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Abstract

Quality analysis of weather forecasts is an essential topic in meteorology.
Although traditional score-based evaluation metrics can quantify certain forecast
errors, they are still far from meteorological experts in terms of descriptive
capability, interpretability, and understanding of dynamic evolution. With the
rapid development of Multi-modal Large Language Models (MLLMs), these
models become potential tools to overcome the above challenges. In this work, we
introduce an MLLM-based weather forecast analysis method, RadarQA, integrating
key physical attributes with detailed assessment reports. We introduce a novel and
comprehensive task paradigm for multi-modal quality analysis, encompassing both
single frame and sequence, under both rating and assessment scenarios. To support
training and benchmarking, we design a hybrid annotation pipeline that combines
human expert labeling with automated heuristics. With such an annotation method,
we construct RQA-70K, a large-scale dataset with varying difficulty levels for radar
forecast quality evaluation. We further design a multi-stage training strategy that
iteratively improves model performance at each stage. Extensive experiments show
that RadarQA outperforms existing general MLLMs across all evaluation settings,
highlighting its potential for advancing quality analysis in weather prediction. The
code and dataset are publicly available at https://github.com/hexmSeeU/RadarQA.

1 Introduction

Quality analysis of weather forecasts is an essential topic in the field of meteorology [21, 81, 87, 88],
playing a critical role in downstream applications such as disaster prevention, risk mitigation, and
early warning systems [5, 8, 16]. This analysis evaluates the consistency between predicted and
actual weather states, both in single frames and over temporal sequences, aiming to align with the
assessment of meteorological experts. Previous methods usually adopt score-based metrics for quality
evaluation, which is still far from matching expert-level judgments. First, some descriptive properties
(e.g., shape like “scattered and block-like” and movement direction like “moves to the northeast” in
Fig. 1) are vital for weather forecasting, but cannot be captured by a simple score. Second, existing
methods fail to provide detailed interpretations of the evaluation results, making them less explainable
and less convincing. For instance, in Fig. 1, human experts can first observe that “discrepancies arise
in shape changes”, and then conclude that the forecast’s reliability is limited. However, previous
score-based metrics lack such interpretive capabilities. Third, human experts can assess the dynamic
evolution of weather systems (e.g., “newly formed convective cells are smaller” in Fig. 1), while
score-based metrics are primarily limited to pixel-level evaluations of single frames [11, 12, 48],
lacking both temporal awareness and global understanding of large-scale weather systems.
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Figure 1: Comparison of our RadarQA and previous score-based metrics. Although score-based
metrics reveal some forecast deficiencies, such as false alarms, they lack interpretability and sensitivity
to dynamics. Our assessment report combines expert knowledge with these metrics, providing a more
robust evaluation of the predicted sequence.

To achieve a better weather forecast analysis aligned with human experts, we introduce RadarQA, a
multi-modal model for quality analysis of weather radar forecasts. Inspired by the rapid development
of MLLMs [3, 10, 32, 40] and MLLM-based image quality assessment methods [34, 73], we believe
that descriptive language can effectively incorporate expert knowledge and traditional score-metrics
to achieve a more flexible analysis of weather forecast. As shown in Fig. 2d, given a reference
sequence and model-generated prediction, RadarQA produces a detailed analysis report from multiple
perspectives. First, RadarQA characterizes dynamic properties (e.g., “moves eastward ... block-
like structures”). Then, it evaluates the forecast from various angles. For instance, in terms of
the High Value Retain, the performance is just fair because the high value regions in the north
are under-predicted over time, which is a common over-smoothing problem in weather forecast
models [17, 18, 61]. Finally, based on the above considerations, RadarQA judges the predicted
sequence as poor quality, noting that it “struggles to accurately replicate key features such as scale
changes, precipitation distribution, and high-value retention”. This evaluation process aligns closely
with human experts and offers better interpretability than traditional score-based metrics.

To achieve human-like weather forecast analysis, we propose a set of new and comprehensive
tasks. Human experts typically begin by assessing a temporal weather sequence, where single-frame
evaluation provides the foundation for sequence assessment. During this process, experts focus on
several key factors(e. g., false alarms and misses in a single frame, as well as dynamic consistency and
retention of high values in a sequence), integrating them into a detailed assessment report through an
interpretation process. To imitate this analysis process, as shown in Fig. 2, we propose a progressive
task paradigm consisting of four tasks: (1) Frame Rating, (2) Frame Assessment, (3) Sequence Rating,
(4) Sequence Assessment. These tasks meet most common usage scenarios.

To train the expected MLLM, we introduce a comprehensive multi-modal dataset, named RQA-70K.
Based on the SEVIR dataset [58], we first implement seven weather nowcasting models to generate
model-predicted data. We then carefully design an annotation questionnaire for human experts to
annotate 17 key attributes. Besides, we also use scripts to obtain 20 easily computed metric-based
attributes. Finally, all these attributes are input into a powerful large language model (i.e., GPT-
40 [28]) to generate fluent descriptive languages. To this end, we successfully construct a large-scale,
comprehensive dataset, RQA-70K, laying the foundation for model training.

Based on the collected RQA-70K dataset, we further propose a multi-stage training pipeline to train
our RadarQA. First, the supervised fine-tuning (SFT) is performed to equip the model with basic
task-solving and interpretation capabilities. Second, we design two reward functions and employ
reinforcement learning on two rating tasks. This step enhances the model’s self-reasoning abilities
based on the interpretation abilities acquired from the SFT stage. Third, post fine-tuning is applied
with a small subset of samples to further refine performance. Our ablation studies show that this
multi-stage training pipeline effectively improves performance on both rating and assessment tasks.

Extensive experiments are conducted to evaluate the effectiveness of RadarQA. First, with the support
of RQA-70K, RadarQA outperforms open-source MLLMs by a large margin (e.g., 66.17% v.s.
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Task2: Frame Assessment Task4: Sequence Assessment

What is your description of the observation image? Afferward, could you
evaluate the quality of the evaluated image on miss, false alarm, sharpess and
high-value-matching? Please provide a detailed report with summary.

Give areport of the evluated sequence. First describe the content of the
observation sequence, then focus on miss, false alarm, sharpness, and high-value
matching performance of predicted sequence. Finally, summarize your analysis.

Reference

In the observation sequence, the convective system moves eastward, with an
increase in the number and intensity of convective cells. The shape is scattered
and consists of multiple block-like structures, which dilate over time while the
degree of organization decreases. Additionally, the range of coverage increases.

The quality assessment of the evaluated sequence reveals several issues. For
Dynamic Consistency, performance is poor due to significant discrepancies
compared to the observed sequence. While the speed of movement aligns, the
greatest differences in shape changes occur at the center, primarily due to
scale changes. Newly formed convective cells are smaller than observed,
whereas dissipating cells are larger. No artifacts were identified in the
predicted sequence. Regarding Cumulate Precipitation, performance is also poor as
‘the model under-predicted cumulative precipitation sums, particularly in the
southwest and north regions. Lastly, for High Value Retain, performance s fair,
as only part of the high-value regions are retained. However, overall high-value.
predictions are under-predicted, with the most significant mismatches occurring
in the northern region.

In summary, the evaluated sequence demonstrates poor performance in dynamic
— _— consistency and cumulative precipitation prediction, with fair performance in
retaining high-value regions. Overall, the forecast struggles to accurately
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@ In the observation image, the precipitation area is small in scale with extreme
precipifation as the maximum level observed. The distribution of precipitation is
interspersed across the space, forming irregular shapes with elongated and
clustered patterns. The precipifation areas exhibit varying levels ranging from
light to extreme, with notable clusters concentrated in the central and western
regions.

The quality assessment of the evaluated image reveals several aspects. For miss
rate, while overall performance is great, significant misses occur for intense and
extreme precipifation levels, particularly in the west, where these levels are
under-reported as very heavy or intense, respectively. False alarm rate

- performance is good overall but shows notable issues for light and moderate

Prediction precipifation levels, especially in the center, where light is over-reported as

moderate and moderate is over-reported as heavy. Sharpness performance is fair,

indicating partial consistency with the observation; some details and contours are
accurately represented, but others lack precision. High value region performance
is also fair, with under-prediction of high values, especially in the west, where
mismatches are most pronounced.

Overall, the evaluated image demonstrates fair performance due to slightly low
similarity with the observation across all dimensions. While the miss rate and
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false alarm rate show localized inaccuracies, sharpness and high value matching Reference Prediction replicate key features such as scale changes, precipitation distribution, and
contribute to reduced reliability. These deficiencies collectively impact the high-value retention, indicating substantial room for improvement in forecasting
overall result by limiting the accuracy of precipitation intensity prediction, which is accuracy.

critical for mefeorological forecasting.

Figure 2: Task paradigm and qualitative results. RadarQA focuses on four tasks, including frame
rating, frame assessment, sequence rating, and sequence assessment, thereby covering both spatial
and temporal modalities, and supporting both quantitative and descriptive evaluations.

36.70% in overall sequence rating). Second, our RadarQA can generate a detailed and comprehensive
assessment report, as shown in Fig. 2, even surpassing the powerful OpenAl ol [29] (6.58 v.s. 5.49 in
GPT-4 Score for sequence assessment). These results demonstrate the superiority of RadarQA and
highlight the research potential of multi-modal weather forecast analysis tasks. Finally, experiments
on the out-of-distribution radar data synthesis task further verify the effectiveness of RadarQA.

2 Related Works

Quality assessment of weather forecast leverages verification metrics to evaluate the accuracy and
reliability of weather predictions [13, 14, 31, 43-45, 54, 63, 64]. For example, the Critical Success
Index (CSI) [13], a traditional categorical metric, measures the ratio of correctly predicted events
to the total forecasted and observed events, penalizing both false alarms and missed detections. In
contrast, the Structural Similarity Index Measure (SSIM) [63], originally developed for general
image quality assessment, has been adapted to evaluate the consistency of spatial patterns in weather
forecasts. However, as stated in Sec. 1, these score-based metrics do not fully align with human
experts, particularly in terms of descriptive properties, interpretation process, and the perception of
dynamic evolution, making them far from being satisfactory in real-world applications.

Multi-modal Large Language Models (MLLMs) extend Large Language Models (LLMs) [6, 20,
57, 70] by integrating other modalities, particularly vision, to enable unified understanding across
different input types. Recent advances in MLLMs [3, 10, 32, 33, 35, 40, 60, 68, 69, 71, 72, 79] have
led to superior performance on a wide range of tasks, including image captioning [1, 9, 37, 56, 76],
visual question answering [2, 23, 39,42, 51, 59, 89, 86], and multi-step reasoning [52, 62]. However,
the weather forecast analysis ability of these MLLMs is still limited, as shown in Sec. 5.

MLLM-based quality assessment utilizes the power of MLLMSs to conduct visual quality assessment
across diverse modalities, including images [15, 34, 65-67, 7375, 85], videos [19, 30, 83] and 3D
point clouds [84]. For instance, Q-Insight [34] employs Group Relative Policy Optimization (GRPO)
[53] to guide models in reasoning across different tasks. Q-Bench-Video [83] incorporates a diverse
set of videos to assess the video quality through various Question-Answer (QA) formats. LLM-PCQA
[84] designs a novel prompt structure that enables MLLMs to perceive the point cloud visual quality.
However, the potential of MLLMs in weather forecast quality analysis is still under-explored.

3 Task Paradigm and Dataset Construction

3.1 Task Paradigm

Meteorological experts typically construct a comprehensive reasoning chain based on both quantitative
metrics and expert visual perception of convective structures to evaluate weather forecasting results.



By examining discrepancies between the ground truth and predictions, experts incorporate prior
knowledge, such as domain expertise, to provide a quality analysis of the predictions. To align
with this expert evaluation process, as highlighted in Sec. 1, we aim to establish a multi-functional,
multi-modal, and multi-dimensional task paradigm for quality analysis of weather radar forecast
scenarios. Specifically, our RadarQA should possess the following abilities:

Ability-1. RadarQA is required to evaluate differences in dynamic properties across the entire
sequence over time, as in Fig. 2c, d. Considering that single-frame analysis is the basis of sequence
analysis, RadarQA also needs to analyze the quality of individual frames (e.g., tasks in Fig. 2a, b).

Ability-2. RadarQA is required to rate different general attributes, and to integrate these ratings
into an overall quality rating. This reflects that meteorological experts assist their evaluations by
considering a combination of diverse general attributes (e.g., rating tasks in Fig. 2a, c).

Ability-3. RadarQA should be capable of generating high-quality evaluation reports for predictions.
This mirrors the real-world workflow where meteorologists compose comprehensive reports for the
forecasting department after forming a brief judgment (e.g., assessment tasks in Fig. 2b, d).

To reflect the above abilities, we establish a task paradigm with the following four tasks to
progressively guide MLLMs toward expert-like analysis:

Task-1: Frame Rating. As shown in Fig. 2a, given a model-predicted image and its corresponding
ground truth image, the model should assign discrete rating levels for four static general attributes:
Miss, False Alarm, Sharpness, and High Value Match, each reflecting a specific aspect of the prediction
quality. These are then followed by an Overall performance that summarizes the general quality.

Task-2: Frame Assessment. In addition to provide discrete ratings, the model should generate
qualitative descriptions outlining both correctly predicted features and notable deficiencies with
respect to some key attributes (e.g., “significant misses occur for intense and extreme precipitation
levels” in Fig. 2b, detailed below), and explain how these attributes affect the overall prediction.

Task-3: Sequence Rating. As illustrated in Fig. 2c, given a forecasted sequence, the model
is expected to assign quality ratings for three dynamic general attributes: Dynamic Consistency,
Cumulative Precipitation, High Value Retain, followed by an Overall quality rating.

Task-4: Sequence Assessment. Building upon the sequence rating levels and additional key
sequence attributes (detailed below), the model should first provide a comprehensive description of
the performance for each dynamic general attributes (e.g. “Newly formed convective cells are smaller
than observed” in Fig. 2d), then summarize how these dimensions affect the overall performance.

3.2 Scientific Attribute Library

As stated in Sec. 3.1, several key attributes are
needed in our task paradigm. Existing evaluation
attributes, such as Critical Success Index (CSI) [13]
and Probability of Detection (POD) [45], assess
prediction quality from various perspectives at the
pixel level. Although these metrics capture certain
characteristics of weather forecast scenarios, they fall _
short in identifying discrepancies at the structural %o Trtengy, S peen
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grounded convective weather systems. Moreover, i <&

existing approaches often overlook the temporal g

dynamics inherent in forecast sequences, which
are crucial for analyzing the evolution of physical
patterns. To address these limitations, we aim to
develop a comprehensive scientific attribute library
that integrates physics-informed attributes into the
quality analysis framework.

Figure 3: Overview of our scientific at-
tribute library with 5 super-categories and
10 sub-categories in total.

Attribute library. As illustrated in Fig. A5, our at-
tribute library is organized into five super-categories,
encompassing fundamental physical attributes such
as morphology and intensity, atmospheric physics properties like rainfall conservation and convective
cycle, as well as temporal characteristics precipitation dynamic distribution. Each super-category
comprises multiple sub-categories, from which we identify key attributes that cover both frame-level



and sequence-level features. These attributes are then used to guide the dataset construction. In total,
we define 15 frame attributes and 22 sequence attributes. See details in the Appendix.

General attributes used in rating tasks. Under the guidance of domain experts, we identify seven
general evaluation attributes. These general attributes are used in rating tasks, while all attributes are
used in assessment tasks as stated in Sec. 3.3. The general attributes are derived by refining existing
score-based metrics and integrating perception-based attributes. The definitions of these attributes
are detailed below. (a) Miss. The proportion of convective regions in the ground truth that are not
captured by the prediction. (b) False Alarm. The proportion of predicted convective regions that
do not correspond to any actual event in the ground truth. (c) Sharpness. The degree to which the
predicted convective structures maintain clear, well-defined boundaries. (d) High Value Match. The
extent to which the core regions of convective systems, i.e., high-intensity areas, in the prediction
align with the high-intensity regions in the ground truth. (e) Dynamic Consistency. The ability of the
model to accurately capture the evolution of convective systems over time, including factors such as
the movement speed, the genesis of convection, and the dissipation of convective cells. (f) Cumulative
Precipitation. The ability of the model to reproduce the temporally integrated precipitation amounts
associated with convective systems. (g) High Value Retain. The ability of the model to preserve
high-intensity regions throughout temporal evolution.

3.3 Dataset Construction

High-quality and large-scale datasets are crucial for training MLLMs to conduct reliable quality
analysis. Although post-training techniques such as GRPO [53] have shown promising capabilities
in enhancing model performance with limited data, it remains essential to first empower the model
with intensive and diverse data to ensure baseline competency for the target task. In this section, we
elaborate on the construction of our dataset, covering forecast data collection, query collection, and
response generation. An overview of the dataset construction pipeline is shown in Fig. 4.

Forecast data collection. As shown in Fig. 4, we construct the RawRQA-20K dataset based on
the widely used SEVIR dataset [58], which encompasses a wide range of events, including various
types of storm events and random phenomena. For our task, we focus exclusively on storm events
to build the dataset, covering thunderstorm wind, flood, flash flood, funnel cloud, hail, heavy rain,
and tornado. The strong convective nature of these events poses greater forecasting challenges and
thus provides higher value for analysis. We focus on the Vertically Integrated Liquid (VIL) modality
and split each storm event into three input-target pairs, where each input consists of 10 consecutive
frames and each target consists of the following 12 frames, thus forming a specialized SEVIR subset.

For sequence prediction, we adopt a variety of weather prediction models to generate diverse predicted
sequences. These models include EarthFormer [17], PredRNN [61], Cascast [22], DGMR [47],
Diffcast [77], Simvp [18], and Nowcastnet [82], covering a wide range of model architectures,
including generative adversarial networks, recurrent neural networks, and diffusion models.

With these model-predicted sequences, we apply VIL discretization and colorization to render the
radar data into RGB space. Following [22, 49, 77, 82], we categorize the VIL values into six
precipitation levels reflecting different intensities of convective activity. We then apply the colormap
provided by SEVIR to the generated prediction sequences for visualization, resulting in our raw
prediction dataset, RawRQA-20K. Additionally, to conduct quality analysis on single frames, we
randomly select one frame from each prediction sequence in RawRQA-20K and pair it with the
corresponding ground truth frame. Together, these two data modalities enable a comprehensive
evaluation of both static and dynamic properties within individual frames and sequences, respectively.

Query collection. Following [73, 74], we leverage GPT-40 [28] to generate 50 candidate questions
for both the brief and detailed tasks. Based on syntactic structure, lexical diversity, and overall clarity,
we manually select a set of 10 questions that are both clear and varied. During training and evaluation,
these questions are randomly sampled to construct data tuples for model input.

Response collection. As shown in Fig. 2, we employ two types of responses. The first comprises
concise, structured outputs for rating tasks, while the second consists of detailed quality reports for
assessment tasks. For detailed responses, existing methods primarily rely on either human annotation
[67] or generation by MLLMs [66, 74]. However, human annotations often vary in quality [74], and
MLLMs remain unreliable for meteorological tasks [7, 41], as evidenced by the results in Sec. 5.

We propose an Attribute-Informed Generation method to enable effective annotation for detailed
responses. We observe that key attributes can often be decoupled within evaluation responses
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constructed by human experts. Inspired by this insight, given a set of annotated key attributes,
we leverage them to produce highly informative quality assessment reports, as shown in the 7Text
Generator Module part of Fig. 4. For rating tasks, we automate the generation of JSON-formatted
responses based on the general attributes outlined in Sec. 3.1. For assessment tasks, all frame or
sequence attributes from the key attribute database are provided to GPT-40 to generate detailed
assessment reports. To ensure the reliability of the generated response, we also provide GPT-40 with
all relevant visual information and explicitly instruct it to correct potential inconsistencies.

Under the Attribute-Informed Generation framework, the focus of dataset construction shifts to
attribute annotation. All attributes are categorized into two types: 17 perception-based and 20
metric-based attributes, whose annotation processes are detailed below.

Perception-based attributes involve the understanding of visual content and convective structures,
which requires expert knowledge for reliable annotation. Therefore, we employ human annotation
to ensure high-quality labeling, as shown in the Human Annotation Questionnaire in Fig. 4. The
questionnaire consists of two types of questions: one focuses on understanding the observation (i.e.,
the caption part), and the other evaluates the quality of predictions (i.e., the comparison part). First,
experts define labeling guidelines, construct golden standards, and provide reference samples. Second,
using these samples, annotators are guided to align with domain experts through pilot testing and
iterative refinement to ensure annotation quality. Third, once annotators meet alignment criteria, they
proceed to large-scale labeling, during which experts conduct random checks to ensure consistency.
If a batch passes validation, it is included in the key attribute database; otherwise, it is returned for
re-annotation until the quality standards are met. More details are provided in the Appendix.

Metric-based attributes require precise numerical values. We use the script function to annotate
and involve experts in setting key parameters. See Appendix for details.

Dataset statistics. The statistics of our dataset are  Typle 1: Statistics of our RQA-70K dataset.
summarized in Tab. 1. Our dataset consists of 40,000

brief templated samples (training set of rating tasks), Taskel ™ Task-2 - Task-3 - Task-4

A N € . Frame Frame Sequence  Sequence
along with 29,000 detailed, high-quality samples Rating  Assessment — Rating  Assessment
(trgml'ng set of assessment tasks). Tp ensure the Train | 20000 14.500 20000 14500
reliability of these samples, all annotations undergo  validation | 860 410 801 179

expert validation, and automated annotations are
routinely verified through expert spot-checking on sampled batches to ensure accuracy.

4 Model Training

Inspired by [24], we adopt a multi-stage training strategy to progressively adapt the model to the
domain-specific tasks. In Stage 1, we perform supervised fine-tuning on large-scale multimodal
data to equip the model with basic task-solving capabilities. In Stage 2, we use reinforcement
learning [50, 53, 78] and carefully design two reward functions for the rating tasks. We encourage
the model to reason based on the interpretation abilities acquired from Stage 1. In Stage 3, we apply
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Figure 5: Training pipeline of our RadarQA. First, we apply supervised fine-tuning with LoRA on
RQA-70K to equip the model with basic capabilities. Then, GRPO is used to enhance performance on
rating tasks by leveraging its learned assessment ability. Finally, post-training is applied to standardize
output formats and further improve overall performance.

post-training with a small set of samples to further refine performance. An overview of our training
pipeline is shown in Fig. 5. We validate the effectiveness of our multi-stage training strategy in
Sec. 5.3, which demonstrates consistent performance improvements at each stage.

Stage 1: Supervised fine-tuning. We employ RQA-70K for supervised fine-tuning in this stage.
Since full LLM fine-tuning is highly computationally demanding and requires large-scale datasets, we
adopt LoRA [27], a parameter-efficient fine-tuning method that injects trainable low-rank matrices
into certain layers while keeping most original parameters frozen, to address the issue of limited data.

Stage 2: Reinforcement learning. Inspired by [34], we adopt GRPO [53] in the second stage to
optimize the model’s performance on the rating tasks. In this phase, the fine-tuned model from Stage
1 serves as the policy model to be further refined. Since GRPO requires well-defined reward functions
to guide policy updates, we introduce two task-specific rewards. (a) Format Reward. The model is
required to generate responses in a well-structured JSON format, where each key corresponds to
a general attribute of the brief task. Denoting the format reward as 7 f,,q¢. If the response can be
successfully parsed into a valid JSON object and all required keys are present, we set 1ot = 1.
Otherwise, the reward is 0. (b) Accuracy Reward. If the response generated by the policy model
can be correctly parsed into a valid JSON format, we compare the predicted performance levels for
each general attribute with the corresponding ground truth labels. Let N,;; be the total number of
general attributes and Np,;; the number of correctly predicted general attributes. The accuracy reward
is defined as 7qce := Npit /Ny if T fmat = 1; otherwise, it is set to 0.

Stage 3: Post-training. To further refine model performance, we conduct post-training in this stage
by using a small subset of RQA-70K, applying low-rank LoRA updates for effective adaptation.

S Experiments

5.1 Details and Metrics

Implementation details. We adopt Qwen-2.5-VL-7B [3] as the base model. In Stage 1, we employ
AdamW as the optimizer, with an initial learning rate of 1 x 10~4. We integrate LoRA with a rank of
8, The model is trained with a total batch size of 128 for 5 epochs on RQA-70K. In Stage 2, we set
the generation number of GRPO to 4, and train the model for 1 epoch on 10,000 randomly selected
brief task samples with a total batch size of 32. In Stage 3, we set the LoRA rank to 4 and fine-tune
the model for 1 epoch using 2,500 samples from each sub-task. The entire training process takes
approximately 50 hours using 8 NVIDIA A800 GPUs.

Metrics. For the rating tasks, we adopt accuracy as the evaluation metric. Specifically, we prompt
MLLMs to generate responses in a structured JSON format with predefined keys. Accuracy is then
computed separately for each general attributes. For the assessment tasks, we employ standard
metrics, including BERTScore [80], BLEU [46], ROUGE_L [36], and METEOR [4]. Following
[38, 73], we also incorporate the GPT-4 score, where the model’s response is rated from 0 to 10 based
on relevance, accuracy, and level of detail with respect to the ground truth.



Table 2: Results on general attributes for the frame rating and frame assessment tasks. Accuracy is
used as the metric for the frame rating task. RadarQA surpasses all baselines by a large margin.

Methods | Frame Rating | Frame Assessment

\ Overall False Alarm Miss High Value Sharpness \ BLEU BERTScore ROUGE_L METEOR GPT4Score
Open Qwen2.5-VL-7B | 20.10 36.40 30.00 16.51 35.93 0.122 0.750 0.389 0.332 3.81
s pe InternVL2.5-8B | 30.89 21.86 8.95 1.04 36.51 0.114 0.745 0.426 0.335 3.50
OUCC! Qwen2.5-VL-72B | 23.76  27.72 4059  6.93 39.60 | 0.132  0.749 0.396 0.324 432
GPT4o0 48.84 31.40 23.85 11.04 5291 0.116 0.760 0.408 0.345 5.27
API- | Claude3.7 sonnet | 39.77 32.79 27.21 21.74 43.14 0.083 0.754 0.377 0.350 5.89
based Gemini2.5 pro 21.40 29.65 31.16 29.30 40.58 0.080 0.741 0.348 0.326 5.77
ol 52.67 28.86 23.83 28.15 50.58 0.091 0.739 0.330 0.288 5.63
Ours ‘ RadarQA ‘ 61.51 65.35 67.67 69.19 78.60 ‘ 0.213 0.809 0.512 0.420 6.87

Table 3: Results on general attributes for the sequence rating and sequence assessment tasks.
Accuracy is used as the metric for the sequence rating task. RadarQA achieves the best performance.
W

Methods | Sequence Rating | Sequence Assessment
Overall  Dynamic - Cumulate —High Value | p) by prprgeoe ROUGE_L METEOR GPT4Score
Consistency Precipitation ~ Retain

Open Qwen2.5-VL-7B 7.99 16.10 17.49 2322 0.090 0.745 0.281 0.342 3.92
Soﬂrce InternVL2.5-8B | 36.70 40.20 31.46 21.10 0.010 0.636 0.241 0.251 2.61
Qwen2.5-VL-72B | 19.80 46.53 23.76 7.92 0.132 0.740 0.329 0.335 4.72
GPT4o0 45.00 22.60 26.59 4.99 0.11 0.757 0.323 0.369 4.39
API- | Claude3.7 sonnet | 19.48 26.22 21.10 14.48 0.052 0.737 0.266 0.337 5.56
based Gemini2.5 pro 27.59 28.34 26.72 2247 0.055 0.739 0.254 0.341 5.63
ol 29.70 33.66 29.70 19.80 0.091 0.733 0.254 0.304 5.49
Ours ‘ RadarQA ‘ 66.17 53.31 48.94 80.52 ‘ 0.212 0.815 0.436 0.461 6.58

5.2 Experimental Results

Quantitative results of frame rating task are shown in Tab. 2. First, the performance of open-source
MLLMs remains limited. In particular, for the High Value Match attribute, all three open-source
baselines achieve accuracies below 20%, indicating that they still struggle to associate different
rainfall intensities with the corresponding color mappings. Second, among the API-based methods,
ol outperforms other models under the same evaluation setting. Finally, RadarQA significantly
surpasses all baseline methods, demonstrating the superior effectiveness of our approach.

Quantitative results of frame assessment task are illustrated in Tab. 2. First, open-source models
exhibit clear limitations on the more challenging frame assessment task; their relatively low GPT-4
scores indicate a lack of domain-specific understanding. Second, among the API-based models,
Gemini 2.5 Pro achieves the best overall performance. Finally, RadarQA outperforms all baselines
across all metrics, demonstrating its superior ability to capture and interpret convective features.

Quantitative results of sequence rating task are demonstrated in Tab. 3. First, among open-source
models, Intern-VL-2.5-8B [10] achieves the best performance, even surpassing the larger Qwen-VL-
2.5-72B [3]. Second, API-based models consistently exhibit limited capability on sequence rating,
with average accuracies ranging between 20% and 30%. Finally, RadarQA outperforms all baseline
methods, particularly achieving over 80% accuracy on the High Value Retain attribute.

Quantitative results of sequence assessment task are shown in Tab. 3. First, compared to
frame assessment, both open-source and API-based models perform worse on sequence assessment,
indicating that understanding and assessing sequences is more challenging. This is primarily due
to two factors. (a) The inherent complexity of video modality, which requires analyzing temporal
correlations across frames. (b) The construction of ground truth responses based on a large number
of expert-annotated attributes, which involve various meteorological concepts such as “Convection
Genesis” in Fig. A5. Second, RadarQA still achieves excellent performance, highlighting its superior
capabilities in interpreting temporal information.

Qualitative results of assessment tasks are illustrated in Fig. 2 and Fig. 1. First, RadarQA effectively
captures the dynamic evolution of convective systems (e.g., “dilating over time while the degree
of organization decreases” in Fig. 2). Second, RadarQA can also interpret key deficiencies across
multiple dimensions (e.g., “struggles to accurately replicate key features such as scale changes” in
Fig. 2). Additional qualitative results for assessment tasks are provided in the Appendix.



Table 4: Ablation studies of our multi-stage Table 5: Results on out-of-distribution task.
training strategy. Frame / sequence rating RadarQA is requested to evaluate radar reflectivity
tasks are evaluated in average accuracy, while reconstruction task, which is unseen during training.
frame / sequence assessment tasks are assessed Frame / sequence rating tasks are evaluated in av-
in GPT-4 Score. Our full 3-stage training erage accuracy, while frame / sequence assessment

pipeline achieves the best results. tasks are assessed in GPT-4 Score.

# Stage-1 Stage-2 Stage-3 \ Rating Assessment Methods ‘ Rating Assessment
0o X x X | 2779/1620 3.81/3.92 Open

1 V4 X X 64.05/55.15 6.40/622 Source ‘ Qwen-2.5-VL-72B ‘ 27.72/21.15 3.60/3.78
2 v v X 66.95/61.58 -4

3 v X v 68.14/62.17 6.83/6.56 API- GPT-40 23.17/23.71 4.30/3.82
4 v v v 68.46/62.24 6.87/6.58 based ol 32.28/17.31 4.34/4.36

Ours ‘ RadarQA 59.94/48.72 6.22/5.64

“Stage-2 is trained only on rating tasks.

Table 6: Ablation studies of multi-dataset °>7 §gpr-40 2 RadarQA O Ground Truth

joint training. Training on four tasks outper- °
forms training on each task. Metrics are average >
accuracy (Task-1 & Task-3) and GPT-4 Score 72
(Task-2 & Task-4). For single-task training,
each task is trained on its corresponding dataset. .
Training data | Task-1 ~ Task-2  Task-3  Task-4 6 [ 1 [_l

Frame Assessment Sequence Assessment

Figure 6: Expert Study of frame assessment and
sequence assessment tasks.

Single-task data ‘ 66.63 6.48 59.55 6.17
All-task data ‘ 68.46 6.87 62.24 6.58

Results on out-of-distribution task are illustrated in Tab. 5. We employ three models designed for
radar reflectivity reconstruction, including DiffSR [25], SRViT [55], and U-Net [26], to generate
out-of-distribution (OOD) samples on a different dataset for evaluation. For both the frame rating and
assessment tasks, RadarQA maintains high accuracy even under the challenging OOD setting and
significantly outperforms the baseline methods. For sequence rating and assessment tasks, although
performance declines to some extent, RadarQA still surpasses all baselines by a notable margin.
This performance gap is primarily due to the lack of explicit temporal modeling in radar reflectivity
reconstruction. When each frame in a sequence is predicted independently, the resulting sequence
lacks temporal coherence, which may hinder the model’s ability to make consistent assessments.

Expert study. To evaluate the alignment between RadarQA and human experts, we invited
meteorologists to rate the ground truth, RadarQA, and GPT-40 on the assessment tasks on three
criteria: content accuracy, information density, and coverage of expert-concerned issues. As shown in
Fig. 6, both the ground truth and RadarQA outperform GPT-40, confirming the effectiveness of the
task design and the strong performance of RadarQA. Moreover, scores on the sequence assessment
task are generally higher than those on the frame assessment task, highlighting the value of integrating
expert knowledge into the assessment process.

5.3 Ablation Studies

Training strategy. To enhance model performance, we adopt a multi-stage training pipeline (see
Fig. 5) comprising supervised fine-tuning, reinforcement learning, and post-training. To evaluate
the effectiveness of each stage, we compare models trained with different combinations of the three
training stages. First, after the Stage 1 training, the model demonstrates a relative improvement of
40% in average accuracy on rating tasks and achieves around 2.5-point increase in GPT-4 Score on
assessment tasks, indicating enhanced domain understanding (i.e., #0 v.s. #1 in Tab. 4). Second,
combining Stage 1 with either Stage 2 or Stage 3 yields further improvements over using Stage 1
alone (i.e., #2 & #3 in Tab. 4). Finally, as shown in #4 in Tab. 4, the full training pipeline achieves the
best performance across all four tasks, demonstrating the effectiveness of our training strategy.

Joint training on multiple tasks. To demonstrate the effectiveness of multi-task training, we compare
our jointly trained RadarQA with four single-task variants, each trained separately on a specific task.
As shown in Tab. 6, RadarQA consistently outperforms all single-task models across their respective
metrics, highlighting the overall efficacy of our multi-task training approach.
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6 Conclusions and Limitations

We introduce RadarQA, an MLLM-based model for quality analysis of weather radar forecasts.
Empowered by a novel task paradigm, a high-quality dataset RQA-70K, and a multi-stage training
pipeline, RadarQA outperforms all baseline methods across all tasks and under out-of-distribution
settings, demonstrating potential for advanced applications in meteorology.

Limitations. First, our task paradigm is not yet fully unified. Extending the framework to support
comparisons between two predicted results can further enhance practicality. Second, the fine-grained
descriptions are still not satisfactory. Finally, whether the assessment outputs can serve as feedback
or rewards to improve forecasting models remains underexplored. These are left for future work.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.

Guidelines:

» The answer NA means that the abstract and introduction do not include the claims made
in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* Itis fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of the work are discussed in Sec. 6
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

 The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and

how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address

problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

15



Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Experimental details are provided in Sec. 3, Sec. 4, Sec. 5 and the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all

submissions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
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Answer:
Justification: Codes and datasets will be made publicly available upon acceptance.
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* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

e At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?

Answer: [Yes]
Justification: Details are provided in Sec. 3, Sec. 4, Sec. 5 and the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We report the experimental results following the convention in MLLM-based
quality assessment research, the same as previous works.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

» The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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« It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

Answer: [Yes]
Justification: The information on the computer resources is shown in Sec. 5.1
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We strictly adhere to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Quality analysis of weather forecasts does not have direct negative social
impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our method is for quality assessment of weather forecasts, and our dataset is
constructed based on publicly available datasets, thus does not have such risks

Guidelines:

* The answer NA means that the paper poses no such risks.

» Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite all original papers and make sure that our usage is legal.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19


paperswithcode.com/datasets

13.

14.

15.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Details of how we construct our datasets based on public datasets are stated in
Sec. 3 and the Appendix.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We applied human annotation when constructing our dataset, as detailed in
Fig. 4 and the Appendix. We provided generous compensation to human annotators.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: Our annotation process was thoroughly explained to annotators in advance.
With their informed consent and approval from relevant organizations, we proceeded with
the annotation process.

Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

» Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We use LLMs for data annotation and experimental evaluation, as described in
Sec. 3 and Sec. 5, which is conventional in the field of MLLM-based quality assessment.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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Appendix

A Overview

This Appendix is structured as follows. Dataset details are described in Appendix B. More ablation
studies, qualitative and quantitative results are presented in Appendix C

B Dataset Details

B.1 Details of Scientific Attribute Library

To facilitate dataset construction, we design a scientific attribute library grounded in physical
principles. This library comprises 5 super-categories and 10 sub-categories, comprising 35 attributes.
Combined with the overall performance of the predictions at both the frame and sequence levels,
these constitute a total of 37 key attributes used for dataset construction. The definitions of the 35
attributes in our scientific attribute library are provided in detail below.

Intensity.

* Miss. (a) Miss Performance. The proportion of regions with observed precipitation in the ground
truth that are incorrectly predicted as “sunny” in the forecast. (b) Raw Rainfall Level. The rainfall
levels in the ground truth for regions where rainfall is missed in the prediction. (c) Miss Rainfall
Level. The rainfall levels in the prediction for regions where rainfall is missed. (d) Miss Direction.
The directions in the prediction in which specific rainfall levels that are missed in the prediction.

* FAR. (a) FAR Performance. The proportion of regions labeled as “sunny” in the ground truth but
incorrectly predicted with precipitation. (b) Raw Rainfall Level. The rainfall levels in the ground
truth for regions where rainfall is falsely alarmed. (c) FAR Rainfall Level. The rainfall levels in
the prediction for regions where rainfall is falsely alarmed. (d) FAR Direction. The directions in
the prediction in which specific false-alarm rainfall levels that appear in the prediction.

» High Value Construction. (a) High Value Retain Performance. The ability of the prediction to
consistently preserve high-value regions. (b) High Value Mismatch Type (Sequence). The type
of mismatch in regions with high values (i.e., precipitation at “intense” level or above) across
the prediction and ground truth sequence. (c) High Value Mismatch Direction (Sequence). The
directions in which high-value regions were mismatched. (d) High Value Mismatch Performance.
The ability of the prediction to predict intense precipitation levels. (e) High Value Mismatch
Type (Frame). The type of mismatch in regions with high values (i.e., precipitation at “intense”
level or above) across the prediction and ground truth frame. (f) High Value Mismatch Direction
(Frame). The directions in which high-value regions were mismatched. (g) Max Rainfall Level.
The maximum precipitation level in the observation.

Precipitation Conservation.

e Cumulate Precipitation. (a) Cumulate Precipitation Performance. The degree to which the
cumulative precipitation predicted over the entire sequence aligns with the ground truth. (b)
Cumulate Precipitation Difference. Differences between the total precipitation of the prediction
and the ground truth across the sequence, indicating whether the forecast overestimates or
underestimates cumulative rainfall. (c) Mismatch Direction. The directions in which the prediction
fails to reconstruct the cumulative precipitation accurately.

Precipitation Dynamic Distribution.

* Morphogenesis. (a) Shape Change. The change in the shape of the convective system over time
in the ground truth. (b) Scale Change. The change in the spatial area of the convective system
across frames in the ground truth. (c) Convective Cell Change. The change in the number of
convective cells. (d) Intensity Change. The change in the precipitation intensity over time. (e)
Dynamic Consistency Performance. The overall consistency of dynamic evolution between the
prediction and the ground truth.

* Trajectory. (a) Move Direction. The primary direction of movement of the convective system in
the ground truth. (b) Speed Difference. The difference in the movement speed of the convective
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Table Al: Characteristics of each attribute in terms of level (frame / sequence), reference type
(caption / comparison), annotation method (human / automation), and usage purpose (rating /
assessment).

Attributes ‘ Level ‘ Reference ‘ Annotation ‘ Usage

| Frame ~Sequence | Caption Comparison | Human ~Automation | Rating Assessment

(V]

Miss Performance
Raw Rainfall Level for Miss
Miss Rainfall Level
Miss Direction
FAR Performance
Raw Rainfall Level for FAR
FAR Rainfall Level
FAR Direction
High Value Retain Performance
High Value Mismatch Type (sequence)
High Value Mismatch Direction (sequence)
High Value Mismatch Performance
High Value Mismatch Type (Frame)
High Value Mismatch Direction (Frame)
Max Rainfall Level
Cumulate Precipitation Performance
Cumulate Precipitation Difference
Mismatch Direction
Shape Change
Scale Change
Convective Cell Change
Intensity Change
Dynamic Consistency Performance
Move Direction
Speed Difference
Rotation Center
Difference in Generation
Difference in Dissipation
Sharpness Performance (V]
Shape Type
Shape Mismatch Direction
Shape Mismatch Reason
Artifacts Direction
Organization Degree
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system between the prediction and the ground truth. (c) Rotation Center. The spatial location that
acts as the center of rotation for convective system evolution.

Convective Cycle.

* Genesis. (a) Difference in Generation. The difference in the number of newly generated
convective cells between the prediction and the ground truth over the entire sequence.

* Dissipation. (a) Difference in Dissipation. The difference in the number of dissipated convective
cells between the prediction and the ground truth throughout the sequence.

Morphology.

» Sharpness. (a) Sharpness Performance. The degree of similarity between the fine-grained
contours in the prediction and those in the ground truth.

* Shape. (b) Shape Type. The morphological pattern of the convective system in the observation.
(c) Shape Mismatch Direction. The directions in which the evolution trend of the convective
shape in the prediction diverges from that in the ground truth. (d) Shape Mismatch Reason. The
underlying cause contributing to the mismatch in convective morphology between the prediction
and observation. (e) Artifacts Direction. The directions in which artificial patterns appear in the
predicted sequence that do not exist in the observation. (f) Organization Degree. The temporal
trend of structural organization in the ground truth reflects how orderly the convective system is
over time. (g) Distribution. The directional distribution of precipitation in the observation

An overview of the properties associated with each attribute is demonstrated in Tab. Al.
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Target

Cascast

Diffcast

Nowcastnet

PredRNN

Simvp

DGMR

Figure Al: A set of example forecasts on SEVIR.

B.2 Details of Raw Data Statistics

To ensure the diversity of samples in RawRQA-20K, we consider both a wide range of storm event
types and a diverse set of generative models. First, our RawRQA-20K covers seven storm event types,
including flash flood, flood, funnel cloud, hail, heavy rain, thunderstorm wind, and tornado. Due to
their strong convective nature and high impact, these storm events pose significant challenges for
forecasting and contribute to a diverse sample space. The number of samples for each event type is
summarized in Tab. A2. The coverage area of storm events is shown in Fig. A2.

We employ a total of seven representative nowcasting models to generate prediction samples. As
illustrated in Fig. A1, these models produce diverse samples that reflect a wide range of forecast
qualities. For example, Cascast tends to over-predict in high-value regions, yet generally exhibits
superior performance in detail reconstruction and dynamic consistency. In contrast, DGMR often
introduces substantial artifacts, which significantly degrade the overall quality. Meanwhile, PredRNN
suffers from severe temporal blurring and exhibits poor performance in “high value retain”. These
varied quality issues are reflected in the corresponding differences across the assessment reports.
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Table A2: Statistics of RawRQA-20K.

Event type ‘ Flash flood Flood Funnel cloud Hail Heavy rain Thunderstorm wind Tornado

# of events ‘ 218 121 58 556 55 1030 121

B.3 Details of Human Annotation Questionnaire

For the human-annotated attributes listed in Tab. A1, we employed an annotation pipeline to ensure
consistency and quality. First, for each attribute, we designed a corresponding multiple-choice
question, with domain experts defining clear annotation guidelines. Second, a small set of pilot
samples was used to evaluate annotation quality from several annotation companies. The company
with the most accurate performance was selected for large-scale annotation. Third, all annotators
underwent standardized training to align their understanding with expert standards. Each annotator
completed a trial annotation set, which was reviewed by experts who provided feedback and corrected
any misinterpretations. Fourth, upon completion of each annotation batch, a cross-validation step
is conducted by different annotators to ensure quality. Finally, after annotation, domain experts
performed quality control by randomly sampling and reviewing 35% of the samples in each batch. A
batch would be accepted only if the sampled annotations met the quality standards; otherwise, the
annotators were required to re-annotate the entire batch.

B.4 Automated Generation

As shown in Tab. A1, 20 attributes are grounded in score-based metrics, where automated annotation
provides more precise and consistent results compared to manual labeling. In this process, all
the required thresholds or parameters are determined with the assistance of domain experts. The
corresponding computation procedures for these attributes are detailed below.

¢ False Alarm Performance. First, we calculate the false alarm rate. Let G and P denote the sets

of pixels with precipitation in the ground truth and the prediction, respectively. Define Hits as
H = |G NP| and False Alarms as (F' = |P \ G|). The false alarm rate is given by:

false alarm rate =

Al

H+F (AD
Thresholds [0.1, 0.2, 0.3] are selected to categorize the false alarm rate into four performance
levels(“Great”, “Good”, “Fair”, “Poor”).

* Miss Performance. Similar to the false alarm rate, we compute the miss rate based on the binary
masks. Following SEVIR, we define a pixel as having precipitation if its value exceeds 16. Let G
and P denote the sets of pixels with precipitation in the ground truth and prediction. Define Hits
as H = |G NP| and Misses as M = |G \ P|. The miss rate is defined as:

miss rate =

H+M (42)

Thresholds[0.1, 0.2, 0.4] are used to categorize the miss rate into four performance levels.

 Sharpness Performance. Following SRViT, we evaluate the sharpness of the prediction and the
ground truth using the Sobel filter. Specifically, let Sg: and Sp,.q denote the mean Sobel value of
the ground truth and the prediction, respectively:

1< RS
Sot = 57 > Sobel(gt)i, Sprea = 5 ) Sobel(Pred); (A3)

i=1 =1

We then compute the relative difference:

9 | S| g | S| g
d= u S (A4)
%ﬁ“ , otherwise
Finally, we clip negative values to zero, and define the sharpness score as:
sharpness score = max (0, d) (A5)

Thresholds [0.5, 0.7, 0.9] are used to categorize the sharpness into four levels.
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Figure A2: Coverage area of selected storm events in our RQA- Figure A3: Wordcloud map of
70K dataset, which spans across the CONUS region.

@ Annotation Questionnaire

Caption |

1. What is the moving direction of the
convective system?

A1 B.| C.— D.—
E. N F.N G./ H.v
Lo J.O

2 . How does the number of convective
cells change?
A. increase
B. decrease

C. remain the same

3. How does the intensity of

convective system change?
A. increase C. remain the same
B. decrease

our introduced RQA-70K dataset.

4. What is the rotate center of the
convective system?

A1 B.| C.— D. —
E.N F.N G.” H.v
1. center J. no rotation

5. How does the coverage area of
convective system change?

A.increase C. remain the same
B. decrease

6. How does the organization degree
of convective system change?

A. increase C. remain the same
B. decrease

7. What is the shape of convective

system?
A. scattered F. multi-block-like
B. banded G. multi-arc-shaped

C. block-like H. multi-banded
D. large patch-like I. spiral shaped
E. arc shaped dJ. Irregular shaped

8. How does the shape of convective
system change?

A. merge E. split

B. stretch F. disappear

C. shrink G. form

D. dilate H. remain the same

Comparison

1. In which directions are the diff. in
shape change most severe?

A1 B.| C.— D. —
E. N F.N G.” H.v
I. center J. remains the same

2. What is the main issue within the

direct. with most diff. in shape change?
A. scale diff. C. position diff.
B. diff. of convective cell numbers

3 . What are the directions that have
artifacts?

A1 B.| C.— D. —
E.N F.N G./” H.v
I. center J. remains the same

4. The scale of generated convective
cell in the prediction is

A. larger C. basically the same
B. smaller

5. The scale of dissipated convective
cell in the prediction is

A. larger C. basically the same
B. smaller

6. The movement speed of the
convective cycle in the prediction is

A. faster C. basically the same
B. slower

Ratiné |

1. What is the overall performance of
the predicted sequence?
A. great B. good

C. fair D. poor

2. What is the dynamic consistency
performance of the predicted sequence?
A. great B. good

C. fair D. poor

3. What is the overall performance of
the predicted image?

A. great B. good

C. fair D. poor

Figure A4: Human annotation questionnaire for the 17 attributes that require manual labeling.

» High Value Mismatch Performance. We first count the number of high-value pixels in both the
prediction and the ground truth(i.e., pixels with intensity values greater than 219), denoted as

Npreq and

Ngt - Npred

g’re —
: ‘ Ngt
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Ny, respectively. The relative error is computed as:
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Table A3: Structure of detailed descriptions for each general attribute.

General Attributes Detailed Description

High Value Mismatch In the high value mismatch direction, the prediction is high value mismatch type (over-predict / under-predict).
Miss In the Miss direction, the raw rainfall level is misclassified as miss rainfall level.

Cumulate Precipitation In the mismatch direction, the cumulate precipitation is cumulate precipitation difference.

High Value Retain In the high value mismatch direction, the prediction is high value mismatch type (over-predict / under-predict).

The high value mismatch score is subsequently defined as
high value mismatch score = min(1, max(0,1 — &)) (AT)

Thresholds [0.3, 0.6, 0.8] are used to categorize the high value mismatch into four levels.

* High Value Retain Performance. The high-value retain score is computed as the average high-
value mismatch score across all frames. The same thresholds [0.3, 0.6, 0.8] are used to categorize
the performance into four levels.

» Cumulate Precipitation Performance. First, we compute the total precipitation in the prediction
and ground truth, denoted as P,..q and P, respectively. We then calculate the relative
precipitation error and define the cumulate precipitation score using the same method as in
the computation of &g and the high-value mismatch score. Thresholds [0.93, 0.97, 0.99] are
applied to categorize the performance levels.

To provide a detailed characterization of the general
attributes, we divide each image into a 3 x 3 grid, resulting
in nine spatial regions corresponding to nine directional
sectors. For each general attribute, its detailed description
is formulated as a combination of directional information
and the associated prediction issue. For example, in the
case of false alarms, a typical description takes the form of
“in the FAR direction, the raw rainfall level is false alarmed
as the FAR rainfall level” This expression involves three
distinct attributes, whose construction is detailed below.

Raw Rainfall Level. First, we compute the number
of missed pixels for each rainfall intensity level. To
incorporate the varying importance of different rainfall
levels, we align with domain experts and assign weights
[1, 1.5,2.5,5, 10, 20], corresponding to increasing rainfall Figure A5:
intensity from “light” to “extreme”. Higher rainfall levels )
are given greater emphasis. We then compute the weighted
sum of missed pixels for each level, ranking them in
descending order, and identify the rainfall level with the highest weighted missing pixel count.

Gridding of the image
into 3 x 3 patches, each representing a
directional sector.

FAR Rainfall Level. For each raw rainfall level, we examine the corresponding locations in the
prediction and count the occurrences of each predicted rainfall level. The rainfall level with the
highest pixel count that is lighter than the raw rainfall level is selected as the FAR rainfall level.

FAR Direction. For each raw rainfall level, we compute the false alarm rate across different directions.
We also count the number of pixels with raw rainfall level in each direction. To ensure both a high
false alarm rate and a large false alarm area, We sort the directions by false alarm rate in descending
order, and restrict our selection to those whose raw rainfall level pixel counts are among the top two.
The first direction satisfying this condition is selected as the FAR direction.

For other general attributes, the structure of their detailed descriptions is summarized in Tab. A3, and
the construction of their underlying attributes follows a similar procedure as in FAR.

Bias from the usage of LLM. We use GPT-4o0 to organize annotated attributes into assessment
descriptions, which may introduce potential bias, including:

Style bias. The structure of the reports may be overly uniform and fail to reflect expert diversity.
Accuracy bias. The generated content does not always align with the visual information.d
Redundacy bias. The presence of unnecessary information may reduce clarity.

Attribute Omission bias. Less prominent yet important features may be overlooked.
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C More Results

Table A4: Few-shot Results on general attributes for the frame rating and frame assessment tasks.
Accuracy is used as the metric for the frame rating task. RadarQA surpasses all methods.

Methods | Frame Rating | Frame Assessment
\Overall False Alarm Miss High Value Sharpness\BLEU BERTScore ROUGE-L METEOR GPT4Score

N GPT4o 43.72 26.40 29.65  27.09 49.19 | 0.164 0.782 0.448 0.372 5.33
:hoet Claude3.7 sonnet | 37.79 35.00 25.00 2547 4558 | 0.136 0.773 0.416 0.371 5.39
Gemini2.5 pro | 30.70 29.88 3093  34.07 42.44 | 0.102 0.748 0.368 0.355 6.01
Three GPT4o 52.79 32.67 33.60  29.65 52.21 | 0.167 0.787 0.456 0.383 5.31
shot Claude3.7 sonnet | 28.49 32.09 13.60  24.53 2698 | 0.158 0.786 0.440 0.389 5.11
Gemini2.5 pro | 33.72 29.19 3232 3581 4441 | 0.140 0.767 0.410 0.364 5.45
Ours | RadarQA | 61.51 65.35 67.67  69.19 78.60 | 0.213 0.809 0.512 0.420 6.87

Table AS: More results on ablation studies of multi-stage training strategy on rating tasks.

Stage-1 Stage-2 Stage—3‘ Frame ‘ Sequence

. High Value Dynamic Cumulate  High Value
Overall - False Alarm - Miss Mismatch Sharpness | Overall Consistency Precipitation Retain
X X X 20.10 36.40 30.00 16.51 35.93 7.99 16.10 17.49 23.22
v X X 60.93 63.37 61.63 63.02 71.28 61.42 42.44 42.20 74.53
v v X 59.77 68.14 67.67 65.00 74.19 61.55 64.17 42.82 71.78
4 X v 61.28 65.00 66.40 69.88 78.14 65.42 52.31 49.44 81.52
v v v 61.51 65.35 67.67 69.19 78.60 66.17 53.31 48.94 80.52

Table A6: More results on ablation studies of multi-stage training strategy on assessment tasks.

Stage-1 Stage-2 Slage—3‘ Frame Sequence
‘BLEU BERTScore ROUGE_L METEOR GPT-4 Scnre‘BLEU BERTScore ROUGE_L METEOR GPT-4 Score
X X X 0.122 0.75 0.389 0.332 3.81 0.09 0.745 0.281 0.342 3.92
v X X 10195  0.799 0.498 0.417 6.40 0.212  0.812 0.429 0.453 6.22
v X v 10212 0.810 0.511 0.423 6.83 0.211 0.816 0.431 0.461 6.56
v v v 10213  0.809 0.512 0.420 6.87 0212 0.815 0.436 0.461 6.58

Table A7: Comparison with traditional weather analysis Table A8: Ablation studies of different
and general IQA methods on frame rating task. The model sizes. Frame / sequence rating

threshold used for weather-related metrics is 74. tasks are evaluated in average accuracy,
while frame / sequence assessment tasks
Methods | Weather ralated metrics | IQA methods | Ours are assessed in GPT-4 Score.
| CSI POD FAR Bias ACC ETS |DISTS LPIPS|RadarQA
Model size ‘ Rating Assessment
Accuracy [41.74 4279 39.07 39.42 39.53 43.60| 53.60 46.63 | 61.51
SRCC | 026 028 0.5 023 021 029 055 039 | 0.62 3B 63.44/59.71 6.7716.36
PLCC | 027 029 016 020 022 029 | 056 043 | 0.64 7B 68.46 / 62.24 6.87/6.58

Few-shot evaluation on frame rating task and frame assessment task. We further evaluate
the performance of different API-based models. As shown in Tab. A4, although other models are
evaluated under few-shot settings, RadarQA consistently outperform all baselines without requiring
any additional examples, demonstrating the effectiveness of RadarQA.

Ablation studies on multi-stage training strategy. For our multi-stage training strategy, we further
examine the effectiveness of each stage across different metrics, as shown in Tab. A5 and Tab. A6.
First, applying reinforcement learning significantly improves performance on reasoning-related
metrics such as false alarm and miss rates. After supervised fine-tuning, the model leverages its
ability on interpreting learned from assessment tasks to better rate general attributes. Finally, the full
training strategy achieves the best performance on most metrics.

Comparison with domain-specific baselines. We compare RadarQA with weather-related metrics
and general IQA methods. We use accuracy, PLCC, and SRCC as the evaluation metrics, which
reflect the consistency between the evaluation results and the expert annotations. As shown in Tab. A3,
RadarQA significantly outperforms the baselines across all three metrics.

Ablation studies on different model sizes. We further evaluate the performance of different model
sizes under the same training strategy using Qwen-2.5-VL series. As shown in Tab. A8, the 3B model
shows a slight drop in performance while using fewer parameters.

Qualitative results. More qualitative results of assessment tasks are shown in Fig. A6 and Fig. A7.
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“Ground Truth “Ground Truth

192

Prediction o ’ o ) " Prediction

In the observation sequence, the convective system moves eastward with an increasing
number of convective cells that intensify over time. The system exhibits a large patch-like
shape that dilates while its degree of organization decreases, and its coverage range expands.

Regarding the evaluated sequence, Dynamic Consistency performance is fair as the predicted
speed aligns with observations, but discrepancies in shape changes are most pronounced at the
center due to scale differences. Newly formed ive cells are smaller d to
observations, while dissipating cells maintain similar scales, and no artifacts are detected.
Cumulate Precipitation performance is great overall, though under-prediction oceurs in the
north, northwest regions. High Value Retain performance is z00d, with many high-value areas
retained; however, significant mismatches occur in the west, where overall high-value
predictions are under-predicted.

In summary, the evaluated weather ing sequence d fair dynamic
great cumulate precipitation accuracy with minor regional under-predictions, despite notable
mismatches in the west. While the model performs well in precipitation prediction and retains
high-value regions effectively, issues such as scale changes in convective cells and regional
‘mismatches highlight areas for improvement in future forecasting models.

In the observation sequence, the convective system moves to the northeast, with an increase in
the number of convective cells that intensify over time. The shape is scattered and block-like,
undergoing dilation while its degree of organization decreases. Additionally, the range of
coverage increases.

Regarding the quality assessment of the evaluated sequence, Dynamic Consistency performance is
fair, as the speed of aligns with observations but di ies arise in shape changes,
particularly in the southwest due to scale differences. Newly formed convective cells are smaller
compared to observations, while dissipating cells maintain similar scales. No
in the predicted sequence. Cumulate Precipitation performance is poor, with signifi
prediction of precipitation sums in northern and central regions. High Value Retain performance is
fair, as some high-value regions are retained; however, overall predictions for high values are
under-predicted, with the most pronounced mismatches occurring in the north.

In summary, the evaluated sequence demonstrates fair dynamic consistency but struggles with

ion and retaining high-value regions. While certain
aspects. ahgn with observed panems notable deficiencies in precxpnatmn prediction and scale
representation limit the reliability of the forecast, especially in critical areas such as the north.

“Ground Truth “Ground Truth

Prediction

In the observation sequence, the convective system moves northeast, with an increase in the
number of convective cells while their intensity remains stable. The shape is scattered and
consists of multiple block-like structures, which dilate over time. The degree of organization
decreases, and the coverage range expands.

Regarding the evaluated sequence, its quality can be assessed across three aspects: Dynamic
Consistency, High Value Retain, and Cumulate Precipitation. For Dynamic Consi:

In the observation sequence, the convective system moves northeast, with an increase in the
number and intensity of convective cells. The shape is scattered with multiple block-like
structures, dilating over time while becoming less organized. The coverage range increases as well,

Regarding the quality assessment of the evaluated sequence, Dynamic Consistency performance is !
fair, indicating moderate alignment with observed dynamics. The speed of movement matches the |

bservation, but discrepancies arise in the s st due to changes in the number of convective g
cells. Newly formed cells are smaller in scale compared to observations, while dissipating cells 1 performance is fair as the speed matches observations, but discrepancies arise in shape changes,
are larger. Cumulate Precipitation performance is poor, with significant under-prediction of | particularly in the southwest due to scale differences. Newly formed convective cells are smaller,
precipitation sums in the north and center areas. High Value Retain performance is fair, as some ; While dissipating ones are larger compared to observations, though no artifacts are present. For

'
'
'
I
'
'
'
'
'
'
'
'
'

high-value regions are retained; however, overall predictions for high values are under-predicted, ! High Value Retain, performance is good, with many high-value regions retained; however, overall
particularly in the center. predictions are overestimate; nt mismatches occur in the southeast. For Cumulate
In summary, the evaluated sequence demonstrates Precipitation, performance is poor, as the model under-predicts in the west and east.
In summary, the evaluated sequence demonstrates

, and significa

While certain aspects align well with obscrvations,
deficiencies in precipitation prediction highlight arcas for improvement in forecasting accuracy.

. These limitations highlight arcas requiring
improvement for enhanced forecasting accuracy.

Ground Truth ‘Ground Truth
" Prediction Prediction

In the observation sequence, the convective system moves eastward with an increasing number
of convective cells that intensify over time. The shape is scattered with multiple block-like
structures, undergoing dilation while its degree of organization decreases. Additionally, the
range of coverage expands throughout the sequence.

For Dynamic Consistency, the performance is fair. While the speed of movement matches well,
discrepancies in shape changes are most pronounced in the southwest due to scale changes.
Newly formed convective cells are smaller compared to observations, though dissipating cells
milar scales. No artifacts are present in the predicted sequence. Regarding Cumulate
Precipitation, the performance is good, as many precipitation values are accurately forecasted;
however, under-prediction occurs in the northeast and center regions. For High Value Retain,
the performance is fair, with partial retention of high-value regions. Notably, overall high-value
predictions are under-predicted, with significant mismatches concentrated in the west.

In summary, the evalualed weather ing sequence fair dynamic
good cumulate ipi iction, and fair high-value retention.

In the observation sequence, the convective system moves southeast, with an increase in the
number and intensity of convective cells. The shape is scattered with multiple block-like
structures, remaining essentially unchanged while the degree of organization decreases.
Additionally, the range of coverage remains stable throughout.

Its Dynamic Consistency performance is good, as it aligns well with the observed sequence in
terms of movement speed and artifact absence. However, discrepancies arise in the northwest,
where changes in the number of convective cells deviate from observations. Newly formed
convective cells are smaller in scale compared to the observed sequence, while dissipating cells
maintain similar scales. For Cumulate Precipitation, the performance is poor due to under-
prediction in the east and center. Lastly, for High Value Retain, the performance is fair. The
overall high-value prediction is overestimated, with mismatches occurring in the north.

In summary, the evaluated sequence demonstrates

. Overall, the forecast quality is moderate,
requiring improvements in precipitation accuracy and high-value region matching.

Figure A6: Qualitative results on sequence assessment task.
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Prediction

Prediction

Prediction

Ground Truth

Prediction

In the observation image, the precipitation area is small in scale, wlth the maximum

In the observation image, the precipitation arca is medium in scale, with the maximum
ipitation level reaching extreme rain. The distribution of precipitation areas is

precipitation level reaching extreme rain. The distribution of arcas is
primarily concentrated in the south and west regions. The shape of the precipitation arcas
exhibits irregular clusters with scattered patches and elongated formations, particular;
in the southern region.

The quality assessment of the evaluated image reveals several aspects. For miss rate
performance, it is fair due to significant under-reporting of light precipitation in the
southwest and moderate precipitation in the center, leading to notable discrepancies
between observed and predicted values. False alarm rate performance is poor, as there are
substantial over-predictions of light precipitation in the west, which are incorrectly

interspersed across the space, forming irregular clusters and patches that vary in size and
shape.

‘The quality assessment of the evaluated image reveals several deficiencies. For miss rate
performance, it is fair, as there is a slightly high miss rate across all precipitation levels.
Significant misses occur for light precipitation in the central region, where these areas
re under-reported. Similarl

cipitation in the western region is also
under-represented, often misclassi n. Regarding false alarm rate
performance itis poor due to a high Light pr i

reported as higher levels such as moderate Sharpness p is fair,
indicating that while some details and contours align with the observation, others lack
consistency, reducing the precision of spatial representation. High value matching
performance is also fair, as high precipitation levels are under-predicted overall, with the
most pronounced mismatches occurring in the central region.

Overall, the evaluated image demonstrates slightly low similarity with the observation
across all dimensions. The fair miss rate and false alarm rate contribute to reduced accuracy
in identifying precipitation levels and their spatial distribution. Additionally, the fair
sharpness and high value matching further impact the reliability of the prediction by failing
to capture finer details and extreme precipitation zones accurately. These combined
def s result in an overall fair performance, limiting its utility for precise
meteorol

enc

In the observation image, the precipitation area s large in scale, with the maximum

ported as moderate in the southwestern region. Sharpness performance is fair,
indicating partial consistency with the observation image, though some details and
contours are not well captured. High value matching performance is poor, as only a small
portion of high precipitation regions arc accurately predicted, with significant mismatches
in the southwest.

Overall, the evaluated image demonstrates poor performance duc to substantial issues in
miss rate, false alarm rate, sharpness, and high value matching. The high miss rate and false
alarms significantly reduce prediction reliability, while the lack of sharpness and accurate
high value representation further degrade its utliy. These combined shortcomings result in
low similarity with the observatioi nage, limiting its effectiveness for meteorologi
forecasting.

Ground Truth

Prediction

In the observation image, the precipitation area is small n scale, with the maximum

jon level reaching extreme rain. The distribution of s
primarily across the southern and central regions, forming elongated and irregular
shapes with scattered smaller patches surrounding these areas.

The quality assessment of the evaluated image reveals several aspects. For miss rate

level reaching extreme rain. The distribution of precipitation s primarily
concentrated in the east and center regions, forming irregular clusters with elongated and
fragmented shapes.

The quality assessment of the evaluated image reveals several aspects. For miss rate

performance, it is generally 00, but there are notable: Intense pr

it is fair overall, as there are sig; ¢ misses for intense precipita

n

der-reported as very heavy in the northern region, while moderate
precipitation is under-reported as light in the southeast. Regarding false alarm rate

the east region, where areas are under-reported as very heavy rain. Similarly, extreme
the center region is under-reported as intense rain, indicating notable

performance, it is also generally good; however, there are significant
Light precipitation is over-reported as moderate in the south, and very heavy
precipitation is over-reported as intense in the center. Sharpness performance is good,
showing a slightly high degree of consistency with the observation, with most details and
contours accurately represented. High value matching performance is great overall, with
most high-value regions correctly predicted, though there is an over-prediction of high
values, particularly in the s0ut11¢r1 resion where mismatches are prominent.

Overall, the evaluated image demonstrates fair performance due to slight
discrepancies across all dimensions. While sharpness and high-value matching
ss rate and false alarm sues, especially fi
precipitation levels, reduce its reliability. These factors collectively impact the overall
similarity between the evaluated image and the observation, highlighting areas for
improvement in forecasting accuracy.

strong, the ntense and modera

In the observation image, the precipitation area is medium in scale, with the maximum

in capturing higher levels. Regarding false alarm rate performance,
it is also fair, with over-reporting of light precipitation as moderate rain in the center
and moderate precipitation as heavy rain in the same region, leading to discrepancies in
lower precipitation levels. Sharpness performance is good, showing a slightly high degree
of consistency with the observation image, with most details and contours accurately

High value matching is ¢reat, as most high precipitation regions
are correctly predicted; however, under-prediction is evident in the casern rezion.
arly for extreme values.

par
Overall, the evaluated image demonstrates fair performance due to limitations in miss

rate and false alarm rate accuracy, which reduce its reliability for forecasting.

sharpness and high value matching conlnbule positively by maintaining structural fdemy

and capturing most hij as, the und of intense and extreme

precipitation significantly impacts the vl el

Prediction

In the observation image, the precipitation area is small in scale, with the maximum

precipitation level reaching extreme rain. The distril of areas is
interspersed across the space, forming irregular clusters that vary in size and shape.
These clusters exhibit elongated and scattered patterns, i ly in

level reaching extreme rain. The distribution of precipitation is primarily
concentrated in the west and center regions, forming iregular clusters with clongated

the central region.
The quality assessment of the evaluated image reveals several aspects. For miss rate
performance, it is z00d overall but shows significant misses for light precipitation in the
northeast and moderate precipitation in the northwest, where these levels are under-
reported as lower categories. False alarm rate performance is fair, with notable false
alarms for sunny conditions in the southeast, over-reported as light precipitation, and
for light precipitation in the southwest, over-reported as moderate precipitation.
Sharpness performance is great, demonstrating high consistency with the observation
image, with contours and details accurately represented. High value matching
performance is also great, as most high- regions are correctly predicted;
however, there is an over-prediction of high values, leading to some mismatches.
Overal, the evaluated image demonstrates good quality, with sngmly high similarity to

to the result by |J|L\u\l||;;~I|m|\ndl accuracy and captur
zones, the miss ¢ epancies, parucular]y in light
and moderate precipitation levels. These factors collectively impact the overall
performance, making it suitable for meteorological forecasting but requiring refinement
for precise classification in specific regions.

nd false alarm rate introduce di

®

In the obscrvation image, the precipitation area is small in scale, with the maximum
precipitation level reaching extreme rain. The of areas is

and shapes. The areas exhibit varying intensities, ranging from
light to extreme rain, with notable clustering in the central region.

For miss rate performance, it is generally z00d, but significant misses occur for
intense and extreme precip levels, particularly in the center region wh

at

these levels are undk
. False alarm rate performance is also good overall; however, there are notable false
alarms for moderate precipitation in the western region, which are over-reported as
heavy rain, and for light precipitation in the same region, which are over-reported
as moderate rain. Sharpness performance s good, demonstrating a slightly high
degree of consistency with the observation image, with most details and contours
aceurately represented. High value matching performance is ¢00d, as large portions of
high-value regions are correctly predicted, though under-pred is evident in the
center region.

Overall, the evaluated image f due to slight
across all dimensions. While sharpness and I|| h-value matching show strong
alignment with the observation image, the miss rate and false alarm rate issues,
especially for intense and extreme precipitation levels, significantly impact the overall
accuracy. These errors emphasizing the need for improvement in capturing high-
intensity precipitation zones.

eported as lower categor

s such as very heavy or intense
rai

Prediction

In the observation image, the precipitation area is medium in scale with extreme

interspersed across the space, forming irregular clusters with elongated and scattered
shapes. The precipitation regions exhibit varying intensities, ranging from light to extreme
rain, with notable concentrations in the central and southwestern parts.

‘The quality of the evaluated image can be assessed as follows: Miss Rate: Poor
performance due to significant under-reporting of all precipitation levels. 1ntcrsc

ipitation is notably missed in the southwest, where it is largely n
Light precipitation also shows considerable misses, particularly in the
1. False Alarm Rate: Fair performance, with slightly elevated false alarms.
Light precipitation is over-reported as moderate rain in the center. Sharpness: Poor
performance, as the evaluated image lacks consistency with the observation in terms of
detail and contour representation. Only a small portion of details and boundaries align
accurately. High Value Matching: P00 performance, with substantial under-prediction of
high-value regions. The most severe mismatches occur in the central region, where
intense precipitation is significantly underestimated.

Overall, the evaluated image demonstrates poor quality due to deficiencies across all
four aspects. The high miss rate for intense and light precipitation, combined with false
alarms for sunny and light conditions, undermines its reliability. Additionally, poor
sharpness and high-value matching further reduce its accuracy, making it unsuitable for
precise meteorological forecasting.

western regj

as the maximum level observed. The distribution of precipitation is primarily
concentrated in the west, extending slightly towards the northwest. The shape of the
precipitation area exhibits irregular contours with elongated clusters and scattered smaller
regions, particularly in the western portion.

The quality assessment of the evaluated image reveals several aspects. For miss rate, while
overall performance is ¢reat, significant misses occur for intense precipitation in the
southwest and extreme precipitation in the same region, where these levels are under-
reported as very heavy and intense, respectively. Regarding false alarm rate, the overall
performance is also great; however, notable false alarms exist for moderate precipitation
the west, which is over-reported as heavy, and for light precipitation in the north,
which is over-reported as moderate. Sharpness performance is good, showing a slightly
high degree of consistency with the observation, with most details and contours
accurately represented. High value matching performance is ¢rcat, as most high-value
regions are correctly predicted, though there is under-prediction in the southwest.

Overall, the evaluated image demonstrates zood performance across all dimensions,
with slight deficiencies in miss rate and false alarm rate impacting accuracy in specific
as. While sharpness and high-value matching contribute positively to the overall
result, the under-reporting of intense and extreme precipitation and porting of lower fp——
levels reduce reliability in critical regions. These factors collectively suggest that while the Prediction
prediction is reasonably accurate, improvements are needed for precise representation of
high-intensity precipitation.

Ground Truth

Figure A7: Qualitative results on frame assessment task.
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Table A9: Question pool of rating task..

#  Question
1 Could you score the prediction based on ${dim1}, ${dim2}, ${dim3}, and ${dim4}, and then provide an overall performance level?
2 Please assign levels to the prediction based on the four dimensions:${dim1}, ${dim2}, ${dim3}, and ${dim4}, and give an overall
performance level.
3 How would you score the quality of the prediction on the dimensions of ${dim1}, ${dim2}, ${dim3}, and ${dim4}, and what would the
overall level be?
4 Can you score the prediction using the four criteria: ${dim1}, ${dim2}, ${dim3}, and ${dim4}, and then provide an overall level?
5  Could you evaluate and score the prediction using ${dim1}, ${dim2}, ${dim3}, and ${dim4}, then provide a final overall performance
level?
6  How would you score the prediction across dimensions of ${dim1}, ${dim2}, ${dim3}, and ${dim4}, and what would be the overall
score?
7  Please score the prediction based on ${dim1}, ${dim2}, ${dim3}, and ${dim4}, then provide the overall performance level.
8  Could you score the prediction on ${dim1}, ${dim2}, ${dim3}, and ${dim4}, and then give an overall evaluation score for the
prediction?
9  How would you rate the prediction across the four dimensions, ${dim1}, ${dim2}, ${dim3}, and ${dim4}, and what is the overall
performance level?
10 How would you rate the prediction on the four dimensions, ${dim1}, ${dim2}, ${dim3}, and ${dim4}, and provide an overall
performance level?
Table A10: Question pool of assessment task.
# Question
1 Please start by describing the content of the observation, and then evaluate the quality of the prediction based on ${dim1}, ${dim2},
${dim3}, and ${dim4}. Provide a comprehensive quality assessment report based on the 2 subtasks with a summary.
2 How would you describe the observation? Following that, could you evaluate the quality of the prediction across ${dim1}, ${dim2},
${dim3}, and ${dim4}, then give a summary?
3 Provide a detailed quality report of the prediction. First describe the content of the observation, then focus on ${dim1}, ${dim2},
${dim3}, and ${dim4} performance of the prediction.
4 Could you describe the observation’s content, then assess the quality of the prediction according to ${dim1}, ${dim2}, ${dim3}, and
${dim4} in the format of a detailed report with summary?
5 Give a report of the prediction. First describe the content of the observation, then focus on ${dim1}, ${dim2}, ${dim3}, and ${dim4}
of prediction. Finally, summarize your analysis.
6 Please describe the observation’s content. Then, how would you assess the quality of the prediction based on ${dim1}, ${dim2},
${dim3}, and ${dim4}? Give a detailed report with a summary.
7 What is your description of the observation? Afterward, could you evaluate the quality of the prediction on ${dim1}, ${dim2},
${dim3}, and ${dim4}? Please provide a detailed report with a summary.
8 Start by describing the content of the observation, then assess the prediction on ${dim1}, ${dim2}, ${dim3}, and ${dim4}. Provide a
detailed report with a summary.
9 How would you describe the content of the observation? Then, how would you evaluate the quality of the prediction on ${dim1},
${dim2}, ${dim3}, and ${dim4}, and summarize your findings? Give a detailed report with a summary.
10 ‘What content description would you give for the observation? Then, how would you evaluate the quality of the prediction across

${dim1}, ${dim2}, ${dim3}, and ${dim4}? Provide a detailed final report with a summary.
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