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Abstract

Radio Frequency (RF) signals are found through-
out our world, carrying over-the-air information
for both digital and analog uses with applications
ranging from WiFi to the radio. One area of focus
in RF signal analysis is determining the modu-
lation schemes employed in these signals which
is crucial in many RF signal processing domains
from secure communication to spectrum moni-
toring. This work investigates the accuracy and
noise robustness of novel Topological Data Anal-
ysis (TDA) and dynamic representation based ap-
proaches paired with a small convolution neural
network for RF signal modulation classification
with a comparison to state-of-the-art deep neural
network approaches. We show that using TDA
tools, like Vietoris-Rips and lower star filtrations,
and the Takens’ embedding in conjunction with a
standard shallow neural network we can capture
the intrinsic dynamical, geometric, and topologi-
cal features of the underlying signal’s manifold,
offering informative representations of the RF sig-
nals. Our approach is effective in handling the
modulation classification task and is notably noise
robust, outperforming the commonly used deep
neural network approaches in mode classification.
Moreover, our fusion of dynamical and topolog-
ical information is able to attain similar perfor-
mance to deep neural network architectures with
significantly smaller training datasets.
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1. Introduction
Radio frequency (RF) signals play a crucial role in wireless
communication systems; classifying the modulation type
used in an RF signal is essential for tasks like signal de-
coding, spectrum management, and interference mitigation.
Traditional approaches for modulation classification often
rely on handcrafted features which are difficult to develop
for specific applications or deep neural network models that
take a significant amount of signal type and environmental
variety to generalize. Due to these limitations, our goal in
this work is to explore the viability of data analysis method
known as topological data analysis (TDA) in conjunction
with the more traditional Takens’ embedding as a dynamical
representation of the data for studying RF signals with the
specific application of classifying modulation type.

TDA is a field in data analysis that focuses on the intrinsic
geometric and topological properties of data sets (Carlsson,
2009). These properties remain unchanged under contin-
uous deformations, such as stretching or bending, but not
tearing or gluing. This makes TDA particularly useful for
analyzing noisy or high-dimensional data where small-scale
features may be less important than the overall structure.
As is the case with RF modulation classification where the
objective is to recognize the global modulation without bias
towards features induced by environmental variation.

A key concept in TDA is the persistence diagram (Edels-
brunner & Harer, 2022). It is a graphical representation
that summarizes the topological features of a data set across
different scales. Each point in the diagram corresponds to
a topological feature, such as a connected component or a
hole, and its coordinates represent the “birth” and“death”
scales of that feature. Features that persist across a wider
range of scales are considered more significant.

TDA has been widely used in machine learning-based data
analysis. These approaches use a vectorization of the result-
ing persistence diagram as input for a neural network. Pop-
ular methods for vectorizing persistence diagrams (Barnes
et al., 2021) include persistence images (Adams et al., 2017),
persistence landscapes (Bubenik et al., 2015), Adcock-
Carlsson coordinates (Adcock et al., 2013), and template
functions (Perea et al., 2023).
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In the context of time series data, TDA offers a powerful
framework for capturing the underlying dynamics and iden-
tifying hidden patterns. Common approaches for studying
time series data using TDA are based on first construct-
ing point cloud data through, for example, Takens’ embed-
ding (Takens, 2006). The standard method then uses the
Vietoris-Rips filtration on the metric space to construct sim-
plicial complexes from the embedded time series data for
a given distance threshold. By incrementing the distance
threshold we can capture the persistent homology through
the distant filtration by studying the changing simplicial
complex homology.

By applying these methods, TDA can be used to perform var-
ious analysis tasks on time series data, including anomaly de-
tection (Umeda et al., 2019), change point detection (Zheng
et al., 2023; Ravishanker & Chen, 2019; Guralnik & Srivas-
tava, 1999; Islambekov et al., 2020; Myers et al., 2023b),
and time series classification (Umeda, 2017; Karan & Kay-
gun, 2021; Majumdar & Laha, 2020).

Related work introduced the concept of topological fusion
of persistence image (Myers et al., 2023a) or TopFusion.
We build on this method in this work by fusing multiple
persistent homology filtrations as well as a heat map rep-
resentation of the Takens’ embedding into a single multi-
dimensional image that can be analyzed with convolutional
neural network architectures designed for image analysis.

Organization This work is organized as follows. We be-
gin by introducing the needed background information in-
cluding RF modulation, sublevel set persistence, Vietoris-
Rips filtration, persistence images, and the heat map of
a Takens’ embedding. Next we overview our method of
fusing each of the signal processing methods into a single
multi-dimensional image. Lastly we apply our method to
two datasets (RadioML (2018) (O’Shea et al., 2018) and
PanoRadio (Scholl, 2019)) and show that our method per-
forms comparably to a pure deep learning approach with
reduced data requirements.

2. Background
In this section we will introduce several commonly used
tools from TDA for time series analysis. Additionally, we
will pair these descriptions with simple examples.

TDA studies the shape of data to gain understanding of
the underlying system. In this work we leverage two tools
from TDA for time series analysis: persistent homology
of a Vietoris-Rips filtration and sublevel set persistence.
The output of these filtrations is a persistence diagram Dp

that captures the topology of the data at dimension p over
various scales which then also captures information about
the underlying geometry. A more thorough background on

TDA, and persistent homology specifically, can be found
in (Edelsbrunner & Harer, 2008; Munch, 2017; Perea, 2018)

In section 2.1 we introduce RF modulation with an example,
in section 2.1.1 we introduce sublevel set persistence as
a method of applying persistent homology to time series,
in Section 2.1.2 we overview persistent homology using
Vietrois-Rips filtrations of point cloud data derived from
time series, and in Section 2.1.3 we provide an overview of
a common approach for vectorizing persistence diagrams
into an image known as a persistence image.

2.1. Radio Frequency Modulation

In wireless communication systems, information cannot be
directly transmitted through free space. Instead, radio fre-
quency (RF) waves act as a carrier to convey the information
signal. RF modulation refers to the process of imprinting the
information signal onto the carrier wave. This is achieved
by varying specific characteristics of the carrier wave in
accordance with the information signal. The three primary
characteristics of a carrier wave that can be modulated are:

• Amplitude: amplitude modulation varies the amplitude
of the carrier wave in proportion to the information
signal.

• Frequency: frequency modulation varies the frequency
of the carrier wave in proportion to the information
signal.

• Phase: phase modulation varies the phase of the carrier
wave in proportion to the information signal.

The choice of modulation technique depends on factors such
as the type of information being transmitted, desired signal
robustness, and spectral efficiency.

As an example, On-Off Keying (OOK) is a simple form
of amplitude modulation where the information signal is
a binary stream of data (e.g., 0s and 1s). A logic ”1” is
represented by transmitting a carrier wave at a constant
amplitude (carrier on), while a logic ”0” is represented by
completely suppressing the carrier (carrier off). Fig. 1
illustrates the concept of OOK modulation.

The figure shows a binary stream (top) and the correspond-
ing OOK modulated RF signal (bottom). During a ”1”, the
carrier wave is transmitted at a constant amplitude. During
a ”0”, the carrier is completely suppressed. By analyzing
the presence or absence of the carrier wave, the receiver
can recover the original information signal. In this work
we will attempt to distinguish between more complicated
modulations that are listed in Section 4.
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Figure 1. Example signal from OOK modulation.

2.1.1. SUBLEVEL SET PERSISTENCE

We now provide an introduction to persistence, as it applies
to computing persistence of the sublevel sets of a time series.

For time series data we assume a single variable function
f : R→ R. Given r ∈ R, we define the sublevel set below r
as f−1(−∞, r]. As the filtration parameter r increases, we
can tracking how the homology of the sublevel sets change.
In the case of 1-D time series data these changes would
only occur in D0 since we are only interested in connected
components and no changes would occur until reaching an
extrema in the signal assuming the function f satisfies some
general and standard conditions (e.g., q-tame (Chazal et al.,
2016)).

For extrema being local minima, we add new connected
component “born” at height rB . For the case of local ex-
trema being maxima two existing sets (or components) are
combined, each of which were born at rB and r′B . Form
this information we follow the Elder Rule (Edelsbrunner
& Harer, 2010), assuming rB ≤ r′B and the maxima is
at rD, then we say that the component born at r′B dies
going into rD and the resulting set assumes the label rB .
The pair (r′B , rD) ∈ D0 is called a persistence pair in the
zero-dimensional sublevel set persistence. We continue gen-
erating the persistence pairs as r increase from −∞ to∞.
For the case of any unpaired births, we set a death coor-
dinate of∞ and label this persistence pair as an essential
classes. As such, the resulting persistence diagram exists in
the extended plane R2

.

The lifetime or persistence of a pair (bi, di) ∈ Dp(f) is
defined as `i = di − bi. In this paper, our functions are
only sampled on a finite domain, with the first sample at
time ta and the last sample at time tb. We obtain a con-
tinuous function over [ta, tb] by using a piece-wise linear
interpolation between consecutive samples, and extending
the function to ±∞ by extending the first (resp., last) edges
to rays. Doing so allows us to define a persistence diagram
that does not have critical points on the boundary of our time
series. As such, we study the persistence points where both

coordinates are finite, and omit persistence points that con-
tain an unbounded coordinate. However, for demonstrative
purposes we will still show the essential class persistence
pair in our example in Fig. 2.

Figure 2. Demonstrative example of sublevel set persistence ap-
plied to time series data.

The example function shown in Fig. 2 has three local min-
ima and two local maxima. The resulting persistence dia-
gram captures how these minima and maxima are paired
together through sublevel set persistence with one essential
class that will be ignored when we generate our persistence
images. The algorithm used to calculate the this persistence
diagram is detailed in (Myers et al., 2022).

2.1.2. VIETORIS-RIPS FILTRATION

A simplicial complex is a generalization of a graph to higher
dimensions, which are collections of simplices at various
dimensions (e.g., points are zero-dimensional, edges are
one-dimensional, and faces are two-dimensional simplices).
These simplices are subsets of a vertex set σ ⊂ V , and
we require for face closure such that if σ ∈ K and τ ⊆
σ, then τ is also in K. For data that is stored as vectors
(point cloud χ) we can directly form a simplicial complex
using the distance between points. For time series data
we can generate point cloud data by performing Takens’
embedding. Takens’ embedding of a time series embeds
a signal x(t) ∈ R to χ(t) ∈ Rn by using a delay τ with
χ(t) = [x(t), x(t + τ), x(t + 2τ), . . . , x(t + (n − 1)τ)].
Applying this over the entire time series results in a point
cloud χ.

To generate an abstract simplicial complex (ASC) from the
point cloud, a Vietoris-Rips complex is used where we build
the ASC Kr for any fixed parameter r ≥ 0 by including
all simplices with distance at most r; i.e. Kr = {σ ⊆ V |
d(u, v) ≤ r for all u, v ∈ σ}, where d is a distance function.
Zero-dimensional simplices, the vertices of the complex, are
all added at r = 0. An edge uv, which is a 1-dimensional
simplex, is present in Kr for any r value above d(u, v).
Higher dimensional simplices such as triangles are included
when all subedges are present.

Generating simplicial complexes as r increases results in
a sequence of ASCs that we can use to study the persis-
tent homology of the point cloud data. Persistent homol-
ogy (Zomorodian & Carlsson, 2004), a filtration tool from
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the field of TDA (Edelsbrunner et al., 2002; Zomorodian &
Carlsson, 2004), is used to gain a sense of the shape and size
of a dataset at multiple dimensions and filtration values. For
example, it can measure connected components (dimension
zero), holes (dimension one), voids (dimension two), and
higher dimensional analogues, as well as an idea of their
general size or geometry. Persistent homology measures
these shapes using a parameterized filtration to detect when
homology groups are born (appear) and die (disappear). In
this case the parameterization filtration uses the parameter r
for point cloud data.

By incrementing r we create a nested sequence of ASCs

K0 ⊆ K1 ⊆ K2 ⊆ . . . ⊆ Kn. (1)

We then calculate the homology of dimension p for each
complex, Hp(Ki), which is a vector space representing the
p-dimensional structure of the space such as components,
holes, voids, and higher dimensional features. However, this
information does not yet yield how the homology of each
ASC is related to the next ASC. To get this information, per-
sistent homology uses the inclusions on the ASCs to induce
linear maps on the vector spaces resulting in a construction
called a persistence module V:

Hp(Kα0) ↪→ Hp(Kα1) ↪→ Hp(Kα2) ↪→ . . . ↪→ Hp(Kαn),
(2)

where ↪→ are the maps induced by the inclusion map be-
tween ASCs. It should be noted that in the sequence of
ASCs, each vertex must be unique and consistently identi-
fied.

The appearance and disappearance of classes at vari-
ous dimensions in this object can be tracked, resulting
in a summary known as a persistence diagram D =
{D0, D1, . . . , Dp}. For each homology generator which
appears (born) at Kb and disappears (dies) at Kd, we add
the persistence [b, d] in the persistence diagram.

For example, consider Fig. 3 which shows point cloud
data and the ASCs as r ∈ [0.00, 0.43, 0.56, 0.83, 1.52]. Ad-
ditionally, this figure shows the corresponding persistence
diagram for dimensions 0 and 1 as D0 and D1, respectively.

For D0 all persistence pairs are born at 0 since these are
the components which begin as all the points in the point
cloud represented as vectices in the first simplicial complex.
These components begin to connect where persistence pairs
in D0 die following the Elder Rule. At r = 0.56, all of the
components are combined into one component.

For D1 the loops or holes in the ASCs are tracked through
the filtration. At r = 0.43 the first, smaller hole is formed
as shown in the ASC. This hole persists until approximately
r = 0.83 in which is fills in resulting in the persistence
pair [0.43, 0.83]. The second, larger hole first forms when
the point cloud is fully connected at r = 0.56. This hole

r = 0.00 r = 0.43 r = 0.56

r = 0.83 r = 1.52

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
rb
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0.2

0.4

0.6

0.8

1.0

1.2
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r d
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D0

Persistence Diagrams D0 and D1

Figure 3. Example demonstrating persistent homology of point
cloud data using the Vietoris-Rips complex filtration.

persists until r = 1.52 resulting in the persistence pair
[0.56, 1.52]. We can see that the filtration of r results in two
main persistence pairs in D1 capturing the general shape
and size of the data.

2.1.3. PERSISTENCE IMAGES

Persistence images (PIs) (Adams et al., 2017) are a stable
method for vectorizing a persistence diagram for applica-
tions in machine learning. The procedure with a toy example
persistence diagram for calculating the PI for a persistence
diagram Dp of dimension p is shown in Fig. 4.

The first step in the method is to get the birth-persistence
representation of a persistence diagram T : R2 → R2,
where each persistence pair (bi, di) ∈ Dp is mapped to the
pair (bi, di−bi) as shown in Fig. 4 (a), where the persistence
(or lifetime) is `i = di − bi. The second step is to represent
T (Dp) as a surface using each pair and a differentiable
distribution function g(x, y), which is the Gaussian kernel
here or

gG(x, y) =
1

2πσ2
e((x−−µx)

2+(y−µy)
2)/2σ2

, (3)
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Figure 4. Persistence image pipeline.

where σ is the standard deviation and µx and µy are the
mean or center point of the distribution. In this work we set
σ = 0.05pmax for all experiments with pmax as the maxi-
mum persistence. We can now define our surface function
of T (Dp) as

S(x, y) =
∑

(bi,`i)∈T (Dp)

w(bi, `i)gG(x, y), (4)

where µx = bi, µy = `i for gG, and we use a linear weight-
ing function on the persistence as w(bi, `i) = `i. To prac-
tically apply the surface function as an impute to machine
learning architectures we must create a finite sized represen-
tation of the surface. In this work we do this by creating a
tessellation of squares (pixels) that cover the area occupied
by [bmin − 3σ, bmin + pmax + 3σ]× [−3σ, pmax + 3σ] re-
sulting in a square area, where bmin is the minimum birth
value. These pixels have resolution p× p with the width of
the square pixels wp is chosen as wp = (pmax + 6σ)/p.

2.2. Heat Map of Takens’ Embedding

Another approach to get an image from the Takens’ embed-
ding which captures the dynamics more directly is to use
a heat map of the Takens’ embedding. When the embed-
ding dimension is two (n = 2), the Takens’ embedding can
be visualized as a heat map, where each embedded vector
xt ∈ R2 is represented by increasing the pixel value of the
corresponding location of the square cover of the image. We
accomplish this by using a simple image-based approach to
represent the density of points in this cover. Specifically, we
divide the embedding space into a grid of pixels. For each
pixel, we count the number of data points that fall within

its boundaries. The color intensity of a pixel is then deter-
mined by this count. Brighter colors indicate regions with
higher concentrations of data points, while darker colors
represent sparser areas. This approach provides a quick vi-
sual interpretation of the data distribution in the embedding
space.

3. Method
In this section we describe our method of topologically and
dynamically representing time series data from RF data
sources to classify and, in future work, study the data from
this perspective. Specifically, we first describe how we
fuse our multiple views of the signal into a single multi-
dimensional image and then second how we train a Convo-
lution Neural Network using these images.

We first introduced our method of fusing multiple topologi-
cal views of a data source through our TopFusion Method-
ology (Myers et al., 2023a). Here we modify this procedure
for the application of studying time series data by includ-
ing two topological filtrations (Vietoris-Rips and sublevel
set persistence) as well as the heat map of the Takens’ em-
bedding. This general pipeline is shown in Fig. 5 where
there are three branches of studying the time series data
that are fused together into a four-dimensional image (two
dimensions from the Vietoris-Rips Filtration).

The first time series analysis branch begins with a two-
dimensional Takens’ embedding with the delay parameter τ
chosen using the autocorrelation method (Box et al., 2015)
due to modulation signals being compositions of sinusoidal
functions making the linear autocorrelation method appro-
priate. We next create a heat map from the probability
distribution of the embedding which captures the dynamics
of the time series. This heat map image is chosen to be the
same size as the resulting persistence images from the other
branches.

The second branch takes the zero-dimensional sublevel set
persistence in O(n) = n log(n) complexity with n here
being the length of the signal using the algorithm provided
in (Myers et al., 2020). This method captures the relative
peaks and valleys (minima and maxima) in the time series
data as described in Section 1. We then represent the persis-
tence diagram as a persistence image of the same size as the
heat map. In this work we exclusively used 20× 20 pixel
images.

The third branch follows the standard Vietoris-Rips filtra-
tion of the Takens’ embedding of the time series. Again
we chose the delay using the autocorrelation method and a
dimension of three. We used both the zero and one dimen-
sional persistence diagrams but only show the diagram for
dimension one. We again vectorized both of these diagrams
using persistence images.
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Time Series

2D Embedding

Sublevel Set Persistence

3D Embedding

Persistence Image

Heat Map

Vietoris-Rips Persistence Persistence Image

Fusion

Figure 5. Method pipeline for studying RF time series using topological data analysis and fusion.

Lastly, we can combine these images into a fused image for
analysis with a two-dimensional convolution neural network.
Specifically, the simple CNN we used in this work has
two convolutional layers, each with 5 × 5 filters, and each
followed by maximum pooling with filter size 2 × 2, and
one fully connected layer. For all of our experiments we
trained the network for 30 epochs.

As an additional point of comparison we used spectrograms
of the signal. Each spectrogram was 25 × 25 pixels. We
constructed a spectrogram of this shape by using a sliding
window over the signal with a length of a twentieth of the
length of the signal with each window overlapping by 25%
of the length of the window.

4. Data and Results
In this section we provide results from two benchmark
datasets: Panoradio (Scholl, 2019) and RadioML (O’Shea
et al., 2018). Both of these datasets are used for testing RF
signal classification methods over various levels of addi-
tive Gaussian signal noise. We provide results comparing
our method to the published results where we are only us-
ing a fraction of the training set and a significantly simpler
convolutional neural network.

In addition to these results we also provide the training times
in detail in the Appendix A.1, which shows that the overall

lowest computation and training time was for both sublevel
set persistence and heat maps. Additionally, the training
time for the ResNet on the signal directly was the slowest.

We repeat our experiments for each dataset to test both the
noise robustness and generalization of the models. For noise
robustness we retrain the models at each Signal-to-Noise
Ratio (SNR) and measure the classification accuracy, while
for generalization we train a model using low-noise data
and test at the higher-noise levels.

4.1. Panoradio

The Panoradio (Scholl, 2019) dataset is a collection of RF
signals designed for training machine learning models in
RF signal mode classification. The mode differs from the
modulation in that it is both the modulation and baud rate
or application pairs. The signals are synthetically generated
signals representing 18 RF modes. A total of 120K signals
were generated in this dataset for training; however, we only
use 9K signals for our topological and dynamical representa-
tions. This dataset also incorporates three main impairments
to simulate realistic radio signal reception conditions: Gaus-
sian Noise to simulate the common random interference in
RF signals, Watterson fading to simulate signal propagation
through the ionosphere, and random frequency and phase
offset simulating slight transmission shifts.

For the model retrained at each SNR we get comparable if
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Figure 6. Classification accuracies for Panoradio dataset with mod-
els trained at each SNR from -10 to 25 dB.

not better results using our fused topological filtration and
dynamical images using only 9K training signals, 500 rep-
resentives of each class - only 7.5% of the available training
data. We tested various combinations of our TDA feature
extractors including: heat map, sublevel set persistence, and
Vietoris-Rips. Additionally, we trained a ResNet described
in (Ismail Fawaz et al., 2019), which was designed for time
series classification, using only the 9K signals as an addi-
tion point of comparison. For all of the reported results we
retrained each model 5 times providing a band of accuracy
values. We did two training experiments: the first using a
single model trained only on higher SNR (SNR = 25dB)
data and tested on SNRs from -10 to 20 dB (see Fig. 7) as
well as a new model trained and tested at each SNR (see
Fig. 6). The results in (Scholl, 2019) were from retraining
the model at each SNR as shown as ResNet-PanoRadio in
Fig. 6.

These results show that using the fusion of the heat maps and
the persistence images provides comparable results to the
ResNet in (Scholl, 2019) (ResNet-PanoRadio in Fig. 6) for
SNR values between -5 and 25 dB. However, at -10 dB we
see that the our approach begins to outperform and is more
noise robust than the ResNet. We also note that the Vietoris-
Rips persistence image performs the worst compared to the
sublevel set persistence and the heat map. We believe this
sensitivity to noise is due to the additive noise having a
more serious affect on the topology than for methods such
as sublevel set persistence which still capture the structure
of the signal even with significant amounts of noise. As
such, we believe that using the combination of the sublevel
set persistence and heat map provide enough information to
accurately classify the RF modes with limited data. As an
additional point of comparison, we also trained our CNN on
spectrograms of the signals as this is a common method for
RF signal analysis. Our results show that the spectrogram

performs worse than both the heat map and sublevel set
persistence for all SNRs.

We additionally ran a second experiment testing the per-
formance of the CNN when a single model is trained at
25 dB SNR and then tested at the lower SNRs as shown
in Fig. 7. These results show a faster loss in accuracy as
the SNR decreases. We believe this is due to the learned
topological and dynamical features not being significantly
present or not at the same scale when the SNR is increased.
However, we see the same relative performance between the
various topological and dynamical data representations with
sublevel set persistence and the heat map representations
performing the best of the individual methods.

Figure 7. Classification accuracies for Panoradio dataset with
model trained at 25 dB SNR and tested on SNR from -10 to 20 dB.

4.2. RadioML

The RadioML dataset (O’Shea et al., 2018) is a modulation
classification dataset with 24 modulation schemes (classes).
This dataset also has the same three different signal impair-
ments that are found in the Panoradio dataset.

The original results (O’Shea et al., 2018) we compare to
were trained using 240k (10k of each modulation type) sig-
nals. In comparison, for our various filtration combinations
we only used 4.8k signals (200 of each modulation type) -
2% of the avaiable training data.

Our first experiment results comparing the classification
accuracy against noise level are shown in Fig. 8, where we
trained a single model at 30 dB SNR and tested at -20 to
20 dB SNR to follow the same training procedure as was
published in (O’Shea et al., 2018).

These results show similar performance as was seen in the
Panoradio dataset. Specifically, for higher SNR values (from
14 to 20 dB), the fused images perform comparable to the
ResNet even with significantly less training data. Addition-
ally, the Vietoris-Rips filtration does not perform well in
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Figure 8. Classification accuracies for RadioML (2018) dataset for
model trained at 30 dB SNR.

comparison to the other images. This strengthens the argu-
ment that just the heat map and sublevel set persistence are
suitable for capturing the information needed to analyze RF
signals. One key difference in this experiment is that the
ResNet is more noise robust than the fused methods which
is in disagreement with the findings using the Panoradio
dataset.

Our second experiment for this dataset trained a new model
at each SNR. Our results are shown in Fig. 9. We again see
comparable results to that in our first experiment with the
change of having the models be more noise robust than for
the single model experiment. We hypothesise this is due to
the significance of the dynamical and topological features
being learned at each SNR in comparison to a single model
not capturing the decreasing feature significance as the SNR
decreases.

Figure 9. Classification accuracies for RadioML (2018) dataset for
model trained at each SNR.

5. Conclusion
In this work we demonstrated that fusing both topological
and dynamical information generated from time series data
is useful for studying RF signal data. Specifically, we show
comparable classification accuracy for both mode and mod-
ulations using two benchmark datasets. We also showed that
these results could be achieved with a significantly smaller
neural network (compared to the standard ResNet) and with
a fraction of the required training data.The reduced demands
on training data abundance suggest greater adaptability to
real world scenarios that may include evolving classes and
the need for efficient retraining.

In future work we plan to apply other time series analy-
sis methods that can be vectorized into images. This will
provide greater understanding of which time series anal-
ysis methods are most beneficial for studying RF signals.
Additionally, we plan to study the effect of other signal
interferences on classification accuracies to understand the
limitations of the method.
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A. Appendix
A.1. Computational Time

To best understand which topological and/or dynamical data analysis approaches are most suitable for RF signal processing
we also wanted to compare the computation time. For all of the computations we used a personal computer and trained
the CNN using CPUs. We broke the computation times into two steps: pre-processing time which is the time to apply the
topological or dynamical signal analysis methods and the training time. These results are shown in Table 1

For both experiments the computation time comparing methods are proportional with the VR filtration taking the most
preprocessing time of all the methods we studied. The heat map and the sublevel set persistence methods were the two fastest
preprocessing methods excluding the ResNet trained directly on the signal as this had no preprocessing. For the overall time,
again, both the heat map and sublevel set persistence methods show a fast processing and training time. Additionally, these
approaches showed close to or the highest accuracies for our noise sensitivity experiments.

Table 1. Computation time (personal computer trained using CPU) comparison between topological, dynamical, and time series approaches
for data processing and training.

Dataset Model Data Processing Time
(Minutes)

Training Time
(Minutes)

Total Time
(Minutes)

Panoradio
(N = 9k)

2D CNN

TDA (All) 32.4 2.6 35.0
SLSP 9.6 2.2 11.8
VR 22.8 2.3 25.1
HM 1.6 1.4 3.0

ResNet Signal 0 36.3 36.3

RadioML
(N = 4.8k)

2D CNN

TDA (All) 13.6 0.6 14.2
SLSP 2.8 0.4 3.2
VR 10.8 0.4 11.2
HM 0.4 0.3 0.7

ResNet Signal 0 27.4 27.4
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