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ABSTRACT

Latent space Reduced Order Models (ROMs) in Scientific Machine Learning
(SciML) can enhance and accelerate Partial Differential Equation (PDE) simula-
tions. However, they often struggle with complex boundary conditions (BCs) such
as time-varying, nonlinear, or state-dependent ones. Current methods for handling
BCs in latent space have limitations due to representation mismatch and pro-
jection difficulty, impacting predictive accuracy and physical consistency. To
address this, we introduce BAROM (Boundary-Aware Attention ROM). BAROM
integrates: (1) explicit, Reduced Basis Methods-inspired boundary treatment us-
ing a modified ansatz and a learnable lifting network for complex BCs; and (2) a
non-intrusive, attention-based mechanism, inspired by Galerkin Neural Operators,
to learn internal field dynamics within a POD-initialized latent space. Evaluations
show BAROM achieves superior accuracy and robustness on benchmark PDEs
with diverse complex BCs compared to established SciML approaches.

1 INTRODUCTION

Many systems governed by partial differential equations are required to run under tight latency
and resource budgets for digital twins, model-predictive control, design and uncertainty quantifica-
tion, and embedded deployment (LeVeque, 2002; Patankar, 1980; Benner et al., 2015; Quarteroni
et al., 2016). Full-order solvers struggle in these settings over long horizons. Reduced-order mod-
eling with latent representations mitigates the cost by advancing a compact state (Antoulas, 2005;
Schilders et al., 2008). Classical projection-based methods such as Proper Orthogonal Decomposi-
tion and the Reduced Basis Method construct low-dimensional coordinates from high-dimensional
fields (Sirovich, 1987; Berkooz et al., 1993; Prud’homme et al., 2002; Rozza et al., 2008; Hes-
thaven et al., 2016). However, once boundaries become complex, time-varying, or coupled to the
interior through feedback or control, reduction becomes fragile. The main issues are representation
mismatch caused by global projections that dilute local high-variation boundary effects, instability
when forcing physical boundary information into a very small latent state, and limited adaptability
of fixed bases (Abbasi et al., 2020; Gunzburger et al., 2007; Knezevic & Patera, 2011). Modified
ansatz constructions in Reduced Basis Methods (RBMs) are a known remedy for explicit bound-
ary handling, but intrusive Galerkin dynamics limit scalability in large or complex systems (Abbasi
et al., 2020; Tryoen et al., 2010).

Scientific machine learning has broadened the surrogate toolbox, notably through Physics-Informed
Neural Networks and Neural Operators (Karniadakis et al., 2021; Rackauckas et al., 2020; Raissi
et al., 2019; Lu et al., 2021; Li et al., 2020). Despite many successes, effective boundary imposi-
tion remains challenging when boundaries are complex, nonstationary, or state-dependent. PINNs
rely on loss-weight tuning for soft constraints or handcrafted hard constraints, both of which can
be brittle for dynamic or coupled boundaries (Wang et al., 2022b; Cooley et al., 2025; Wang et al.,
2021). Operator learners often work well with specific boundary structures such as periodicity, but
their robustness under general coupled boundaries is limited (Li et al., 2023; Takeishi & Kalousis,
2021). Among these, reduced-order SciML variants can enhance and accelerate PDE simulations,
yet they inherit boundary-handling difficulties from both classical and modern approaches. Specifi-
cally, global projections can bias latent spaces toward dominant modes, smoothing out critical local
boundary details (Lin et al., 2023). Furthermore, achieving a stable and accurate mapping between
latent dynamics and physical boundary constraints remains a significant challenge. Many existing
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methods address this by implicitly encoding the entire field, which fails to resolve the underlying
issue of explicit boundary enforcement (Li et al., 2024; Zhong & Meidani, 2023; Liu et al., 2024).

In this work, we mainly focus on reduction under two boundary families that are common in practice.
The first consists of externally prescribed yet complex and time-varying boundaries. The second
involves internal-to-boundary coupling, where boundary values depend on the evolving interior state
and possibly a controller. These settings appear in process control, thermal regulation, and transport
or flow with actuated boundaries, and they are precisely where many latent ROMs and operator
learners become unreliable.

To address these challenges in handling complex boundaries, we propose the Boundary-Aware At-
tention Reduced Order Model (BAROM), a non-intrusive and boundary-first latent-space ROM that
explicitly separates boundary and interior dynamics. BAROM consists of two main components.
A learnable lifting network enforces complex non-homogeneous boundaries by construction, while
the interior field evolves under homogeneous boundaries in a compact latent state. The evolution of
this latent state is governed by a boundary-aware updater that cleanly separates three distinct roles:
(1) an attention mechanism captures cross-mode coupling in the latent space, (2) a feed-forward
branch models nonlinear self-evolution, and (3) a dedicated branch injects explicit boundary forcing
at each time step (Cao, 2021). This explicit decomposition, instead of relying on implicit feature
concatenation, provides a strong structural bias that improves long-horizon stability, particularly in
closed-loop scenarios.

Using boundary information at the next step is consistent with standard non-homogeneous boundary
treatments in classical reduction and is adapted here in a data-driven way (Abbasi et al., 2020).
In feedback settings the next-step boundary is computed online from the model’s own predicted
interior through the specified feedback law, which avoids look-ahead to ground truth. For externally
driven settings, competing baselines receive the same accessible temporal and boundary descriptors
through a time index and fixed input windows. We document these choices and release code to
ensure transparent and fair comparisons.

Compared with strong baselines that treat boundaries implicitly through feature concatenation,
adaptive normalization, or soft penalties (Li et al., 2024; Zhong & Meidani, 2023; Li et al.,
2023), BAROM enforces boundaries explicitly with a learnable lift and advances the interior with
boundary-aware latent dynamics that separate cross-mode coupling, nonlinear self-evolution, and
boundary forcing. Our goal is not a general-purpose operator learner, but a boundary-first reduced
model for reliable simulation under complex and feedback-coupled boundaries.

Our contributions are as follows:

1. We translate the modified-ansatz concept from classical RBM into a non-intrusive, end-to-end
deep learning framework, featuring a learnable lifting network that enforces complex bound-
ary conditions by construction while maintaining efficient latent-space evolution (Abbasi et al.,
2020).

2. We design a novel boundary-aware three-branch updater for the latent dynamics, which cleanly
separates cross-mode coupling (attention), nonlinear self-dynamics (FFN), and explicit boundary
forcing, inspired by operator learning principles (Cao, 2021).

3. We conduct a comprehensive evaluation of BAROM across seven challenging benchmarks with
and without internal-to-boundary feedback, demonstrating superior accuracy and stability over
state-of-the-art baselines. We provide detailed ablation studies and will release our code and
dataset generation protocols to ensure reproducible comparisons.

2 PRELIMINARY

Problem Statement. We consider physical systems governed by hyperbolic parameterized Partial
Differential Equations (PDEs). These equations describe the evolution of a system state U(x, t;µ) ∈
Rdv on a bounded spatial domain Ω ⊂ Rds over a time interval T = (0, T ]. Here, x ∈ Ω is the
spatial coordinate, t ∈ T is time, µ represents system parameters, and ds, dv are the spatial and state
vector dimensions, respectively. The governing PDE is generally expressed as:

∂U

∂t
= N (U,∇xU, . . . ;x, t;µ), ∀(x, t) ∈ Ω× T (1)
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Figure 1: Conceptual diagram of the Boundary-Aware Attention Reduced Order Model (BAROM),
highlighting the interaction pathways for boundary control and internal feedback.

where N is a general nonlinear differential operator defining the system’s dynamics, dependent on
U , its spatial derivatives, x, t, and µ. Our focus is on systems with complex Boundary Conditions
(BCs) on ∂Ω, categorized as:

Category One: External Prescribed Complex BCs. Conditions on ∂Ω1 ⊆ ∂Ω are externally dictated
by Pext(x, t;µ) via a general boundary operator B1:

B1(U,∇xU, . . . ;x, t;µ) = Pext(x, t;µ), ∀(x, t) ∈ ∂Ω1 × T (2)

Category Two: Complex BCs with Internal-Boundary Coupling. Conditions on ∂Ω2 ⊆ ∂Ω are
coupled with the internal state. Here, a boundary operator B2 imposes values determined by a
feedback function fBC which depends on internal states U(xs, t;µ) (at locations xs ∈ Ω ∪ ∂Ω),
potential external controls uc(t), and parameters µ:

B2(U,∇xU, . . . ;x, t;µ) = fBC(U(xs, t;µ), uc(t), µ), ∀(x, t) ∈ ∂Ω2 × T (3)

This creates an intrinsic feedback loop where boundary values and internal states are interdependent.

Objective: The primary objective is to develop BAROM, a data-driven ROM for efficiently and
accurately simulating PDE systems (Eq. 1) with the complex boundary conditions defined in Cate-
gories One and/or Two. BAROM achieves this by jointly learning its three core components: (1) a
learnable lifting network (Llift) for explicit boundary representation, (2) a non-intrusive, boundary-
aware latent dynamics model (Flatent) to evolve the internal state, and (3) the spatial basis functions
Φ(x) themselves, which are initialized via POD and refined during training.

The set of all learnable parameters, denoted by Θ, combines the parameters from each of these
components:

Θ = {ΘLlift ,ΘFlatent ,ΘΦ} (4)

These parameters are optimized end-to-end by minimizing a loss function, L. This loss function
quantifies the discrepancy between BAROM’s state predictions, Û(Θ; ·), and reference solutions,
Utrue (detailed architecture and learning strategy are presented in Section 3):

min
Θ
L(Û(Θ; ·), Utrue(·)) (5)

3
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3 METHODOLOGY

Our BAROM framework is a non-intrusive, data-driven realization of the theoretically-grounded
principles for handling complex boundary conditions in Reduced Basis Methods (RBM). We be-
gin by establishing the foundational decomposition from classical RBM and then demonstrate how
each component of BAROM is designed to learn the operators from the corresponding theoretical
governing equations. This structured approach, visualized in Figure 1, allows our model to robustly
handle complex boundary dynamics while maintaining computational efficiency.

3.1 BAROM FRAMEWORK OVERVIEW

3.1.1 CORE PRINCIPLE: EXPLICIT BOUNDARY-INTERNAL DECOMPOSITION

The core of our approach, inspired by classical RBM for non-homogeneous problems (Abbasi
et al., 2020), is the decomposition of the approximate physical solution Û(x, t;µ) into a boundary-
enforcing component UB and an internal dynamics component UI . This is expressed through a
modified ansatz, which is the cornerstone of our framework:

Û(x, t;µ) = UB(x, t;PBC(t), µ) + UI(x, t;µ) (6)

where the internal field UI is represented in a low-dimensional latent space using N basis functions
Φ(x) = [ϕ1(x), . . . , ϕN (x)] and a vector of time-dependent latent coefficients a(t;µ) ∈ RN :

UI(x, t;µ) =

N∑
i=1

ai(t;µ)ϕi(x) = Φ(x)a(t;µ) (7)

In this formulation, which directly corresponds to Eq. (7a) in Abbasi et al. (2020):

• The Boundary Field (UB) is constructed to satisfy the non-homogeneous physical boundary
conditions of the system by construction.

• The Internal Field (UI ) captures the remaining dynamics. Its basis functions Φ(x) are de-
signed to be zero at the boundaries (i.e., they satisfy homogeneous BCs), meaning the entire
time-evolution of the internal field is captured by the latent coefficients a(t).

The key challenge is to define both UB and the time-evolution of a(t) in a robust, accurate, and non-
intrusive manner. We will now derive BAROM’s architecture by directly modeling the governing
equations for these two components.

3.1.2 BOUNDARY FIELD (UB ) REPRESENTATION

Classical Formulation. In the RBM framework presented by Abbasi et al. (2020), the boundary
field UB is a function that ”lifts” the boundary values into the full spatial domain. This lifting
function is typically a fixed, manually-defined, and problem-specific interpolant. For instance,
for a 1D problem with domain length L, a simple linear interpolation between the boundary values
is proposed (see Eq. (35) in Abbasi et al. (2020)):

UB(Û
n
BC) =

(
1− X

L

)
Ûn
BC |x=0 +

X

L
Ûn
BC |x=L (8)

The major drawback of this approach is that a simple interpolant may be a poor approximation of
the true boundary field’s influence on the interior, and a new function must be hand-crafted for each
new problem or geometry.

BAROM’s Learnable Lifting Network. BAROM replaces this fixed, hand-crafted function with
a powerful, general-purpose neural network—the Lifting Network (Llift), as shown in Figure 1.

UB(x, t;µ) = Llift(PBC(t), µ; ΘLlift)(x) (9)

This constitutes a significant advancement over the classical method. Instead of relying on a poten-
tially inaccurate, problem-specific interpolant, BAROM learns the optimal lifting function directly
from data. The network Llift takes the high-level boundary parameters PBC(t) (containing bound-
ary state and control signals) and adaptively generates a physically consistent boundary field UB .
This makes the model more general, expressive, and accurate, as it removes the need for manual
engineering of the lifting function.

4
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3.1.3 INTERNAL FIELD (UI ) DYNAMICS

Classical Formulation: The Theoretical Target. The core of the dynamics lies in the evolution
of the latent coefficients a(t). In the classical RBM framework, applying a Galerkin projection to
the discretized PDE system Un+1 = AUn + Bwn yields a set of ordinary differential equations
(ODEs) for a(t). For a discrete time step from n to n + 1, Abbasi et al. (2020) provide the general
form of this update in their Eq. (9):

an+1 = Âaa
n + B̂ŵn + ÂBCU

n
B −ΦTUn+1

B (10)

where the operators are defined via intrusive projections: Âa = ΦTAΦ, B̂ = ΦTB, and ÂBC =
ΦTA. This equation is our theoretical target. Our goal is to create a non-intrusive neural network
that learns this exact update structure from data, without ever needing to know the full-order matrices
A and B.

BAROM’s Non-Intrusive Latent Dynamics Model. We rewrite the classical update as an addi-
tive increment ∆a = an+1 − an:

∆a = (Âa − I)an︸ ︷︷ ︸
Internal Dynamics

(Homogeneous Part)

+
(
B̂ŵn + ÂBCU

n
B −ΦTUn+1

B

)
︸ ︷︷ ︸

Boundary Forcing Terms

(11)

BAROM’s core module, Flatent, approximates this increment by decomposing it into three special-
ized components, each modeling a specific part of the theoretical update rule:

a(tk+1) = a(tk) + ∆aattn +∆affn +∆abc (12)
The learnable parameters of this entire module are collectively denoted as ΘFlatent .

Modeling the Internal Dynamics Operator. The term (Âa − I)an represents the autonomous
evolution of the internal field. For a general non-linear PDE ∂U

∂t = N (U), this term becomes a
non-linear vector function of the latent state, Finternal(a

n) = ΦTN (Φan) − an. The Universal
Approximation Theorem justifies using a neural network to learn this complex, non-linear mapping.
We use a structured network that provides a strong inductive bias for latent space dynamics:

• The Attention mechanism (∆aattn) models the cross-modal interactions, learning a state-
dependent coupling operator that approximates how different physical modes (represented by ai
and aj) influence each other.

• The Feed-Forward Network (∆affn) models the non-linear self-evolution of each mode, captur-
ing effects like modal damping or self-reinforcement.

This structured design allows us to learn the internal dynamics operator in a more targeted and
physically-interpretable manner:

∆aattn +∆affn ⇐⇒ learns a structured approximation of (ΦTAΦ− I)an (13)

Modeling the Boundary Forcing Terms. BAROM’s explicit boundary forcing branch, ∆abc, is
designed to directly model the entire boundary forcing term from Eq. equation 11:

∆abc ⇐⇒ learns an approximation of (ΦTB)ŵn + (ΦTA)Un
B −ΦTUn+1

B (14)
We achieve this through a hybrid model that separates the known from the unknown:

∆abc = gbc→a(gfeat(PBC(tk+1)))︸ ︷︷ ︸
Learned Forcing

−Φ(x)⊤UB(x, tk+1)︸ ︷︷ ︸
Theoretical Correction

(15)

The mapping to the classical theory is direct and rigorous:

• The term −Φ(x)⊤UB(x, tk+1) is a direct, non-intrusive implementation of the crucial the-
oretical correction term −ΦTUn+1

B . This term is known to be essential for stability (Abbasi
et al., 2020), and by including it directly, we imbue our model with a strong, physically-grounded
inductive bias.

• The learned component, gbc→a(. . . ), is a neural network that serves as a universal approximator
for the remaining complex forcing terms, which are functions of the current-step boundary con-
ditions. It learns the combined effect of these terms, (ΦTB)ŵn + (ΦTA)Un

B , by mapping the
high-level boundary parameters PBC to the resulting latent space increment. This bypasses the
need to explicitly compute the intrusive and unknown matrices A and B.

5
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3.1.4 THE CORE TIME-STEPPING LOOP

The complete predictive process of BAROM, as depicted in Figure 1, integrates these theoretically-
grounded components into a single, efficient time-stepping loop. For each step from tk to tk+1:

1. Inputs: The model receives the current latent state a(tk) and the parameters for the next bound-
ary condition, PBC(tk+1). For feedback-controlled systems, PBC(tk+1) is computed from the
model’s own prior prediction Û(tk), as shown by the “Feedback Mechanism” loop in Figure 1.

2. Latent Update: The “BAROM Core Module” computes the three increments
(∆aattn,∆affn,∆abc) as derived above. These are added to a(tk) to produce the next
latent state, a(tk+1).

3. Physical Reconstruction: The final predicted solution Û(tk+1) is reconstructed using the mod-
ified ansatz (Eq. equation 6):

• The new latent state a(tk+1) is linearly combined with the basis functions Φ to form the
Internal Field UI(tk+1).

• The Lifting Network Llift uses PBC(tk+1) to generate the corresponding Boundary Field
UB(tk+1).

• The two fields are summed: Û(tk+1) = UB(tk+1) + UI(tk+1).

The final solution is reconstructed using the learnable basis functions (parameterized by ΘΦ). This
entire process is summarized in Algorithm 1. By structuring our architecture as a direct, data-driven
analogue of the classical RBM theory, BAROM combines the robustness of established physical
principles with the expressive power and non-intrusive nature of deep learning.

3.1.5 LOSS FUNCTION AND OPTIMIZATION

The BAROM model parameters Θ = {ΘLlift ,ΘFlatent ,ΘΦ} are trained end-to-end by minimizing a
composite loss function L(Θ) on high-fidelity simulation dataDtrain. The primary term is the spatio-
temporal reconstruction loss Lrecon, which measures the discrepancy between the predicted solution
Û and the true solution Utrue:

Lrecon = E(Utrue,PBC)∼Dtrain

[
1

Tsim

∫ Tsim

0

1

|Ω|

∫
Ω

∥Û(x, t;µ)− Utrue(x, t;µ)∥22dxdt

]
(16)

To improve the physical properties of the learned basis functions Φ, we introduce two regularization
terms. The final composite loss function is:

L(Θ) = Lrecon + λorthLorth(Φ) + λbcLbc pen(Φ) (17)

The weights λorth and λbc are hyperparameters that balance the trade-off between reconstruction ac-
curacy and the enforcement of physical priors on the basis functions. These values were determined
empirically through a validation study. We provide a detailed sensitivity analysis of these weights
in Appendix F, which supports the choice of values used in our main experiments.

The regularization terms are defined as follows:

• Lorth(Φ) = ∥ΦTΦ − I∥2F : An orthogonality penalty that encourages the basis functions to be
orthonormal.

• Lbc pen(Φ) = ∥Φ|∂Ω∥2F : A boundary penalty on the basis functions.

It is crucial to clarify the role of Lbc pen(Φ). This loss term serves as a regularization penalty and
does not enforce the physical boundary conditions of the overall system. The physical BCs on the
final solution Û are satisfied by construction via the lifting network’s output UB . Instead, Lbc pen
acts as a soft constraint specifically on the learnable basis functions Φ of the internal field UI .
By encouraging these basis functions themselves to approach zero on the boundary (Φ|∂Ω ≈ 0),
this term helps ensure that the internal solution component UI = Φa correctly satisfies its required
homogeneous boundary conditions. This aligns with the explicit decomposition principle central to
our framework and aids in stabilizing the training of the basis functions.

6
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Algorithm 1 BAROM Predictive Step for Û(x, tk+1)

1: Input: Current latent state a(tk), learnable bases Φ, boundary parameters for next step
PBC(tk+1), and model parameters Θ = {ΘLlift ,ΘFlatent ,ΘΦ}.

2: Evolve latent coefficients using Flatent.
3: Compute ∆aattn via attention using a(tk) and Φ.
4: Compute ∆affn via FFN using a(tk).
5: Compute ∆abc by processing PBC(tk+1).
6: a(tk+1)← a(tk) + ∆aattn +∆affn +∆abc. ▷ Construct solution components
7: UB(x, tk+1)← Llift(PBC(tk+1), µ; Θlift)(x).
8: UI(x, tk+1)← Φ(x)a(tk+1).
9: Û(x, tk+1)← UB(x, tk+1) + UI(x, tk+1).

10: Output: Next latent state a(tk+1), predicted physical state Û(x, tk+1).
Note: Initial latent state a(t0) is obtained by projecting the initial physical state U(x, t0) onto
Φ(x) after subtracting the initial boundary field UB(x, t0;PBC(t0)).

4 EXPERIMENTS

We conduct a series of experiments to validate BAROM’s performance on diverse PDE systems
featuring complex boundary conditions (BCs). Our evaluation is structured around key research
questions to assess the model’s effectiveness, architectural contributions, and robustness compared
to state-of-the-art baselines.

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate BAROM on seven PDE benchmarks across two challenging categories: (1)
systems with externally prescribed, complex time-varying BCs (e.g., Advection-Reaction, Burgers’,
Euler, Darcy Flow), and (2) systems with tightly coupled internal-boundary feedback and control
(e.g., RDFNF, Heat NF, Convdiff). The full mathematical formulations, parameter distributions,
and feedback laws for all datasets are provided in Appendix A.

Baselines and Metrics. We benchmark BAROM against a suite of representative SciML models:
SPFNO (Liu et al., 2023), BENO (Wang et al., 2024), LNS-AE (Li et al., 2024), LNO (Wang &
Wang, 2024), POD-DL-ROM (Fresca & Manzoni, 2022), GNOT (Hao et al., 2023), and Unisolver
(Zhou et al., 2024). Performance is primarily assessed using Mean Squared Error (MSE), Relative
L2 Error (RelErr), and Maximum Absolute Error (MaxErr), averaged over test samples.

Fairness of Comparison. Our primary model, BAROM ExpBC, leverages next-step boundary
information, a core architectural feature motivated by classical RBM theory for non-homogeneous
BCs. To ensure a direct, apples-to-apples comparison, we also evaluate BAROM ImpBC, which
uses a standard auto-regressive setup identical to the baselines, relying only on current-step infor-
mation. A detailed discussion on this setup is available in Appendix C.3.

4.2 RESULTS

RQ1: How does BAROM perform on challenging PDE systems with complex, feedback-
controlled boundary conditions compared to state-of-the-art baselines? Answer: BAROM
demonstrates substantially superior accuracy and robustness. As shown in Table 1, our full model,
BAROM ExpBC, consistently outperforms all baseline models across all three feedback-controlled
datasets and time horizons. The performance gains are significant; for instance, on the Heat NF
dataset at T = 1.5, BAROM ExpBC reduces MSE by more than 79% compared to the next best
stable model, SPFNO.

Crucially, our fair-comparison variant, BAROM ImpBC, also consistently and substantially out-
performs all baseline models. This result unequivocally demonstrates that the core architectural
innovations of BAROM, the learnable lifting network and the boundary-aware attention mecha-

7
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nism—provide a significant performance advantage on their own, independent of the theoretically-
grounded next-step BC forcing.

RQ2: What are the contributions of BAROM’s key architectural components to its overall
performance? Answer: Our ablation studies, detailed in Appendix C.2, systematically validate
our core design principles on the RDFNF dataset. The key findings are:

• Learnable Lifting is Critical: The learnable lifting network (Llift) leads to a substantial improve-
ment in prediction accuracy compared to a fixed, non-learnable lifting function, underscoring the
importance of an adaptive mechanism for representing the boundary field.

• Explicit BC Forcing is Crucial: Explicitly providing boundary parameters to the latent dynamics
model significantly reduces error for all architectures. The Boundary-Aware Attention (BAA)
mechanism, when combined with this explicit input, achieves the lowest overall error.

• End-to-End Training is Robust: Our framework’s end-to-end training is powerful enough to dis-
cover a more effective basis for predicting dynamics from a random start than the one prescribed
by a static, energy-based POD initialization.

RQ3: How does BAROM perform on systems with externally driven (non-feedback) com-
plex boundary conditions? Answer: BAROM remains highly effective and robust. On four
canonical PDE systems with complex, externally prescribed BCs, BAROM demonstrates stable and
accurate performance, surpassing most baselines, particularly in long-term extrapolation scenarios
where competing models like SPFNO and BENO encountered instabilities. For these challenging
hyperbolic problems, BAROM maintained stability and delivered superior accuracy in longer-term
predictions. Detailed quantitative results for these experiments are presented in Appendix C.1, Ta-
ble 2.

Qualitative Analysis. These quantitative findings are further corroborated by a detailed visual
analysis in Appendix B, which provides a qualitative comparison of the predicted solution fields
against the ground truth for representative test cases.

Table 1: Performance comparison on PDE systems with internal feedback and Boundary control at
T = 1.5, nt = 225,T = 1.75, nt = 265 and T = 2.0, nt = 300. Metrics are averaged over 1000
test samples. Best results are in bold, second best resutls are in underline.

T=1.5 Heat NF RDFNF Convdiff
Model MSE(e-2) RelErr(e-1) MaxErr(e-1) MSE(e-2) RelErr(e-1) MaxErr(e-1) MSE(e-2) RelErr(e-1) MaxErr(e-1)

BAROM ImpBC (ours) 2.603 3.456 8.678 2.459 2.818 9.377 3.618 1.940 4.982
BAROM ExpBC (ours) 1.181 2.280 8.115 1.095 1.883 7.392 2.081 1.496 4.703
SPFNO 5.806 5.079 15.26 5.107 4.119 16.04 8.684 3.145 14.19
BENO 474.5 46.43 51.23 231.6 88.19 92.12 10.26 3.32 12.32
LNS-AE 11.15 6.721 18.52 16.77 7.142 16.99 10.48 3.206 1.050
LNO 16.62 8.023 24.43 5.521 4.246 15.04 34.28 5.314 22.43
POD-DL 9.958 6.649 15.95 5.193 4.197 16.04 4.871 2.313 14.19
UNISOLVER 15.91 8.729 17.59 9.888 5.194 19.54 9.691 3.223 11.03
GNOT 174.3 25.86 42.55 72.732 15.338 53.657 3.3072 1.9 8.005

T=1.75 Heat NF RDFNF Convdiff
Model MSE(e-2) RelErr(e-1) MaxErr(e-1) MSE(e-2) RelErr(e-1) MaxErr(e-1) MSE(e-2) RelErr(e-1) MaxErr(e-1)

BAROM ImpBC (ours) 2.674 3.595 8.809 2.528 2.723 9.521 3.877 1.938 5.182
BAROM ExpBC (ours) 1.199 2.348 8.198 1.168 1.862 7.630 2.234 1.487 4.930
SPFNO 6.038 5.314 15.75 5.432 4.046 16.58 8.921 3.111 1.419
BENO 518.11 57.12 56.43 263.5 89.43 92.41 12.34 3.536 13.45
LNS-AE 12.38 7.318 19.45 18.87 7.210 16.34 1.232 3.378 11.11
LNO 23.16 9.834 29.51 6.208 4.304 15.84 45.81 5.92 26.33
POD-DL 9.337 6.605 16.35 5.033 3.937 16.58 4.565 2.178 14.19
UNISOLVER 16.71 8.77 16.78 10.12 5.494 19.12 10.01 3.215 11.22
GNOT 193.10 28.21 43.789 88.0 16.15 55.47 3.3718 1.865 8.101

5 RELATED WORK

Latent space methods, from classical Reduced Basis Methods (RBM) (Antoulas, 2005; Prud’homme
et al., 2002; Hesthaven et al., 2016) to modern Autoencoders (AE) (Lee & Carlberg, 2020; Hinton
& Salakhutdinov, 2006), accelerate PDE simulations via low-dimensional representations (Wiewel
et al., 2019; Champion et al., 2019). However, accurately imposing complex Boundary Conditions
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T=2 Heat NF RDFNF Convdiff
Model MSE(e-2) RelErr(e-1) MaxErr(e-1) MSE(e-2) RelErr(e-1) MaxErr(e-1) MSE(e-2) RelErr(e-1) MaxErr(e-1)

BAROM ImpBC (ours) 2.826 3.751 9.264 2.616 2.648 9.769 4.432 2.005 5.646
BAROM ExpBC (ours) 1.264 2.440 8.484 1.232 1.833 7.956 2.379 1.424 5.099
SPFNO 6.458 5.5711 16.75 5.814 3.999 17.13 9.252 3.103 14.19
BENO 551.3 5.228 57.21 288.5 89.41 94.03 13.93 3.646 13.71
LNS-AE 13.27 7.744 20.12 20.90 7.241 16.65 13.86 3.536 11.57
LNO 31.03 11.31 33.87 6.821 4.328 16.63 59.68 6.611 31.310
POD-DL 9.066 6.601 17.21 5.101 3.794 17.13 4.938 2.210 14.19
UNISOLVER 17.95 8.848 16.41 10.47 5.869 18.71 10.51 3.237 11.32
GNOT 208.1 30.01 45.01 99.61 16.48 56.97 3.582 1.876 8.232

(BCs) remains a significant challenge. While simple BCs are manageable (e.g., (Ohlberger & Rave,
2013; Reiss et al., 2018)), dimensionality reduction often compromises critical boundary informa-
tion in complex scenarios (Abbasi et al., 2020), and many latent models lack explicit boundary
interaction.

Current SciML approaches integrating latent spaces often show limited robust coupling between
latent dynamics and physical boundary variations. Many AE-based models or latent solvers like LNS
(Li et al., 2024) implicitly encode the entire field, risking smoothed or lost local boundary details
(Abbasi et al., 2020). Without explicit real-time BC input, predictions under dynamic boundaries can
be inaccurate. Some works incorporate Physics-Informed Neural Network (PINN) concepts (Raissi
et al., 2019), for instance, in combinations with Variational Autoencoders (Zhong & Meidani, 2023).
These typically use soft constraints for BCs, whose effectiveness depends on loss weighting and
may not fully resolve decoupling issues (Wang et al., 2022a). Neural Operators (NOs), including
DeepONet (Lu et al., 2021) and FNO (Li et al., 2020), often target specific BCs, and their capability
to robustly handle diverse complex BCs within their latent dynamics is not guaranteed.

In contrast, traditional RBMs offer valuable strategies. Notably, Abbasi et al. (2020) (Abbasi et al.,
2020) demonstrated an approach for explicit boundary effect separation using modified solution
structures and specialized basis functions for varying and nonlinear BCs. This principle of explicit,
representation-level BC handling provides key inspiration for developing more robust SciML meth-
ods to address boundary challenges within latent space frameworks.

6 CONCLUSIONS

We introduced the Boundary-Aware Attention Reduced Order Model (BAROM), a novel framework
adept at simulating Partial Differential Equation systems with complex, dynamic, and feedback-
dependent boundary conditions. BAROM uniquely synergizes a Reduced Basis Method inspired
explicit boundary treatment with a data-driven, boundary-aware latent dynamics model. To directly
address the challenge of achieving an effective latent representation for intricate BCs, BAROM
employs a learnable lifting network for inhomogeneous conditions and specialized learnable bases
for the homogeneous internal field. Furthermore, to ensure accurate boundary enforcement and
maintain physical consistency within the latent space, the model non-intrusively evolves the sys-
tem’s low-dimensional state representation using attention mechanisms and direct integration of
boundary parameter information. Extensive evaluations confirmed BAROM’s superior accuracy, ro-
bustness, and long-term prediction capabilities over state-of-the-art baselines, particularly for chal-
lenging feedback-controlled systems. Ablation studies further validated its core design principles.
BAROM thus offers an effective Scientific Machine Learning approach for complex physical simu-
lations, opening promising avenues for future architectural enhancements and broader applications
in challenging scientific and engineering domains.
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A DATASET DETAILS

Our PDE datasets for category one problem2 include four canonical PDE problems—Advection-
Reaction, Isothermal Euler, Burgers’, and Darcy equations—with nonlinear, time-varying, and con-
trolled boundary conditions. Each dataset contains 10,000 samples generated using NumPy and
SciPy, with spatial discretization set at nx = 128 and temporal discretization at nt = 600 over a
simulation time horizon T = 2. The Advection dataset solves a scalar linear PDE with controlled
sinusoidal boundary conditions. The Euler dataset involves coupled nonlinear PDEs with nonlinear
boundary conditions ensuring positive densities. The Burgers’ dataset applies Crank-Nicolson and
Lax-Friedrichs schemes to handle advection and diffusion separately, enforcing stability through
smoothed boundary conditions. The Darcy dataset is generated via solving a steady-state elliptic
PDE with randomized log-normal permeability fields and time-dependent Dirichlet boundary con-
ditions. Data samples include state solutions, boundary states, and detailed parameterizations, en-
suring comprehensive and varied scenarios for benchmarking models. We also construct datasets for
category two problem2 covering diverse PDE scenarios with integral and nonlinear boundary feed-
back controls, focusing on four distinct PDE types: Heat Equation with Delayed Integral Feedback,
Reaction-Diffusion Equation with Neumann Boundary Integral Feedback, Heat Equation with Non-
linear Feedback Gain, and Convection-Diffusion Equation with Integral Boundary Control. Each
dataset comprises 5,000 samples, discretized spatially at nx = 64 and temporally at nt = 300 over
a simulation interval of T = 2.0. Boundary conditions incorporate complex, nonlinear time-varying
signals generated via composite sinusoidal and polynomial-like forms. Control actions at bound-
aries are realized through integral and nonlinear feedback laws, adding realistic control dynamics.
Each sample includes PDE solution fields, boundary states, control signals, and comprehensive pa-
rameterizations, providing extensive variability for rigorous model evaluation and benchmarking.

This appendix also provides the complete mathematical formulations for the seven PDE benchmark
datasets used in our experiments.

A.1 PDE SYSTEMS FOR SECTION 2: EXTERNALLY PRESCRIBED BCS

A.1.1 1D ADVECTION-REACTION

Governing Equation:
∂u

∂t
+ c

∂u

∂x
= ru, x ∈ [0, 1], t ∈ [0, 2] (18)

with advection speed c = 1.0 and reaction rate r = 0.5.

Initial Condition: A Gaussian pulse with randomized amplitude.

u(x, 0) = µ1 exp

(
− (x− 0.5)2

0.1

)
, µ1 ∼ U(0.8, 1.2) (19)

Boundary Conditions (Dirichlet):

u(0, t) = A sin(πt) +B cos(πt) +A sin3(πt) + E sin(3πt) + F cos(3πt) + uc1(t)

u(1, t) = C sin(πt) +D cos(2πt) +D cos3(πt) + tanh(sin(πt)) +Ge−
(t−1)2

0.04

where coefficients A,B, . . . , G ∼ U(0.5, 1.5). The control signal uc1(t) is a smoothed random step
function.

A.1.2 1D ISOTHERMAL EULER

Governing Equations: A system for density ρ and velocity u.

∂ρ

∂t
+

∂(ρu)

∂x
= 0

∂(ρu)

∂t
+

∂(ρu2 + ρ)

∂x
= 0

(20)
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Initial Condition: Sinusoidal perturbations on a mean state.

ρ(x, 0) = ρmean + ρamp sin(kπx), ρmean ∼ U(0.8, 1.2), ρamp ∼ U(0, 0.1)
u(x, 0) = umean + uamp cos(kπx), umean ∼ U(−0.2, 0.2), uamp ∼ U(0, 0.05)

with wavenumber k ∈ {1, 2}.

Boundary Conditions (Dirichlet):

ρ(0, t) = ρL,base + ρL,amp sin(ωρL
t) u(0, t) = uL,base + uc1(t)

ρ(1, t) = ρR,base + ρR,amp cos(ωρR
t) u(1, t) = uR,base − κ tanh(5(ρ(1, t)− ρR,base)) + uc2(t)

where base values, amplitudes, frequencies, and the non-linear coefficient κ are randomized. Con-
trols uc1(t), uc2(t) are smoothed random step functions.

A.1.3 1D VISCOUS BURGERS’

Governing Equation:
∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(21)

with viscosity ν ∼ U(0.5, 1.5) · (0.01/π).

Initial Condition:

u(x, 0) = α sin(kπx), α ∼ U(0.5, 1.5), k ∈ {1, 2, 3} (22)

Boundary Conditions:

• Left (Dirichlet, x = 0): u(0, t) = Al[1 + 0.5 sin(1.5ωlt)] sin(ωlt) +Blu(x1, t)
2 + uc1(t)

• Right (Robin, x = 1): νux(1, t) + βr(u(1, t)
3 − u3

ref) = uc2(t)

where all parameters are randomized. The term u(x1, t)
2 denotes a state dependency on the first

interior grid point.

A.1.4 2D DARCY FLOW

Governing Equation: A steady-state equation for pressure p(x) solved at multiple time instances.

−∇ · (k(x)∇p(x)) = f(x) (23)

where the permeability k(x) is a log-normal random field and source f(x) = 0.

Boundary Conditions (Dirichlet): For each time snapshot tn, a new pair of BCs is applied.

p(0, y, tn) = PL(tn) p(1, y, tn) = PR(tn)

p(x, 0, tn) = PB(tn) p(x, 1, tn) = PT (tn)

where each boundary value P (tn) follows a complex, non-linear sinusoidal function of time, with
randomized parameters.

A.2 PDE SYSTEMS FOR SECTION 1: INTERNAL FEEDBACK AND CONTROL

A.2.1 CONVECTION-DIFFUSION WITH INTEGRAL FEEDBACK

Governing Equation:
∂u

∂t
+ a

∂u

∂x
= D

∂2u

∂x2
(24)

Initial Condition: u(x, 0) = sin(πx) + 0.1 · N (x)
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Boundary Conditions (Dirichlet with Integral Control):

u(0, t) = rleft(t) + cleft(t), where cleft(t) = KI

∫ t

0

[rleft(τ)− u(0, τ)]dτ

u(1, t) = rright(t) + cright(t), where cright(t) = KI

∫ t

0

[rright(τ)− u(1, τ)]dτ

where r(t) are time-varying reference signals and KI is the integral gain.

A.2.2 REACTION-DIFFUSION WITH NEUMANN INTEGRAL FEEDBACK

Governing Equation:
∂u

∂t
= α

∂2u

∂x2
+ µu(1− u) (25)

Initial Condition: u(x, 0) = A0 sin
2(πf0x)

Boundary Conditions:

• Left (Dirichlet, x = 0): u(0, t) = g0(t) + c0(t)

• Right (Neumann with Integral Feedback, x = 1): α∂u
∂x (1, t) = gL(t)+Kfb

∫ 1

0
u(x, t)dx+cL(t)

where g(t) are base signals, c(t) are external controls, and Kfb is the feedback gain.

A.2.3 HEAT EQUATION WITH NON-LINEAR FEEDBACK GAIN

Governing Equation:
∂u

∂t
= α

∂2u

∂x2
(26)

Initial Condition: u(x, 0) = A0 sin(πf0x)

Boundary Conditions (Dirichlet with Non-linear Feedback):

u(0, t) = g0(t) + c0(t)

u(1, t) = gL(t) + F

(∫ 1

0

u(x, t)dx

)
+ cL(t)

where the feedback function F is a non-linear (quadratic) function of the spatially integrated state:
F (s) = K1s+K2s

2.

B VISUALIZATION ANALYSIS

To complement the quantitative results, this section provides a qualitative visual analysis of
BAROM’s predictive capabilities compared to baseline models on representative test cases. We
present spatio-temporal contour plots of the predicted solution fields against the ground truth.

Figure 3 illustrates the performance on the 1D Euler equations, showcasing predictions up to
T = 1.0 (training horizon) and extrapolation to T = 2.0. BAROM maintains solution structure
and accurately captures key dynamic features, such as shock propagation and contact discontinu-
ities, even in the extrapolation regime. In contrast, several baseline models exhibit either excessive
numerical diffusion, oscillations, or a failure to preserve essential wave characteristics, particularly
at later time points. For instance, LNO and POD-DL-ROM show significant deviations in wave pat-
terns and amplitudes when extrapolating, while BENO struggles with the sharp features inherent in
hyperbolic systems. LNS-AE, while more stable, also shows some loss of definition in shock fronts
compared to BAROM.

For the feedback-controlled systems, such as the Convection-Diffusion equation shown in Figure 4
and Figure 5 , BAROM’s predictions remain highly consistent with the ground truth across different
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time horizons. The model accurately captures the solution’s response to the integral boundary con-
trol, maintaining stability and physical plausibility. Some baselines, like SPFNO, show reasonable
adherence but with noticeable discrepancies, while others like LNO and BENO demonstrate more
significant deviations or instabilities, especially in the extrapolation case (T = 2.0). Similar obser-
vations are made for the Heat Equation with Delayed Integral Feedback (Figure 6 and Figure 7),
where BAROM effectively models the complex interplay between internal dynamics and boundary
feedback. The qualitative results for the Burgers’ equation further underscore BAROM’s capability
to handle nonlinear dynamics and shock formation accurately over time.

Overall, these visualizations corroborate the quantitative findings, highlighting BAROM’s enhanced
robustness and accuracy in predicting complex PDE solutions under diverse and challenging bound-
ary conditions, particularly in scenarios involving feedback control and long-term temporal evolu-
tion.

Ground Truth(T=1)
(U)

Ground Truth(T=2)
(U)

Burgers Equation

BAROM_Prediction BAROM_Prediction

Figure 2: Visualization of prediction Burgers data at Thorizon = 1 and 2.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Ground Truth(T=1)
(U)

Ground Truth(T=2)
(U)

Euler Equation

BAROM_Prediction BAROM_Prediction

Figure 3: Visualization of prediction Euler Equation data at Thorizon = 1 and 2.
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Convection-Diffusion Equation (T=1)

Figure 4: Visualization of prediction Convection–Diffusion data at Thorizon = 1.

Convection-Diffusion Equation (T=2)

Figure 5: Visualization of prediction Convection–Diffusion data at Thorizon = 2.

Heat Equation with Delayed Integral Feedback (T=1)

Figure 6: Visualization of prediction Heat Equation data at Thorizon = 1.
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Heat Equation with Delayed Integral Feedback (T=2)

Figure 7: Visualization of prediction Heat Equation data at Thorizon = 2.

C ADDED EXPERIMENTAL RESULTS

Table 2: Quantitative results on PDE systems without internal feedback and Boundary control.
Models trained at T = 1, nt = 300, evaluated at three time-horizons.

Advection(RelErr e-1) Euler(RelErr e-1) Burgers(RelErre-1) Darcy(RelErr e-1)
Model T = 1 T = 1.5 T = 2 T = 1 T = 1.5 T = 2 T = 1 T = 1.5 T = 2 T = 1 T = 1.5 T = 2

BAROM ImpBC 2.439 5.310 9.838 5.452 6.172 7.132 3.032 3.165 3.271 1.479 1.501 1.524
LNO 6.142 9.741 14.07 9.128 12.37 16.340 4.054 5.578 72.80 11.20 17.85 27.70
POD-DL 8.9001 11.68 14.73 5.8554 6.0410 6.3717 6.8611 7.0714 7.4849 2.4195 2.7194 3.5453
BENO 11.21 13.37 16.31 12.92 16.32 18.73 12.93 16.32 18.73 13.06 15.29 16.79
SPFNO 9.1127 38.389 104.7 inf inf inf 1.404e+11 inf inf inf inf inf
LNS-AE 7.008 8.063 9.927 1.337 1.318 13.06 2.292 3.937 5.415 1.714 1.982 2.111
UNISOLVER 2.441 4.043 5.021 6.151 7.809 7.901 3.421 4.213 5.121 1.376 1.487 1.491
GNOT 3.218 5.491 8.318 4.114 4.592 4.809 3.324 3.819 4.158 1.314 1.404 1.528

C.1 RESULTS FOR PDE SYSTEMS WITHOUT INTERNAL FEEDBACK

This section provides the detailed quantitative results for the four PDE systems with complex, ex-
ternally prescribed boundary conditions but no internal feedback loop: 1D Advection-Reaction, 1D
Isothermal Euler, 1D Viscous Burgers’, and 2D Darcy flow. As discussed in the main text, BAROM
demonstrates robust and stable performance, particularly in long-term extrapolation where other
methods may fail. The models were trained on data up to T = 1 (nt = 300) and evaluated at three
time horizons. The results are presented in Table 2.

C.2 ABLATION STUDIES

To assess the contribution of BAROM’s key components and its sensitivity to hyperparameters,
we conducted a series of ablation studies on the Reaction-Diffusion Neumann Feedback (RDFNF)
dataset. The results, summarized in Figure 8, validate our core architectural design choices.

Efficacy of the Learnable Lifting Network (Llift). Figure 8a shows a substantial improvement in
prediction accuracy when using the learnable Llift compared to a fixed, non-learnable lifting func-
tion. The Relative L2 Error is markedly lower across all time horizons, underscoring the critical role
of an adaptive mechanism for representing the boundary field UB .

Influence of Basis Function (Φ) Initialization. Counterintuitively, Figure 8b shows that initial-
izing the basis functions Φ randomly leads to slightly better performance than a physics-informed
POD initialization. This result highlights the power of our end-to-end training framework, which is
robust enough to discover a more effective basis for predicting dynamics from a random start than
the one prescribed by POD, which is only optimal for representing static energy in the snapshots.
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(c) BAA vs. NoAttn and Implicit vs. Ex-
plicit BC Control

Figure 8: Four Ablation Study Relative Error Vs. T .

Impact of Latent Dynamics Model and BC Handling. We compared the Boundary-Aware At-
tention (BAA) model with a non-attention baseline, analyzing both implicit and explicit handling
of boundary parameters (Figure 8c). The results clearly show that explicitly providing boundary
information to the latent dynamics model is crucial, as it significantly reduces error for both archi-
tectures. The full BAA model with explicit BC input (BAROM ExpBC) achieved the lowest overall
error, validating our final model design.

C.3 DETAILED DISCUSSION ON EXPERIMENTAL SETUP AND FAIRNESS

To ensure a rigorous and fair evaluation, we clarify the input information provided to each model.
For all baseline models (SPFNO, BENO, etc.), we adopted the standard auto-regressive approach
for time-dependent problems. The model predicts the next state Û(x, tk+1) using only information
available at the current time step: the current state U(x, tk) and the current boundary parameters
PBC(tk).

In contrast, our primary model, BAROM ExpBC, leverages boundary parameters from the next
time step, PBC(tk+1), to evolve the latent state. This is not an ad-hoc choice for an unfair advantage,
but a core architectural feature and a central contribution of our work, directly motivated by
the established theory of the Reduced Basis Method (RBM) for non-homogeneous BCs (Abbasi
et al., 2020). The classical RBM evolution equation for the latent state an+1 explicitly requires the
next-step boundary field Un+1

B :

an+1 = Âaa
n + B̂ŵn + ÂBCU

n
B −ΦTUn+1

B (27)

The final term, −ΦTUn+1
B , is theoretically crucial for maintaining physical consistency and stabil-

ity with time-varying BCs. BAROM is, to our knowledge, the first framework to implement this
principle in a fully data-driven, non-intrusive manner.
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For our most challenging test cases involving internal-boundary feedback, the required
PBC(tk+1) is not future ground-truth information. Instead, it is dynamically computed at step k

using the model’s own predicted state Û(x, tk) via our feedback module Gfbc. This computed value
then serves as a known input to evolve the state to tk+1, making the model fully auto-regressive and
physically consistent without any data leakage.

Finally, to provide a direct, apples-to-apples comparison, we include our ablation model,
BAROM ImpBC. This variant is a standard auto-regressive model that, like the baselines, uses
only the current state U(x, tk) and current boundary parameters PBC(tk) to predict the next state.
This allows us to isolate and quantify the performance gains derived purely from our core architec-
tural innovations, independent of the explicit next-step BC forcing.

D THEORETICAL JUSTIFICATION OF THE NON-LINEAR INTRINSIC
EVOLUTION TERM

This appendix provides a concise derivation demonstrating why a scaled feed-forward network
(FFN) is a suitable and theoretically grounded choice for modeling the intrinsic non-linear evo-
lution term ∆affn used in the BAROM update rule, Eq. equation ??. All symbols and equation
numbers refer to the main text.

D.1 FROM NON-LINEAR PDE TO NON-LINEAR LATENT SPACE ODE VIA GALERKIN
PROJECTION

We begin with the general parameterized PDE as defined in Eq. equation 1:

∂tU(x, t;µ) = N
(
U,∇xU, . . . ;x, t;µ

)
, (x, t) ∈ Ω× T , (1)

whereN is explicitly stated to be a general non-linear differential operator. The BAROM frame-
work decomposes the solution U = UB + UI , where UB satisfies the non-homogeneous boundary
conditions and the internal field UI satisfies corresponding homogeneous boundary conditions. UI

is represented by the ansatz:
UI(x, t;µ) = Φ(x)a(t;µ), (??)

with Φ(x)∈RNx×r being the (learnable) spatial basis matrix and a(t;µ)∈Rr the vector of time-
dependent latent coefficients.

Substituting U = UB +Φa into Eq. equation 1 yields the PDE governing the internal field UI :

∂t(Φa) = N
(
UB +Φa,∇x(UB +Φa), . . .

)
− ∂tUB . (28)

Assuming the basis functions Φ(x) are time-independent, ∂t(Φa) = Φȧ. Applying a Galerkin
projection onto the latent space by testing against the basis functions Φ(x) (i.e., taking the inner
product with Φj for j = 1, . . . , r, or more compactly, pre-multiplying by ΦT and integrating over
Ω): ∫

Ω

ΦT (Φȧ) dx =

∫
Ω

ΦT
(
N
(
UB +Φa, . . .

)
− ∂tUB

)
dx. (29)

If we define a mass matrix M =
∫
Ω
ΦTΦ dx (which is the identity matrix I if Φ is orthonormal

with respect to the L2 inner product), this simplifies to a system of ordinary differential equations
(ODEs) for a(t):

Mȧ(t) = FN (a(t), UB(t), ∂tUB(t), µ, t), (30)
where FN (·) =

∫
Ω
ΦT (N (UB +Φa, . . . )− ∂tUB) dx.

Crucially, if the original operator N is non-linear with respect to U or its derivatives, then the term
N (UB + Φa, . . . ) will generally contain terms that are non-linear functions of Φa (e.g., (Φa)2,
(Φa)∇x(Φa), etc.). Consequently, the projected right-hand side, FN , will be a non-linear function
of the latent coefficients a(t).

For the purpose of modeling the intrinsic dynamics related to a(t) itself, distinct from the direct
forcing by boundary terms (which BAROM handles via ∆abc), we can represent the ODE system
as:

ȧ(t) = f
(
a(t);µ, boundary influences

)
, (31)
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where f (conceptually M−1FN ) encapsulates the non-linear dependencies on a(t) arising from
N , along with influences from µ and boundary-related terms. The ∆affn term aims to capture the
non-linear self-interaction part of f that primarily depends on a(t).

D.2 TIME DISCRETISATION OF THE NON-LINEAR LATENT ODE

Applying a first-order explicit Euler time integration scheme with step size ∆t > 0 to Eq. equa-
tion 31 (focusing on the dependence on a(tk) for the intrinsic part) yields:

a(tk+1) = a(tk) + ∆t fintrinsic
(
a(tk);µ

)︸ ︷︷ ︸
∆a⋆

+other terms +O(∆t2). (32)

Here, fintrinsic(a(tk);µ) represents the component of f capturing the non-linear evolution due to
a(tk) itself. Learning an accurate approximation of the increment ∆a⋆ is essential for advancing
the solution.

D.3 UNIVERSAL APPROXIMATION OF THE NON-LINEAR INCREMENT BY AN FFN

The non-linear nature of fintrinsic necessitates a non-linear function approximator. A Feed-Forward
Network (FFN) is a suitable choice due to its universal approximation capabilities.

FFN Approximation of the Latent Increment Let K ⊂ Rr be a compact set containing the tra-
jectory of latent coefficients a(tk) encountered during training. If fintrinsic(a;µ) is continuous on K,
then for every ε > 0, there exist FFN parameters θ = {W2,W1, b2, b1} and a scalar α > 0 such that

sup
a∈K

∥∥α gθ(a)−∆t fintrinsic(a;µ)
∥∥
2

< ε, (33)

where gθ(a) = W2 σ(W1a + b1) + b2 is a standard two-layer FFN with a suitable non-linear acti-
vation function σ (e.g., GELU).

Proof. The Universal Approximation Theorem Hornik (1991) states that a two-layer FFN with a
sufficient number of hidden units and a non-polynomial activation function can approximate any
continuous function fintrinsic(a;µ) on a compact domain K to arbitrary accuracy. Thus, there ex-
ists an FFN, let’s call it hθ′(a), such that supa∈K ∥fintrinsic(a;µ) − hθ′(a)∥2 < ε′ = ε/∆t. By
defining gθ(a) = hθ′(a) (i.e., choosing appropriate FFN parameters θ for gθ) and setting the learn-
able scale α = ∆t, we achieve supa∈K ∥α gθ(a) − ∆t fintrinsic(a;µ)∥2 = ∆t supa∈K ∥gθ(a) −
fintrinsic(a;µ)∥2 < ∆t · (ε/∆t) = ε.

D.4 CONNECTION TO THE BAROM UPDATE RULE

The BAROM update rule, Eq. equation 12, includes the term:

∆affn = α gθ
(
a(tk)

)
. (34)

As established by the theorem above, this FFN branch, with appropriately learned parameters (α, θ),
is provably expressive enough to approximate the non-linear increment ∆a⋆ = ∆t fintrinsic(a(tk);µ)
to any prescribed accuracy ε.

This rigorous justification underscores the necessity and capability of the ∆affn component:

1. Necessity: The non-linearity of the original PDE operatorN is generally preserved through
Galerkin projection, resulting in a non-linear ODE system (Eq. equation 31) for the latent
coefficients a(t). A linear model for this intrinsic evolution would generally be insufficient.

2. Capability: The FFN, as a universal approximator, can capture these inherent non-linear
relationships fintrinsic(a(tk)). The learnable scale α further allows the model to align the
FFN’s output magnitude with the chosen time step ∆t and to balance its contribution
against the other dynamic components (∆aattn and ∆abc).

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Implication. The inclusion of the ∆affn term, designed to model these projected non-linearities,
is therefore crucial for the BAROM framework’s ability to faithfully learn the latent space dynamics
of PDE systems governed by general non-linear operators. Within the training regime, the overall
latent update (Eq. equation 12) can thus approximate the true latent evolution with high fidelity,
validating the architectural design choices presented in the main text.

E IMPLEMENTATION DETAILS.

Our model, BAROM explictBC version, integrates attention mechanisms with learned boundary
condition (BC) representations for PDE solutions involving control inputs. It consists of a universal
lifting network, explicitly processing BC and control inputs through separate multilayer percep-
trons, and projects these into a latent state using POD-based orthogonal bases or learned initial-
ization. The core attention block computes updates for latent coefficients via multi-head attention
modules enhanced with a residual feedforward network, followed by boundary-driven updates pro-
cessed through dedicated BC feature extractors. Training employs an AdamW optimizerYao et al.
(2021) with a learning rate of 1×10−4, gradient clipping (max norm=1.0), and a weighted compos-
ite loss combining reconstruction MSE, basis orthogonality regularization, and boundary penalties.
The model was trained for 150 epochs on an NVIDIA GPU A40, leveraging CUDA acceleration
and PyTorch framework. The other version model, BAROM implicitBC version, integrates atten-
tion mechanisms with implicitly learned boundary condition (BC) representations for PDE solutions
involving control inputs. It employs a universal lifting network that implicitly fuses BC and con-
trol inputs into latent states via a unified multilayer perceptron (MLP), which are then projected
into latent coefficient spaces using POD-based orthogonal bases or learned initializations. The core
attention module computes latent coefficient updates using multi-head attention blocks, further en-
hanced by residual feedforward networks to capture intricate state dynamics implicitly influenced
by boundary conditions. Training is carried out using the AdamW optimizer with a learning rate of
1× 10−4, gradient clipping at a maximum norm of 1.0, and a composite loss function that includes
reconstruction mean squared error (MSE), orthogonality regularization of the POD-based basis func-
tions, and implicit boundary constraint penalties. The BAROM implicitBC model was trained over
200 epoch and setting early stop strategy using an NVIDIA GPU A40, taking advantage of CUDA
acceleration within the PyTorch framework.

F SENSITIVITY ANALYSIS OF LOSS WEIGHTS

This section addresses the selection of the regularization weights, λorth and λbc, used in the com-
posite loss function (Eq. equation 17). Balancing these weights is crucial as it controls the trade-off
between fitting the training data (via Lrecon) and satisfying the physical constraints on the basis
functions (via Lorth and Lbc pen).

To investigate the impact of these hyperparameters, we conducted a sensitivity analysis on the Heat
Equation with Non-linear Gain Feedback dataset. We evaluated the model’s performance by
measuring the Relative L2 Error (RelErr) at the end of the training horizon (T = 1.5) and in an
extrapolation regime (T = 2.0). The results are presented in Table 3.

Table 3: Performance on the Heat NF dataset under different loss weights. Metrics are Relative L2

Error (e-1). The configuration used in our main experiments is highlighted in bold.

T=1.5 (Interpolation) T=2.0 (Extrapolation)
λbc pen λorth=0.01 λorth=0.001 λorth=0.0001 λorth=0.01 λorth=0.001 λorth=0.0001

0.1 2.488 2.415 2.532 2.653 2.591 2.712
0.01 2.315 2.280 2.355 2.495 2.440 2.545
0.001 2.571 2.498 2.610 2.784 2.699 2.833

Discussion. The analysis reveals several key trends:
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• Sensitivity to Weights: The results confirm that the model’s predictive accuracy is sensitive to
the choice of these hyperparameters.

• Impact of High Weights: When regularization weights are set relatively high (e.g., λbc pen = 0.1),
performance slightly degrades. We hypothesize that this imposes an overly strong constraint on the
basis functions, potentially hindering their flexibility to represent the internal dynamics optimally.

• Impact of Low Weights: Conversely, when the weights are too low (e.g., λbc pen = 0.001), the
regularization terms may contribute insufficiently to the total loss, which can also lead to poorer
performance, possibly by not adequately enforcing the desired physical properties (orthogonality
and homogeneity) on the basis functions.

In conclusion, this analysis demonstrates that selecting these weights involves a trade-off between
the model’s data-fitting capacity and the strength of the imposed physical priors. The parameter
set used in our main experiments (λorth = 0.001, λbc pen = 0.01) represents a balanced choice that
yielded the best performance in this validation study.

G DETAILS OF BASELINES

To ensure fair benchmarking, all baseline models were carefully adapted and tuned specifically for
our PDE datasets and prediction tasks.

Semiperiodic Fourier Neural Operator (SPFNO): SPFNO extends FNO by embedding explicit
handling of Dirichlet and Neumann boundary conditions via spectral projection filters. Our imple-
mentation incorporated customized spectral projection operators, tailored to our datasets’ boundary
conditions, thus enabling more accurate boundary condition enforcement during training and infer-
ence.

Boundary-Embedded Neural Operator (BENO): BENO integrates explicit boundary embeddings
into neural operators, enhancing boundary-aware PDE predictions. In our setup, boundary condi-
tions and control inputs were explicitly processed and embedded into node and edge features within
a tailored graph neural network and transformer architecture, adjusted for dimensional consistency
with our specific PDE state variables and controls.

Latent Neural Operator (LNO): LNO utilizes a latent-space transformer architecture to learn map-
pings between PDE states in latent coordinate spaces, significantly reducing computational over-
head. Our implementation carefully selected latent embedding dimensions and the number of latent
transformer blocks, optimizing performance by fine-tuning the latent space resolution to match the
complexity of our dataset scenarios.

POD-Deep Learning Reduced Order Model (POD-DL-ROM): This method combines Proper
Orthogonal Decomposition (POD) with deep neural networks to create efficient reduced-order rep-
resentations of PDE solutions. For each PDE dataset, POD basis functions were explicitly computed
and cached, followed by training specialized encoders, decoders, and deep feedforward networks,
ensuring an optimal trade-off between model compactness and accuracy.

Latent Neural Solver Autoencoder (LNS-AE): LNS-AE leverages an autoencoder combined with
a latent neural operator to achieve efficient PDE predictions in compressed latent spaces. We care-
fully trained the autoencoder and latent stepper separately, optimizing autoencoder architecture pa-
rameters such as downsampling levels and latent channels specifically for capturing salient dynam-
ics in our PDE datasets, thus ensuring the LNS-AE accurately reconstructs detailed PDE solution
trajectories.

GNOT (General Neural Operator Transformer): GNOT is a transformer-based neural operator
that uses a cross-attention, self-attention, and geometric gating structure to learn mappings between
function spaces. For our time-stepping task, we adapt the GNOT architecture to predict the next
state U(x, tk+1) given the current state U(x, tk) and the boundary parameters PBC(tk). The model
encodes the spatial coordinates, the current state field, and the boundary parameters into a common
embedding space. A series of GNOT attention blocks then processes these embeddings to produce
the final prediction.

Unisolver: Unisolver is a PDE-conditional transformer architecture designed to solve various
PDEs by conditioning on the specific equation parameters. We adapt its core mechanism for our
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time-stepping task. The model first embeds the input field U(x, tk) using a patch-based tokenizer.
The boundary parameters PBC(tk) are encoded into a separate conditional vector. This vector is
then used to modulate the transformer blocks via adaptive layer normalization and gating, allowing
the model to condition its prediction of U(x, tk+1) on the specific boundary inputs for that time step.

H DIFFERENCES WITH OTHER MODELS

We compare our model, BAROM, with several representative baselines including SPFNO, BENO,
LNO, LNS-AE, and POD-DL-ROM, etc. across the following dimensions, focusing on architectural
distinctions beyond the setup configurations detailed in Appendix X (DETAILS OF BASELINES).

Explicit vs. Implicit Boundary Condition (BC) Imposition: BAROM employs an explicit ansatz
decomposition (Û = UB + UI ), where a learnable lifting network dynamically generates the
boundary-conforming field UB from BC parameters PBC(t). The internal field UI is then designed
for corresponding homogeneous BCs. In contrast, FNO typically handles BCs implicitly by includ-
ing BC information in the input fed to its Fourier layers. SPFNO uses specific spectral transforms
(sine/cosine) and projection filters for certain BC types but lacks a learnable, adaptive lifting compo-
nent for UB . BENO, designed for elliptic PDEs, uses GNNs and a Transformer to embed boundary
geometry and values, a different paradigm from BAROM’s field decomposition. LNS-AE encodes
the entire solution field (including boundaries) into its latent space, with the latent stepper then using
BC parameters, rather than BAROM’s explicit UB separation prior to latent modeling of UI . LNO
integrates BC information into its branch projector before transforming to a latent space via Physics-
Cross-Attention, but does not explicitly separate UB . POD-DL-ROM typically applies POD to the
entire solution field (possibly after a fixed lifting), with BCs influencing the DFNN that evolves
the global modal coefficients, differing from BAROM’s learnable lifting for UB and separate latent
modeling of UI .

Latent Space Representation and Dynamics Modeling: BAROM learns the dynamics of coeffi-
cients a(t) for POD-initialized, learnable basis functions Φ(x) that represent UI . Its attention-based
dynamics model Flatent is explicitly conditioned on PBC(t) to ensure boundary-awareness in the
evolution of a(t). This differs from FNO/SPFNO which operate in frequency/spectral domains.
LNO learns operator dynamics between M latent points derived via PhCA, which are distinct from
BAROM’s modal coefficients. LNS-AE evolves a latent representation of the full field U(x, t) using
a stepper network. POD-DL-ROM also evolves modal coefficients of the full field, but typically with
a standard DFNN, lacking BAROM’s attention mechanism and the direct integration of PBC(t) into
the latent coefficient update rule for UI . BENO’s GNN-based message passing and latent boundary
geometry vector serve a different purpose, primarily for elliptic problems.

Handling of Coupled and Controlled BCs: BAROM is architecturally designed to address com-
plex BCs, including those with internal-boundary coupling or external controls, through its learnable
lifting network and the explicit conditioning of the latent dynamics on PBC(t). This allows Llift to
adaptively form UB and Flatent to adjust UI ’s evolution in response to dynamic boundary changes,
including feedback. While other models like LNS-AE, LNO, and POD-DL-ROM can incorporate
BC/control signals into their dynamics (e.g., as input to the latent stepper or DFNN), BAROM’s
structural decomposition and dedicated learnable components for UB and UI offer a more direct
and potentially more robust mechanism for systems where BCs are intricately coupled with the in-
ternal state or driven by external inputs. Models like FNO and SPFNO may require more specialized
adaptations to achieve similar robustness for such coupled scenarios. BENO’s focus is on complex
boundary geometries in elliptic PDEs rather than time-evolving controlled BCs in dynamic systems.

In particular, only BAROM synergistically combines a learnable lifting network for explicit and
adaptive generation of the non-homogeneous boundary component (UB) with an attention-based
evolution of latent coefficients for the internal solution component (UI ), where these coefficients are
directly modulated by real-time boundary parameters.

In summary, BAROM demonstrates clear architectural distinctions, particularly in its explicit, learn-
able boundary treatment and conditioned latent dynamics, making it a versatile and effective tool
for time-dependent PDEs with complex, actively controlled, or feedback-dependent boundary con-
ditions.
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I EFFICIENCY COMPARISON

This section succinctly compares BAROM’s computational efficiency with baseline models, con-
textualized by the predictive accuracy reported in Section 4. All metrics were recorded on identical
hardware. Tables 4 and 5 present these metrics for the HEAT NONLINEAR FEEDBACK GAIN
and CONVDIFF datasets, respectively.

Table 4: Efficiency metrics on the HEAT NONLINEAR FEEDBACK GAIN dataset. Inference
time and GPU memory are averaged per sample.

Model Parameters Avg. Inference Time (ms) Peak GPU Memory (MB)

BAROM 983,843 306.87 33.06
SPFNO 287,553 484.61 32.35
BENO 2,674,305 1069.63 32.46
LNO 179,841 478.20 32.48
LNS-AE 1,310,353 337.94 33.42
POD-DL-ROM 331,537 154.95 32.34

Table 5: Efficiency metrics on the CONVDIFF dataset. Inference time and GPU memory are aver-
aged per sample.

Model Parameters Avg. Inference Time (ms) Peak GPU Memory (MB)

BAROM 983,907 302.48 33.07
SPFNO 287,617 483.59 32.36
BENO 2,676,417 1069.67 32.48
LNO 179,905 478.07 32.49
LNS-AE 1,310,417 335.27 33.43
POD-DL-ROM 331,793 154.80 32.35

BAROM’s parameter count (approx. 0.98M) is moderate, positioned between more lightweight
models (e.g., LNO at approx. 0.18M, POD-DL-ROM at approx. 0.33M) and larger architectures
(e.g., BENO at approx. 2.67M, LNS-AE at approx. 1.31M). This reflects its inclusion of specialized
components for robust boundary handling.

In terms of inference speed, BAROM (approx. 300-307 ms/sample) is notably faster than several
baselines such as SPFNO, BENO, and LNO, and is comparable to LNS-AE. While POD-DL-ROM
shows the fastest inference, BAROM’s efficiency is compelling given its significantly higher ac-
curacy on the complex feedback-controlled PDE systems analyzed in Section ??. The peak GPU
memory usage during inference (around 32-33 MB) is similar for all evaluated models, indicating
BAROM does not impose an undue memory burden.

In summary, BAROM demonstrates a strong balance between computational efficiency and its state-
of-the-art predictive accuracy for challenging PDE systems with complex boundary conditions, mak-
ing it a practical and effective framework.

J LIMITATIONS AND FUTURE WORK

While BAROM demonstrates strong performance and significant advantages in handling complex
boundary conditions, we acknowledge several avenues for future research. The current work fo-
cuses on a range of challenging one- and two-dimensional systems. Extending the framework to
higher-dimensional problems and more complex geometries is a natural next step. Consistent with
other large-scale deep learning models, the initial training phase requires sufficient high-fidelity
data and computational resources, and exploring more sample-efficient training paradigms remains
an interesting direction. Finally, while our RBM-inspired design enhances physical interpretability
over monolithic models, applying advanced techniques to further probe the learned neural operators
presents a promising area for future investigation.
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K HYPER-PARAMETER LIST

This section details the primary hyper-parameters used for BAROM and the baseline models. These
settings were generally consistent across these three datasets for each respective model, derived
from the defaults in their corresponding execution scripts. As for task 1, Common training data
characteristics for these datasets include an input sequence length corresponding to Ttrain = 1
(which is 300 time steps, from a total of 600 steps for T = 2.0). As for task 2, Common training data
characteristics for these datasets include an input sequence length corresponding to Ttrain = 1.5
(which is 225 time steps, from a total of 300 steps for T = 2.0).

K.1 BAROM

Table 6: Hyper-parameters for BAROM.

Parameter Type Value
Architectural Parameters

Basis Dimension (Coefficients) 32
Attention: Model Dimension 512
Attention: Number of Heads 4
Boundary Feature Processor(BAROM ExpBC Only): Output Dimension 64
Boundary Feature Processor(BAROM ExpBC Only): Hidden Dimension 128
Lifting Network: State Branch Hidden Dimension 32
Lifting Network: Control MLP Hidden Dimensions [32, 128]
Lifting Network: Fusion MLP Hidden Dimensions [256, 512, 256]
Intrinsic Update FFN: Hidden Dimension 256
Intrinsic Update FFN: Number of Layers 3

Training Parameters
Epochs 150
Learning Rate 5e-4
Batch Size 32
Optimizer AdamW
Weight Decay 1e-5
Scheduler ReduceLROnPlateau

Factor 0.5
Patience 10

Loss Weight: Basis Orthogonality 0.001
Loss Weight: Basis BC Penalty 0.01
Gradient Clip Norm 1.0
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K.2 SPFNO (SEMI-PERIODIC FOURIER NEURAL OPERATOR)

Table 7: Hyper-parameters for SPFNO.

Parameter Type Value
Architectural Parameters

Number of Fourier Modes 16
SPFNO Layer Width (Channels) 64
Number of SPFNO Layers 4
Spectral Transform Type ’dirichlet’
Use Projection Filter True

Training Parameters
Epochs 150
Learning Rate 1e-3
Batch Size 32
Optimizer AdamW
Weight Decay 1e-4
Scheduler ReduceLROnPlateau

Factor 0.5
Patience 10

Gradient Clip Norm 1.0
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K.3 BENO (BOUNDARY-EMBEDDED NEURAL OPERATOR)

Table 8: Hyper-parameters for BENO.

Parameter Type Value
Architectural Parameters

Embedding Dimension 64
GNN Hidden Dimension 64
Number of GNN Layers 4
Boundary Embedder: Transformer Layers 2
Boundary Embedder: Attention Heads 4

Training Parameters
Epochs 150
Learning Rate 5e-4
Batch Size 32
Optimizer AdamW
Weight Decay 1e-4
Scheduler ReduceLROnPlateau

Factor 0.5
Patience 10

Gradient Clip Norm 1.0

K.4 POD-DL-ROM

Table 9: Hyper-parameters for POD-DL-ROM.

Parameter Type Value
Architectural Parameters

POD Basis Dimension 64
CAE Latent Dimension 8
Encoder: Convolutional Channels [16, 32, 64]
Encoder: Fully Connected Layers [128]
DFNN for Dynamics: Hidden Layers [256, 512, 256]

Training Parameters
Epochs 150
Learning Rate 1e-4
Batch Size 32
Loss Weighting (Rec. vs. Intrinsic) 0.5
Optimizer AdamW
Weight Decay 1e-4
Scheduler ReduceLROnPlateau

Factor 0.5
Patience 10

Gradient Clip Norm 1.0
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K.5 LNO (LATENT NEURAL OPERATOR)

Table 10: Hyper-parameters for LNO.

Parameter Type Value
Architectural Parameters

Number of Latent Points 64
Embedding Dimension 64
Number of Transformer Blocks 3
Transformer Heads 4
Transformer Feedforward Dimension 128
Projector Hidden Dimensions [64, 128]
Final MLP Hidden Dimensions [128, 64]
Input Coordinate Dimension 2

Training Parameters
Epochs 150
Learning Rate 3e-4
Batch Size 32
Optimizer AdamW
Weight Decay 1e-5
Scheduler ReduceLROnPlateau

Factor 0.5
Patience 10

Gradient Clip Norm 1.0

K.6 LNS-AE (LATENT NEURAL SOLVER WITH AUTOENCODER)

Table 11: Hyper-parameters for LNS-AE.

Component Parameter Type Value
Autoencoder

Initial Width 64
Downsampling Blocks 3
Latent Channels 16
Final Latent Spatial Dimension 8 (for input nx=64)
Epochs 100
Learning Rate 3e-4
Optimizer AdamW
Scheduler ReduceLROnPlateau

Latent Stepper
Branch Hidden Dimensions [128, 128]
Trunk Hidden Dimensions [64, 64]
Combined Output Projection Dim. 128
Epochs 150
Learning Rate 1e-4
Training Rollout Steps 1
Optimizer AdamW
Scheduler CosineAnnealingLR

Common
Batch Size 32
Gradient Clip Norm 1.0
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Table 12: Hyper-parameters for GNOT-Stepper.

Parameter Type Value
Architectural Parameters

Embedding Dimension 128
Number of GNOT Layers 4
Attention: Number of Heads 8
Geometric Gating: Num Experts 4
MLP Hidden Dimensions (Encoders) [128, 128]

Training Parameters
Epochs 150
Learning Rate 5e-4
Batch Size 16
Optimizer AdamW
Weight Decay 1e-4
Scheduler ReduceLROnPlateau

Factor 0.5
Patience 10

Gradient Clip Norm 1.0

Table 13: Hyper-parameters for Unisolver-Stepper.

Parameter Type Value
Architectural Parameters

Embedding Dimension 256
Transformer Depth (Layers) 8
Attention: Number of Heads 8
MLP Hidden Dimension (in Block) 512
Patch Size 8

Training Parameters
Epochs 150
Learning Rate 5e-4
Batch Size 16
Optimizer AdamW
Weight Decay 1e-4
Scheduler ReduceLROnPlateau

Factor 0.5
Patience 10

Gradient Clip Norm 1.0
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L BROADER IMPACTS

The BAROM framework, for simulating PDEs with complex boundary conditions, presents potential
societal impacts.

L.1 POTENTIAL POSITIVE IMPACTS

BAROM can accelerate scientific and engineering innovation by enabling faster, more accurate sim-
ulations in fields like sustainable energy, climate modeling, and biomedical engineering. It can
improve industrial design, optimization, and real-time control, leading to more efficient processes
and safer systems. Furthermore, efficient ROMs like BAROM may democratize access to advanced
simulation, fostering broader research and educational benefits.

L.2 POTENTIAL NEGATIVE IMPACTS AND CONSIDERATIONS

Advanced simulation capabilities could theoretically be misused if not governed by ethical princi-
ples (e.g., in applications with harmful environmental or security implications). As with automa-
tion, widespread adoption might shift workforce demands, necessitating retraining initiatives. Over-
reliance on model predictions without understanding their limitations or biases could lead to flawed
decisions; thus, user education and model validation are crucial. While aiming for efficiency, the
development of such models still requires resources, potentially widening gaps if access isn’t de-
mocratized.

Ethical Stance. The authors intend BAROM for beneficial scientific and engineering advance-
ments and advocate for its responsible use, encouraging ongoing dialogue on ethical AI in simula-
tion.

M STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we utilized a Large Language Model (LLM) as a general-
purpose writing assistance tool. The use of the LLM was strictly limited to improving the quality
and clarity of the English prose.

Specifically, the LLM was employed for the following tasks:

• Proofreading to identify and correct typographical errors.
• Correcting grammatical mistakes and ensuring syntactical correctness.
• Rephrasing sentences to improve readability, flow, and conciseness.
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