future work.214

4.1 A toy example215

We test the performance of WGD on a bimodal 2-dimensional double-banana posterior distribution216

introduced in (Detommaso et al., 2018). We first generate 300 posterior samples by a Stein variational217

Newton (SVN) method (Detommaso et al., 2018) as the reference, as shown in Figure 1. We evaluate218

the performance of WGD-NN and WGD-cvxNN by calculating the maximum mean discrepancy219

(MMD) between their samples in each iteration and the reference samples. In the comparison, we220

use N = 50 samples and run for 100 iterations with step sizes αl = 10−3. For WGD-cvxNN, we221

set β = 1, γ1 = 0.95 and γ2 = 0.9510. For WGD-NN, we use m = 200 neurons and optimize the222

regularized training problem (10) using all samples with the Adam optimizer (Kingma & Ba, 2014)223

with learning rate 10−3 for 200 sub-iterations. We also set the regularization parameter β = 1 and224

decrease it by a factor of 0.95 in each iteration. We find that this setup of parameters is more suitable.225

The posterior density and the sample distributions by WGD-cvxNN and WGD-NN at the final226

step of 100 iterations are shown in Figure 1. It can be observed that WGD-cvxNN provides more227

representative samples than WGD-NN for the posterior density.228
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Figure 1: Posterior density and sample distributions by WGD-cvxNN and WGD-NN at the final step
of 100 iterations, compared to the reference SVN samples (right).

In Figure 2, we plot the MMD of the samples by WGD-cvxNN and WGD-NN compared to the229

reference SVN samples at each iteration. We observe that the samples by WGD-cvxNN achieves230

much smaller MMD than those of WGD-NN compared to the reference SVN samples, which is231

consistent with the results shown in Figure 1. For WGD-cvxNN, it takes 572s in total, while for WGD-232

NN, it takes 16s in total. WGD-cvxNN takes much longer time than WGD-NN as WGD-cvxNN233

aims to solve for the global minimum of the relaxed convex dual problem.234

Figure 2: MMD of WGD-cvxNN and WGD-NN samples compared to the reference SVN samples.

4.2 PDE-constrained nonlinear Bayesian inference235

In this experiment, we consider a nonlinear Bayesian inference problem constrained by the following236

partial differential equation (PDE) (Chen & Ghattas, 2020) with application to subsurface (Darcy)237

flow in a physical domain D = (0, 1)2,238

v + ex∇u = 0 in D,
∇ · v = h in D,

(19)

where u is pressure, v is velocity, h is force, ex is a random (permeability) field equipped with239

a Gaussian prior x ∼ N (x0, C) with covariance operator C = (−δ∆ + γI)−α where we set240

δ = 0.1, γ = 1, α = 2 and x0 = 0. This problem is widely used in many areas, for instance,241

estimating permeability in groundwater flow, thermal conductivity in material science or electrical242

impedance in medical imaging, We impose Dirichlet boundary conditions u = 1 on the top boundary243

and u = 0 on the bottom boundary, and homogeneous Neumann boundary conditions on the left244

and right boundaries for u. We use a finite element method with piecewise linear elements for the245

discretization of the problem, resulting in 81 dimensions for the discrete parameter. The data is246

generated as pointwise observation of the pressure field at 49 points equidistantly distributed in247

(0, 1)2, corrupted with additive 5% Gaussian noise. We use a DILI-MCMC algorithm Cui et al.248

(2016) with 10000 effective samples to compute the sample mean and sample variance, which are249

used as the reference values to assess the goodness of the samples by pWGD-cvxNN and pWGD-NN.250

We run pWGD-cvxNN and pWGD-NN with 64 samples for ten trials with step size αl = 10−3,251

where we set β = 10, γ1 = 0.95, and γ2 = 0.9510 for both methods. The RMSE of the sample252

mean and sample variance are shown in Figure 3 for the two methods at each of the iterations. We253

can observe that pWGD-cvxNN achieves smaller errors for both the sample mean and the sample254

variance compared to pWGD-NN at each iteration. Moreover, pWGD-cvxNN provides much smaller255

variation of the sample mean and sample variance for the ten trials compared to pWGD-NN.256
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Figure 3: Ten trials and the RMSE of the sample mean (top) and sample variance (bottom) by
pWGD-NN and pWGD-cvxNN at different iterations. Nonlinear inference problem.

4.3 Bayesian inference for COVID-19257

In this experiment, we use Bayesian inference to learn the dynamics of the transmission and severity258

of COVID-19 from the recorded data for New York state, as studied in Chen & Ghattas (2020).259

We use the model, parameter, and data as in Chen & Ghattas (2020). More specifically, we use a260

compartmental model for the modeling of the transmission and outcome of COVID-19. We take the261

number of hospitalized cases as the observation data to infer a social distancing parameter, a time-262

dependent stochastic process that is equipped with a Tanh–Gaussian prior to model the transmission263

reduction effect of social distancing, which becomes 96 dimensions after discretization.264

We run a projected Stein variational gradient descent (pSVGD) method Chen & Ghattas (2020) as265

the reference, and run pWGD-cvxNN and pWGD-NN using 64 samples for 100 iterations with step266

size αl = 10−3, where we set β = 10, γ1 = 0.95, and γ2 = 0.9510 for both methods as in the last267

example. From Figure 4 we can observe that pWGD-cvxNN produces more consistent results with268

pSVGD than pWGD-NN for both the sample mean and 90% credible interval, both in the inference269

of the social distancing parameter and in the prediction of the hospitalized cases.270
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Figure 4: Comparison of pWGD-cvxNN and pWGD-NN to the reference by pSVGD for Bayesian
inference of the social distancing parameter (left) from the data of the hospitalized cases (right) with
sample mean and 90% credible interval.

5 Conclusion271

In the context of variational Wasserstein gradient descent methods for Bayesian inference, we consider272

the approximation of the Wasserstein gradient direction by the gradient of functions in the family of273

two-layer neural networks. We propose a convex SDP relaxation of the dual of the variational primal274

problem, which can be solved efficiently using convex optimization methods instead of directly275

training the neural network as a nonconvex optimization problem. In particular, we established that276

the gradient obtained by the new formulation and convex optimization is at least as good as the277

optimal approximation of the Wasserstein gradient direction by functions in the family of two-layer278

neural networks, which is demonstrated by various numerical experiments. In future works, we279

expect to extend our convex neural network approximations to generalized Wasserstein flows.280
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