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Abstract

In the big data era, the computer vision field benefits from large-scale datasets
such as LAION-2B, LAION-400M, and ImageNet-21K, Kinetics, on which pop-
ular models like the ViT and ConvNeXt series have been pre-trained, acquiring
substantial knowledge. However, numerous downstream tasks in specialized and
data-limited scientific domains continue to pose significant challenges. In this pa-
per, we propose a novel Cluster Attention Adapter (CLAdapter), which refines and
adapts the rich representations learned from large-scale data to various data-limited
downstream tasks. Specifically, CLAdapter introduces attention mechanisms and
cluster centers to personalize the enhancement of transformed features through
distribution correlation and transformation matrices. This enables models fine-
tuned with CLAdapter to learn distinct representations tailored to different feature
sets, facilitating the models’ adaptation from rich pre-trained features to various
downstream scenarios effectively. In addition, CLAdapter’s unified interface de-
sign allows for seamless integration with multiple model architectures, including
CNNs and Transformers, in both 2D and 3D contexts. Through extensive experi-
ments on 10 datasets spanning domains such as generic, multimedia, biological,
medical, industrial, agricultural, environmental, geographical, materials science,
out-of-distribution (OOD), and 3D analysis, CLAdapter achieves state-of-the-art
performance across diverse data-limited scientific domains, demonstrating its ef-
fectiveness in unleashing the potential of foundation vision models via adaptive
transfer. Code is available at https://github.com/qklee-lz/CLAdapter.

1 Introduction

With the rapid advancement in artificial intelligence, deep learning-based computer vision algorithms
have emerged as a dominant force [42, 85, 47]. These algorithms are inherently data-driven, capital-
izing on substantial datasets to refine their task-specific performance. The digital age’s ever-growing
data trove has ushered in large-scale datasets, such as ImageNet-21K [58], LAION-400M [62], and
LAION-2B [61], which aim to bolster algorithmic generalization and accuracy through data diversity
and volume [25, 44, 10]. Despite these advancements, domain-specific challenges and data scarcity
remain significant hurdles in scientific visual downstream tasks, where specialized data is often
limited, heterogeneous, or expensive to acquire [11, 72, 79]. Therefore, developing methods that
effectively harness the potential of large-scale pre-trained models to enable robust adaptation in
data-limited scientific domains constitutes a critical and promising research direction.

Transfer learning through methods like linear probing and full fine-tuning is an essential approach
for enhancing performance on downstream tasks [77]. This works well when transferring under
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normal-sized dataset pre-trained models to in-distribution (ID) downstream tasks. However, transfer-
ring adapted knowledge from rich but complex large-scale upstream pretraining poses significant
challenges in the current era of large datasets [61, 10]. Furthermore, the scientific domains down-
stream tasks often involve out-of-distribution (OOD) scenarios [4], domain specificity [27], and
data limitations [68], intensifying the fine-tuning challenge. L2-SP fine-tuning [26] introduced L2
regularization to preserve the insights of pre-trained weights during task adaptation, although they
may lack robustness in OOD contexts. Visual Prompt Tuning (VPT) [34] augmented the input space
with task-specific learnable prompts. However, VPT is primarily designed for Vision Transformer
(ViT) [70] and lacks the ability to provide stable cross-domain feature transferability. OLOR [30]
designed the fine-tuning optimizer from the perspective of pre-trained weights to improve stability,
but it lacks task-specific self-adaptability, particularly under the diverse conditions of downstream
scientific tasks.

Large-scale Data

Pre-trained
Backbones

Pre-training Resources

CLAdapter

Fine-tuning

Figure 1: Overview of the proposed CLAdapter. CLAdapter refines and adapts the rich representations
learned from large-scale data to diverse data-limited scientific downstream tasks, achieving state-of-
the-art performance across diverse fields on 10 datasets.

In this paper, we propose a novel Cluster Attention Adapter (CLAdapter), which refines and adapts
the rich representations learned from large-scale data to diverse data-limited scientific downstream
tasks (as illustrated in Figure 1). Specifically, CLAdapter introduces attention mechanisms and
cluster centers to enable customized feature enhancement through distribution-aware correlation and
transformation matrices. This facilitates the generation of task-adaptive representations, supporting a
smooth transition from abundant pre-trained features to diverse downstream scenarios. Benefiting
from our unified interface design, CLAdapter can seamlessly integrate with mainstream architectures,
including CNNs, Transformers, and their 3D versions. In addition, a Staged Fine-Tuning (SFT)
strategy is presented to collaborate with CLAdapter to further enhance the fine-tuning performance.
Through extensive experiments conducted on 10 datasets spanning domains such as generic, multi-
media, biological, medical, Industrial, agricultural, environmental, geographical, materials science,
out-of-distribution (OOD), and 3D analysis, CLAdapter demonstrates its universal applicability and
state-of-the-art performance. These results underscore the importance of effective knowledge transfer
in the big data era and advance the reliable and efficient deployment of computer vision foundation
models across scientific and industrial domains.

The contributions of this paper are summarized as follows:

1⃝ Adaptive Representation Transfer. We propose a novel CLAdapter that leverages large-scale
pre-trained knowledge to enhance performance on a variety of data-limited downstream tasks.

2⃝ Flexible Adaptation Framework. We design a unified interface and a staged fine-tuning (SFT)
strategy, enabling CLAdapter to integrate seamlessly with mainstream pre-trained models and
establish an efficient fine-tuning paradigm.

3⃝ AI4Science Broad Evaluation. We conduct comprehensive experiments on 10 datasets across
diverse domains, including multiple scientific fields where data is limited and heterogeneous.
CLAdapter consistently achieves state-of-the-art performance, demonstrating its potential as a
generalizable solution for AI-driven scientific applications.
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2 Related Work

2.1 Pre-Training Resources

With the rapid development of computer vision technology, a large number of large-scale datasets [58,
62] and pre-trained models [56, 57, 5, 25, 19] have been proposed, providing a rich feature library for
downstream tasks. Pre-training on large-scale datasets can encode rich semantic information, which is
useful in solving limited data tasks, domain generalization, and zero-shot learning. ImageNet-21k[58],
mainly used for visual image classification, contains about 21k categories and 14 million images,
providing a rich and diverse training environment for large models. The LAION-400M dataset [62] is
a large-scale image and text pairing dataset, containing about 300 million image-text pairs, including
natural landscapes, people, everyday items, etc., suitable for training cross-modal models [56, 57]. To
cope with these growing resources, a new generation of pre-trained models (such as CLIP [56], BEiT
[5], MAE [25], and EVA [19]) has emerged, mainly utilizing the architectural principles of ViT [70]
and ConvNeXt [50]. However, how to efficiently transfer a large number of complex datasets remains
an unresolved issue. Therefore, this paper proposes CLAdapter, introducing attention mechanisms
and clustering centers to leverage rich pre-training resources, thus effectively improving performance
on various downstream tasks.

2.2 Various Downstream Tasks and Fine-Tuning Methods

The realm of practical downstream visual tasks is vast. However, most are cross-domain with
limited data, such as medical image processing [11], industrial fault diagnosis [60], pest and disease
recognition [72], and natural geographic image classification [83], Materials science research [45],
3D multimedia analysis [37]. Fine-tuning pre-trained models has become a critical method for
improving performance on downstream tasks. The popular fine-tuning methods are Linear Probing
(LP) [26], adjusting only the model’s head, and Full Fine-tuning (FT), tuning all layers. Recently,
L2-SP fine-tuning introduced an L2 regularization to keep changes to pre-trained weights minimal,
thus preserving initial insights while adapting to new tasks. Visual Prompt Tuning (VPT) [34]
inserted trainable prompts at the input, akin to NLP’s prompt learning, to prevent altering the original
model weights. VPT proved effective for tasks with numerous parameters and scant data, utilizing
pre-trained knowledge and averting overfitting from significant weight modifications. However,
VPT is mainly designed for Vision Transformer (ViT) [17] and has cross-domain instability issues.
Different from existing fine-tuning methods, CLAdapter introduces attention mechanisms and cluster
centers for customized feature representation refinement. By providing a uniform interface for
various upstream tasks, CLAdapter fine-tunes any category of pre-trained models, transferring their
knowledge to a wide array of downstream tasks.

3 Methods

We propose CLAdapter to refine and adapt the rich representations learned from large-scale data for
transfer applications in various downstream tasks. It injects a small number of learnable parameters
into the original model, offering an efficient fine-tuning strategy by freezing the backbone, alongside
a staged fine-tuning approach for more gradual adaptation. The framework is depicted in Figure 2.

3.1 Unified Model Interface

Given an input image XI ∈ RC×H×W , a standard Vision Transformer (ViT) divides XI into N
patches. Each patch is then embedded into a D-dimensional latent space, resulting in a set of tokens
T ∈ RN×D. Then, T and a extra learnable classification token xclass ([class]) with position
embeddings are fed into the transformer layers {El}L−1

l=0 . Thus, the feature representation extracted
by ViT is T L ∈ R(N+1)×D. Discarding xclass due to its linear combination nature, as it might
interfere with feature transfer from the pre-train model to downstream tasks.

For CNN-based models, the feature map XF ∈ RC′×H′×W ′
is extracted. Here, C ′, H ′, and W ′

represent the number of channels, height, and width of the feature map, respectively. To facilitate the
integration of CNN-based models with CLAdapter, we flatten the spatial dimensions of the feature
map XF to align with the feature dimensionality used by ViT.
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Figure 2: Overview of the CLAdapter. It utilizes large-scale pre-training to enhance various data-
limited downstream tasks. The unified interface design and SFT fine-tuning strategy allow CLAdapter
to integrate with mainstream pre-trained models and form an efficient fine-tuning paradigm.

In the case of 3D video clips or image sequences XV ∈ RT×C×H×W , the extracted features also
include an additional temporal dimension T . Although time and spatial dimensions together form
tubes rather than patches, they still belong to the internal structure of data. Therefore, we similarly
flatten these dimensions to achieve a unified representation.

In summary, whether for CNN-based models, Transformer-based models, or their 3D variants,
we uniformly apply an interface function for the features extracted by the models, denoted as
F(XI/XV ) → H, where H ∈ RN×D represents the extracted features after dimension unification.

3.2 Cluster Attention Adapter (CLAdapter)

For downstream tasks, it is crucial to focus on specific information pertinent to their domain. However,
while large-scale upstream data encompasses a wealth of information, it also introduces complexity
and redundancy. This challenge is further exacerbated when dealing with Out-Of-Distribution
(OOD) tasks, making it more difficult to distill the necessary information from the rich pre-trained
feature representations H. In real-world applications, with the diverse nature of downstream tasks
presenting both in-distribution (ID) and OOD scenarios, it is crucial to design a mechanism capable
of adaptively refining and transforming the pre-trained features H into suitable features H′ based
on the characteristics of the downstream tasks. This process can be defined as learning a mapping
function Fθ(H) → H′, where Fθ denotes a model and θ represents its learnable parameters.

CLAdapter aims to refine and adapt the feature representations H learned from large-scale datasets
for use in various data-limited downstream tasks. Notably, embeddings of image categories in feature
space are often close to each other, suggesting the presence of feature cluster centers that represent
specific latent information. To exploit this, we introduce multiple learnable vectors to denote these
feature cluster centers:

A = {A1,A2, · · · ,AK}, (1)
where A ∈ RD×K , and K is the number of cluster centers. The attention scores are derived by
calculating the cosine similarity between the pre-trained embeddings H and the cluster centers A.
To enhance computational efficiency and convert attention scores to a relative probability distribution
β, we compute the mean of H to obtain Hq and apply the softmax function, respectively. The above
operation is denoted mathematically as follows:

H = LayerNorm(H), Hq =
1

N

N∑
i=1

Hi, (2)

Ĥ
q
=

Hq

∥Hq∥
, Â =

[
A1

∥A1∥
,

A2

∥A2∥
, . . . ,

AK

∥AK∥

]
, (3)

β = softmax
(
Ĥ

q
Â
)
, (4)

where Layer-Norm reduces the difference in input distribution between different layers, and both Ĥ
q

and Â are L2 normalized along the feature dimension. Upon obtaining the attention scores β ∈ RK ,
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we further introduce learnable transformation matrices M corresponding to the cluster centers A:

M = {M1,M2, · · · ,MK}, (5)

where each transformation matrix Mi ∈ RD×D. The weighted transformation matrix M∗ for each
pre-trained feature embedding is derived by weighting these matrices with the attention scores:

M∗ =

K∑
i=1

βiMi. (6)

Consequently, each embedding is subjected to a custom transformation matrix based on its cosine
similarity with each feature cluster center, facilitating the organized transition from the original
upstream feature distribution to a new distribution tailored for downstream tasks. This involves
a customized transformation of H using M∗, followed by enhancement with a Layer-Norm and
MLP layer to improve generalization and introduce non-linearity. The above operation is denoted
mathematically as follows:

H∗ = LayerNorm(HM∗), (7)

H′ = GELU(H∗W1 + b1)W2 + b2, (8)

where H∗ is the result of the customized transformation. In the MLP, GELU represents the Gaussian
Error Linear Unit activation function, and W1 and W2 are the weight matrices for the first and second
linear transformations, respectively, with a default ratio of 4. b1 and b2 are the corresponding bias
vectors. The final output H′ represents the features adaptively refined and transformed from the rich
pre-trained feature embeddings H to suit downstream tasks. Additionally, these transformed features
can be reshaped back to the original feature shape of the upstream model through inverse function of
the unified interface defined in Section 3.1, facilitating the integration with their respective heads.

3.3 Fine-tuning Strategy

To adapt a pre-trained model for a downstream task, practitioners commonly employ either full fine-
tuning (FT), where all model parameters are updated, or linear probing (LP), which only updates the
parameters of the final linear classification layer (head). By incorporating our proposed CLAdapter,
the LP approach updates both the adapter and the classification layer, whereas the FT approach
updates the entire model. These two popular fine-tuning strategies can be formalized as:

LPCL(x) = Whd · hCL(H) + bhd, (9)

FT CL(x) = Whd · hCL(ϕpre(x)) + bhd, (10)

where x denotes the input, hCL(·) is the function represented by CLAdapter, ϕpre(·) represents the
pre-trained backbone, and Whd and bhd are the learnable parameters of the head. LP is computation-
ally efficient as it only updates to the adapter and the head of the model. Although FT provides a
thorough adaptation to the downstream task, starting CLAdapter training from scratch might distort
the backbone’s refined data representations, potentially exacerbating domain mismatch in OOD
scenarios.

To address this, we propose a staged fine-tuning (SFT) strategy, beginning with only updates to the
CLAdapter and heads in the first stage and progressing to full fine-tuning in the second. This method
allows CLAdapter first to obtain better pre-transfer capabilities for the original pre-training domain,
then further fine-tune the entire model to complete the downstream task. Since the fine-tuning
overhead of LP is almost negligible compared to FT, the incremental cost of SFT is minimal. The
SFT strategy can be represented as:

SFT CL(x) = WLP
hd · hLP

CL(ϕpre(x)) + bLP
hd , (11)

where WLP
hd , bLP

hd and hLP
CL represent the head and CLAdapter after the first stage of fine-tuning

(LP), respectively. Notably, in some cases, this LP stage often yields satisfactory performance for
many tasks, thus reducing costs. SFT strategy efficiently leverages the strengths of both LP and FT,
facilitating effective knowledge transfer from the pre-trained model to diverse downstream tasks.
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4 Experiments

4.1 Experiment Setup

Pre-training Dataset and Backbones. In the era of big data, popular publicly available large-
scale 2D datasets include the ImageNet-21K classification dataset [58] at the ten-million level, the
LAION-400M image-text dataset [62] at the hundred-million level, and the LAION-2B image-text
dataset [61] at the billion level. For the 3D domain, we utilize the Kinetics-400 [36], a large-scale
dataset commonly used for action recognition, comprising approximately 260K video clips. On these
large-scale datasets, we employ popular pre-trained models such as Vision Transformers (ViT) [70],
ConvNeXt [50], and Video Swin Transformers (Swin) [49]. Details of these datasets and pre-trained
backbones are listed in Table 1.

Table 1: Details of the pre-training datasets and the corresponding backbones used.
Dataset Scale Type Backbone

ImageNet-21K [58] 14 Million Images ViT-B/16, ViT-L/16, ConvNeXt-B
LAION-400M [62] 400 Million Image-Text Pairs ViT-B/16, ConvNeXt-B
LAION-2B [61] 2000 Million Image-Text Pairs ViT-B/16, ConvNeXt-B
Kinetics-400 [8] 0.26 Million Video Clips Swin-B, Swin-L

Downstream Tasks. We experiment on 10 benchmarks across a broad spectrum of domains,
including generic (Tiny-ImageNet [38]), multimedia (UCF101 [66] and HDMB51 [37]), industrial
(InsPLAD-fault [78]), biological&medical (BreakHis [6] and HCRF [68]), agricultural (Apple
Foliar Disease [72]), environmental&geographical (WHU-RS19 [81]), materials science (KTH-
TIPS-2b [51]), OOD (PACS [40]), and 3D analysis (above video) to demonstrate the versatility
and effectiveness of our CLAdapter. Full benchmark list (Table 5) and dataset descriptions with
processing methods, are provided in Appendix A.1.

Evaluation Metrics. Following the previous works [78], we report the ROC on the InsPLAD-fault
dataset. In alignment with established precedents [11], we utilize the precision, recall, accuracy, and
F1 score as metrics on BreakHis and HCRF datasets. For all other datasets, we assess model efficacy
using Top-1 accuracy. Implementation Details are included in Appendix A.2.

Tiny-ImageNet PACS Apple Foliar Disease WHU-RS19 KTH-TIPS2-B BreakHis HCRF InsPLAD-fault UCF101 HMDB51
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Figure 3: Performance comparison of CLAdapter against SOTA methods across various application
domain datasets. The bar graph illustrates the average scores achieved by the CLAdapter and SOTA on
each dataset, with the red fold line indicating the percentage improvement offered by the CLAdapter.

4.2 Main Results

Overall Intuitive Performance Comparison. Figure 3 provides an intuitive comparison between
our method and prior SOTA approaches, while additional intuitive comparisons are presented in
Appendix B.1 Table 6. It demonstrates that our method consistently surpasses existing SOTA methods,
highlighting its strong a in data-limited scientific domains and robustness against challenges such
as limited data availability, domain distribution shifts, visual semantic variations, and fine-grained
feature distinctions. More detailed quantitative comparisons are provided in the following sections.

Comparison with SOTA approaches in diverse scientific domains. As listed in Table 2, CLAdapter
achieves state-of-the-art results in all benchmarks. Notably, on the industrial defect detection dataset
InsPLAD-fault and the 3D multimedia action recognition UCF101 dataset, CLAdapter, fine-tuning
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Table 2: Comparison of CLAdapter with SOTA methods for diverse scientific downstream tasks. Best
performances are highlighted in bold, while the second-best are underlined.

(a) Agricultural:FoliarDisease [72]

Method Acc

MoCo v2 [13] 96.04
MaskCOV [69] 95.82
SPARE [87] 96.70
ViT [70] 96.48
DeiT [75] 96.26
TransFG [88] 97.14
Hybrid ViT [70] 96.48
Swin [48] 98.08
CLE-ViT [86] 97.58

CLAdapterConvNeXt-B 98.36
CLAdapterViT-B 98.36

(b) Geography: WHU-RS19 [81]

Method Acc

DCA-Fusion [9] 93.56
GM [89] 88.16
GLM16 [89] 92.99
RSFJR [18] 97.48
MS2AP [7] 98.88
ViT [17] 96.42
Swin [48] 97.12
EMTCAL* [70] 97.60
SF-MSFormer [84] 97.80

CLAdapterConvNeXt-B 99.80
CLAdapterViT-B 99.20

(c) Materials: KTH-TIPS2-B [51]

Method Acc

CDL [80] 76.30
Timofte [73] 66.30
DMD+IFV [52] 76.20
FV-VGGVD [14] 88.20
LETRIST [65] 65.30
CATex [21] 66.70
RAMBP [2] 68.90
TEX-Nets-LF [3] 78.00
BMCAnet [45] 79.18

CLAdapterConvNeXt-B 92.47
CLAdapterViT-B 91.26

(d) Biomedicine: BreakHis [6]

Method Pre Rec Acc F1

ViT [17] 80.02 80.73 84.89 80.37
BotNet [67] 79.20 80.72 85.32 79.50
GasHis-Transformer [11] 83.92 83.16 88.10 83.48
LW-GasHis-Transformer [11] 84.54 82.99 87.93 83.69

CLAdapterConvNeXt-B 92.58 90.75 93.53 91.66
CLAdapterViT-B 95.01 92.45 95.32 93.71

(e) Biomedicine: HCRF [68]

Method Pre Rec Acc F1

TransMed [15] 94.34 97.06 95.58 95.58
HCRF-AM [43] 92.90 91.94 94.24 92.06
GasHis-Transformer [11] 98.55 97.38 97.97 97.97
LW-GasHis-Transformer [11] 95.99 96.90 96.43 96.43

CLAdapterConvNeXt-B 98.61 98.57 98.57 98.59
CLAdapterViT-B 95.01 95.00 95.00 95.00

(f) Industrial: InsPLAD-fault [78]

Method Glass
Ins.

Light.
RS.

Upper
Sha.

Vari
Grip

Yoke
Sus.

Avg
ROC

DifferNet [59] 82.81 99.08 92.42 91.20 96.77 92.46
AttentDifferNet [63] 86.57 99.62 94.62 93.52 97.38 94.34
FastFlow [1] 70.16 82.02 77.43 65.54 71.48 73.33
RD++ [63] 86.21 97.54 83.67 93.85 92.46 90.75
CS-Flow [55] 85.73 96.60 88.40 91.53 90.70 90.59
CFLOW-AD [22] 82.22 95.52 86.60 90.37 83.87 87.72
PatchCore [33] 78.44 85.11 81.02 91.92 58.06 78.91

CLAdapterConvNeXt-B 96.43 99.94 98.63 96.43 100.00 98.29
CLAdapterViT-B 94.64 99.87 98.44 96.07 100.00 97.80

(g) 3D Multimedia: Video Recognition

Method UCF101 [66] HMDB51 [37]

MemDPC [23] 86.10 54.50
CoCLR [24] 87.90 54.60
RSPNet [12] 93.70 64.70
VideoMoCo [53] 78.70 49.20
Vi²CLR [16] 89.10 55.70
CVRL [54] 94.40 70.60
CORPf [29] 93.50 68.00
ρBYOLρ = 4 [20] 94.20 72.10
VideoMAE [74] 96.10 73.30

CLAdapterSwin-B 97.60 75.80

uses only the first stage of SFT, achieving an average AUROC of 98.29% and an accuracy of 97.60%,
respectively. This demonstrates the efficiency of CLAdapter in feature transformation and model
fine-tuning across real-world scenarios. Moreover, CLAdapterConvNeXt-B and CLAdapterViT-B surpass
the best-performing methods on the biomedical BreakHis dataset by 7.97% and 10.02% in F1 score,
respectively, highlighting significant impact of CLAdapter on cross-domain medical with limited
data. In summary, these results demonstrate the effectiveness of CLAdapter in leveraging knowledge
from large-scale datasets to adapt and excel in various downstream tasks, pushing the boundaries of
computer vision applications across different industry and science domains.

Table 3: Results on Tiny-ImageNet and PACS classic visual datasets. Architecture variants: ViT-L
for Tiny-ImageNet, ViT-B for PACS. Best results are in bold, while the second-best are underlined.

Tiny-ImageNet [38] PACS [40] (FT) PACS [40] (PEFT)

Method Acc Method Acc Method Acc

CaiT-S/36 [76] 86.74 Linear 71.88 VPT-Adapter[34] 76.76
DeiT-B/16-D [75] 87.29 Full 87.79 LoRA[28] 88.53
Swin-L/4 [48] 91.35 SFT 88.91 DoRA [46] 88.43
ViT-L [31] 86.43 L2-SP [26] 87.74 MoRA [35] 89.09

CLAdapterViT-L 94.21 CLAdapter 91.41 CLAdapter 91.41

Comparison with Vision Models and Fine-Tuning Methods on ID and OOD Benchmarks. As
listed in Table 3, we evaluate CLAdapter on both general in-distribution (ID) and out-of-distribution
(OOD) benchmarks to assess its effectiveness in adapting pre-trained models under data-limited condi-

7



tions. On the Tiny-ImageNet dataset, which serves as a general classification benchmark, CLAdapter
substantially improves ViT-L’s baseline performance from 86.43% to 94.21%, outperforming stronger
architectures such as Swin-L by a margin of 2.86%. For cross-domain generalization, we conduct
evaluations on the OOD benchmark PACS. CLAdapter achieves 91.41% accuracy, outperforming full
fine-tuning (by 3.62%) and L2-SP (by 3.67%). When compared with parameter-efficient fine-tuning
(PEFT) methods, CLAdapter surpasses VPT by a large margin of 14.65%, and maintains at least a
2.32% lead over recent approaches such as LoRA, DoRA, and MoRA. The results highlighting the
robustness and efficiency of CLAdapter for both ID and OOD scenarios.

4.3 Ablation Study

Discussion on Cluster Center Numbers. The number of cluster centers K in Equation (1) within the
CLAdatper is an adjustable hyperparameter. An excessive number of cluster centers might cause the
model to overfit, particularly in scenarios where downstream tasks offer limited numbers and diversity
of samples. On the other hand, too few cluster centers may fail to transfer all data information,
leading to underfitting. To explore an optimal value for this parameter, we conduct experiments
on the BreakHis dataset using the ViT-B model pre-trained on LAION-2B. The results in Table 4
indicate that setting K to 20 yields the most improvements for downstream tasks, with an optimal F1
score of 93.71% and an accuracy of 95.32%. Therefore, we recommend 20 as the default setting for
the hyperparameter K.

Table 4: Comparison of fine-tuning results on the BreakHis dataset under different cluster center
numbers K. The best results are in bold.

Scores Cluster Center Number (K)

5 10 15 20 25 30 100 200 300

Acc 92.81 92.81 92.45 95.32 94.24 93.88 93.52 91.73 92.81
F1 90.40 90.73 90.41 93.71 92.59 92.14 91.77 89.03 90.42

(c) CLAdapter with SFT Stage 1
 Saturation Epoch: 40+, Training Params: 7%

(b) Full Fine-tuning ViT-B
 Saturation Epoch: 90+, Training Params: 100%

(a) Linear Probing ViT-B
 Saturation Epoch: 50+, Training Params: 7%

(d) CLAdapter with SFT Stage 2
 Saturation Epoch: 30+, Training Params: 100%

Figure 4: Efficiency comparison of fine-tuning methods. CLAdapter achieves significant performance
improvement with fewer training epochs and parameters, indicating both high effectiveness and
efficiency. Note that standard augmentations are only applied to the training set to mitigate overfitting
but not to the validation set, which results in lower validation loss than training loss.

Analysis of Efficiency. The proposed CLAdapter maintains high parameter efficiency while signifi-
cantly improving performance. As detailed in Appendix B.2 (Table 7), it introduces only 7–10.4%
additional parameters to backbone models (ConvNeXt-B/ViT-B) with minimal computational over-
head, yet achieves F1-score gains of up to 175.59%. Furthermore, CLAdapter also shows advantages
in downstream task fine-tuning. As shown in Figure 4, by only fine-tuning 7% of the model param-
eters for 40 epochs in the first stage, CLAdapter achieves results comparable to full fine-tuning of
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100% of the parameters for 90 epochs. Although the second stage of SFT requires tuning 100% of
the parameters, saturation is reached in just 30 epochs, with an accuracy improvement of 12.44%.
These experiments demonstrate the effectiveness and efficiency of our CLAdapter in fine-tuning and
transferring pre-trained features.

Backbone Features CLAdapter  Features

(a) BreakHis dataset: red for ductal, yellow for lobular,
green for mucinous, and blue for papillary carcinoma.

Backbone Features CLAdapter  Features

(b) HCRF dataset: red for normal gastric slices and
blue for cancerous gastric slices.

Figure 5: The t-SNE visualizations demonstrating class separability and compactness. The compara-
tive analysis highlights the enhanced discriminability of features via CLAdapter.

CLAdapter
(Acc: 91.41%)

Full
(Acc: 87.79%)

L2-SP
(Acc: 87.74%)

VPT
(Acc: 76.76%)

Linear
(Acc: 71.88%) Dog

Elephant
Giraffe
Guitar
Horse
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Figure 6: The t-SNE Feature visualization on PACS. The Top1-accuracy are reported additionally.
CLAdapter demonstrated satisfactory separability and compactness.

Visual Analysis of Features. To further validate the effectiveness of CLAdapter in feature transfer,
Figure 5 visualizes the features using t-distributed stochastic neighbor embedding (t-SNE) on the
BreakHis and HCRF datasets. It compares the features extracted by the Backbone and those refined
by CLAdapter. In the BreakHis dataset, post-CLAdapter application, the classes exhibit more
distinct clustering. The ductal, lobular, mucinous, and papillary carcinomas are more separable and
demonstrate increased intra-class compactness, underlining the robustness of CLAdapter in feature
representation. Similarly, on the HCRF dataset, CLAdapter maximizes the inter-class distances
of samples, effectively distinguishing between normal and cancerous gastric slices. In addition,
to assess the quality of features extracted, we visualize the feature distributions for all fine-tuning
methods on PACS test set using t-SNE. The experiments are performed based on the ViT-B model
pre-trained on IageNet-22K. As shown in Figure 6, CLAdapter significantly improves the separability
of representation vectors of different classes, exhibiting superior representational capacity.

5 Conclusion & Limitation

This work introduces the Cluster Attention Adapter (CLAdapter), a novel method designed to bridge
the gap between large-scale pre-training on diverse datasets and fine-tuning for data-limited down-
stream tasks, particularly in diverse scientific domains. By leveraging attention mechanisms and
clustering techniques, CLAdapter refines and adapts pre-trained models to enhance their performance
significantly on a wide array of downstream tasks, showcasing superior adaptability and effectiveness.
In addition, benefiting from our unified interface design, CLAdapter effortlessly merges with main-
stream models. Moreover, an SFT strategy is presented to collaborate with CLAdapter to enhance the
fine-tuning performance further. Through rigorous testing across ten diverse datasets, encompass-
ing generic, multimedia, biological, medical, industrial, agricultural, environmental, geographical,
materials science, OOD, and 3D analysis domains, CLAdapter all achieves a new state-of-the-art
performance, highlighting its effectiveness in addressing the unique challenges of data scarcity and
domain shift in scientific applications. Limitations: Currently, CLAdapter has not been specifically
designed or validated for detection or segmentation. We leave these extensions for future work.
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A Experiment Configuration

A.1 Dataset Descriptions and Processing Methods

We experiment on 10 benchmarks across a broad spectrum of domains, including generic, multimedia,
industrial, biological, medical, agricultural, environmental, geographical, materials science, OOD,
and 3D analysis. This demonstrates the versatility and effectiveness of our CLAdapter. The datasets
for each domain, class counts, and sample sizes are detailed in Table 5.

Table 5: Statistics of datasets used for evaluating downstream task performance.
Dataset Domains Class Train Val Test

Tiny-ImageNet [38] General 200 100000 10000 10000
PACS [40] General OOD 4 × 7 1588 6355 2048
BreakHis [6] Biomedicine 4 834 278 278
HCRF [68] Biomedicine 2 70 70 140
Apple Foliar Disease [72] Agricultural 4 1366 - 455
WHU-RS19 [81] Environmental Geography 19 402 100 503
KTH-TIPS-2b [51] Materials Science 11 3564 - 1188
InsPLAD-fault [78] Industrial 5 5108 - 6417
UCF101 [66] 3D Multimedia 101 9537 - 3783
HMDB51 [37] 3D Multimedia 51 3570 - 1530

Tiny-ImageNet. Tiny-ImageNet [39] is a simplified version of the larger ImageNet dataset. It
comprises 200 classes, each with 500 training images, 50 validation images, and 50 test images,
resulting in a total of 100,000 images. Tiny-ImageNet serves as a benchmark for evaluating algorithms
on a wide array of generic visual recognition tasks, testing both the depth and breadth of models’
understanding of visual concepts. In the experiment, the data division adheres to official standards.

PACS. The PACS dataset [40] stands as a critical benchmark for assessing domain generalization
capabilities in general computer vision. It contains images from four distinct domains: Photo, Art
Painting, Cartoon, and Sketch, addressing a broad spectrum of visual styles and compositions. With
seven common object classes across these domains, the dataset poses a significant challenge in
learning domain-invariant features. It is particularly used for evaluating models on their ability to
generalize from seen to unseen domains, making it an essential tool for research in domain adaptation
and generalization. The Art Painting domain of the PACS dataset is exclusively utilized as the test set
to assess cross-domain performance, while the remaining data are divided into training and validation
sets in a 5-fold manner, with a ratio of 1:4.

Apple Foliar Disease. The Apple Foliar Disease dataset [71] is a specialized resource aimed at
advancing the field of agricultural and plant disease recognition. It consists of high-quality images
that capture various foliar diseases affecting apple leaves, including but not limited to apple scab,
cedar apple rust, and powdery mildew, as well as images of healthy leaves for comparison. Leveraging
such datasets not only validates our CLAdapter’s cross-domain effectiveness in agriculture but also
aids researchers and agronomists in enhancing precision agriculture, enabling timely and effective
disease management to improve crop health and yield. The data split method follows the previous
work as training and validation sets with a 3:1 ratio.

WHU-RS19. The WHU-RS19 dataset [82] is a high-resolution remote sensing dataset, primarily
used for the evaluation of land cover and land use classification algorithms in the field of geographical
and environmental analysis. Originating from the Wuhan University Remote Sensing Group, this
dataset encompasses a diverse collection of 19 classes representing various natural and man-made
features, including but not limited to agricultural lands, forests, water bodies, residential areas, and
industrial sites. The images in WHU-RS19 are collected from different satellite and aerial sensors,
challenging and enhancing classification models’ robustness in geographical and environmental fields.
For data partitioning, our experiments are consistent with previous studies [84].

KTH-TIPS2-B. The KTH-TIPS2-B dataset [51] is an extension of the KTH-TIPS dataset, both
of which are designed for the task of texture classification and material recognition in the field of
computer vision, particularly focusing on the challenges associated with variations in scale, pose,
and illumination. This dataset is curated by the KTH Royal Institute of Technology in Sweden.
KTH-TIPS2-B consists of images representing a set of 11 material categories, such as cotton, wool,
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and aluminum, among others. Each material category includes images captured under different
conditions and from multiple angles, providing comprehensive data for evaluating the performance
of texture analysis algorithms. The data split method remains consistent with previous work [45].

BreakHis. The BreakHis dataset [6] comprises 7,909 breast cancer images across four magnification
levels, divided into eight sub-classes. Originating from 82 anonymous patients in Brazil, BreakHis
is a key dataset in digital breast histopathology research. Malignant tumor images at a 200×
magnification, including ductal carcinoma (DC), lobular carcinoma (LC), mucinous carcinoma (MC),
and papillary carcinoma (PC), are used for classification. The dataset is split into training, validation,
and testing sets in a 3:1:1 ratio, which is the same as the previous study [11].

HCRF. The HCRF dataset [68], well-known in gastric histopathology, consists of 560 cancerous and
140 normal images. Following the previous works [11], the HCRF dataset is divided into training,
validation, and test sets as a 1:1:2 random stratified ratio. Available on Mendeley Data, it serves as an
important resource for evaluating model performance in the field of computer vision and biomedicine.

InsPLAD-fault. The InsPLAD dataset [78], pivotal for advancing power line asset inspection,
includes the InsPLAD-fault subset, a specialized collection designed for anomaly detection tasks in
power line components. This subset harnesses real-world images captured by unmanned aerial vehi-
cles (UAVs) of operational power line transmission towers, offering a unique challenge in the realm
of industrial defect detection. It encapsulates five distinct categories of power line objects, facilitating
deep learning models in effectively identifying and classifying anomalies. In the experiment, the data
split method remains consistent with previous work [64].

UCF101. The UCF101 [66] is a widely recognized dataset in the field of action recognition, developed
by the University of Central Florida. It’s one of the most popular benchmarks for evaluating the
performance of video-based action recognition algorithms. The dataset features 101 action categories,
encompassing a broad range of activities such as sports, playing musical instruments, and human-
object interactions. Each category in the UCF101 dataset consists of multiple video clips, amounting
to over 13,000 clips and totalling more than 27 hours of video data. The videos are collected
from YouTube and represent diverse actors, backgrounds, and lighting conditions. This diversity
poses a challenge for action recognition systems, requiring the models to generalize across different
environments and subject appearances. The data division method follows the official release.

HMDB51. The HMDB51 [37] is a comprehensive video dataset aimed at the task of human action
recognition. Compiled by researchers from Brown University, it consists of 51 action categories, each
containing at least 101 video clips, resulting in a total of over 6,800 clips. These actions span a wide
array of human activities, including facial actions, general body movements, and interactions with
objects. Due to the limited size of its dataset and the lack of diversity among samples, the HMDB51
dataset poses more challenges than UCF101. Additionally, the data splitting method is consistent
with the official.

A.2 Implementation Details

We meticulously design our experimental settings to ensure comparability and reproducibility.

For experiments on the Tiny-ImageNet, follow the protocols established in [32], ensuring consistency
with prior benchmarks.

For 3D video analysis on UCF101 and HMDB51 datasets, our experimental configurations align with
the previous methods [41], which facilitates direct comparison with existing SOTA approaches.

Regarding the remaining datasets, encompassing cross-domain and various real-world domain appli-
cations, we establish uniform implementation details to underscore the adaptability and convenience
of CLAdapter. Specifically, we adopt an input resolution of 224× 224 pixels across all experiments.
The learning rate is initialized at 1e− 4, and models are trained for up to 100 epochs with a batch size
of 16. We employ the AdamW optimizer, configuring it with momentum β1 = 0.9 and a weight decay
of 1e− 3, to adapt to the unique challenges presented by these varied datasets. The determination of
cluster centers K for CLAdapter is fixed at 20, balancing granularity and computational efficiency.
Our experimental setup is powered by four Nvidia GeForce RTX 3090 GPUs, boasting 24 GB of
memory, under the Ubuntu 20.04 environment. Python 3.8.3 is chosen as the programming language,
with the PyTorch 1.13.1 framework being utilized for model development.
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B Additional Experimental Analyses

B.1 Intuitive Performance Comparison of Our Method with SOTA and Baseline Methods

In Table 2 of the main manuscript, we present a comprehensive comparison of various methods across
diverse scientific domains for downstream tasks (subtables a–g). Furthermore, Table 3 highlights the
significant performance gains achieved by CLAdapter on both the in-distribution (ID) Tiny-ImageNet
and the out-of-distribution (OOD) PACS benchmarks.

To provide a more intuitive understanding of the advantages of our method, we visualize the perfor-
mance comparison, as shown in Figure 3. It can be seen that CLAdapter consistently outperforms
state-of-the-art methods across different datasets. In addition, we listed all benchmark baseline
results in Table 6. By using the best fine-tuning strategy and keeping the same backbone as ours for
comprehensive evaluation, our method still maintains substantial improvements over both baselines
and prior SOTA methods.

Table 6: Per-Domain Improvement over Baseline (ViT) and SOTA using CLAdapter.
Improve%↑ ID OOD Agricultural Geography Materials Biomedicine Industrial 3D Multimedia

Ours vs Baseline 7.8 3.6 2.0 2.8 2.5 12.2/13.6 4.6 2.5/4.1
Ours vs SOTA 2.9 3.6 0.3 0.9 4.3 10.0/0.6 4.0 1.5/2.5

B.2 Analysis of Efficiency

As a universal adapter, our method exhibits relative efficiency under popular pre-trained models.
Efficiency analysis results are listed in Table 7. For ConvNeXt-B and ViT-B models, CLAdapter
adds only 10.4% and 7% more parameters, respectively, while slightly increasing computational
complexity (Flops) by 0.44G for ConvNeXt-B and 1G for ViT-B. Despite this minimal increase in
size and computation, CLAdapter achieves remarkable F1 score improvements of up to 175.59% for
ConvNeXt-B and 51.46% for ViT-B.

Table 7: Comparison of Method efficiency.
Method Params(M) Flops(G) F1 Train

ConvNeXt-B 88.85 15.42 33.26 100%
CLAdapterConvNeXt-B-SFT-1 99.11 15.86 80.89 10.4%
CLAdapterConvNeXt-B-SFT-2 99.11 15.86 91.66 100%

ViT-B 85.77 16.86 61.87 100%
CLAdapterViT-B-SFT-1 92.22 17.86 84.34 7.0%
CLAdapterViT-B-SFT-2 92.22 17.86 93.71 100%

B.3 Comparison of Using Different Scales of Pre-training Data

To delve into how the scale of large visual datasets influences cross-domain fine-tuning, we perform
comparative experiments on the PACS and BreakHis datasets using ConvNeXt-B and ViT-B models
pre-trained on three large-scale datasets, i.e., ImageNet-21K, LAION-400M, and LAION-2B.

Table 8: Results of using different pre-training resources on the PACS dataset.
Method ImageNet-21K LAION-2B

Linear 71.88 95.61
Full 87.79 47.17
L2-SP 87.74 45.56
VPT 76.76 97.46
CLAdapter 91.41 97.62
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Table 8 lists the fine-tuning results on the PACS dataset based on ViT-B. It is observed that our
CLAdapter achieves an accuracy of 97.62% under the LAION-2B pre-training dataset, which is
enriched with more diverse knowledge, marking a 6.21% improvement over the smaller-scale
ImageNet-21K dataset. Notably, both Full fine-tuning and L2-SP exhibit poor performance on
LAION-2B, likely due to pattern collapse encountered during the transfer of massive pre-trained
features, a problem that VPT and our CLAdapter circumvent through additional parameter transfor-
mation. Moreover, our CLAdapter’s accuracy under ImageNet-21K pre-training surpasses that of
VPT by 14.65%, indicating that CLAdapter is also capable of extracting and transforming a sufficient
amount of downstream-relevant information from relatively smaller pre-training datasets.

Table 9: Results of using different pre-training resources on the BreakHis dataset.
Method ImageNet-21K LAION-400M LAION-2B

SFT Stage 1
CLAdapterConvNeXt-B 80.89 71.72 75.17
CLAdapterViT-B 84.34 80.63 80.67

SFT Stage 2
CLAdapterConvNeXt-B 88.60 90.55 91.66
CLAdapterViT-B 90.19 91.35 93.71

The F1 score results on the BreakHis dataset are listed in Table 9. Whether combined with ConvNeXt-
B or ViT-B pre-trained models, CLAdapter achieves the best fine-tuning results on larger pre-training
datasets. Another notable observation is that when only the first stage of the SFT fine-tuning strategy
is employed (i.e., freezing the weights of the pre-trained model), pre-training on the smaller-scale
and knowledge-limited ImageNet-21K dataset yields better results. This suggests that freezing the
pre-trained model weights limits CLAdapter’s capacity for transformation, preventing the thorough
transfer and refinement of rich knowledge to the downstream tasks. Nevertheless, even with just the
first fine-tuning stage, CLAdapter still surpasses other SOTA methods on the BreakHis dataset (as
listed in Table 2d).
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We propose CLAdapter, a cluster-attention adapter that refines foundation
vision model representations across CNN and Transformer architectures with negligible
overhead. We validate its superior performance on ten diverse data-limited scientific datasets
and provide detailed experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper explicitly discusses limitations in the final paragraph of the conclu-
sion, noting that CLAdapter has not yet been specifically designed or evaluated for object
detection or segmentation tasks. These directions are identified as future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Yes, we provide a complete derivation for our proposed CLAdapter in Section
3.2.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all experimental settings and codes are provided in the paper and
the Appendix to ensure full reproducibility of our main results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use only publicly available datasets and have released our full code on
GitHub.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All important settings can be found in our paper and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please refer to some ablation experiments, hyperparameter settings, and
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the training resources we use in the experimental settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms with the NeurIPS Code of Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts in the conclusion. The research is inherently
scientific, and we anticipate no adverse societal impact stemming from its findings.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our method doesn’t have high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the creators or original owners of assets are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: This paper introduces new code for CLAdapter and the documentation can be
found in the anonymized URL: https://anonymous.4open.science/r/CLAdapter-NIPS2025.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our CLAdapter does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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