
Pairwise Optimal Transports for Training All-to-All
Flow-Based Condition Transfer Model

Kotaro Ikeda
The University of Tokyo
Preferred Networks, Inc.∗

kotaro-ikeda@g.ecc.u-tokyo.ac.jp

Masanori Koyama
The University of Tokyo
Preferred Networks, Inc.

Jinzhe Zhang
Preferred Networks, Inc.

Kohei Hayashi
The University of Tokyo
Preferred Networks, Inc.

Kenji Fukumizu
The Institute of Statistical Mathematics

Preferred Networks, Inc.

Abstract

In this paper, we propose a flow-based method for learning all-to-all transfer
maps among conditional distributions that approximates pairwise optimal transport.
The proposed method addresses the challenge of handling the case of continuous
conditions, which often involve a large set of conditions with sparse empirical
observations per condition. We introduce a novel cost function that enables simul-
taneous learning of optimal transports for all pairs of conditional distributions. Our
method is supported by a theoretical guarantee that, in the limit, it converges to the
pairwise optimal transports among infinite pairs of conditional distributions. The
learned transport maps are subsequently used to couple data points in conditional
flow matching. We demonstrate the effectiveness of this method on synthetic and
benchmark datasets, as well as on chemical datasets in which continuous physical
properties are defined as conditions. The code for this project can be found at
https://github.com/kotatumuri-room/A2A-FM

1 Introduction

Recent advances in generative modeling have been largely driven by the theory of dynamical systems,
which describes the transport of one probability measure to another. Methods such as diffusion
models [40, 18] and flow matching (FM, [31, 32, 2]) achieve this transport by leveraging stochastic
or ordinary differential equations to map an uninformative source distribution to target distribution(s).
Incorporating conditional distributions is a critical aspect of these dynamical generative models, as
this enables the generation of outputs with specific desired attributes. Considerable research has
been dedicated to designing mechanisms to condition these models. For example, in image and
video generation, text prompts are commonly used to guide the output toward specified content
[12, 17]. Similarly, in molecular design, conditioning on physical properties enables the generation
of molecules with target characteristics [46, 25].

This paper focuses on condition transfer (Fig. 1 (a)), an essential task in conditional generative
modeling whose goal is to transport an arbitrary conditional distribution to another. In applications,
it is often used to modify the specific attributes or conditions of a given instance while preserving
its other features. Applications span various domains; for example, in computer vision, image style
transfer has been an active area of research [16, 48], whereas chemistry, modifying molecules to
achieve desired physical properties is vital for exploring new materials and drugs [23, 25].
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Figure 1: (a) The task is to transport xsrc ∼ Pcsrc to generate xtarg ∼ Pctarg for arbitrary (csrc, ctarg)
pair, where Pc denotes the conditional distribution. Red and blue arrows respectively represent the
case of (csrc, ctarg) = (c(1), c(2)) and (csrc, ctarg) = (c(3), c(4)). (b) Left: Grouped data is the type
of dataset that can be grouped into subsets Dc(i) of large size, whose members are i.i.d. samples from
Pc(i) . Many condition transfer methods including Multimariginal Stochastic Interpolants (SI) [3] and
Extended Flow Matching (EFM) [21] leverage this data format. Right: In non-grouped data, a sample
corresponding to a given condition can be unique. Proposed method, A2A-FM, can learn condition
transfer on both cases in the form of pairwise optimal transport. (see Section 4 for comparision with
related works).

Flow-based generative models have been explored for condition transfer. Among others, Albergo
et al. [2] proposed Stochastic Interpolants (SI), a flow-based method that interpolates between two
distributions. Tong et al. [41] introduced OT-CFM, which uses optimal transport [43] to couple the
data points in minibatches for conditional FM, and applied it to tasks such as image style transfer and
single-cell expression data. Meanwhile, recent methods, such as Multimarginal SI [3] and Extended
Flow Matching (EFM, [21]) have extended FM approaches to support all-to-all(multiway) transports
between multiple conditional distributions.

A challenge in condition transfer arises particularly when dealing with continuous condition variables.
This scenario encompasses critical scientific applications, such as modifying molecules based on
continuous physical properties. Such continuous conditions can pose the difficulty that each condition
c may be associated with only a single observation x, resulting in limited information for each condi-
tional distribution. Moreover, the situation may involve an infinite number of source-target condition
pairs; applying a method designed for two distributions to all the pairs would be computationally
infeasible. Most existing approaches cannot resolve these difficulties because they assume what we
call grouped data, a type of dataset in which each observed condition is associated with a sufficiently
large number of samples (Fig. 1 (b)). To the best of our knowledge, no method that can learn the
all-to-all transfer model for condition transfer scalably on general datasets of observation-condition
pairs, including non-grouped ones.

This paper proposes All-to-All Flow-based Transfer Model (A2A-FM), a novel method that solves
condition transfer tasks on general datasets (even in non-grouped data setting) by simultaneously
learning a family of flows that approximates the optimal transport (OT) between any pair of conditional
distributions. Inspired by the technique of [9, 27], we develop a novel cost function with a theoretical
guarantee that empirical couplings converge to the pairwise OT in the infinite sample limit.

The main contributions of this paper are as follows.
• A2A-FM, an FM-based method, is proposed to learn pairwise optimal transport maps across all

conditional distributions from general datasets, including both grouped data and non-grouped data,
irrespective of whether the conditional variables are continuous.

• We introduce a novel cost function for coupling samples and prove that the coupling achieves the
pairwise optimal transports in the infinite sample limit.

• A2A-FM is applied to a chemical problem of altering the target attributes of a molecule while
preserving the other structure, and it demonstrates competitive and efficient performance.
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2 Preliminaries

Suppose that we have a joint distribution P on the space X × C, where X ⊂ Rdx and C ⊂ Rdc
denote the data space and the condition space, respectively. Let {Pc|c ∈ C} denote the family of
conditional distributions parameterized by c. Our method belongs to the family of Flow Matching
(FM) frameworks [31, 32, 2]. Therefore, we first review FM and conditional optimal transport in the
context of conditional generation, before turning to our condition-transfer task. Throughout the paper,
we use the notation x ∼ Q to denote that x follows the distribution Q, and ẋ(t) to denote the time
derivative of a smooth curve x(t). The set of integers {1, . . . , N} is denoted by [1 : N ].

2.1 Flow Matching (FM)

FM was originally developed to learn a transport from a fixed, possibly uninformative source
distribution, such as the normal distribution, to a target distribution, for which samples {x(j)} are
available for training. Below, we review a standard FM method, but adapted to learn the conditional
distributions. The source distribution P∅ is transported to the target Pc via an ODE

ẋc(t) = v(xc(t), t|c), xc(0) ∼ P∅, (1)

so that Φc,1(x(0)) follows Pc, where Φc,t(x(0)) := xc(t) is the flow defined by the ODE. FM learns
the vector field v(xc(t), t | c) via neural networks with the parameter set θ, using the loss function

L(θ) = Eψc,c,t[∥vθ(ψc(t), t|c)− ψ̇c(t)∥2], (2)

where ψc : [0, 1]→ X is a random path such that ψc(0) and ψc(1) follow P∅ and Pc, respectively.

2.2 Optimal Transport (OT) and OT-based FM methods

A popular method for constructing the random paths ψc(t) is minibatch optimal transport (OT-CFM,
[41, 36]), which aims to approximate the ODE of optimal transport.

Specifically, OT-CFM uses a linear path ψc(t) = tψc(1) + (1− t)ψc(0). The key to this approach
lies in how the start point ψc(0) ∼ P∅ and the end point ψc(1) ∼ Pc are coupled. OT-CFM utilizes a
coupling based on the optimal transport map between these two distributions. The theoretical basis
for this is the optimal transport problem. Given two distributions Q1, Q2 on X , the Kantorovich
formulation of the OT problem is as follows:

inf
Π∈Γ(Q1,Q2)

∫
X 2

∥x1 − x2∥2dΠ(x1, x2), (3)

where Γ(Q1, Q2) is the set of all joint distributions of (x1, x2) whose marginals are Q1 and Q2, re-
spectively. The square root of the infimum is known as the 2-Wasserstein distance, W2(Q1, Q2) [44].

When Q1 satisfies certain conditions (e.g., is absolutely continuous), this problem can be reduced to
the Monge formulation, which seeks a transport map T : X → X [44]:

inf
T :X→X

∫
X
∥x1 − T (x1)∥2dQ1(x1), (4)

where the infimum is taken over all maps T that satisfy the push-forward condition Q2 = T#Q1.

Denoting the optimal transport map that solves Eq. (4) for Q1 = P∅ and Q2 = Pc as T∅→c, the ideal
random path for OT-CFM is defined by the deterministic mapping ψc(1) = T∅→c(ψc(0)), which
gives

ψc(t) = t T∅→c(ψc(0)) + (1− t) ψc(0). (5)

In practice, however, this map T∅→c is unknown. Therefore, OT-CFM approximates this optimal
coupling at the minibatch level. The sampling process consists of two steps: (i) drawing independent
batches ({x(i)∅ }, {x

(j)
c }) from P∅ and Pc, respectively, and (ii) using a finite-sample OT algorithm,

such as [10], to obtain a coupled pair (x∅, xc) between these batches. This pair (ψc(0), ψc(1)) =
(x∅, xc) is then used to construct the linear path ψc(t).
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2.3 Conditional Optimal Transport (COT) for conditional generation

Some recent work [9, 28, 4, 20] proposed an algorithm and theory of conditional optimal trans-
port(COT) that minimizes conditional Wasserstein distance. Using a dataset {(x(j), c(j))}, their
methods learn a transport from the conditional source P∅,c to the conditional target distributions Pc
on the joint space X × C. When using empirical OT in such a situation, a key challenge is that the
condition-wise optimal coupling from conditional source to conditional target does not necessarily
converge to the minimizer of conditional Wasserstein distance (see Example 9, [9]). To solve this
problem, several works proposed a coupling algorithm on X × C that provably converges to the
optimal transport for each c [7, 20, 9]. Their objective is to minimize the following cost, where π
ranges over SN , the symmetric group of [1 : N ].

N∑
i=1

∥x(i)1 − x
π(i)
∅ ∥2 + β∥c(i)1 − c

π(i)
∅ ∥2. (6)

Here, the two batches B∅ = {(x(i)∅ , c
(i)
∅ )}Ni=1 and B1 = {(x(j)1 , c

(j)
1 )}Nj=1 are drawn from

the source-condition joint distribution P∅ and data distribution P , respectively. Chemseddine
et al. [9] have shown that, if we regard the optimal coupling π∗

β as the joint distribution
Π∗
β :=

∑
i δ

(x
(i)
1 ,c

(i)
1 )×(x

π∗
β
(i)

∅ ,c
π∗
β
(i)

∅ )
on (X × C) × (X × C), then with increasing β and sample

size N (up to subsequence), the distribution Π∗
β converges to a joint distribution supported on

{(x, c, x′, c) ∈ (X × C)× (X × C)} that achieves the conditional 2-Wasserstein distance

Ec[W 2
2 (P∅,c, Pc)], (7)

where P∅,c and Pc denote the conditional distributions given c for the source P∅ and target P ,
respectively. Because (7) is the average 2-Wasserstein distance of the conditional distributions given
c, the above result implies that the algorithm with the cost (6) constructs a desired coupling that
realizes the optimal transport per condition for a large sample limit.

3 Purpose and Method

In this section, we first restate the goal of A2A-FM and describe its applicability to general dataset.
We then introduce the training objective and provide theoretical support for the algorithm.

Pairwise optimal transports: The task of condition transfer for the family of conditional distributions
{Pc|c ∈ C} can be cast as the problem of learning the (c1, c2)-parameterized transports Tc1→c2 from
Pc1 to Pc2 . A2A-FM is a method to learn pairwise optimal transports {Tc1→c2 | c1, c2 ∈ C}
that minimize the transport cost. More formally, writing the transport Tc1→c2 by its induced joint
distribution PT (·|c1, c2) on X ×X with marginals Pc1 and Pc2 (Kantorovich formulation), A2A-FM’s
goal is to learn the maps that simultaneously minimize the pairwise transport cost∫

X 2

∥x1 − x2∥2dPT (x1, x2|c1, c2) for all (c1, c2). (8)

Pairwise transport cost (8) is the transport cost between the conditional distributions Pc1 and Pc2 .

Applicability to general dataset: Most importantly, the scope of A2A-FM covers any type of dataset
D = {(x(i), c(i))} drawn i.i.d from the joint distribution P , regardless of whether the data is grouped
or non-grouped. While some recent methods [21, 2, 6] also aim to learn all-to-all condition transports,
they require the more restrictive grouped data to obtain the information about Pc and to compute
its coupling to other distributions in the dataset. The significance of A2A-FM lies in the capability
of learning the pairwise OT also from non-grouped data (Fig. 1 (b)), which arises naturally with
continuously valued conditions in many scientific applications.

3.1 Training objectives and Procedure

Aligned with the OT-CFM [41], we propose a flow-based method through minibatch OT to achieve
pairwise optimal transport. To learn Tc1→c2 , we use (c1, c2)-parametrized ODE like (1):

ẋc1,c2(t) = v(xc1,c2(t), t|c1, c2), where xc1,c2(0) ∼ Pc1 , xc1,c2(1) ∼ Pc2 . (9)
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Algorithm 1 Training of A2A-FM

Input: (i) Dataset of sample-condition pairs D := {(x(i), c(i))}, where each x(i) ∈ X is sampled
from Pc(i) . (ii) A parametric model of a vector field vθ : X × [0, 1] × C × C → X . (iii) The
scalar parameter β. (iv) An algorithm OPTC for optimal coupling.

Return: The parameter θ of vθ
1: for each iteration do

# Step 1: Compute the coupling
2: Subsample batches B1 = {(x(i)1 , c

(i)
1 )}Ni=1, B2 = {(x(i)2 , c

(i)
2 )}Ni=1 from D.

3: Minimize (11) about π∗
β over N indices by OPTC

# Step 2: Update vθ
4: Sample ti ∼ unif [0, 1], i ∈ [1 : N ].
5: Update θ by∇θL(θ) with

L(θ) =
∑N
i=1 ∥vθ(ψi(ti), ti|c

(i)
1 , c

π∗
β(i)

2 )− ψ̇i(ti)∥2 where ψi(t) = (1− t)x(i)1 + tx
π∗
β(i)

2 .
6: end for

Figure 2: (a) Batches B1, B2 drawn independently from P on X × C, where C = {a, b, c}. (b)
Couplings between B1 and B2 by (11). With large β, the cost favors π such that (c(i)1 , c

(i)
2 ) =

(c
π(i)
1 , c

π(i)
2 ).

The model for the vector field v : X × [0, 1] × C × C → Rdx is trained with random path ψc1,c2 ,
whose endpoints are drawn from the coupled points in two minibatches, as explained below. The
training objective for v is given by

Eψc1,c2
,c1,c2,t

[
∥v(ψc1,c2(t), t|c1, c2)− ψ̇c1,c2(t)∥2

]
. (10)

The crux of A2A-FM is how we construct the coupling that defines ψc1,c2 . We begin by sampling
two independently chosen batches B1 = {(x(i)1 , c

(i)
1 )}Ni=1, B2 = {(x(i)2 , c

(i)
2 )}Ni=1 of the same size

N from the dataset D. The objective function of the coupling is
N∑
i=1

∥x(i)1 − x
π(i)
2 ∥2 + β

(
∥c(i)1 − c

π(i)
1 ∥2 + ∥c(i)2 − c

π(i)
2 ∥2

)
, (11)

where π runs over SN . Letting π∗
β be the minimizer of (11), we define the path ψi = ψc1,c2 with

(c1, c2) = (c
(i)
1 , c

π∗
β(i)

2 ) for i ∈ [1 : N ] by

ψi(t) = (1− t)x(i)1 + tx
π∗
β(i)

2 .

To transport a sample xc1 ∼ Pc1 to a sample in Pc2 using the trained v, we follow the same procedure
as in standard FM and solve the ODE (9) forward from t = 0 to t = 1 with initial condition
xc1,c2(0) = xc1 . The algorithmic training procedure is summarized in Algorithm 1.

3.2 Intuition behind the objective

The objective function (11) controls the continuity of Pc with respect to c in the transfer maps through
a balance of the hyperparameter β and the sample size |D| = N . When there is only one sample xc
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per each c, it is impossible to learn Pc separately, let alone the optimal transport between Pc1 and
Pc2 . However, if β is small enough, data points xc1 ∼ Pc1 and xc2 ∼ Pc2 can be coupled for almost
any c1 and c2, so that the information between Pc1 and Pc2 is shared. Conversely, as β →∞, (11)
would force c(i)k to be close to cπ(i)k , requiring that for each pair of (c1, c2), the sample x(j)1 with
condition c(j)1 near c1 is coupled with x(j)2 with condition c(j)2 near c2. This would allow the samples
with similar c values to be transported collectively.

We illustrate our way of coupling when C is finite (Fig. 2), where the functionality of (11) is more
intuitive. In that case, for β →∞, the second term in (11) would diverge to infinity unless it is zero.
However, for |C| <∞, as the sample size N increases, there will be many nontrivial permutations
π with c(i)k = c

π(i)
k (k = 1, 2), which makes the second term zero. Therefore, the minimum of (11)

is attained by a permutation in So := {π ∈ SN | c(i)k = c
π(i)
k for all i ∈ [1 : N ], k = 1, 2}. We

can see the function of So more clearly by partitioning [1 : N ] into the subsets closed within C;
[1 : N ] =

⊎
(c1,c2)∈C2U(c1,c2), where U(c1,c2) := {i ∈ [1 : N ] | c(i)k = ck, (k = 1, 2)}. For example,

in Fig. 2, the subset So consists of permutations that act separately on {1, 7, 8}, {3, 5},{2},{4}, and
{6}. Consequently, a permutation in So is decomposed into permutations within U(c1,c2), and So is
the the product of symmetric groups of U(c1,c2). The minimization (11) is reduced to the sum of∑

i∈U(c1,c2)
∥x(i)1 − x

π(i)
2 ∥2,

where each summand is the standard cost of transporting data from class c1 in B1 to class c2 in B2.
Therefore, the optimal π∗

β achieves the optimal coupling among {x(i)1 | i ∈ U(c1,c2)} → {x
π(i)
2 |

i ∈ U(c1,c2)}. In Fig. 2, we see U(a,b) = {1, 7, 8}, and the optimal π∗
β would optimally transport

{x(1)1 , x
(7)
1 , x

(8)
1 } in Class a to {x(1)2 , x

(7)
2 , x

(8)
2 } in Class b. As N increases, each U(c1,c2) contains a

larger number of indices, so that π∗
β better approximates the OT from Pc1 to Pc2 for every (c1, c2).

Interestingly, although we have discussed the case of finite C in this section, this argument extends to
the general case of continuous C. We elaborate on this fact in the next subsection.

3.3 Theoretical guarantee

We show that the coupling given by (11) converges to pairwise OT. We state the result informally
here and defer the formal result to Appendix A.
Proposition 3.1 (Informal). Let Π∗

β be the joint distribution on (X × C)× (X × C) defined by the
coupling π∗

β that minimizes (11), that is

Π∗
β =

∑N
i=1δ

((x
(i)
1 ,c

(i)
1 ),(x

π∗
β
(i)

2 ,c
π∗
β
(i)

2 ))
.

Then, for any sequence βk → ∞, there exists an increasing sequence of the sample size Nk such
that Π∗

βk
converges to Π∗ for which Π∗(·, · | c1, c2), the corresponding conditional distribution of

(x1, x2) given (c1, c2), is a joint distribution on X ×X that achieves below for almost every (c1, c2) :∫
X 2

∥x1 − x2∥2dΠ∗(x1, x2|c1, c2) =W 2
2 (Pc1 , Pc2). (12)

We will show experimentally in Section 5 that, with the objective function (11), A2A-FM learns an
approximate pairwise optimal transport even on the generic dataset drawn from joint distribution P .

4 Related Works

In addition to the direct application of optimal transport to transfer tasks [11, 35], other works such as
[41, 32] used flow models to transfer between two distributions with different attributes (e.g., images
of smiling faces vs. non-smiling). Kapuśniak et al. [24] also incorporated the geometry of the data
manifold to the flow. Although one can apply these methods to many pairs of conditions individually,
such a strategy is computationally inefficient for the all-to-all condition transfer task.

In this regard, Albergo et al. [3] presented Multimarginal SI, which uses the principle of generalized
geodesic [5]. In this framework, one produces Tc1→c2 for arbitrary c1, c2 as a linear ensemble of

6



(a) Grouped data (Fig. 3 (a))
Method MSE from pairwise OT

Ours (π∗
β) (5.81 ± 2.22) × 10−2

Generalized
geodesic (1.03± 0.04)× 100

(b) Non-grouped data (Fig. 3 (b))
Method MSE from pairwise OT

A2A-FM (Ours) (1.51 ± 0.17) × 10−2

Partial diffusion (6.77± 0.14)× 10−2

Multimarginal SI (4.90± 0.28)× 10−2

Table 1: The discrepancy from pairwise OT for synthetic data. The error in the table shows the
standard deviation over 10 evaluation runs.

the optimal transports T∅→c(k) from an arbitrary barycentric source P∅ to Pc(k) . By design, this
approach requires grouped data for the learning of T∅→c(k) . Isobe et al. [21] take another approach
using a matrix field for the system of continuity equations, from which an arbitrary Tc1→c2 can be
derived. For the learning of the matrix field, grouped data is again required. In another related note,
[6] recently proposed a method that can transport any source distribution to a target distribution by
encoding the source population itself, and conditioning the vector field with the encoded population.
This approach again requires grouped data for the learning of population embedding.

Meanwhile, Manupriya et al. [33] uses COT [9, 28] to learn the OT map from Pc to Qc for each c
when given the jointly sampled dataset of (x, c) ∼ P and (y, c) ∼ Q. They handle non-grouped data,
but they cannot create arbitrary Tc1→c2 . Although the proof technique in COT is an inspiration for
our proof, COT pursues conditional generation as opposed to the fundamentally different task of
all-to-all condition transfer. In this regard, we emphasize that the objective (11) is fundamentally
different from the one used in conditional OT (6). Note that, directly applying the method of similar
nature as COT by a simple replacement of a single instance c with (c1, c2) would fail to learn a map
between c1 ̸= c2; if we learn COT for v(·|c1, c2) via (6) with (c1, c2) in place of (c∅, c1), the model
will only learn transfers between a pair of c1 and c2 that are close to each other.

5 Experiments

In this section, we present a series of experiments to validate our theoretical claims in Section
3, as well as the effectiveness of our model on a real-world dataset. The methods we use for
comparison include (1) partial diffusion [25], a method that adds limited noise to a source sample and
then denoises using classifer-free guidance to obtain a target-conditioned sample while preserving
smilarity to the input (2) Multimarginal SI (see Section 4), and (3) an application of OT-CFM in
which we use the sample dataset itself as the source P∅. In non-grouped settings, we generally choose
β = N1/(2dc), where dc is the dimension of C (see Appendix A.3 for theoritical backgrounds for this
rate).

5.1 Synthetic Data (grouped and non-grouped data)

We demonstrate with synthetic data that both the coupling π∗
β used to make the supervisory paths and

the trained vector fields v in A2A-FM approximate the pairwise optimal transport.

Grouped data: We compared the supervisory vector fields ψ̇c1,c2 of both A2A-FM and generalized
geodesics against the pairwise OT on a synthetic dataset of three conditional distributions, each
having the distribution of two-component Gaussian mixtures (Fig. 3 (a)). Note that A2A-FM
more closely resembles the numerical approximation of the true pairwise OT [13]. Denoting by
(x1, Tc1→c2(x1)) = (ψ̇c1,c2(0), ψ̇c1,c2(1)) the coupling of Pc1 , Pc2 by a given method, we also
validated this result quantitatively with Ex1,c1,c2 [∥Tc1→c2(x1)− TOT

c1→c2(x1)∥
2] (Table 1 (a)), where

TOT
c1→c2 is the ground-truth pairwise optimal transport map that minimizes (8).

Non-grouped data: We compared the transfer map of A2A-FM against ground-truth pairwise OT,
partial diffusion, and Multimarginal SI on non-grouped data. The dataset consisted of samples from a
2D polar coordinate quadrant (r ∈ [1, 2], θ ∈ [0, π/2]), where θ was a continuous condition and Pθ
was uniform along r. This represents a non-grouped data. For Multimarginal SI, we discretized θ into
K = 5 bins because it can only handle grouped data. See also Appendix B. We visualize the learnt
transport in Fig. 3 (b). Partial diffusion produced nearly random couplings. Multimarginal SI failed
to generate the target distribution’s marginals because of discretization. Quantitative evaluations in
Table 1 (b) also confirm that A2A-FM approximates pairwise OT more accurately than the rivals.
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trajectory

OursPairwise OT

Generalized geodesic

Ours Partial diffusion Multimarginal SIPairwise OT(a) (b)

Figure 3: (a) Results for grouped data. The sample size was 103 in each of 3 conditions
{c(0), c(1), c(2)} and β = 104. (b) Results for non-grouped data. The gray points in the background
show samples from the training dataset. The presented pairwise OT is a numerical approximation by
[13]. The red lines in the right column shows the bins for training Multimarginal SI.
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Figure 4: Sampling Efficiency of A2A-FM
and the partial diffusion model of [26].

Figure 5: Sampling Efficiency Curve for
LogP-TPSA benchmark. See Appendix B.3
and Table 3 for notation. K is the number of
discretization bins.

5.2 Nearby Sampling for Molecular Optimization

Molecule design is a multi-constraint task: a lead must bind strongly and selectively while remaining
drug-like and nontoxic. Random candidates rarely meet every criterion, so chemists traditionally
resort to scaffold hopping—generating many close analogs of existing molecules in the hope that
some retain favorable properties while mitigating undesirable ones. The machine learning approach
frames this as nearby sampling, in which the goal is to sample a molecule with a target property
within a structural neighborhood of a reference molecule.

QED experiment: For a Quantitative Estimate of Drug-likeness (QED) optimization task [23], the
goal is to transfer a molecule with QED ≤ 0.8 to QED ≥ 0.9 while maintaining the original structure
as much as possible. The similarity to the original is measured by Tanimoto similarity, whose
threshold is set to ≥ 0.4. A2A-FM was trained on a 500K ZINC22 subset, where X represented
the latent space of molecular representations [26] and C = R32 was the space of QED embeddings.
Following the same protocol as previous methods [26, 19, 38], we evaluated the algorithm by the
success rate of discovering a molecule of desired property (QED, similarity) within the prescribed

Method Success (%)

DESMILES [34] 76.9
QMO [19] 92.8

MolMIM [38] 94.6
COATI-LDM [25] 95.6
A2A-FM (Ours) 97.5

Table 2: Nearby sampling success rate.

Method AUC Values
PD+CFG (T=500) 0.027
PD+CFG (T=300) 0.450
PD+CFG (T=1000) 0.060

SI (K=10) 0.583
OT-CFM 0.819

A2A-FM (Ours) 0.990

Table 3: AUC Values of LogP-TPSA task.
PD+CFG is the Partial diffusion method with Clas-
sifier Free Guidance with T noise steps.
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number of oracle sample calls made from the initial molecule (Fig. 6). See Table 2 for the comparison
against SOTA [26], and see Appendix B.2 for details and generated samples.

QED = 0.77

QED = 0.93
Similarity 

= 0.62

QED = 0.74
Similarity 

= 0.76

✔

✖

Sampled molecules

Initial molecule

QED = 0.94

✖Similarity 
= 0.25

Figure 6: QED optimization task. An initial
molecule is marked success if there exists a
molecule with Tanimoto similarity ≥ 0.4 and
QED ≥ 0.9 among the molecules sampled
by transferring the original. The size of the
sample set is called the maximum oracle calls.
See Table 2 for the ratio of initial molecules
marked success in the dataset of Jin et al. [23].

The results in Table 2 show that A2A-FM surpasses
SOTA on default oracle calls (50000). Fig. 4 also
shows that we achieve much higher success rates
across all maximum oracle calls. We note that, un-
like QED which is computationally inexpensive to
validate, other properties like ∆∆G [45, 1, 29, 50]
and vertical ionization potential [47] require costly
calculations like DFT and FEP, and biological assays.
For such cases, making many oracle calls can be in-
feasible, so achieving high sampling efficiency is a
feat of significant scientific interest.

LogP&TPSA experiment: To evaluate the sampling
efficiency in all-to-all condition transfer task, we con-
ducted the nearby sampling similar to the QED exper-
iment, except that we chose random 1,024 molecules
from ZINC22 as the initial molecules, and aimed at
changing their two other properties (LogP and TPSA)
to a randomly selected pair of target values embed-
ded in C = R32×2. For evaluation, we measured
Tanimoto similarity sTani and normalized condition
error cerr for each transferred sample, and plotted
Pr(cerr ≤ a) against Pr(sTani ≤ a) to visualize how
much we need to trade off sTani to increase the probability of sampling molecules within the desired
cerr threshold. A2A-FM substantially outperformed rivals in AUC (Fig. 5 and Table 3). See also
Appendix B.3.

5.3 Additional experiments

Computational cost: To apply methods like [3, 6] requiring grouped data (Fig. 1 (b), left), data
D = {(x, c)} is needed to be partitioned into K bins of M samples with similar c’s, constrained by
|D| =M ×K. A choice of large K (small M ) impairs reliable Pc estimation and, for Multimarginal
SI, leads to O(K2) optimization costs. Meanwhile, small K (large M ) coarsens the partitions,
reducing precision (see Fig. 9, Appendix C). Rising K up to K = |D| is computationally infeasible
for Multimarginal SI since it costs O(K2) for pairwise optimization. In contrast, the computational
cost of A2A-FM depends only on |D|, which scales identically to OT-CFM (different only in its cost
function) and is independent of K for a fixed |D|, as shown in Table 6, Appendix C.

The choice of β: As in the case of [9], the selection of the parameter β is crucial to the performance.
For grouped datasets, β can be set sufficiently large (see Section 3.2). However, the same method does
not directly apply to the general case due to the trade-off; a large β may fail to accurately approximate
pairwise OT, while a small β can lead to reduced precision in the terminals (Fig. 8, Appendix C).
Although the difficulty of this trade-off is a potential limitation of A2A-FM, we empirically observed
that the choice of β = N1/(2dc) inspired by [14] was effective in achieving a good balance. We
validated this heuristic and assessed the method’s robustness to β on synthetic non-grouped datasets
(Fig. 7, Appendix C). The results confirm that the optimal β aligns with our heuristic and demonstrate
the method’s stability across a range of β values spanning an order of magnitude. In Appendix A.3,
we also dicuss a theretical necessary condition on the rate of β that the convergence in 3.1 holds.

6 Discussion

An advantage of using pairwise OTs: Section 5 demonstrated that A2A-FM performs competitively
in transporting Pc1 to Pc2 in real-world settings. The efficacy of A2A-FM in condition transfer task
may be partly explained by its connection to the function representation theorem [30]. This theorem
states that if a random variable X has a feature C = gc(X) with gc deterministic, then there exists
an independent feature Z = gz(X) such that (C,Z) can generate X (i.e., X decomposes into C
and Z). When transporting a sample xc1 ∼ P (·|C(X) = c1) = Pc1(·) to xc2 , one may leverage the
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representation xc1 = f(z, c1) for an invertible function f , and perform transport by mapping f(z, c1)
to xc2 = f(z, c2) while keeping the z-component fixed. This representation is closely related to
domain-adversarial training [15], which effectively seeks z in this expression for condition (domain)-
invariant inference, and is used in [35] for transporting between conditional distributions. It is also
known that, in the case of one-dimensional x, the transport of type f(z, c1) 7→ f(z, c2) agrees with
the OT with quadratic cost [42, Sec 2.2]. Also, if ∥f(z1, c1)− f(z2, c2)∥ ≥ ∥f(z1, c1)− f(z1, c2)∥
for all (z1, c1) and (z2, c2), then the OT trivially favors a plan that does not alter z. Such a situation
may arise when z takes discrete values such that any modification to z results in a larger change in x
than modifying c. This is also seen in Fig. 3 (a), where each cluster is transported to another cluster.

Cycle consistency: It is reasonable to require the consistency property Tc2→c1 ◦ Tc1→c2 = id
for transport maps. In A2A-FM, this can be ensured by enforcing the antisymmetry condition
vc1,c2 = −vc2,c1 in the model of vector fields. More generally, in some transfer applications, one
might prefer the cyclic consistency property: Tc2→c3 ◦ Tc1→c2 = Tc1→c3 . For instance, some prior
works [21, 3] build this cycle consistenct directly into their models. However, A2A-FM may not
necessarily enforce this property, because OT does not generally satisfy it. On the other hand,
adopting this antisymmetry in QED experiment enhanced the success rate from 94.6% to 97.5%,
suggesting some justification for this regularization. While the full effect of this anti-symmetry
restriction is a matter of future work, we emphasize that A2A-FM provides a scalable method for
non-grouped data, whereas conventional methods with cycle consistency [21, 3] are inapplicable or
computationally prohibitive for such data classes (see Appendix 5.3 for details on computational
cost).

A2A-FM on large grouped data: Many text-labeled image datasets can be regarded as grouped
data, as they often provide sufficient data for each independent textual condition. For example, while
a sample ‘yellow dog’ may be rare, there can be many ‘dog’ samples and ‘yellow’ samples. As
demonstrated in Appendix C, A2A-FM scales effectively to such image datasets. For grouped data,
when category-specific classifiers can be trained effectively, classifier-dependent methods are viable
options for condition transfer [49, 37]. However, we note that A2A-FM is designed for more general
situations in which such classifiers/regressors can be unavailable or unreliable.

7 Conclusion

We proposed A2A-FM, an FM-based condition transfer method that can learn pairwise OT from
a general data type, including the domain of continuous conditions. To achieve this purpose, we
introduced an objective function that realizes pairwise optimal transport in the infinite sample limit.
The balance of dataset size and the hyperparameter β can pose a limitation, but we provided a
stable heuristic whose theory can be a subject of possible future research. We applied A2A-FM to a
chemical application of modifying the target attribute of a molecule, demonstrating state-of-the-art
performance.
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dataset to support the scalability of our method.
Guidelines:
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Answer: [Yes]
Justification: Our theoretical result (Prop. 3.1 (informal) Thm. A.1) (formal)) is stated with
full set of assumptions and its proof is in Appendix A. We also provide intuitive explanations
of Prop. 3.1 in the main paragraph.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide training and data preprocessing code in the supplementary ma-
terial, offering full reproducibility. We also elaborate on the details of the experiments in
Appendx B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code and instructions for training and data-preprocessing is provided in the
supplementary material. Datasets used in this paper (ZINC22, CelebAHQ-Dialog) can be
downloaded via internet.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Full details of the experimental settings are provided as code in the supplemen-
tary material while important points are also refered in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For the synthetic experiments we included standard deviations calculated
through multipule runs of evaluations. For chemistry experiments, we did not include error
bars since this was impossible because of the computational cost (more than 24 hours for
one evaluation run).

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We reported the number and types of GPUs used in the experiments in
Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Authors read the code of ethics and throughly confirmed that the paper does
not contain viotates it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: Our reaserch is rather a foundational one and its societial impact is less since it
does not include any deployments or tied to particular applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not poses such risks since it does not provide any trained
models or preprocessed data.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the models and datasets used in this project is cited in this paper and the
reference to its URLs are refered in the README file included with the code.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

18



• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code included in the supplementary material has instruction documents
inside. New datasets or models were not introduced.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not include any experiments using crowed sourcing nor human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: This paper does not include any experiments using crowed sourcing nor human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The proposed method does not involve LLMs as any important, original. or
non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Technical Appendices and Supplementary Material

A Theories

A.1 Notations

In this section, we provide the notations that we will be using in the ensuing mathematical formulations
and statements.

• X ⊂ Rdx : Space of observations.
• C ⊂ Rdc : Space of conditions.
• P(A): the set of all distributions on measure space A.
• ϖi1,...,ik : the projection onto i1, . . . , ikth component. For example,ϖ1 : A×B → A, ϖ2 :
A× B → B, and ϖ2,3 : A× B × C → B × C.

• Γ(µ1, µ2) := {Π ∈ P(A×A) | ϖ1#Π = µ1 and ϖ2#Π = µ2} for µ1, µ2 ∈ P(A).
• QA|B=b ∈ P(A): Regular conditional distribution of Q ∈ P(A × B) where A,B are

respectively the random variables on A,B with distribution Q.
• P ⊗ Q: For probability distributions P on X and Q on Y , P ⊗ Q denotes the product

probability defined by (P ⊗Q)(A×B) = P (A)Q(B). This gives independent marginals.

A.2 Convergence to the pairwise optimal transport

Let P2(X ) denote the space of probabilities with second moments; i.e.,

P2(X ) :=
{
P ∈ P(X ) |

∫
X
∥x∥2dP (x) <∞

}
.

The 2-Wasserstein distance W2(P,Q) for P,Q ∈ P2(X ) is defined by

W 2
2 (P,Q) = inf

Π∈Γ(P,Q)

∫
X×X

∥x− y∥2dΠ(x, y).

In the sequel, P2(X ) is considered to be a metric space with distance W2.

A.2.1 Conditional Wasserstein distance

As preliminaries, we first review the conditional Wasserstein distance, which was introduced in [9,
4, 28]. Let Z be a subset of Rr, which is used as a set of conditions and let P ∈ P(X × Z). For
example, in the setting of conditional generations, Z = C.

To relate the transport plans for conditional distributions and the plans for joint distributions, we
introduce the 4-plans as in [9]. Let ν be a probability in P(Z). For ν ∈ P(Z), we define the class of
joint distributions with the same marginal on Z:

P(X × Z; ν) := {P ∈ P(X × Z) | (ϖ2#P ) = ν}.
For two probabilities P,Q ∈ P(X × Z; ν), define Γ4

ν(P,Q) by
Γ4
ν(P,Q) := {Π ∈ P((X × Z)2) | ϖ2,4#Π = ∆#ν}, (13)

where ∆ : Z → Z×Z , z 7→ (z, z), is the diagonal map and ϖ2,4 is the projection map to the second
and fourth component.

For P,Q ∈ P(X×Z; ν) with finite p-th moments, the conditional p-Wasserstein distanceWp,ν(P,Q)
is defined as follows [9, 28, 4]:

Wp,ν(P,Q) :=

(
inf

Π∈Γ4
ν(P,Q)

∫
∥(x1, z1)− (x2, z2)∥pdΠ

)1/p

. (14)

It is known [Prop. 1, 9] that the conditional p-Wasserstein distance is in fact the average p-Wasserstein
distances of conditional distributions;
Proposition A.1. Let (X1, Z) and (X2, Z) be random variables on X × Z with distributions P 1

and P 2 ∈ P(X × Z; ν), which both have finite p-th moments. Then,

Wp,ν(P
1, P 2)p =

∫
Z
Wp(P

1
X1|Z=z, P

2
X2|Z=z)

pdν(z). (15)

21



A.2.2 Convergence of A2A-FM

Let D1
N = (x

(i)
1 , c

(i)
1 )

N

i=1 and D2
N = (x

(i)
2 , c

(i)
2 )

N

i=1 be two independent copies of i.i.d. samples with
distribution P ∈ P2(X ×C). Recall that the proposed A2A-FM uses the optimal plan or permutation
π∗
N,β which achieves the minimum:

min
π∈SN

N∑
i=1

∥x(i)1 − x
(π(i))
2 ∥2 + β

{
∥c(i)1 − c

(π(i))
1 ∥2 + ∥c(i)2 − c

(π(i))
2 ∥2

}
. (16)

We formulate π∗
N,β as an optimal transport plan that gives an empirical estimator of the conditional

Wasserstein distance. For this purpose, we introduce augmented data

D̃1 := {(x(i)1 , c
(i)
1 , c

(i)
2 )}Ni=1 and D̃2 := {(x(i)2 , c

(i)
1 , c

(i)
2 )}Ni=1. (17)

For notational simplicity, we use z(i) = (c
(i)
1 , c

(i)
2 ), and thus, D̃1 := {(x(i)1 , z(i))}Ni=1 and D̃2 :=

{(x(i)2 , z(i))}Ni=1.

First, it is easy to see that the objective function (16) of the coupling is equal to

min
π∈SN

N∑
i=1

dβ
(
(x

(i)
1 , z(i)), (x

(π(i))
2 , z(π(i)))

)
,

where the cost function dβ on X × (C × C) is given by

dβ((x1, z1), (x2, z2)) = ∥x1 − x2∥2 + β∥z1 − z2∥2. (18)

This means that the minimizer of (16) gives the optimal transport plan between the augmented
datasets D̃1 and D̃2 with the cost dβ . We express this optimal plan by ΠβN , an atomic distribution in
P2((X × C × C)× (X × C × C)).
Second, consider the following random variables and distributions on X × C × C;

(X1, C1, C2) ∼ Q1 := ϖ1,2,4#(P ⊗ P ),
(X2, C1, C2) ∼ Q2 := ϖ3,2,4#(P ⊗ P ).

(19)

For Q1, the variables X1 and C1 are coupled with the joint distribution P , while C2 is independent;
for Q2, on the other hand, X2 and C2 are coupled with distribution P , and C1 is independent. The
datasets D̃1 and D̃2 are obviously i.i.d. samples with distributiion Q1 and Q2, respectively. Note that
the distribution of Z := (C1, C2) is equal to ν := (ϖ2#P )⊗ (ϖ2#P ) ∈ P(C × C), and common
to Q1 and Q2. An important fact is that the conditional distributions given Z satisfy

Q1
X1|Z=(c1,c2)

= Q1
X1|C1=c1

= PX1|C1=c1 ,

Q2
X2|Z=(c1,c2)

= Q2
X2|C2=c2

= PX2|C2=c2 , (20)

where we use the independence between (X1, C1) and C2 for Q1, and a similar relation for Q2.

Let Q̂aN (a = 1, 2) be the empirical esitribution of D̃a, and ν̂N be that of z(i) = (c
(i)
1 , c

(i)
2 ); that is,

Q̂aN =
1

N

N∑
i=1

δ
(x

(i)
a ,Z(i))

(a = 1, 2) and ν̂N =
1

N

N∑
i=1

δz(i) ∈ P2(C × C).

Note that, since z-component in D̃1 and D̃2 are identical, the coupling ΠβN is a plan in
Γ(Q̂1

N , Q̂
2
N ; ν̂N ).

With the above preparation, it is not difficult to derive the next result, which shows that, as regu-
larization β and sample size N go to infinity, the above empirical optimal plan ΠβN converges, up
to subsequences, to an optimal plan that gives optimal transport plans for all pairs of conditional
probabilities PX|C=c1 and PX|C=c2 .
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Theorem A.2. Suppose that X and C are compact subsets of Rdx and Rdc , respectively, and that
βk →∞ is an increasing sequence of positive numbers. Let Πβk

N be the optimal transport plan in
Γ4
ν̂(Q̂

1
N , Q̂

2
N ) for W2,βk

(Q̂1
N , Q̂

2
N ), defined as above. Then, the following results hold.

(i) There is a subsequence (Nk) so that Πβk

Nk
converges in P2((X × Z)2) to Π ∈ Γ4

ν(Q
1, Q2) that

is an optimal plan for W2,ν(Q
1, Q2), where Z = C × C.

(ii) If the optimal plan Π is identified as a 3-plan Γ3
ν(Q

1, Q2), it satisfies∫
C×C

∫
X×X

∥x1 − x2∥2dΠc1,c2(x1, x2)dϖ2#P (c1)dϖ2#P (c2)

=

∫
C×C

W 2
2 (PX|C=c1 , PX|C=c2)dϖ2#P (c1)dϖ2#P (c2) (21)

where Πc1,c2 = Πz is the disintegration of the 3-plan Π.
(iii) Consequently, Πc1,c2 is the optimal plan to give W2(PX|C=c1 , PX|C=c2) for (ϖ2#P ) ⊗

(ϖ2#P )-almost every c1, c2.

Proof. Let Z = C × C. Since Q1 and Q2 have the second moment, the empirical distributions Q̂1
N

and Q̂2
N converge to Q1 and Q2, respectively, in W2(X × Z). Then, from Prop. 12 of Chemseddine

et al. [9], for each k, there is a subsequence (Nk) such that Πβk

Nk
converges in W2 to an optimal plan

Π ∈ Γ4
ν(Q

1, Q2) for W2,ν(Q
1, Q2) as k →∞. This proves (i).

For (ii), it follows from Proposition A.1 that∫
(X×Z)2

∥(x1, z1)− (x2, z2)∥2dΠ(x1, z1, x2, z2) =
∫
Z
W 2

2 (Q
1
X1|Z=z, Q

2
X2|Z=z)dν(z). (22)

Since z1 = z2 almost surely for Π, by writing Π as an element in Γ3
ν(Q

1, Q2), the left hand side of
(22) is ∫

X×X×Z
∥x1 − x2∥2dΠ(x1, x2, z) =

∫
Z

∫
X×X

∥x1 − x2∥2dΠz(x1, x2)dν(z).

From (20) and the fact ν = (ϖ2#P )⊗ (ϖ2#P ), the right hand side of (22) is equal to that of (21).

Since it holds generally that∫
X×X

∥x1 − x2∥2dΠc1,c2(x1, x2) ≥W 2
2 (PX|C=c1 , PX|C=c2), (23)

(21) implies that the equality in (23) must hold for (ϖ2#P )⊗ (ϖ2#P )-almost every c1, c2.

A.3 Theoritical support on the choice of β

In this subsection, we derive a necessary condition on the rate of β that the convergence of Theorem
A.2 holds. Noting that the dimension on the condition space C × C is 2dc, we see that the necessary
condition below is β = O(N1/dc). The choice β = N1/(2dc) used in our experiments satisfies this
condition, although it may not be the maximal of the necessary condition.

In the sequel, we discuss the general condition space C of dimension d. Let X ⊂ Rm and C ⊂ Rd,
and C be a random vector taking values in C with distribution PC . Let (X,C) ∼ P and (Y,C) ∼ Q
be random vectors taking values in X × C, where P,Q ∈ P2(X × C) have the same marginal
distribution PC , and X and Y are bounded: ∥X∥, ∥Y ∥ ≤M almost surely.

Suppose that we have i.i.d. samples (x1, c1), . . . , (xn, cn) with distribution P and
(y1, c1), . . . , (yn, cn) with distribution Q such that xi and yi are conditionally independent
given ci for each i. Consider the following empirical conditional OT problem [20, 8, 28]:

σ
(n)
β = arg min

σ∈Sn

Fn(σ), Fn(σ) :=
1

n

n∑
i=1

∥xi − yσ(i)∥2 + β
1

n

n∑
i=1

∥ci − cσ(i)∥2, (24)
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where β > 0 is a constant. The optimal transport plan on (X × C) × (X × C) corresponding to
σ∗ = σ

(n)
β is denoted by α(n)

β : i.e., α(n)
β := 1

n

∑n
i=1 δ((xi,ci),(yσ∗(i),cσ∗(i))).

Proposition 12 in [8] shows that, for any increasing sequence βk →∞ (k ∈ N), there is a subsequence
(nk)

∞
k=1 of N such that, as k →∞, α(nk)

βk
converges w.r.t W2((X × C)× (X × C)) to the OT plan

αo ∈ Γ4
C(P,Q) for the following conditional OT problem:

min
α∈Γ4

C(P,Q)

∫
∥x− y∥2dα.

Here, Γ4
C(P,Q) is the set of 4-plans, defined by

Γ4
C(P,Q) := {α ∈ Γ(P,Q) | π2,4

# α = ∆#PC},

where ∆ : C → C × C, c 7→ (c, c).

We wish to prove βk = O(n
2/d
k ) as k →∞. For this purpose, we make the following assumptions

about the probabilities.

Assumption 1: The probability Pc has a density function f with respect to the Lebesgue measure
such that there is a constant BU > 0 that satisfies

f(c) ≤ BU <∞ for a.e. c ∈ C.

Assumption 2:

EC

[∫
∥x− y∥2dPX|C(x)dQY |C(y)

]
̸= EC

[
W2(PX|C , QY |C)

2
]
.

The non-equality of Assumption 2 is not restrictive. In fact, by the definition of W2, it generally holds

EC [W
2
2 (PX|C , QX|C)] ≤ EC

[∫
∥x− y∥2dPX|C(x)dQY |C(y)

]
.

The assumption requires that, for almost all c, the conditionally independent ditribution PX|C⊗QY |C
does not give W2(PX|C , QY |C). In general, the optimal plan with the cost ∥x− y∥2 is attained by
independent distributions only if the supports of the distributions are orthogonal. In particular, if one
of the distributions has a density function with respect to the Lebesgue measure, this is not possible.

We have the following proposition.

Proposition A.3. Let βk →∞ be an increasing sequence, and nk be a subsequence of N such that
the optimal plan α(nk)

βk
for (24) converges to the conditional OT plan αo w.r.t. W2(X ×C)× (X ×C)).

Under Assumptions 1 and 2, we have

βk = O
(
n
2/d
k

)
(25)

as k →∞.

Proof. We will derive a contradiction assuming that (25) does not hold. In that case, there is a
subsequence (k′) of N such that βk′n

−2/d
k′ →∞ as k′ →∞. W.l.o.g., we assume that the original

sequence βk and nk satisfy
βkn

−2/d
k →∞ (k →∞). (26)

Take γk :=
(
βkn

−2/d
k

)−1
, which converges to 0 as k →∞, and define the radius rk > 0 by

rk := n
−2/d
k γ

1/2
k = β

−1/2
k n

−1/d
k , (27)

for which
βkrk = β

1/2
k n

−1/d
k = γ

−1/2
k →∞ (k →∞) (28)

holds. Also, we have n2kr
d
k = γ

d/2
k → 0, which implies from Proposition A.4 that

P
(

min
1≤i≤nk

min
j ̸=i
∥ci − cj∥ ≤ rk

)
→ 0 (k →∞).
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This means that the probability of the event

Ek :=
{
∥ci − cj∥ > rk for all 1 ≤ i < j ≤ nk

}
tends to 1 for k →∞. Hereafter, we consider a random evnet on Ek.

For simplicity, let us write σ∗
k := σ

(nk)
βk

, and define

Jk := {1 ≤ i ≤ nk | σ∗
k(i) ̸= i}

and mk := |Jk|. It follows that

βk
1

nk

nk∑
i=1

∥ci − cσ∗
k(i)
∥2 ≥ βk

1

nk

∑
i∈Jk

∥ci − cσ∗
k(i)
∥2 ≥ βk

mk

nk
rk.

On the other hand, since σ∗
k minimizes Fnk

, we have

βk
1

nk

nk∑
i=1

∥ci − cσ∗
k(i)
∥2 ≤ Fnk

(σ∗
k) ≤ Fnk

(id) =
1

nk

nk∑
i=1

∥xi − yi∥2 = Op(1).

From the above two inequalities, we have βk mk

nk
rk = Op(1), and thus it holds from (28) that

mk

nk
= Op((βkrk)

−1)) = op(1) (k →∞). (29)

Next, the first term of Fnk
(σ∗
k) is∫

∥x− y∥2dα(nk)
βk

=
1

nk

∑
i/∈Jk

∥xi − yσ∗
k(i)
∥2 + 1

nk

∑
i∈Jk

∥xi − yσ∗
k(i)
∥2

=
1

nk

nk∑
i=1

∥xi − yi∥2 −
1

nk

∑
i∈Jk

∥xi − yi∥2 +
1

nk

∑
i∈Jk

∥xi − yσ∗
k(i)
∥2. (30)

The second and third terms in the last line are upper bounded by

1

nk

∑
i∈Jk

4M2,

which converges to zero in probability as mk/nk = op(1). As a result, the first term in the last line
converges to E∥X − Y ∥2 with X⊥⊥Y |C in probability. Because the left hand side of (30) converges
to

∫
∥x− y∥2dαo, it implies

E∥X − Y ∥2 = Ec
[
W 2

2 (PX|C , QX|C)
]
,

which contradicts Assumption 2.

Proposition A.4. Let X1, . . . , Xn be i.i.d. Rd-valued random variables with density f on S ⊂ Rd.
Assume that

f(x) ≤ BU <∞ for all x ∈ S.
For r > 0, let vd := Vol

(
B(0, 1)

)
be the volume of the unit ball in Rd. Then

P

 min
1≤i≤n

min
1≤j≤n
j ̸=i

∥Xi −Xj∥ ≤ r

 ≤ min

{
1,

(
n

2

)
BU vd r

d

}
.

Proof. The proof is standard and we omit it.

B Experimental Details

All of the model training was done using internal NVIDIA V100 GPU cluster.
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Property Configuration
Data space X Latent space of [26] (R512)

Condition space C QED values embedded in R32 same as [25]
Training dataset 500K subset of ZINC22

Initial points x1 at evaluation 800 reference molecules provided in [23]
Initial conditions c1 at evaluation Embedded QED of x1

Target conditions c2 at evaluation linspace(0.84, 0.95, 10) (maximum oracle calls = 50000)
[0.9, 0.91, 0.92, 0.93, 0.94] (otherwise)

Table 4: Training and evaluation configuration for the QED experiment

B.1 Synthetic datasets

In the synthetic experiments shown in Fig. 3 (a), we used a dataset sampled from a Gaussian mixture:

1

6
(N (x|[0,−1], 0.012) +N (x|[0,−3], 0.052) +N (x|[

√
3/2, 1], 0.012) +N (x|[3

√
3/2, 3], 0.052)

+N (x|[−
√
3/2, 1], 0.012) +N (x|[−3

√
3/2, 3], 0.052)).

(31)

In the synthetic experiments shown in Fig. 3 (b), we used the dataset consisting of 107 samples
and used a version of MLP with residual connection except that, instead of the layer of form x→
x+ ϕ(x), we used the layer that outputs the concatenation x→ [x, ϕ(x)], incrementally increasing
the intermediate dimensions until the final output. We used this architecture with width=128, depth=8
for all of the methods. For A2A-FM, we used β = 10, and we selected this parameter by searching
β = 0.01, 0.1, 1, 10, 100 (see Appendix C for details). The batch size for all the methods were
1× 103. In SI, we discretized the conditional space into 5 equally divided partitions. Also in partial
diffusion, we used the classifier free guidance method with weight 0.3, used timesteps of T = 1000
and reversed the diffusion process for 300 steps. For non-grouped data, the model was trained on
one NVIDIA V100 GPU. In both grouped and non-grouped data experiments, we calculated the
metric Ex1∼Pc1

,c1,c2 [∥Tc1→c2(x1))− TOT
c1→c2(x1))∥

2] empirically using 100 i.i.d. samples from the
uniform distributions on the support of c1, c2. For error analysis, we ran this evaluation 10 times and
reported the mean and standard deviations of the multiple runs in Table 1.

B.2 QED experiment

For the task shown in Section 5.2, we trained A2A-FM on a 500K subsampled ZINC22 dataset, and
adopted a grid search algorithm similar to [25] (see the pseudocode in Algorithm 2) to evaluate the
methods to be compared. We used four NVIDIA V100 GPUs for training. As mentioned in the
main manuscript, this search is done for each initial molecule by making multiple attempts(Oracle
Calls) of the transfer, and the initial molecule is marked success if the method of interest succeeds in
discovering the molecule satisfying both the Tanimoto similarity and condition range requirement.
The initial molecule is marked fail if the method fails to find such a transferred molecule within
fixed number of oracle calls. We denote the set of initial molecules by M0 in the pseudocode of
2, and we chose this set to be the same set used in [25]. In the grid search approach, we adopted
a boosting strategy, which is to scale the estimated velocity field v with a certain parameter b and
calculate the ODE using vboosted = b · v. Using this strategy, we enabled our flow-based model to
generate various molecules similar to the diffusion models with large guidance weights. For the
grid search configurations (B,C,N) in Algorithm 2, we used B = linspace(0.8, 2.5, 20), N =
linspace(10−3, 3, 20), C = linspace(0.84, 0.95, 10) when MAX_ORACLE_CALLS = 50000.
For MAX_ORACLE_CALLS ∈ {25, 100, 500, 1000}, we used B = [1, 2, 3, 4, 5], N = [0], C =
[0.9, 0.91, 0.92, 0.93, 0.94]. We give samples of generated molecules in Fig. 10. We summarize the
setting of the QED experiment in Table 4.

In modeling the vector fields v, we used a formulation inspired from Isobe et al. [21] in order to
reduce the computational cost given by

v(ψc1,c2(t), t|c1, c2) := v̄(ψc1,c2(t), c(t)|c2)− v̄(ψc1,c2(t), c(t)|c1),
c(t) := c2 ∗ t+ c1 ∗ (1− t),

(32)
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Algorithm 2 Grid search for QED conditioned molecular transfer

Input: • Set of initial molecules M0 = {(x, cQED)}
• Boosting weights B
• Noise intensities N
• Target conditions C
• Trained velocity field v
• Number of maximum oracle calls MAX_ORACLE_CALLS.
# Function for grid searching

1: function GRID_SEARCH(x0, c0)
2: n← 1
3: while n ≤ MAX_ORACLE_CALLS do
4: for b ∈ B do
5: for c1 ∈ C do
6: for ε ∈ N do
7: sample z ∼ N (0, 1), x̂0 ← x0 + εz
8: x1 ← ODESolver(b · v(·|c0, c1), x̂0)
9: n← n+ 1

10: if x1 is not decodable then
11: continue
12: end if
13: if Tanimoto_similarity(x0, x1) ≥ 0.4 and QED(x1) ≥ 0.9 then
14: Return: SUCCESS
15: end if
16: end for
17: end for
18: end for
19: end while
20: Return: FAIL
21: end function

# Loop for all initial points
22: num_success← 0
23: for (x0, c0) ∈M0 do
24: if GRID_SEARCH(x0, c0) = SUCCESS then
25: num_success← num_success + 1
26: end if
27: end for
28: Return: num_success/|M0|

and used the UNet architecture proposed in Kaufman et al. [25] in which we replaced the convolution
with dense layers. The network parameters were the same as the ones used in the QED nearby
sampling benchmark of Kaufman et al. [25]. This formulation ensures that no transport will be con-
ducted when c2 = c1 and avoids learning trivial paths. In the training procedure, we first normalized
the condition space with the empirical cumulative density functions so that the empirical condition
values would become uniformly distributed, and then embedded them using the TimeEmbedding
layer to obtain its 32 dimensional representation; this is the same treatment done in Kaufman et al.
[25]. We used the latent representation provided in Kaufman et al. [25] and trained A2A-FM on
a 500K subset of ZINC22 with batch size=1024, β = (batch_size)1/2dc = (1.2419)1/2, where
dc = 32 is the dimension of the conditional space C. For this experiment, we found the choice of
β = (batch_size)1/2dc to perform well, which is the reciprocal to the speed of the convergence of a
pair of empirical distributions [14].

B.3 Logp&TPSA experiment

In the evaluation of methods on LogP-TPSA benchmark (Section 5.2) we used the sampling efficiency
curve plotted between (1) normalized discrepancy of LogP and TPSA between generated molecules
and the target condition cerr ∈ [0, 1] and (2) Tanimoto similarity of Morgan fingerprints between
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Property Configuration
Data space X Latent space of [26] (R512)

Condition space C LogP and TPSA values embedded in R32×2

Training dataset 3.7M subset of ZINC22
Initial points x1 at evaluation Random samples from ZINC22

Initial conditions c1 at evaluation Embedded LogP and TPSA of x1
Target conditions c2 at evaluation meshgrid([0, 1, 2, 3, 4], [10, 45, 80, 115, 150])

Table 5: Training and evaluation configuration for the LogP&TPSA experiment

the initial molecule and the generated molecule sTani ∈ [0, 1]. Since the decoder of Kaufman
et al. [25] does not always succeed in mapping the latent expression to a valid molecule, we made
10 attempts for each target condition by adding different perturbations to the initial latent vector.
Detailed procedure for calculating these two metrics for each initial molecule is in Algorithm 3. In
our experiments, we used a 3.7M subset from the ZINC22 dataset and created a validation split of
initial molecules containing 1024 molecules. We used four NVIDIA V100 GPUs for training. For β
in A2A-FM, we used β = (1.25)1/2. For Multimarginal SI, we created 10 clusters in the C space
using the K-means algorithm and treated the class labels as discrete conditions. For OT-CFM in this
evaluation, we used the full training dataset as P∅ and trained a flow to conditional distributions using
the regular OT-CFM framework for conditional generations. Other configurations, including batch
size and model architecture, were common among competitive methods and were the same as the
QED benchmark. We illustrate samples of generated molecules in Figures 11 to 15. We summarize
the training and evaluation configurations in Table 5.

The sampling efficiency curve in Fig. 5 is described mathematically as,

y = G(F−1(x)), (33)
F (x) := Pr[sTani ≤ x], (34)
G(x) := Pr[cerr ≤ x], (35)

where closs, sTani is the output of Algorithm 3, Pr[A ≤ x] is the ratio of members a ∈ A that satisfies
a ≤ x, and cerr := closs/cmax is the normalized closs by the normalization factor cmax = 7 so that
cerr ∈ [0, 1]. This way, the curve describes how much one has to trade off the tanimoto similarity
threshold (similar to the size of the neighborhood) in order to sample the molecules with cerr under a
certain error threshold.

C Additional experiments

The robustness of A2A-FM on different β: To further analyze the robustness of A2A-
FM against the hyperparameter β in non-grouped settings, we trained our model with β =
0.01, 0.1, 1, 5, 10, 20, 50, 100 and calculated the MSE from the ground-truth pairwise OT using
the same procedure as Table 1 (b). The result of this experiment is illustrated in Fig. 7, 8. From
this experiment, we found out that the hyperparameter β is at least robust over a range of one order
of magnitude (β ∈ [1, 10]). The selection of β used in the experiments (β = (batch_size)1/2dc)
is within an order of magnitude of this range since we used batch_size = 103, dc = 1 in the
non-grouped synthetic data experiment.

Computational complexity of Multimarginal SI and A2A-FM: In the synthetic experimental setup
depicted in Fig. 3 (b), one might claim that methods that are designed for grouped data, such as
Multimarginal SI, could be applied to the setting of general (x, c) datasets by binning the dataset.
However, this adaptation of methods like Multimarginal SI is challenging in practice. Firstly, as
illustrated in Fig. 9, when a small number of bins are used, Multimarginal SI suffers from low transfer
accuracy because the partitioning of C is just simply too coarse. On the other hand, increasing the
number of bins not only leads to a substantial increase in computational cost compared to A2A-FM,
but also results in a diminished number of data samples per bin, consequently degrading its accuracy
of OT estimation (see also Table 6) and Fig. 9.

CelebA-Dialog HQ 256 Dataset: To demonstrate the applicability of A2A-FM to high-dimensional
grouped data, we trained A2A-FM on the 256 × 256 downscaled version of CelebA-Dialog HQ
dataset [22] which contains 200K high-quality facial images with 6-level annotations of attributes:
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Figure 7: Quantitative results from the additional experiment on the robustness of hyperparameter β.
The results of partial diffusion and multimariginal SI (SI) in the graph are taken from Table 1 (b).

Figure 8: Samples produced in the additional experiment on the robustness of hyperparameter β.

Method MSE from OT Training time (min)
SI (K=2) 1.25× 10−1 14.8
SI (K=5) 4.90× 10−2 32.2

SI (K=10) 2.75× 10−2 185.0
parital diffusion 6.77× 10−2 18.1
A2A-FM (Ours) 1.51× 10−2 29.1

Table 6: Quantitative results from the additional experiment regarding the change in the number of
bins K in Multimarginal SI. Although the performance measured by the MSE from OT improves as
K increases, the training time will increase in exchange. Results of partial diffusion and A2A-FM is
also reported for comparison. The training of the shown models were done using the same hardware
with 1 NVIDIA V100 GPU.
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Algorithm 3 Grid search for LogP-TPSA conditioned all-to-all molecular transfer

Input: • Set of initial molecules M0 = {(x, (cLogP, cTPSA))}
• Noise intensity ε = 0.1

• Target conditions C = meshgrid([0, 1, 2, 3, 4], [10, 45, 80, 115, 150])

• Trained velocity field v
• Transfer algorithm Trans(v, x0, c0, c1)

• Condition calculation function Cond(·) : X → C
# Function for transferring with several attempts

1: function TRANSFER(x0, c0, c1)
2: c_loss← [0, . . . , 0], similarity← [0, . . . , 0]
3: for n ∈ {1, . . . , 10} do
4: sample z ∼ N (0, 1), x̂0 ← x0 + εz
5: x1 ← Trans(v, x0, c0, c1)
6: if x1 is not decodable or Tanimoto_similarity(x0, x1) = 1 then
7: continue
8: end if
9: c_loss[n]← MAE(c1,Cond(x1))

10: similarity[n]← Tanimoto_similarity(x0, x1)
11: end for
12: Return: (min(c_loss), similarity[argmin(c_loss)])
13: end function

# Function to calculate the mean of all-to-all transfer
14: function GETMEAN(x0, c0)
15: c_loss_mean← 0, similarity_mean← 0
16: for c1 ∈ C do
17: c_loss′, similarity′ ← TRANSFER(x0, c0, c1)
18: c_loss_mean ← c_loss_mean + c_loss′, similarity_mean ← similarity_mean +

similarity′

19: end for
20: Return: c_loss_mean/|C|, similarity_mean/|C|
21: end function

# Loop for all initial points
22: closs, sTani ← [0, . . . , 0]
23: for i ∈ {1, . . . , |M0|} do
24: x0, c0 =M0[i]
25: closs[i], sTani[i]← GETMEAN(x0, c0)
26: end for
27: Return: closs, sTani

Bangs, Eyeglasses, Beard, Smiling, Age. In this experiment we used only Beard and Smiling
labels and treated these two labels as two-dimensional condition in [0 : 5]2. We used the latent
expressions of Rombach et al. [39] and trained a vector field using the UNet architecture with a
slight modification for multidimensional conditional inputs. This was done so that we can adopt
the independent condition embedding layers to each dimensions of the condition space and to add
them to the time embedding as the regular condition embeddings. We display examples of all-to-all
transfer results of A2A-FM in Figures 16, 17, 18.

The results of this experiment support our claim that A2A-FM is scalable since the final dimentionality
of the latent space was 64× 64× 3 = 12, 288. We shall note that many text-labeled image datasets
are technically grouped databecause computer vision datasets oftentimes contain sufficient data
for each independent textual condition, such as ’dog’ and ’brown’. In such a case, a classifier
for each category may be trained, and condition transfer methods with classifiers like Zhao et al.
[49], Preechakul et al. [37] may become a viable option in practice. We stress that A2A-FM is also
designed to be able to handle cases in which such good classifiers/regressors cannot be trained. For
example, on the aforementioned dataset like ZINC22 with continuous condition, it is difficult to
train a high-performance regressor/classifier that can be used for classifier-dependent methods. For
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Figure 9: Samples from the additional experiment of multimarginal stochastic interpolants (SI) with
different number of bins K. The red lines show the boundary of bins. The subtitle of each figure
reads as [K = #(bins)(trainingtime)]. This experiment was done using the same hardware with 1
NVIDIA V100 GPU for all models.

example, in Kaufman et al. [26], classifier guidance method for conditional generation does neither
perform as well as classifier free guidance methods nor its flow-matching counterpart.
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qed: 0.77 qed: 0.76

Initial molecules

Transfered molecules

qed: 0.77 qed: 0.75 qed: 0.78

qed: 0.70 qed: 0.79 qed: 0.78 qed: 0.78 qed: 0.73

qed: 0.94 
similarity 0.45

qed: 0.91 
similarity 0.46

qed: 0.94 
similarity 0.59

qed: 0.90 
similarity 0.58

qed: 0.91 
similarity 0.41

qed: 0.91 
similarity 0.41

qed: 0.91 
similarity 0.44

qed: 0.92 
similarity 0.40

qed: 0.91 
similarity 0.42

qed: 0.90 
similarity 0.64

Initial molecules

Transfered molecules

Figure 10: Samples of the nearby sampling in Section 5.2. The first and third row is the initial
samples and the second and fourth row are the successful sampled molecules.

Initial Molecule
TPSA=69 LogP=1.37

Target
TPSA=150 LogP=1.00

Target
TPSA=115 LogP=3.00

Target
TPSA=80 LogP=4.00

Target
TPSA=80 LogP=3.00

Target
TPSA=10 LogP=4.00

A2A-FM (Ours)

Actual: TPSA=149 LogP=0.79 
Tanimoto Similarity=0.47

Actual: TPSA=111 LogP=3.12 
Tanimoto Similarity=0.49

Actual: TPSA=71 LogP=4.21 
Tanimoto Similarity=0.42

Actual: TPSA=80 LogP=3.35 
Tanimoto Similarity=0.31

Actual: TPSA=10 LogP=3.76 
Tanimoto Similarity=0.27

OT-CFM

Actual: TPSA=143 LogP=0.28 
Tanimoto Similarity=0.43

Actual: TPSA=111 LogP=2.73 
Tanimoto Similarity=0.45

Actual: TPSA=75 LogP=3.19 
Tanimoto Similarity=0.28

Actual: TPSA=75 LogP=2.35 
Tanimoto Similarity=0.22

Actual: TPSA=10 LogP=3.95 
Tanimoto Similarity=0.27

SI (K=10)

Actual: TPSA=69 LogP=1.37 
Tanimoto Similarity=1.00

Actual: TPSA=69 LogP=1.37 
Tanimoto Similarity=1.00

Actual: TPSA=69 LogP=1.37 
Tanimoto Similarity=1.00

Actual: TPSA=69 LogP=1.37 
Tanimoto Similarity=1.00

Actual: TPSA=34 LogP=4.76 
Tanimoto Similarity=0.12

PD+CFG(T=300)

Actual: TPSA=92 LogP=0.81 
Tanimoto Similarity=0.22

Actual: TPSA=83 LogP=1.72 
Tanimoto Similarity=0.34

Actual: TPSA=69 LogP=1.77 
Tanimoto Similarity=0.32

Actual: TPSA=57 LogP=2.77 
Tanimoto Similarity=0.27

Actual: TPSA=41 LogP=3.48 
Tanimoto Similarity=0.29

PD+CFG(T=500)

Actual: TPSA=127 LogP=1.07 
Tanimoto Similarity=0.21

Actual: TPSA=70 LogP=2.24 
Tanimoto Similarity=0.17

Actual: TPSA=49 LogP=3.91 
Tanimoto Similarity=0.18

Actual: TPSA=62 LogP=2.78 
Tanimoto Similarity=0.15

Actual: TPSA=24 LogP=3.83 
Tanimoto Similarity=0.25

PD+CFG(T=1000)

Actual: TPSA=150 LogP=0.09 
Tanimoto Similarity=0.09

Actual: TPSA=105 LogP=2.68 
Tanimoto Similarity=0.09

Actual: TPSA=56 LogP=3.96 
Tanimoto Similarity=0.14

Actual: TPSA=75 LogP=3.07 
Tanimoto Similarity=0.10

Actual: TPSA=12 LogP=4.12 
Tanimoto Similarity=0.11

Figure 11: All-to-all transfer examples of experiment in Section 5.2.
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Initial Molecule
TPSA=89 LogP=1.33

Target
TPSA=150 LogP=1.00

Target
TPSA=115 LogP=3.00

Target
TPSA=80 LogP=4.00

Target
TPSA=80 LogP=3.00

Target
TPSA=10 LogP=4.00

A2A-FM (Ours)

Actual: TPSA=151 LogP=0.99 
Tanimoto Similarity=0.50

Actual: TPSA=107 LogP=2.90 
Tanimoto Similarity=0.58

Actual: TPSA=80 LogP=3.85 
Tanimoto Similarity=0.25

Actual: TPSA=80 LogP=3.00 
Tanimoto Similarity=0.35

Actual: TPSA=6 LogP=3.84 
Tanimoto Similarity=0.17

OT-CFM

Actual: TPSA=151 LogP=0.99 
Tanimoto Similarity=0.50

Actual: TPSA=124 LogP=3.23 
Tanimoto Similarity=0.51

Actual: TPSA=73 LogP=3.46 
Tanimoto Similarity=0.30

Actual: TPSA=81 LogP=3.34 
Tanimoto Similarity=0.17

Actual: TPSA=11 LogP=3.97 
Tanimoto Similarity=0.17

SI (K=10)

Actual: TPSA=89 LogP=1.33 
Tanimoto Similarity=1.00

Actual: TPSA=89 LogP=1.33 
Tanimoto Similarity=1.00

Actual: TPSA=89 LogP=1.33 
Tanimoto Similarity=1.00

Actual: TPSA=89 LogP=1.33 
Tanimoto Similarity=1.00

Actual: TPSA=38 LogP=3.34 
Tanimoto Similarity=0.37

PD+CFG(T=300)

Actual: TPSA=102 LogP=0.81 
Tanimoto Similarity=0.43

Actual: TPSA=95 LogP=2.17 
Tanimoto Similarity=0.51

Actual: TPSA=76 LogP=2.02 
Tanimoto Similarity=0.49

Actual: TPSA=86 LogP=2.55 
Tanimoto Similarity=0.31

Actual: TPSA=21 LogP=2.61 
Tanimoto Similarity=0.14

PD+CFG(T=500)

Actual: TPSA=122 LogP=0.55 
Tanimoto Similarity=0.21

Actual: TPSA=104 LogP=1.16 
Tanimoto Similarity=0.19

Actual: TPSA=75 LogP=3.44 
Tanimoto Similarity=0.18

Actual: TPSA=75 LogP=2.89 
Tanimoto Similarity=0.19

Actual: TPSA=33 LogP=4.16 
Tanimoto Similarity=0.17

PD+CFG(T=1000)

Actual: TPSA=162 LogP=0.06 
Tanimoto Similarity=0.13

Actual: TPSA=103 LogP=1.60 
Tanimoto Similarity=0.11

Actual: TPSA=64 LogP=3.94 
Tanimoto Similarity=0.11

Actual: TPSA=75 LogP=2.41 
Tanimoto Similarity=0.17

Actual: TPSA=6 LogP=3.82 
Tanimoto Similarity=0.07

Figure 12: All-to-all transfer examples of experiment in Section 5.2.
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Initial Molecule
TPSA=87 LogP=2.46

Target
TPSA=150 LogP=1.00

Target
TPSA=115 LogP=3.00

Target
TPSA=80 LogP=4.00

Target
TPSA=80 LogP=3.00

Target
TPSA=10 LogP=4.00

A2A-FM (Ours)

Actual: TPSA=141 LogP=1.80 
Tanimoto Similarity=0.50

Actual: TPSA=95 LogP=3.17 
Tanimoto Similarity=0.65

Actual: TPSA=82 LogP=3.43 
Tanimoto Similarity=0.67

Actual: TPSA=102 LogP=2.82 
Tanimoto Similarity=0.67

Actual: TPSA=21 LogP=3.96 
Tanimoto Similarity=0.28

OT-CFM

Actual: TPSA=107 LogP=2.16 
Tanimoto Similarity=0.76

Actual: TPSA=95 LogP=3.17 
Tanimoto Similarity=0.27

Actual: TPSA=82 LogP=4.02 
Tanimoto Similarity=0.51

Actual: TPSA=82 LogP=4.19 
Tanimoto Similarity=0.62

Actual: TPSA=22 LogP=4.03 
Tanimoto Similarity=0.25

SI (K=10)

Actual: TPSA=87 LogP=2.46 
Tanimoto Similarity=1.00

Actual: TPSA=87 LogP=2.46 
Tanimoto Similarity=1.00

Actual: TPSA=87 LogP=2.46 
Tanimoto Similarity=1.00

Actual: TPSA=87 LogP=2.46 
Tanimoto Similarity=1.00

Actual: TPSA=64 LogP=5.25 
Tanimoto Similarity=0.32

PD+CFG(T=300)

Actual: TPSA=112 LogP=1.23 
Tanimoto Similarity=0.25

Actual: TPSA=99 LogP=2.60 
Tanimoto Similarity=0.25

Actual: TPSA=75 LogP=2.96 
Tanimoto Similarity=0.17

Actual: TPSA=84 LogP=2.11 
Tanimoto Similarity=0.21

Actual: TPSA=54 LogP=3.62 
Tanimoto Similarity=0.22

PD+CFG(T=500)

Actual: TPSA=112 LogP=1.01 
Tanimoto Similarity=0.10

Actual: TPSA=94 LogP=2.78 
Tanimoto Similarity=0.19

Actual: TPSA=73 LogP=3.12 
Tanimoto Similarity=0.19

Actual: TPSA=78 LogP=3.20 
Tanimoto Similarity=0.21

Actual: TPSA=23 LogP=2.94 
Tanimoto Similarity=0.16

PD+CFG(T=1000)

Actual: TPSA=155 LogP=0.02 
Tanimoto Similarity=0.14

Actual: TPSA=84 LogP=3.37 
Tanimoto Similarity=0.14

Actual: TPSA=79 LogP=3.79 
Tanimoto Similarity=0.12

Actual: TPSA=75 LogP=2.92 
Tanimoto Similarity=0.12

Actual: TPSA=12 LogP=3.83 
Tanimoto Similarity=0.03

Figure 13: All-to-all transfer examples of experiment in Section 5.2.
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Initial Molecule
TPSA=99 LogP=2.40

Target
TPSA=150 LogP=1.00

Target
TPSA=115 LogP=3.00

Target
TPSA=80 LogP=4.00

Target
TPSA=80 LogP=3.00

Target
TPSA=10 LogP=4.00

A2A-FM (Ours)

Actual: TPSA=132 LogP=0.94 
Tanimoto Similarity=0.67

Actual: TPSA=125 LogP=2.99 
Tanimoto Similarity=0.60

Actual: TPSA=79 LogP=3.83 
Tanimoto Similarity=0.62

Actual: TPSA=79 LogP=3.19 
Tanimoto Similarity=0.64

Actual: TPSA=6 LogP=3.64 
Tanimoto Similarity=0.27

OT-CFM

Actual: TPSA=149 LogP=0.94 
Tanimoto Similarity=0.65

Actual: TPSA=97 LogP=2.87 
Tanimoto Similarity=0.45

Actual: TPSA=70 LogP=3.68 
Tanimoto Similarity=0.46

Actual: TPSA=87 LogP=3.11 
Tanimoto Similarity=0.50

Actual: TPSA=10 LogP=4.02 
Tanimoto Similarity=0.23

SI (K=10)

Actual: TPSA=99 LogP=2.40 
Tanimoto Similarity=1.00

Actual: TPSA=99 LogP=2.40 
Tanimoto Similarity=1.00

Actual: TPSA=99 LogP=2.40 
Tanimoto Similarity=1.00

Actual: TPSA=99 LogP=2.40 
Tanimoto Similarity=1.00

Actual: TPSA=29 LogP=3.53 
Tanimoto Similarity=0.41

PD+CFG(T=300)

Actual: TPSA=98 LogP=1.07 
Tanimoto Similarity=0.31

Actual: TPSA=107 LogP=1.91 
Tanimoto Similarity=0.38

Actual: TPSA=75 LogP=3.12 
Tanimoto Similarity=0.30

Actual: TPSA=82 LogP=2.62 
Tanimoto Similarity=0.15

Actual: TPSA=32 LogP=4.15 
Tanimoto Similarity=0.34

PD+CFG(T=500)

Actual: TPSA=104 LogP=1.02 
Tanimoto Similarity=0.25

Actual: TPSA=91 LogP=2.02 
Tanimoto Similarity=0.23

Actual: TPSA=53 LogP=4.20 
Tanimoto Similarity=0.19

Actual: TPSA=71 LogP=2.60 
Tanimoto Similarity=0.15

Actual: TPSA=3 LogP=4.04 
Tanimoto Similarity=0.14

PD+CFG(T=1000)

Actual: TPSA=128 LogP=1.36 
Tanimoto Similarity=0.14

Actual: TPSA=86 LogP=3.00 
Tanimoto Similarity=0.12

Actual: TPSA=73 LogP=3.71 
Tanimoto Similarity=0.14

Actual: TPSA=71 LogP=2.90 
Tanimoto Similarity=0.17

Actual: TPSA=12 LogP=3.81 
Tanimoto Similarity=0.09

Figure 14: All-to-all transfer examples of experiment in Section 5.2.
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Initial Molecule
TPSA=62 LogP=2.00

Target
TPSA=150 LogP=1.00

Target
TPSA=115 LogP=3.00

Target
TPSA=80 LogP=4.00

Target
TPSA=80 LogP=3.00

Target
TPSA=10 LogP=4.00

A2A-FM (Ours)

Actual: TPSA=148 LogP=0.70 
Tanimoto Similarity=0.39

Actual: TPSA=115 LogP=3.35 
Tanimoto Similarity=0.58

Actual: TPSA=80 LogP=4.13 
Tanimoto Similarity=0.34

Actual: TPSA=80 LogP=2.44 
Tanimoto Similarity=0.48

Actual: TPSA=6 LogP=4.16 
Tanimoto Similarity=0.14

OT-CFM

Actual: TPSA=142 LogP=1.72 
Tanimoto Similarity=0.22

Actual: TPSA=89 LogP=3.01 
Tanimoto Similarity=0.17

Actual: TPSA=93 LogP=3.47 
Tanimoto Similarity=0.12

Actual: TPSA=84 LogP=3.22 
Tanimoto Similarity=0.45

Actual: TPSA=54 LogP=4.05 
Tanimoto Similarity=0.12

SI (K=10)

Actual: TPSA=62 LogP=2.00 
Tanimoto Similarity=1.00

Actual: TPSA=62 LogP=2.00 
Tanimoto Similarity=1.00

Actual: TPSA=62 LogP=2.00 
Tanimoto Similarity=1.00

Actual: TPSA=62 LogP=1.84 
Tanimoto Similarity=0.72

Actual: TPSA=28 LogP=4.36 
Tanimoto Similarity=0.16

PD+CFG(T=300)

Actual: TPSA=112 LogP=0.67 
Tanimoto Similarity=0.42

Actual: TPSA=105 LogP=0.94 
Tanimoto Similarity=0.27

Actual: TPSA=49 LogP=4.07 
Tanimoto Similarity=0.38

Actual: TPSA=62 LogP=2.74 
Tanimoto Similarity=0.70

Actual: TPSA=20 LogP=3.91 
Tanimoto Similarity=0.29

PD+CFG(T=500)

Actual: TPSA=101 LogP=0.18 
Tanimoto Similarity=0.28

Actual: TPSA=82 LogP=2.13 
Tanimoto Similarity=0.34

Actual: TPSA=71 LogP=2.37 
Tanimoto Similarity=0.43

Actual: TPSA=62 LogP=2.97 
Tanimoto Similarity=0.28

Actual: TPSA=12 LogP=3.93 
Tanimoto Similarity=0.21

PD+CFG(T=1000)

Actual: TPSA=148 LogP=-0.04 
Tanimoto Similarity=0.22

Actual: TPSA=102 LogP=2.85 
Tanimoto Similarity=0.14

Actual: TPSA=62 LogP=4.05 
Tanimoto Similarity=0.10

Actual: TPSA=64 LogP=3.15 
Tanimoto Similarity=0.18

Actual: TPSA=6 LogP=4.00 
Tanimoto Similarity=0.04

Figure 15: All-to-all transfer examples of experiment in Section 5.2
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Figure 16: Transfer examples of CelebA-Dialog HQ dataset. A2A-FM is scalable to large scale
all-to-all transfer tasks.
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Figure 17: Transfer examples of CelebA-Dialog HQ dataset. A2A-FM is scalable to large scale
all-to-all transfer tasks.
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Figure 18: Additional transfer examples of CelebA-Dialog HQ dataset. Here, we fixed the Beard to 0
at changing Smiling attribute and Smiling to 0 at changing the Beard attribute.
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