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Abstract

Understanding generalization in deep learning has been one of the major chal-
lenges in statistical learning theory over the last decade. While recent work has
illustrated that the dataset and the training algorithm must be taken into account in
order to obtain meaningful generalization bounds, it is still theoretically not clear
which properties of the data and the algorithm determine the generalization perfor-
mance. In this study, we approach this problem from a dynamical systems theory
perspective and represent stochastic optimization algorithms as random iterated
function systems (IFS). Well studied in the dynamical systems literature, under
mild assumptions, such IFSs can be shown to be ergodic with an invariant measure
that is often supported on sets with a fractal structure. As our main contribution,
we prove that the generalization error of a stochastic optimization algorithm can
be bounded based on the ‘complexity’ of the fractal structure that underlies its
invariant measure. Then, by leveraging results from dynamical systems theory,
we show that the generalization error can be explicitly linked to the choice of the
algorithm (e.g., stochastic gradient descent – SGD), algorithm hyperparameters
(e.g., step-size, batch-size), and the geometry of the problem (e.g., Hessian of the
loss). We further specialize our results to specific problems (e.g., linear/logistic
regression, one hidden-layered neural networks) and algorithms (e.g., SGD and
preconditioned variants), and obtain analytical estimates for our bound. For modern
neural networks, we develop an efficient algorithm to compute the developed bound
and support our theory with various experiments on neural networks.

1 Introduction

In statistical learning, many problems can be naturally formulated as a risk minimization problem

minw2Rd

n
R(w) := Ez⇠⇡[`(w, z)]

o
, (1)

where z 2 Z denotes a data sample coming from an unknown distribution ⇡, and ` : Rd
⇥ Z ! R+

is the composition of a loss and a function from the hypothesis class parameterized by w 2 Rd. Since
the distribution ⇡ is unknown, one needs to rely on empirical risk minimization as a surrogate to (1),

minw2Rd

n
R̂(w,Sn) := (1/n)

Xn

i=1

`(w, zi)
o

, (2)

where Sn := {z1, . . . , zn} denotes a training set of n points that are independently and identically
distributed (i.i.d.) and sampled from ⇡, and model training often amounts to using an optimization
algorithm to solve the above problem.
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Statistical learning theory is mainly interested in understanding the behavior of the generalization
error, i.e., R̂(w,Sn) � R(w). While classical results suggest that models with large number
of parameters should suffer from poor generalization [SSBD14, AB09], modern neural networks
challenge this classical wisdom: they can fit the training data perfectly, yet manage to generalize
well [ZBH+17, NBMS17]. Considering that the generalization error is influenced by many factors
involved in the training process, the conventional algorithm- and data-agnostic uniform bounds are
typically overly pessimistic in a deep learning setting. In order to obtain meaningful, non-vacuous
bounds, the underlying data distribution and the choice of the optimization algorithm need to be
incorporated in the generalization bounds [ZBH+17, DR17].

Our goal in this study is to develop novel generalization bounds that explicitly incorporate the data
and the optimization dynamics, through the lens of dynamical systems theory. To motivate our
approach, let us consider stochastic gradient descent (SGD), which has been one of the most popular
optimization algorithms for training neural networks. It is defined by the following recursion:

wk = wk�1 � ⌘rR̃k(wk�1), where rR̃k(w) := rR̃⌦k(w) := (1/b)
X

i2⌦k

r`(w, zi).

Here, k represents the iteration counter, ⌘ > 0 is the step-size (also called the learning-rate), rR̃k is
the stochastic gradient, b is the batch-size, and ⌦k ⇢ {1, 2, . . . , n} is a random subset drawn with or
without replacement with cardinality |⌦k| = b for all k.

Constant step-size SGD forms a Markov chain with a stationary distribution w1 ⇠ µ, which exists
and is unique under mild conditions [DDB20, YBVE20], and intuitively we can expect that the
generalization performance of the trained model to be intimately related to the behavior of the risk
R(w) over this limit distribution µ. In particular, the Markov chain defined by the SGD recursion
can be written by using random functions h⌦k at each SGD iteration k, i.e.,

wk = h⌦k(wk�1), with h⌦k(w) = w � ⌘rR̃k(w). (3)
Here, the randomness in h⌦k is due to the selection of the subset ⌦k. In fact, such a formulation is not
specific to SGD; it can cover many other stochastic optimization algorithms if the random function
h⌦k is selected accordingly, including second-order algorithms such as preconditioned SGD [Li17].
Such random recursions (3) and characteristics of their stationary distribution have been studied
extensively under the names of iterated random functions [DF99] and iterated function system (IFS)
[Fal04]. In this paper, from a high level, we relate the ‘complexity of the stationary distribution’ of a
particular IFS to the generalization performance of the trained model.
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Stationary distribution of SGD

Figure 1: Middle-third Cantor set as the
support of the stationary distribution of con-
stant step-size SGD for `(w, z1) = w2/2
and `(w, z2) = w2/2� w.

We illustrate our context in two toy examples. In the first
one, we consider a 1-dimensional quadratic problem with
n = 2 and `(w, z1) = w

2
/2 and `(w, z2) = w

2
/2 �

w. We run SGD with constant step-size ⌘ to minimize
the resulting empirical risk. We simply choose ⌦k ⇢

{1, 2} uniformly random with batch-size b = 1, and we
plot the histograms of stationary distributions for different
step-size choices ⌘ 2 {1/100, 1/3, 2/3} in Figure 1. We
observe that the support of the stationary distribution of
SGD depends on the step-size: As the step-size increases
the support becomes less dense and a fractal structure in
the stationary distribution can be clearly observed.

This behavior is not surprising, at least for this toy example.
It is well-known that the set of points that is invariant under
the resulting IFS (termed as the attractor of the IFS) for
the specific choice of ⌘ = 2/3 is the famous ‘middle-third Cantor set’ [FW09], which coincides with
the support of the stationary distribution of the SGD.

As another example, we run SGD with constant step-size in order to train an ordinary linear regression
model for a dataset of n = 5 samples and d = 2 dimensions, i.e., a

>
i w ⇡ yi, where for i = 1, . . . , 5,

yi and each coordinate of ai are drawn uniformly at random from the interval [�1, 1]. Figure 2 shows
the heatmap of the resulting stationary distributions for different step-size choices ⌘ ranging from
0.1 to 0.9 (bright colors represent higher density). We observe that for small step-size choices, the
stationary distribution is dense, whereas a fractal structure can be clearly observed as the step-size
gets larger.
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(a) ⌘ = 0.3 (b) ⌘ = 0.5

(c) ⌘ = 0.7 (d) ⌘ = 0.9
Figure 2: The stationary distribution of
constant step-size SGD for linear regres-
sion, where we have n = 5 data points
and w 2 R2.

Fractals are complex patterns and the level of this com-
plexity is typically measured by the Hausdorff dimen-
sion of the fractal, which is a notion of dimension that
can take fractional values1, and can be much smaller
than the ambient dimension d. Recently, assuming
that SGD trajectories can be well-approximated by a
certain type of stochastic differential equations (SDE)
[ŞGN+19, ŞSG19, NcGR19, ŞZTG20], it is shown that
the generalization error can be controlled by the Hausdorff
dimension of the trajectories of the SDE, instead of their
ambient dimension d [ŞSDE20]. That is, the ambient di-
mension that appears in classical learning theory bounds
is replaced with the Hausdorff dimension.

The fractal geometric approach presented in [ŞSDE20]
can capture the ‘low dimensional structure’ of frac-
tal sets and provides an alternative perspective to the
compression-based approaches that aim to understand
why overparametrized networks do not overfit [AGNZ18,
SAN20, SAM+20, HJTW21]. However, SDE approxima-
tions for SGD often serve as mere heuristics, and guaran-
teeing a good approximation typically requires unrealis-
tically small step-sizes [LTE19]. For more realistic step-
sizes, theoretical concerns have been raised about the validity of conventional SDE approximations
for SGD [LMA21, GŞZ21, Yai19]. Another drawback of the SDE approximation is that the bounds
in [ŞSDE20] are implicit, in the sense that they cannot be related to algorithm hyperparameters,
problem geometry, or data.

We address these issues and present a direct, discrete-time analysis by exploiting the connections
between IFSs and stochastic optimization algorithms. Our contributions are summarized as follows:

• We extend [ŞSDE20] and show that the generalization error can be linked to the Hausdorff
dimension of invariant measures (rather than the Hausdorff dimension of sets as in [ŞSDE20]).
More precisely, under appropriate conditions, we establish a generalization bound for the stationary
distribution of IFS w1 ⇠ µ. That is, with probability at least 1 � 2⇣,

|R̂(w1,Sn) �R(w1)| .

s
dimHµ log2(n)

n
+

log(1/⇣)

n
, (4)

for n large enough, where dimHµ is the (upper) Hausdorff dimension of the measure µ.
• By leveraging results from IFS theory, we further link dimHµ to (i) the form of the recursion (e.g.,

h⌦k in (3)), (ii) algorithm hyperparameters (e.g., ⌘, b), and (iii) problem geometry (e.g., Hessian of
R̃k), through a single term, which encapsulates all these components and their interaction.

• We establish bounds on dimHµ for SGD and preconditioned SGD algorithms, when used to
minimize various empirical risk minimization problems such as least squares, logistic regression,
support vector machines. In all cases, we explicitly link the generalization performance of the
model to the hyperparameters of the underlying training algorithm.

• Finally, we numerically compute key quantities that appear in our generalization bounds, and show
empirically that they have a statistically significant correlation with the generalization error.

Notation and preliminaries. Bd(x, r) ⇢ Rd denotes the closed ball centered around x 2 Rd with
radius r. A function f : Rd1 ! Rd2 is said to be (Fréchet) differentiable at x 2 Rd1 if there exists a
d1⇥d2 matrix Jf (x) : Rd1 ! Rd2 such that limkhk!0 kf(x+h)� f(x)�Jf (x)hk/khk = 0. The
matrix Jf (x) is called the differential of f , also known as the Jacobian matrix at x, and determinant
of Jf (x) is called the Jacobian determinant [HS74]. For real-valued functions f, g, we define
f(n) = !(g(n)) if limn!1 |f(n)|/g(n) = 1. For a set A, |A| denotes its cardinality. For a
scalar-valued function f̃ : R ! R, we define kf̃k1 = maxr2R |f̃(r)|.

1The Hausdorff dimension of the middle-third Cantor set in Figure 1 is log3(2) ⇡ 0.63 whereas the ambient
dimension is 1 [Fal04, Example 2.3].
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2 Technical Background on Fractal Geometry

Fractal sets emerge virtually in all branches of science, and fractal-based techniques have been used
in machine learning [SHTY13, MSS19, DSD20, ŞSDE20, AGZ21]. The inherent ‘complexity’ of a
fractal set often plays an important role and it is typically measured by its fractal dimension, where
several notions of dimension have been proposed [Fal04]. In this section, we briefly mention two
important notions of fractal dimension, which will be used in our theoretical development.

Minkowski dimension of a set. The Minkowski dimension (also known as the box-counting
dimension [Fal04]) is defined as follows. Let F ⇢ Rd be a set and for � > 0, let N�(F ) denote a
collection of sets that contains the smallest number of closed balls of diameter at most � which cover
F . Then the upper-Minkowski dimension of F is defined as follows:

dimMF := lim sup�!0

h
log |N�(F )| / log(1/�)

i
. (5)

To visualize the upper-Minkowski dimension of a set F , consider the set F lying on an evenly spaced
grid and count how many boxes are required to cover the set. The upper-Minkowski dimension
measures how this number changes as the grid is made finer using a box-counting algorithm.

Hausdorff dimension of a set. An alternative to the purely geometric Minkowski dimension,
the Hausdorff dimension [Hau18] is a measure theoretical notion of fractal dimension. It is based
on the Hausdorff measure, which generalizes the traditional notions of area and volume to non-
integer dimensions [Rog98]. More precisely, for s � 0, let F ⇢ Rd and � > 0, and denote
H

s
�(F ) := inf

P1
i=1

diam(Ai)s, where the infimum is taken over all the �-coverings {Ai}i of F ,
that is, F ⇢ [iAi with diam(Ai) < � for every i. The s-dimensional Hausdorff measure of F is
defined as the monotone limit Hs(F ) := lim�!0 H

s
�(F ). When s 2 N, Hs is the s-dimensional

Lebesgue measure up to a constant factor; hence the generalization of ‘volume’ to fractional orders.

Based on the Hausdorff measure, the Hausdorff dimension of a set F ⇢ Rd is then defined as follows:

dimH F := sup {s > 0 : Hs(F ) > 0} = inf {s > 0 : Hs(F ) < 1} .

In other words, the Hausdorff dimension of F is the ‘moment’ s when H
s(F ) drops from 1 to 0,

that is, Hr(F ) = 0 for all r > dimH F and H
r(F ) = 1 for all r < dimH F .

We always have 0  dimH F  d, and when F is bounded, we always have 0  dimH F 

dimMF  d [Fal04]. Furthermore, the Hausdorff dimension of Rd equals d, and the Haus-
dorff dimension of smooth Riemannian manifolds correspond to their intrinsic dimension, e.g.
dimH Sd�1 = d � 1, where Sd�1 is the unit sphere in Rd.

Hausdorff dimension of a probability measure. IFSs generate invariant measures as the number
of iterates goes to infinity, and random fractals arise from such invariant measures. There has been a
growing literature that studies the structure of such random fractals [Saz00, NSB02, MS02, Ram06,
FST06, JR08], where the notion of fractal dimension can be extended to measures, and our theory
will rely on the Hausdorff dimension of invariant measures associated with stochastic optimization
algorithms. In particular, we will mainly use the upper Hausdorff dimension dimHµ of a Borel
probability measure µ on Rd, which is defined as follows: dimHµ := inf {dimH A : µ(A) = 1}. In
other words, dimHµ is the smallest Hausdorff dimension of all measurable sets with full measure.

3 Generalization Bounds for Stochastic Optimization Algorithms as IFSs

In this section, we will present our main theoretical results which relate the generalization error to
the upper-Hausdorff dimension of the invariant measure associated with a stochastic optimization
algorithm. We consider a standard supervised learning setting, where Z = X ⇥ Y , where X is the
space of features and Y is the space of labels, and ⇡ is the unknown data distribution on Z .

For mathematical convenience, in order to construct the training set with n elements, we first consider
an infinite sequence of i.i.d. data samples from the data distribution ⇡, then we take the first n

elements from this infinite sequence. More precisely, we consider the (countable) product measure
⇡
1 = (⇡ ⌦ ⇡ ⌦ . . . ) defined on the cylindrical sigma-algebra. Then, we consider the infinite i.i.d.

data sequence as S ⇠ ⇡
1, i.e., S = (zj)j�1 with zj

i.i.d.
⇠ ⇡ for all j = 1, 2, . . . . Finally, we define

the training set as Sn := (z1, . . . , zn), i.e., we take the first n elements of S. To avoid technical
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complications, throughout the paper we will assume that all the encountered functions and sets are
measurable. All the proofs are given in the supplement.

Given a dataset Sn, we represent the training algorithm as an IFS, which is based on the following
recursion: wk = h⌦k(wk�1;Sn), where the mini-batch ⌦k is i.i.d. sampled according to some
distribution (e.g., sampling without-replacement uniformly among all possible mini-batches). This
compact representation enables us to cover a broad range of optimization algorithms with a unified
notation, including SGD (see (3)), as well as preconditioned SGD, and stochastic Newton methods.
For example, if we take h⌦k(w;Sn) = w � ⌘Hk(w)�1

rR̃k(w) where Hk(w) is an estimate of the
Hessian of R̃k, we cover stochastic Newton methods [EM15]. Similar constructions can be made for
other popular algorithms, such as SGD-momentum [Qia99], RMSProp [HSS12], or Adam [KB15].

Notice that there are only finitely many values that ⌦k can take. For example, in the case of without-
replacement mini-batch sampling with batch-size b, there are in total mb = m

wo-replacement
b :=

�n
b

�

many subsets of {1, 2, . . . , n} with cardinality b. Alternatively, another setup would be to divide the
dataset into mb = m

batch
b := n/b batches with each batch having b elements, and at each iteration k,

we can randomly choose one of the batches. In both examples we can enumerate as S1, S2, . . . , Smb .
If the probability of sampling the mini-batch ⌦k = Si is pi for every i, then, with a slight abuse of
notation, we can rewrite the IFS recursion as:

wk = hUk(wk�1;Sn), (6)
where Uk is a random variable taking values in {1, 2, . . . , mb} and pi := P(Uk = i). If the mini-
batch sampling is uniform (i.e., the default option in practice), we have pi = 1/mb; however, we are
not restricted to this option, the sampling scheme is allowed to be more general. We finally call the
triple (Rd

, {hi(·;Sn)}mb
i=1

, {pi}
mb
i=1

) an iterated function system (IFS).

Given a dataset Sn, we are interested in the limiting behavior of the training algorithm (6). We
characterize this behavior by considering the invariant measure µW |Sn

of the IFS (also called
stationary distribution), that is a Borel probability measure on Rd, such that w1 ⇠ µW |Sn

. To be
able to work in this context, we first need to ensure that the recursion (6) admits an invariant measure,
i.e., µW |Sn

exists. Accordingly, we require the following mild conditions on the IFS (6). Let U be a
random variable with the same distribution as Uk. If the recursion (6) is Lipschitz on average, i.e.,

E[LU | Sn] < 1, with LU := sup
x,y2Rd

khU (x;Sn) � hU (y;Sn)k

kx � yk
, (7)

and is contractive on average, i.e., if

E [log(LU ) | Sn] =
Xmb

i=1

pi log(Li) < 0, with pi > 0, for any i = 1, . . . , mb, (8)

then it can be shown that the process is ergodic and admits a unique invariant measure where the limit
⇢ := limk!1(1/k) log

��hUkhUk�1 · · ·hU1

�� exists almost surely and is a constant [Elt90], where ⇢

is called the Lyapunov exponent. Furthermore, under further technical assumptions, it can be shown
that (6) is geometrically ergodic [DF99]. We note that this condition for the existence of the invariant
measure is only applicable to stochastic optimization algorithms with a constant stepsize in which
case the random map hU is not time-varying. If decaying stepsize is used instead, then the limit may
degenerate to be a singleton. For example, in the toy example illustrated in Figure 1 with quadratics
in dimension one, if we use SGD with decaying stepsize ⌘k = c/k where the positive constant c is
small enough, then the limit of the iterates will be a singleton as the iterates will converge to the
global minimum of the optimization objective (see e.g. [GOP21, GOP19]).

Our goal will be to relate the generalization error to dimHµW |Sn
. To achieve this goal, at first sight,

it might seem tempting to extract a full-measure set A by using the definition of µW |Sn
, such that

µW |Sn
(A) = 1 and dimH A ⇡ dimHµW |Sn

, and then directly invoke the results from [ŞSDE20],
which would link the generalization error to dimH A, hence, also to dimHµW |Sn

. However, since
[ŞSDE20] does not consider an IFS framework, the conditions they require (e.g., boundedness of A,
dimM A = dimH A) are not suited to IFSs, and hence prevent us from directly using their results.

As a remedy, we make a detour and show that we can find almost full-measure sets A, such that
µW |Sn

(A) ⇡ 1 and dimMA ⇡ dimHµW |Sn
(notice that in this case we directly use the Minkowski

dimension of A, as opposed to its Hausdorff dimension). To achieve this goal, we require the
following geometric regularity condition on the invariant measure.
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H 1. For ⇡
1-almost all S and all n 2 N+, the recursion (6) satisfies (7) and (8) and the limit

limr!0

h
log µW |Sn

(Bd(w, r)) / log r

i
exists for µW |Sn

-almost every w.

This is a common condition [Pes08] and is satisfied for a large class of measures. For instance,
‘sufficiently regular’ measures with the property that C1r

s
 µ(B(x, r))  C2r

s for some constant
s > 0 and positive constants C1, C2 will satisfy this assumption. Such measures are called Ahlfors-
regular (cf. [ŞSDE20, Assumption H4] for a related condition), and it is known that IFSs that satisfy
certain ‘open set conditions’ lead to Ahlfors regular invariant measures (see [MT10, Section 8.3]).
Yet, our assumption is more general and does not immediately require Ahlfors-regularity.

Under H1, we now formalize our key observation, which serves as the basis for our bounds.
Proposition 1. Assume that H1 holds. Then for every " > 0, n 2 N+, and ⇡

1-almost every S, there
exists � := �(",Sn) 2 (0, 1] and a bounded measurable set ASn,� ⇢ Rd, such that

µW |Sn
(ASn,�) � 1 � �, and dimMASn,�  dimHµW |Sn

+ ", (9)

and �(",Sn) ! 0 as " ! 0.

Thanks to this result, we can now leverage the proof technique presented in [ŞSDE20, Theorem
2], and link the generalization error to dimHµW |Sn

through dimMASn,�. We shall emphasize
that, mainly due to the sets ASn,� not being of full-measure, our framework introduces additional
non-trivial technical difficulties that we need to tackle in our proof.

We now introduce our second assumption, which roughly corresponds to a ‘topological sta-
bility’ condition, and is adapted from [ŞSDE20, Assumption H5]. Formally, consider the
(countably infinite) collection of closed balls of radius �, whose centers are on the fixed grid
N� :=

n⇣
(2j1+1)�

2

p
d

, . . . ,
(2jd+1)�

2

p
d

⌘
: ji 2 Z, i = 1, . . . , d

o
, and for a set A ⇢ Rd, define N�(A) :=

{x 2 N� : Bd(x, �) \ A 6= ;}, which is the collection of the centers of the balls that intersect A.
H 2. Let Z1 := (Z ⇥ Z ⇥ · · · ) denote the countable product endowed with the product topology
and let B be the Borel �-algebra generated by Z

1. For a Borel set A ⇢ Rd, let F,G be the sub-�-
algebras of B generated by the collections of random variables given by {R̂(w,Sn) : w 2 Rd

, n �

1} and
n
1 {w 2 N�(ASn,�)} , µW |Sn

(ASn,�), dimHµW |Sn
: �, � 2 Q>0, w 2 N� , n � 1

o
, where

ASn,� is given in Proposition 1. There exists a constant M � 1 such that for any F 2 F, G 2 G, we
have P (F \ G)  MP (F )P(G).

H2 simply ensures that the dependence between the training error and the topological properties
of the support of µW |Sn

can be controlled via M . Hence, it can be seen as a form of algorithmic
stability [BE02], where M measures the level of stability of the topology of µW |Sn

: a small M

indicates that the geometrical structure of µW |Sn
does not heavily depend on the particular value of

Sn. The constant M is also related to the mutual information [XR17, AAV18, HŞKM21], but may
be better behaved than the mutual information as it relies on very specific functions of the random
variables. Similar to mutual information, a-priori there is no reason to expect M to be finite for
general algorithms; intuitively, however, the more stochasticity an algorithm incorporates the more we
expect the set ASn,� and the loss landscape to decouple. For example, for a purely random algorithm
(which ignores Sn) the two objects will be independent. In the other extreme, where the algorithm is
deterministic given the sample may fail to be finite. Since we are controlling the generalization error
on the support, which is itself a random set depending on the sample, we require H2 to be able to
make progress.

We require one final assumption, which states that the loss ` is sub-exponential.
H 3. ` is L-Lipschitz continuous in w, and when z ⇠ ⇡, for all w, `(w, z) is (⌫, )-sub-exponential,
that is, for all |�| < 1/, we have logEz⇠⇡ [exp (� (`(w, z) �R(w)))]  ⌫

2
�
2
/.

Armed with these assumptions, we can now present our main result.
Theorem 1. Assume that H1 to 3 hold and dimHµW |Sn

= !(log log(n)/ log(n)), ⇡1-almost-surely.
Then, the following bound holds for sufficiently large n:

|R̂(W,Sn) �R(W )|  8⌫

s
dimHµW |Sn

log2(nL2)

n
+

log(13M/⇣)

n
, (10)
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with probability at least 1 � 2⇣ over the joint distribution of S ⇠ ⇡
1, W ⇠ µW |Sn

.

This theorem shows that the Hausdorff dimension of the invariant measure acts as a ‘capacity metric’
and the generalization error is therefore directly linked to this metric, i.e., the complexity of the
underlying fractal structure has close links to the generalization performance. On the other hand, the
condition dimHµW |Sn

= !(log log(n)/ log(n)) is very mild and makes sure that the dimension of
the IFS does not decrease very rapidly with increasing number of data points n. We shall mention
that Theorem 1 has an asymptotic nature as we do not have an explicit control on how large n

should be. This is due to the fact that the notions of Minkowski and Hausdorff dimensions are
essentially asymptotic, which unfortunately prevents us from obtaining any truly non-asymptotic
result. However, obtaining nonasymptotic results might be possible with further assumptions on the
fractal dimension of the invariant measures and their supports.

Theorem 1 enables us to access the rich theory of IFSs, where bounds on the Hausdorff dimension
are readily available, and connect them to statistical learning theory. The following result is a direct
corollary to Theorem 1 and [Ram06, Theorem 2.1] (see Theorem S2 in the supplementary document).
Corollary 1. Assume that the conditions of Theorem 1 hold. Furthermore, consider the recursion (6)
and assume that hi are continuously differentiable with derivatives Jhi that are ↵-Hölder continuous
for some ↵ > 0. Then, there exists a constant M > 1 such that for sufficiently large n:

|R̂(W,Sn) �R(W )|  8⌫

s
E log2(nL2)⇥Pmb

i=1
pi

R
Rd log(kJhi(w)k)dµW |Sn

(w)
⇤
n

+
log(13M/⇣)

n
, (11)

with probability 1 � 2⇣ over S ⇠ ⇡
1, W ⇠ µW |Sn

, where E :=
Pmb

i=1
pi log(pi) denotes the

negative entropy of the mini-batch sampling scheme, k · k denotes the operator norm (with the
`2-norm being the underlying norm), and Jhi is the Jacobian of hi defined in the notation section.

Note that the Hölder condition is mainly used to ensure that the invariant measure exists and the
constant ↵ does not directly interact with the bound. However, it might affect the rate of convergence
to the invariant measure.

By this result, we discover an interesting quantity,
Pmb

i=1
pi

R
Rd log(kJhi(w)k)dµW |Sn

(w), which
simultaneously captures the effects of the data and the algorithm2. To see it more clearly, let us
consider the SGD recursion (3), where kJhi(w)k = kI � ⌘r

2
R̃Si(w)k and {Si}

mb
i=1

denotes the
enumeration of the mini-batches. Then, the overall quantity becomes

EU,W

⇥
log kI � ⌘r

2
R̃SU (W )k

⇤
, (12)

where the expectation is taken over the mini-batch index U 2 {1, . . . , mb} with P(U = i) = pi, and
W ⇠ µW |Sn

. We clearly observe that this term depends on (i) the algorithm choice through the form
of hi, (ii) step-size ⌘, (iii) batch-size through mb, (iv) problem geometry through r

2
R̃, and (v) data

distribution through µW |Sn
. We believe that such a compact representation of all these constituents

and their interaction is novel and will open up interesting future directions.

4 Analytical Estimates for the Hausdorff Dimension

The generalization bound presented in Theorem 1 applies to a number of stochastic optimization
algorithms that can be represented with an IFS and to a large class of losses that can be non-convex
or convex. It is controlled by the Hausdorff dimension of the invariant measure µW |Sn

which needs
to be estimated. In the numerical experiments section, we will discuss how this quantity can be
estimated from the dataset Sn and the iterates of the underlying algorithm.

Corollary 1 shows that for smooth losses, the Hausdorff dimension can be controlled with the
expectation of the norm of the logarithm of the Jacobian log(kJhi(w)k) with respect to the invariant
measure µW |Sn

. In general, an explicit characterization of the invariant measure is not known.
Nevertheless, under additional appropriate assumptions that can hold in practice, such as boundedness
of the data of the loss, we next discuss that it is possible to get uniform lower and upper bounds on
the quantity kJhi(w)k which leads to analytical upper bounds on dimHµW |Sn

.
2Note that thanks to [Ram06], we can allow state-dependent pi = pi(w); yet, we do not consider this option

as its application is not immediately clear.

7



As illustrative examples; in the following, we will consider the setting where we divide Sn into
mb = m

batch
b = n/b batches with each batch having b elements, and then we discuss how analytical

estimates on the (upper) Hausdorff dimension dimHµW |Sn
can be obtained for some particular

problems including least squares, regularized logistic regression, and one hidden-layer networks. In
the supplementary document, we also discuss how similar bounds can be obtained for support vector
machines and other algorithms such as preconditioned SGD and stochastic Newton methods.

Least squares. We consider the least squares problem, with data points zi = (ai, yi) and loss

`(w, zi) :=
�
a
T
i w � yi

�2
/2 + �kwk

2
/2, (13)

where � > 0 is a regularization parameter.
Proposition 2 (Least squares). Consider the least squares problem (13). Assume the step-size
⌘ 2 (0,

1

R2+� ), where R := maxi kaik is finite. Then, we have the following upper bound:

dimHµW |Sn


log (n/b)

log(1/(1 � ⌘�))
. (14)

Note that here ` is only pseudo-Lipschitz |`(w, zi)� `(w0
, zi)|  Li(1 + kwk+ kw

0
k)kw �w

0
k for

some Li > 0, rather than globally Lipschitz. However; the conditions in Proposition 2 ensure that w

will stay in a bounded region, in which case ` becomes Lipschitz. Also note that only the logarithm
of the Lipschitz constant directly enters the bound.

We observe that, for fixed n, the upper bound for dimHµW |Sn
is decreasing both in ⌘ and b. This

behavior is not surprising: large ⌘ results in chaotic behaviors (cf. Figures 1,2), and in the extreme
case where b = n, the algorithm becomes deterministic and hence converges to a single point,
in which case the Hausdorff dimension becomes 0. However, the decrement due to b does not
automatically grant good generalization performance: since the algorithm becomes deterministic, the
stability constant M in H2 can get arbitrarily large, hence the bound in Theorem 1 could become
vacuous. This outcome reveals an interesting tradeoff between the Hausdorff dimension and the
constant M , through the batch-size b, and investigating this tradeoff is an interesting future direction.

We further notice that the numerator in (14) is logarithmically increasing with n, which is compensated
by the factor 1/n in Theorem 1. Nevertheless, we can take the batch-size in proportion with n (i.e.,
setting mb to a constant value), in order avoid this logarithmic growth. We also note that the input
dimension d potentially affects the term R, which forms the bound for the input data, and hence the
input dimension will indirectly affect the generalization bound. Finally, regarding the remaining
bounds in this section, even though their forms might differ from (14), similar remarks also apply.
Hence, we will omit the discussion.

Regularized logistic regression. Given the data points zi = (ai, yi), consider regularized logistic
regression with the loss:

`(w, zi) := log
�
1 + exp

�
�yia

T
i w

��
+ �kwk

2
/2, (15)

where � > 0 is a regularization parameter. We have the following result.
Proposition 3 (Regularized logistic regression). Consider the regularized logistic regression (15).
Assume the step-size ⌘ < 1/� and the input data is bounded, i.e. R := maxi kaik < 2

p
�. We have:

dimHµW |Sn


log (n/b)

log(1/(1 � ⌘� + 1

4
⌘R2))

. (16)

Next, we consider a non-convex formulation for robust regression (see e.g. [MBM18]), with zi =
(ai, yi) and the loss

`(w, zi) := ⇢ (yi � hw, aii) + �kwk
2
/2, (17)

where � > 0 is a regularization parameter and ⇢ is a non-convex function, assumed to be twice
continously differentiable, where a standard choice is Tukey’s bisquare loss defined as ⇢Tukey(t) =
1 � (1 � (t/t0)2)3 for |t|  t0, and ⇢Tukey(t) = 1 for |t| � t0 (see e.g. [MBM18]), and exponential
squared loss: ⇢exp(t) = 1 � e

�|t|2/t0 , where t0 > 0 is a tuning parameter (see e.g. [WJHZ13]).
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Proposition 4 (Non-convex formulation for robust regression). Consider the non-convex formulation
for robust regression (17). Assume the step-size ⌘ <

1

�+R2(2/t0)
, where R = maxi kaik <

p
�t0/2.

Then, we have the following upper bound for the Hausdorff dimension:

dimHµW |Sn


log (n/b)

log(1/(1 � ⌘� + ⌘R2 2

t0
))

. (18)

One hidden-layer neural network. Given the data points zi = (ai, yi). Let ai 2 Rd be the input
and yi 2 Rm be the corresponding output, and let wr 2 Rd be the weights of the r-th hidden neuron
of a one hidden-layer network, and br 2 R is the output weight of hidden unit r. For simplicity of the
presentation, following [ZMG19, DZPS19], we only optimize the weights of the hidden layer, i.e.
w =

⇥
w

T
1
w

T
2

. . . w
T
m

⇤
is the decision variable with the regularized squared loss:

`(w, zi) := kyi � ŷik
2 + �kwk

2
/2, ŷi :=

Xm

r=1

br�
�
w

T
r ai

�
, (19)

where the non-linearity � : R ! R is smooth and � > 0 is a regularization parameter.
Proposition 5 (One hidden-layer network). Consider the one hidden-layer network (19). Assume
the step-size ⌘ <

1

2� . Then, we have the following upper bound for the Hausdorff dimension:

dimHµW |Sn


log (n/b)

log(1/(1 � ⌘(� � C)))
, (20)

where C := Mykbk1k�
00
k1R

2+(maxj kvjk1)2 < �, where R := maxi kaik, My := maxi kyi�

ŷik, and vi :=
⇥
b1�

0(wT
1
ai)ai b2�

0(wT
2
ai)ai · · · bm�

0(wT
mai)ai

⇤T .

In Proposition 4, we assumed that C is uniformly bounded and � > C for mathematical convenience.
However, in general, C by its definition might increase in m and n so that we do not expect that we
can choose small � for large data sets and wide networks.

5 Experiments

Our aim now is to empirically investigate whether the bound in Corollary 1 is informative, in that it
is predictive of a neural network’s generalization error. As the second term of this bound cannot be
evaluated, we will assume that it is negligible and focus our efforts on the first term. Further, because
the denominator of the first term is the only term that depends on the invariant measure, we want
to establish that the inverse of this denominator is predictive of a neural network’s generalization
error. Note however that for complex models, such as modern neural networks, analytically bounding
kJhi(x)k becomes highly non-trivial.

In our experiments, we fix the algorithm to SGD and we develop a numerical method for computing
the term (12). Noting that Jhi(w) = I � ⌘r

2
R̃i(w), for simplicity we denote the inverse of (12) as

the ‘complexity’: R = 1/
⇥Pmb

i=1
pi

R
Rd log (kJhi(w)k) dµW |Sn

(w)
⇤

3.

To approximate the expectations, we propose the following simple Monte Carlo strategy:

R
�1

⇡

h
1/(NWNU )

iXNW

i=1

XNU

j=1

log
⇣
kJhUj

(Wi)k
⌘

, (21)

where Uj denotes i.i.d. random mini-batch indices that are drawn without-replacement from
{1, . . . , n} and Wi

i.i.d.
⇠ µW |S . Assuming (8) is ergodic [DF99], we treat the iterates wk as i.i.d.

samples from µW |Sn
for large k, hence, log(kJhUj

(Wi)k) can be computed on these iterates, and
(21) can be computed accordingly. Our implementation for computing kJhUj

(Wi)k for neural net-
works with millions of parameters is detailed in the supplementary document. Though the size of Jhi

is very large in our experiments (⇡ 20M⇥20M on average), our algorithm can efficiently compute the
norms without constructing JhUj

(Wi), by extending the approach presented in [YGKM20]. Our im-
plementation is available at https://github.com/umutsimsekli/fractal_generalization.

3Note that the first term of the bound in Corollary 1 suggests computing
p
R rather than R; however, both

choices yield very similar results with high statistical significance.
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Figure 3: Estimates of R plotted against the generalization error (|training loss � test loss|) for
VGG11 and FCNs trained on CIFAR10, SVHN and BHP with varying ⌘, b. The linear regression of
best fit is plotted in red, where shading corresponds to the 95% confidence interval. For all plots the
one-sided p-value, testing whether the null hypothesis that the slope of the line is in-fact negative
and not positive, is significantly less than 0.001, indicating that it is highly likely that R and the
generalization error are positively correlated.

Figure 4: Estimated R plot-
ted against ⌘ for 2 layer FCN
trained on BHP.

In Figure 3 we plot the estimates of R for a variety of convolutional
(CONV) and fully connected network (FCN) architectures trained
on CIFAR10, SVHN and Boston House Prices (BHP). For the full
details of the models, the hardware used, their run-time, and the
convergence criterion used, see Section S7 in the supplement. The
plot demonstrates that R and generalization error are positively
correlated and that this correlation is significant (p-value ⌧ 0.001)
for all model architectures. This provides evidence that the bound
on the generalization error in Corollary 1 is informative.

To support our findings in Section 4 that the bound for the Hausdorff
dimension dimHµW |Sn

is monotonically decreasing in the step-size
⌘, we plot R against ⌘ in Figure 4 for the networks trained on BHP in
Figure 3. R decreases with increasing ⌘, clearly backing our findings.
We note that these results were inconclusive for classification models trained with a cross-entropy
loss, in that we could not clearly observe a negative or positive correlation. Future work will further
study this lack of correlation, particular to classification models.

6 Conclusion

In this work, we investigated stochastic optimization algorithms through the lens of IFSs and studied
their generalization properties. Under some assumptions, we showed that the generalization error can
be controlled based on the Hausdorff dimension of the invariant measure determined by the iterations,
which can lead to tighter bounds than the standard bounds based on the ambient dimension. We
proposed an efficient methodology to estimate the Hausdorff dimension in deep learning settings and
supported our theory with several experiments on neural networks. We also illustrated our bounds
on specific problems and algorithms such as SGD and its preconditioned variants, which unveil new
links between generalization, algorithm parameters and the Hessian of the loss.

Our study does not have a direct societal impact as it is largely theoretical. The limitation of our
study is its asymptotic nature due to operating on invariant measures. Future work will address (i)
obtaining nonasymptotic bounds in terms of the number of iterations k, (ii) including the term of (12)
as a regularizer to the optimization problem, which would be an alternative to the methods that aim
to “decrease the intrinsic dimension” [ZQH+18, BLGŞ21].
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