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ABSTRACT

Continual Learning (CL) has increasingly embraced Parameter-Efficient Fine-
Tuning (PEFT) methods, particularly Low-Rank Adaptation (LoRA), to balance
task adaptability with parameter efficiency. Existing LoRA-based approaches resort
to low-rank matrices to inherently capture task-specific parameter shifts, whereas
meantime mitigate interference between tasks through architectural design (e.g.,
Mixture-of-Experts) or optimization constraint (e.g., orthogonality). However, they
largely overlook how these shifts evolve across tasks, i.e., the internal dynamics of
parameter space, which is a crucial yet underexplored factor in model forgetting.
In this work, our analysis reveals a key insight that abrupt performance drops
often coincide with drastic changes in the distribution of learned parameter shifts.
Motivated by this, we propose a simple yet effective Parameter Stability Loss
that regularizes both the sign and magnitude of parameter updates to mitigate
forgetting. Beyond training-time regularization, we also introduce a post-training
model merging step that bridges earlier directions with the current one and further
combats the inevitable drift toward new tasks. Our method Parameter Stable
LoRA (PS-LoRA) achieves state-of-the-art results on multiple continual learning
benchmarks, with performance improvements of up to 3%, and can be integrated
with existing approaches.

1 INTRODUCTION

Continual Learning (CL) (Parisi et al., 2019; Wang et al., 2024a; Wu et al., 2024) has emerged
as a crucial paradigm in natural language processing (NLP), where models are expected to learn
from a sequence of tasks without forgetting previously acquired knowledge. As NLP systems are
increasingly deployed in dynamic, real-world environments such as dialogue systems (Li et al., 2022),
personalized assistants (Yu et al., 2024a), and evolving domain applications (Chuang et al.), they
must adapt to new information over time while maintaining performance on earlier tasks. While large
pre-trained language models have shown remarkable success on static benchmarks (Brown et al.,
2020; Devlin et al., 2019; Raffel et al., 2020; Touvron et al., 2023), how to mitigate the notorious
catastrophic forgetting (McCloskey & Cohen, 1989) problem (i.e., losing knowledge learned from
earlier tasks) when trained sequentially on multiple tasks remains a daunting challenge.

Unlike traditional CL methods (Zenke et al., 2017; Kirkpatrick et al., 2017; Li & Hoiem, 2017) that
train models from scratch, recent approaches emphasize efficiently leveraging pre-trained models
to better mitigate forgetting. Specifically, state-of-the-art CL approaches increasingly adopt and
customize the Low-Rank Adaptation (LoRA)(Hu et al., 2022) strategy for sequential training, aiming
to reduce parameter interference and mitigate forgetting. For instance, AM-LoRA (Liu et al.,
2024), MoCL (Wang et al., 2024b) and MoeLoRA(Yu et al., 2024b) follow a Mixture-of-Experts
(MoE) (Jacobs et al., 1991) paradigm, selecting task-specific low-rank matrices at inference time to
enhance prediction accuracy from an architectural perspective. In contrast, InfLoRA (Liang & Li,
2024) and O-LoRA (Wang et al., 2023b) impose orthogonality constraints on the low-rank matrices
to address forgetting from an optimization perspective. While both approaches are effective, they
differ in managing parameter updates. MoE-based approaches aggregate task-specific LoRA weights
via attention mechanisms, whereas orthogonality-based methods regulate LoRA parameter updates
by constraining gradient update directions.
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Figure 1: Comparison between incremental LoRA training and our method. (a) shows the average
accuracy on all seen tasks after training on the i-th task Ti. (b) visualizes the parameter shift
distributions at each training stage for a randomly selected representative layer of the pre-trained
model. More detailed results about different task orders and parameter shifts please see Appendix B.

However, neither method directly examines how parameter shifts evolve across tasks (i.e., the internal
dynamics of parameter space), which is a crucial yet underexplored factor in model forgetting. To shed
light on this underexplored aspect, we begin with a CL task in the NLP domain. During incremental
LoRA finetuning, we observe that certain tasks cause the model to abruptly forget previously learned
knowledge, leading to a sudden drop in the overall average accuracy (e.g. after T4 in Fig. 1 (a)).
Different from prior LoRA-based CL approaches (Liu et al., 2024; Wang et al., 2024b; Wu et al.,
2025), we directly examine the parameter shift across tasks during training. Interestingly, we find that
the abrupt performance drop is consistently accompanied by rapid shifts in the distribution of model
parameters in LoRA’s subspace. As shown in Fig. 1 (b), the parameter shift pattern after training on
task T4 in the Incremental LoRA method exhibits a clear deviation from earlier tasks, coinciding with
the largest performance drop shown in Fig. 1 (a). We further verify this phenomenon across different
task orders, consistently observing the same patterns. Detailed analyses are provided in Appendix B.

Building on the observed correlation between forgetting and parameter shift in Fig. 1, we further
decouple the parameter shift into two components: magnitude and parameter-wise sign direction
(i.e., positive or negative), and apply targeted regularization to each component. We find that jointly
constraining both aspects effectively mitigates forgetting, particularly by reducing abrupt performance
drops during CL. In summary, our main contributions are as follows:

• We observe abrupt and severe forgetting during sequential training, closely tied to large shifts in
parameter space. Analyzing this in terms of magnitude and sign, we find that large updates with
opposite signs can reverse parameter directions, resulting in sharp performance drops.

• We propose a simple yet effective Parameter Stability Loss, which not only prevents reverse
parameter updates during LoRA training and mitigates forgetting, but also facilitates synergy with
state-of-the-art model merging strategies during inference to further boost CL performance.

• We conduct evaluations on diverse CL NLP and CV benchmarks with varying tasks, lengths and
orders, and our method achieves up to a 3% improvement over existing leading approaches.

2 RELATED WORK

Continual Learning aims to adapt models to new sequential tasks while maintaining the previously
acquired knowledge. Existing methods can be broadly categorized into regularization-based (Dhar
et al., 2019; Li & Hoiem, 2017; Kirkpatrick et al., 2017), optimization-based (Farajtabar et al., 2020)
and architecture-based methods (Wu et al., 2025; Liu et al., 2024; Wang et al., 2024b; Razdaibiedina
et al., 2023; Wang et al., 2022b; Qiao & Mahdavi, 2024).

• Regularization-based methods typically identify important weights and introduce penalty terms
to protect them so as to mitigate forgetting. For example, LwF (Li & Hoiem, 2017) preserves
previously learned knowledge by constraining the outputs of the model on old tasks while fine-
tuning it on new ones. In contrast, methods such as EWC (Kirkpatrick et al., 2017), IS (Zenke
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et al., 2017), KFLA (Ritter et al., 2018), and VR-MCL (Wu et al., 2024) estimate the Hessian
matrix through different techniques to identify and protect the important weights.

• Optimization-based methodes aim to improve knowledge retention by projecting update gradients
or constraining the weight update space. For instance, O-LoRA (Wang et al., 2023b) and
InfLoRA (Liang & Li, 2024) both impose orthogonal constraints on the learnable low-rank matrix
to minimize interference, while MIGU (Du et al., 2024) restricts updates to parameters with the
largest gradient magnitudes.

• Architecture-based methods design specific module architectures to help model learning and
alleviate catastrophic forgetting. For instance, MoE mechanism allocates or selects task-specific
parameter subsets and route inputs accordingly. In the context of PEFT, prompt-based methods
L2P and DualPrompt (Wang et al., 2022b;a) maintain a bank of prompts chosen per task, while
LoRA-based methods such as MoCL (Wang et al., 2024b) and AM-LoRA (Liu et al., 2024)
dynamically combine multiple LoRA modules to reduce interference via task-aware routing.
These mechanisms reduce inter-task interference across different parameter locations.

Our proposed method extends the research line of optimization-based approaches. Unlike prior
work that uses orthogonality and MoE approach addressing different position or direction parameter
collision, we conduct a parameter-wise analysis during training, identifying a key issue in incremental
learning that large shifts in parameter distributions lead to forgetting and address it effectively.

Model Merging has become a de-facto practice in multi-task learning with large foundation mod-
els (Raffel et al., 2020; Touvron et al., 2023; Devlin et al., 2019). Different from traditional multi-task
learning, which jointly updates the full model by weighting gradients from multiple tasks, model
merging focuses on extracting task-specific parameter shift, such as LoRA, and combining these
shifted parameters while keeping the shared backbone frozen. These approaches enable efficient
knowledge transfer by applying various merging strategies to external memory components trained
independently on different tasks. For example, Task Arithmetic (Ilharco et al., 2023) merges task
vectors obtained through task-specific fine-tuning using direct interpolation. Ties-Merging (Yadav
et al., 2023) and Fisher-merge (Matena & Raffel, 2022) demonstrate that sparsity and parameter sign
play a critical role in the effectiveness of merging. Furthermore, MagMax (Marczak et al., 2024)
highlights the importance of parameter magnitudes in model merging. However, most model merging
approaches primarily focus on merging multi-task learning task vectors, with limited attention to
achieving the adaptation-retention trade-off in CL scenarios.

3 METHOD

3.1 PRELIMINARIES

Continual Learning Setup. Suppose there are N sequential tasks {T1, T2, . . . , TN}, where each task
Tt is associated with a training dataset Dt = {(x(t)

i , y
(t)
i )}|Dt|

i=1 containing |Dt| examples. Let fθ(·)
denote the predictive model parametrized by θ. Since samples from historical tasks are inaccessible,
the loss function for CL when training on current task Tt is given by:

Lf =
∑

(x,y)∈Dt

− log fθ(y | x). (1)

Low-Rank Adaptation (LoRA). Given a pre-trained fixed weight matrix W0 ∈ Rd×k, LoRA (Hu
et al., 2022) constrains the weight update ∆W by representing it as a product of two low-rank
matrices, enabling parameter efficient fine-tuning:

W = W0 +∆W = W0 +AB, (2)
where A ∈ Rd×r, B ∈ Rr×k are trainable parameters, and the rank r ≪ min(d, k). During inference,
the parameters ∆W can be incorporated into W0 without introducing any extra computation cost.

For each task Ti, fine-tuning yields a pair of corresponding low-rank matrices AiBi, which is qualified
to be a task vector in model merging methods (Yadav et al., 2023; Matena & Raffel, 2022), capturing
task-specific parameter shift and informing merging strategies to enhance overall performance.

3.2 MOTIVATION: LARGE-SCALE PARAMETER SHIFT

Rather than proposing an alternative to prior LoRA-based continual learning methods (Wang et al.,
2023b; Liu et al., 2024; Wang et al., 2024b), which employ orthogonality constraints or MoE strategies

3
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to mitigate forgetting, we complement these efforts by taking a parameter-wise perspective to examine
the underlying training dynamics. Our analysis reveals that large shifts in parameter distributions,
particularly excessive updates with opposite signs, are strongly associated with severe forgetting.

Significant performance drop in CL is often aligned with large parameter distributional shifts.
As shown in Fig. 1 (a), we plot the training accuracy histogram of IncLoRA (defined in Eqn. (3)) over
sequential tasks and observe a notable drop in average accuracy after learning task T4. This decline is
a common phenomenon in CL (Caccia et al., 2022), with more examples provided in Appendix B.
This huge decline aligns with a substantial shift in the distribution of LoRA parameters, as illustrated
in Fig. 1 (b). Here, the visualized parameter distributions correspond to the cumulative parameter
shift

∑t
i=1 ∆Wi after task Tt, reflecting the progressive evolution of LoRA updates relative to the

frozen pre-trained model.

W = W0 +

t∑
i=1

∆Wi = W0 +

t−1∑
i=1

AiBi +AtBt. (3)

We further investigate how parameter dynamics relate to the above large forgetting phenomenon.
Building upon the analysis in Fig. 1 (b), we conduct a more fine-grained investigation, with the results
presented in Fig. 2. We decouple the parameter shift ∆W into two components: the previously learned
∆Wi = AiBi and the newly learned ∆Wt = AtBt. Except for ∆W1, which corresponds to the
initial update and naturally exhibits a relatively large change, the LoRA parameters learned for tasks
T2 and T3 (i.e., ∆W2 and ∆W3) show only minor shifts in parameter values. However, for T4, which
leads to a sharp performance drop, we observe a substantial shift in the newly learned parameters
∆W4. This indicates a strong correlation between significant parameter shifts and forgetting.

Δ#! Δ#" Δ## Δ#$

Figure 2: Detailed analysis of parameter shift in IncLoRA illustrated in Fig. 1(b), where ∆Wi denotes
the i-th specific learned AiBi reflecting the parameter shift introduced by Ti.

Bottom k (%)

Figure 3: Evaluation results of dif-
ferent update subsets selected from
the bottom-k% parameters of ∆Wt,
analyzing the effects of sign consis-
tency (same vs. opposite) and update
magnitude on performance.

Large updates with opposite signs flip the direction of
parameters, causing a sharp performance decline. To bet-
ter understand how parameter changes affect performance,
we perform a decomposition analysis on the update matrix
∆Wt at task Tt, separately examining the effects of sign and
magnitude. Specifically, we select the bottom-k% parameters
from ∆Wt. Then, we divide these parameters based on their
sign consistency with the accumulated updates from previ-
ous tasks, i.e.,

∑t−1
i=1 ∆Wi, yielding two subsets: ∆Wsa

t and
∆Wop

t . We evaluate the performance using weight: W =
W0 +

∑t−1
i=1 ∆Wi +∆W⋆

t where ⋆ ∈ {same, opposite, both}.
The corresponding performance is shown in Fig. 3. It is ev-
ident that retaining only the same-sign parameters preserves
high performance, while incorporating large opposite-sign
updates, as highlighted by the red box, leads to a substantial performance drop. However, manually
removing parameters with conflicting signs after each task yields performance gains under a small
number of tasks, it fails to prevent catastrophic forgetting as the task count grows. More details of
this experiments are in Appendix D.1.

These findings motivate us to constrain model updates and prevent sign-flipping behaviors use a
regularization-based method, thereby alleviating forgetting.
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3.3 THE PROPOSED PS-LORA ALGORITHM

Parameter Stability Loss. Based on the observation in Fig. 3 that large sign-flipping parameter
updates highly correlate with severe forgetting, we propose a parameter stability loss Ls to constrain
such disruptive changes. As defined in Eqn. (4), the designed Ls consists of two items: (a) a
magnitude constraint term, which applies L2 norm to the newly learned LoRA parameters AtBt to
suppress excessive updates; (b) a sign alignment term, which leverages the product tanh(α · (AtBt)) ·
tanh(α · (

∑t−1
i=1 AiBi) to encourage alignment in direction between new and previous updates, where

α denotes the temperature parameter. When AtBt and
∑t−1

i=1 AiBi exhibit consistent element-wise
signs, the resulting product tends toward 1, thus minimizing the associated loss.

Ls = ∥AtBt∥22︸ ︷︷ ︸
(a)

·
(
1− tanh (α · (AtBt)) · tanh(α · (

∑t−1
i=1 AiBi))︸ ︷︷ ︸

(b)

)
. (4)

During sequential training, we simply combine the proposed Ls with the fine-tuning loss Lf shown
in Eqn. (1). The overall training loss function L is given as L = Lf + λLs, where λ refers to a
hyper-parameter. As shown in Table 6, adding Ls effectively mitigates large updates with opposite
signs, thereby alleviating forgetting and improving the average accuracy.

According to the analysis in Sec. 3.2, we introduce the PS-LoRA algorithm, which combines a
Parameter Stability loss to guide the training of LoRAs towards minimal parameter shifts. The
resulting LoRAs are thus well tailored for a post-training merging strategy, further improving CL.
The following paragraphs detail each component, and the overall procedure is listed in Algorithm 1.

0.0 0.5 1.0 1.5

0.5

1

1.5 PS-LoRA
IncLoRA
O-LoRA

Figure 4: Distributions of different
LoRAs. Vectors represent the LoRA
directions; the angle between each
vector and the axis indicates its devi-
ation from the earliest task. Vectors
in dotted lines denote merged LoRAs.

As shown in Fig. 4, we visualize the angle between the LoRA
directions of the most recent task and those of the initial task,
where we quantify this similarity using the Frobenius inner
product sim(A,B) = ⟨A,B⟩F

∥A∥F ∥B∥F
, where⟨A,B⟩F = Tr(A⊤B).

The results confirm that our parameter stability loss signif-
icantly enhances stability, keeping LoRA updates closer to
earlier directions. Meantime, we can still observe an inevitable
shift in LoRA directions (highlighted in the red region), where
the updates drift toward newer tasks after continual training.
This naturally raises the question: can we take a step further
to bridge such shift? Motivated by the superior performance
of model merging in balancing between multiple tasks, we
introduce a post-training model merging stage. This stage
consolidates prior LoRA updates by realigning them toward
an intermediate direction, thereby better retaining knowledge from earlier tasks.

Merging Strategies. Building on prior model merging strategies and findings (Yadav et al., 2023;
Marczak et al., 2024) that emphasize the importance of large-magnitude parameters in resolving
merging conflict, we merge multiple LoRA weights ∆Wi (i∈ 1, 2,. . ., t) obtained from sequential
training and prioritize preserving parameters with higher magnitudes. As a post-training step, this
merging strategy complements the training-time parameter stability loss, as described below,

W = W0 +∆W[1:t] = W0 +M(∆W[1:t−1],∆Wt),

[M(∆W1,∆W2)]i,j =

{
[∆W2]i,j , if | [∆W2]i,j | ≥ | [∆W1]i,j |
[∆W1]i,j , otherwise

for all i, j,
(5)

where M(·, ·) denotes an element-wise merging operation that selects, for each position (i, j), the
value with the larger absolute magnitude between two weight update matrices. And the notation
∆W[1:t] means the merged model LoRA matrices accumulated from all t tasks.

Remark. The merging process only requires storing the current LoRA matrices and the previously
merged version, making it efficient in both computation and memory. During inference, the merged
weights can be directly integrated into the base model without introducing additional overhead. We
defer a detailed analysis to Appendix D.8.
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Figure 5: Overview of the proposed PS-LoRA. During training, Parameter Stability Loss is applied
to the new LoRA to prevent sign-flip updates. After training, all LoRAs are merged by selecting the
weights with the largest absolute magnitude and then added to the pre-trained model for inference.

Algorithm 1: The Proposed PS-LoRA Algorithm
Input: Pretrained weights W0, training datasets {D1, . . . ,DN}, hyper-parameters r, λ.
Output: Merged LoRA update ∆W
for t = 1 to N do

Initialize At ∈ Rd×r, Bt ∈ Rr×k;
for each minibatch (x, y) ∈ Dt do

Forward pass: h = W0x+∆W[1:t−1]x+∆Wtx;
Compute the total loss L = Lf + λLs as defined in Eqn. (1) and Eqn. (4);
Update At,Bt by minimizing L;

Merge all trained LoRAs (i.e., ∆Wi, i = 1, 2, .., t) based on Eqn. (5) ;

3.4 THEORETICAL ANALYSIS

To provide theoretical justification for our method, we consider the simplest case of two sequential
training datasets DA and DB . Let L denote the loss function, θ the model parameters, and θ∗i the
parameters after training on task Di. Assuming that L is twice differentiable and smooth near θ∗A,
that the model has approximately converged to DA (i.e., ∇LA(θ

∗
A) ≈ 0), and that parameter updates

are small, the loss increase on DA can be approximated by a second-order Taylor expansion:

∆LA ≈ 1
2 (θ − θ∗A)

⊤HA(θ − θ∗A), (6)
where HA is the Hessian of LA at θ∗A. Since HA is positive semi-definite near a local minimum, the
increase admits the bound ∆LA ≤ 1

2
λmax∥θ − θ∗A∥2, with λmax denoting the largest eigenvalue of

HA. This result shows that forgetting depends on both the magnitude of parameter updates and the
curvature of the loss surface. Our proposed PS-Loss is designed to mitigate this effect by explicitly
constraining ∥θ − θ∗A∥2 from two complementary perspectives: (i) a sign constraint, which prevents
disruptive flips in parameter direction that can lead to functional interference with previous tasks,
and (ii) a magnitude constraint, which limits the scale of parameter updates and thus reduces the
risk of loss increase in high-curvature directions. Together, these constraints provide a principled
mechanism to alleviate forgetting, consistent with the theoretical bound above.

4 EXPERIMENTS

Benchmarks. Following O-LoRA (Wang et al., 2023b), SD-LoRA(Wu et al., 2025) and Tree-LoRA
(Qian et al., 2025), we evaluate on three widely used CL benchmarks across NLP and CV modalities:
Standard & Long, TRACE, and ViT Benchmark. The Standard & Long benchmark, built from
GLUE (Wang et al., 2018), SuperGLUE (Wang et al., 2019), and IMDB (Maas et al., 2011), provides
task sequences of length 4 and 15 to assess short- and long-horizon NLP performance. The TRACE
benchmark includes 8 sub-datasets covering multilingual tasks, code generation, and mathematical
reasoning. For ViT Benchmark, we adopt Split ImageNet-R with varying task lengths. A detailed
description of these benchmarks can be found in Appendix A.
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Table 1: Experimental results on Standard & Long CL benchmarks with t5-large and Llama-2-7b-chat.
Bold and underlined numbers denote the best and second-best results, respectively.

Method Standard (N = 4) Long (N = 15)
Order1 Order2 Order3 Acc Long1 Long2 Long3 Acc

google-t5/t5-large

SeqLoRA 25.7 24.0 35.2 28.3±6.0 12.3 10.1 10.1 10.8±1.3

EWC(Kirkpatrick et al., 2017) 48.7 47.7 54.5 50.3±3.7 45.3 44.5 45.6 45.1±0.6

LwF(Li & Hoiem, 2017) 54.4 53.1 49.6 52.3±2.5 50.1 43.1 47.4 46.9±3.5

L2P(Wang et al., 2022b) 60.3 61.7 61.1 60.7±0.7 57.5 53.8 56.9 56.1±2.0

IncLoRA 68.6 59.7 75.0 67.8±7.7 60.3 60.5 53.2 58.0±4.2

MIGU(Du et al., 2024) 77.2 76.7 75.4 76.4±0.9 71.3 67.7 67.3 68.7±2.2

O-LoRA(Wang et al., 2023b) 74.9 73.4 75.6 74.6±1.1 71.5 66.7 71.3 69.8±2.7

SD-LoRA(Wu et al., 2025) 67.7 55.9 60.9 61.5±5.9 69.3 69.8 70.0 69.7±0.4

MoCL(Wang et al., 2024b) 75.6 75.4 76.7 75.9±0.7 69.6 70.2 70.9 70.2±0.7

AM-LoRA(Liu et al., 2024) 78.1 79.8 76.2 78.0±1.8 72.7 73.3 71.8 72.6±0.8

PS-LoRA 80.0 79.1 79.6 79.6±0.5 74.2 76.5 75.7 75.5±1.2

meta-llama/Llama-2-7b-chat

SeqLoRA 73.4 75.6 75.5 74.8±1.2 69.0 70.5 66.9 68.8±1.8

IncLoRA 75.9 72.6 76.8 75.1±2.2 70.7 70.8 69.2 70.2±0.9

MIGU(Du et al., 2024) 77.7 77.1 78.9 77.9±0.9 71.2 70.6 70.5 70.5±0.4

OLoRA(Wang et al., 2023b) 76.8 75.7 75.7 76.0±0.6 71.1 68.9 73.8 71.3±2.5

SD-LoRA (Wu et al., 2025) 76.6 74.5 76.8 76.0±1.3 70.2 68.4 70.9 69.8±1.3

MoCL(Wang et al., 2024b) 78.4 77.7 78.4 78.2±0.4 75.2 70.7 74.8 73.6±2.5

PS-LoRA 80.9 81.2 80.4 80.8±0.4 76.7 76.1 76.2 76.3±0.3

Backbones. For the Standard & Long benchmark, we follow O-LoRA (Wang et al., 2023b) to evaluate
both encoder-decoder (T5-Large (Raffel et al., 2020)) and decoder-only (LLaMA-2-7B (Touvron
et al., 2023)) models. For TRACE generation tasks, we include three LLM backbones: Mistral-7B-
Instruct-v0.3, LLaMA-2-7B, and Gemma-2B-it. In addition, for ViT tasks we follow SD-LoRA (Wu
et al., 2025) and use ViT-B/16 (Dosovitskiy et al., 2020) as the backbone. Please see Appendix A.2
and C.2 for the definition of the evaluation metrics and the baseline details.

4.1 EXPERIMENTAL RESULTS

Table 2: Comparison of FR, FWT, and BWT on
the Standard & Long benchmarks.

Method Standard (N = 4) Long (N = 15)

FR↓ FWT↑ BWT ↑ FR↓ FWT↑ BWT↑
SeqLoRA 67.82 -0.29 -67.82 70.05 -5.65 -69.19
IncLoRA 5.07 -0.46 -5.00 13.54 -9.07 -10.37
O-LoRA 3.29 -0.46 -3.26 10.00 -5.24 -7.03
SD-LoRA 3.06 -2.06 -2.87 9.12 -4.02 -8.17
MoCL 4.14 -2.37 -2.11 10.25 -2.60 -7.89
PS-LoRA 1.99 0.01 -1.84 6.32 -3.13 -0.68

Results on Standard & Long Benchmarks. To
evaluate effectiveness under varying task lengths
and orders, we conduct experiments on the Stan-
dard (4 tasks) and Long (15 tasks) benchmarks
with two LLM backbones. As shown in Table 1,
the long benchmark yields lower performance,
reflecting the increased sequence length and cu-
mulative task interference. Nevertheless, PS-
LoRA delivers consistent gains, outperforming
AM-LoRA by 1.6% and 2.9% on the Standard
and Long benchmarks, respectively. Across architectures, PS-LoRA shows consistent improvements,
achieving up to 5.7% gains over baselines on T5-Large and up to 5.0% on LLaMA-2-7B. Beyond over-
all accuracy, we analyze other CL metrics (i.e., FR, FWT, BWT) to assess forgetting and knowledge
transfer (see Table 2). PS-LoRA achieves the lowest FR on both Standard (1.99%) and Long (6.32%)
benchmarks, showing strong resistance to catastrophic forgetting, and it maintains competitive FWT
and BWT. The consistent gains across continual learning metrics demonstrate robustness in both short
and long horizons, evidencing our PS-LoRA’s effectiveness at reducing forgetting.

To better demonstrate the performance of PS-LoRA across different task lengths, we plot the test
accuracy after completing each task, as shown in Fig. 7(a)(b). Compared to other methods, PS-LoRA
exhibits significantly smaller performance fluctuations and consistently maintains strong performance
throughout the training process. This stable behavior highlights its strong ability to resist catastrophic
forgetting and adapt to new tasks without sacrificing previous knowledge.

Results on Computer Vision Tasks. As shown in Table 3, to evaluate the generalizability of PS-
LoRA beyond NLP tasks, we consider two widely used class-incremental learning vision benchmarks
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Table 3: Experimental results on ImageNet-R with varying task lengths.

Method IN-R (N = 5) IN-R (N = 10) IN-R (N = 20)
Acc AAA Acc AAA Acc AAA

Full FT 64.92 75.57 60.57 72.31 49.95 65.32
L2P (Wang et al., 2022b) 73.04 76.94 71.26 76.13 68.97 74.16
DualPrompt (Wang et al., 2022a) 69.99 72.24 68.22 73.81 65.23 71.30
HiDe-Prompt (Wang et al., 2023a) 74.77 78.15 74.65 78.46 73.59 77.93
SD-LoRA(Wu et al., 2025) 79.15 83.01 77.34 82.04 75.26 80.22
PS-LoRA 79.68 83.82 77.15 82.12 75.35 80.50

Table 4: Experimental results on the TRACE benchmark with varying LLM backbones.

Method mistralai / Mistral-7B-Instruct-v0.3 meta-llama / LLaMA-2-7B-Chat google / Gemma-2B-it

AAA ↑ BWT ↑ AAA ↑ BWT ↑ AAA ↑ BWT ↑
SeqLoRA 46.94±1.2 −11.41±0.6 34.30±1.2 −18.50±0.8 31.89±0.8 −15.28±0.4

EWC 52.45±1.3 −5.98±0.8 42.36±1.2 −5.97±0.8 28.35±1.6 −16.96±1.2

L2P 49.32±0.8 −5.34±0.6 36.23±0.8 −8.25±0.8 31.14±1.2 −15.77±0.7

DualPrompt 51.14±1.2 −6.13±0.5 37.69±1.2 −8.03±0.8 32.42±1.0 −14.25±0.5

HiDeLoRA 51.81±0.9 −6.25±0.3 41.60±0.8 −7.12±0.4 33.25±0.9 −13.66±0.5

O-LoRA 52.02±0.8 −8.13±0.6 42.78±0.8 −7.16±0.4 33.73±0.8 −12.36±0.4

TreeLoRA 54.77±1.1 −3.77±0.4 43.52±1.0 −3.46±0.4 33.41±0.9 −8.50±0.5

PS-LoRA 54.95±0.8 −4.02±0.5 45.50±0.9 −3.24±0.4 35.80±1.1 −6.79±0.5

ImageNet-R under varying task lengths (N = 5, 10, 20). We integrate LoRA modules into ViT-
B/16 and apply our method across sequential tasks. While PS-LoRA matches the SOTA SD-LoRA
on vision benchmarks, it exceeds SD-LoRA on NLP tasks and simultaneously curbs catastrophic
forgetting. All these experiments demonstrate that PS-LoRA’s gains extend beyond NLP and validate
its robust cross-modal generalizability. Regarding results on the TRACE benchmark, table 4
presents the performance across the more challenging multilingual tasks, such as code generation,
and mathematical reasoning. It can be seen that our PS-LoRA consistently achieves competitive or
superior performance across different backbones. For example, PS-LoRA outperforms all methods by
at least 2.0% and 2.4% on Llama-2-7B and Gemma-2B-it, respectively. These results indicate that PS-
LoRA can generalize effectively to complex NLP tasks, further demonstrating robust generalization
beyond the training distribution.

Ablation Studies on PS-LoRA Components. We ablate two components: (1) Parameter Stability
loss, which aligns the signs of current-task weights with the accumulated task vector; and (2) Merging
strategies, which reuse prior model knowledge. All experiments follow the main setup. As shown in
Table 5, removing either component clearly degrades performance, confirming their complementary
roles in mitigating forgetting and stabilizing learning. Removing the stability loss causes the largest
drop, indicating that sign alignment helps prevent conflicting updates. Replacing the magnitude-based
merging with simple addition weakens knowledge consolidation and increases forgetting. Using both
components yields the best results, highlighting the importance of controlling update direction and
reusing historical parameters in continual NLP learning.

4.2 DISCUSSION

In addition to the improvements shown in Sec. 4.1, we further analyze its underlying behavior and
characteristics. In the following, we address several key questions to provide more insights into how
and why PS-LoRA works effectively in the continual learning setting.
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Figure 6: Feature visualization across tasks.

Q-1: Why does CL often lead to the abrupt perfor-
mance drop and the large parameter distribution
shift observed in Fig. 1? Using Long2 as an example,
we apply MDS (Kruskal, 1964b;a) to visualize the first
four tasks (Fig. 6).Task T4 departs markedly from the
first three, indicating low similarity and a pronounced
distribution shift. Under the SD-LoRA view (Wu et al.,
2025), CL seeks a shared low-loss region; a sharp shift
like T4 drives the model toward a task-specific optimum, triggering abrupt updates that disrupt prior
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Table 5: Ablation study of different components of PS-LoRA on T5-large. Results (%) are averaged
over three random task orders on two continual learning benchmarks.

PS-Loss Merging Standard (N = 4) Long (N = 15)
Order1 Order2 Order3 avg Long1 Long2 Long3 avg

✗ ✗ 68.6 59.7 75.0 67.8±7.7 60.3 60.5 53.2 58.0±4.2

✗ ✓ 76.9 74.4 77.0 76.1±1.5 70.9 69.8 70.7 70.5±0.6

✓ ✗ 79.2 78.3 78.3 78.6±0.5 72.9 74.7 73.1 73.6±1.0

✓ ✓ 80.0 79.1 79.6 79.6±0.5 74.2 76.5 75.7 75.5±1.2

(a) (b) (c)

Figure 7: Test accuracy across different tasks. (a-b): Standard and Long benchmarks. (c) shows
average accuracy over three task orders on Long (order sensitivity). More orders are in Appendix C.3.
knowledge and yield large parameter shifts. To mitigate this, PS-LoRA explicitly limits update
magnitudes, preserving prior knowledge and reducing catastrophic forgetting. Results across different
task orders (Fig. 7c) show consistently stable performance, indicating reduced interference from
dissimilar tasks and improved order robustness in NLP continual learning.

Table 6: PS-LoRA w/o Merging helps avoid sign
flips in parameter updates.

Task IncLoRA PS-LoRA w/o Merging
Same Opposite Acc Same Opposite Acc

T2 49.16% 9.74% 73.9 63.22% 1.30% 74.4
T3 51.61% 5.72% 68.9 61.59% 1.07% 71.7
T4 49.84% 22.30% 39.2 60.52% 2.17% 56.0

Q-2: Does the proposed parameter stability
loss effectively alleviate the issue of large up-
dates with opposite signs flipping parameter
directions? To verify whether the proposed PS-
loss effectively mitigates the problem of large
updates with opposite signs, we analyze the pro-
portion of updates that align or misalign in sign
with the accumulated LoRAs. As shown in Table 6, the introduction of Parameter Stability loss
dramatically reduces the ratio of sign-inconsistent updates from 22.3% to 2.17%, indicating that
updates become more sign-consistent. This improvement enhances knowledge retention and yields
substantial accuracy gains.

Table 7: Performance of O-LoRA increases when
combined with PS-Loss and PS-LoRA.

Method Standard (N = 4) Long (N = 15)
Order1 Order2 Order3 Long1 Long2 Long3

O-LoRA 74.9 73.4 75.6 71.5 66.7 71.3
+PS-Loss 79.3 78.1 79.4 76.2 75.1 76.7
+PS-LoRA 79.4 79.6 79.2 74.3 77.2 76.2

Q-3: Can our proposed PS-LoRA be com-
bined with existing orthogonality constraints
to further enhance performance? As shown in
Table 7, integrating our PS-LoRA with O-LoRA
leads to a clear performance improvement over
using O-LoRA alone. This result suggests that
our method is complementary to orthogonality-
based approaches rather than conflicting with them. Moreover, these findings highlight the practical
utility of our PS-LoRA in facilitating stable knowledge accumulation and alleviating forgetting.

5 CONCLUSION

In this work, we identify an empirical phenomenon where abrupt performance drops correlate strongly
with significant shifts in parameter distribution during CL. A deeper analysis reveals that updates
with sign changes are a key factor causing forgetting. Motivated by this insight, we propose the
Parameter Stability Loss to explicitly constrain such sign-flipping updates and mitigate catastrophic
forgetting. In addition, we integrate a post-training magnitude-based merging strategy that bridges
earlier directions with the current one and further combats the inevitable drift toward new tasks
without incurring extra training costs. Extensive experiments across varying datasets, task lengths and
diverse backbone architectures demonstrate the consistent effectiveness of our PS-LoRA framework.
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A BENCHMARKS

A.1 DATASETS

Standard & Long Table 8 presents the detailed statistics of the 15 datasets utilized in our continual
learning (CL) experiments, along with their corresponding evaluation metrics. These datasets are
primarily drawn from established CL benchmarks (Zhang et al., 2016), as well as the GLUE (Wang
et al., 2018) and SuperGLUE (Wang et al., 2019) benchmarks. Additionally, we include the IMDB
movie review dataset, following the experimental setup of ProgPrompt(Razdaibiedina et al., 2023)
and O-LoRA((Wang et al., 2023b)).

TRACE (Wang et al., 2023c) is a benchmark designed especially for the continual learning with
LLMs. It consists of 8 distinct datasets spanning challenging tasks, including domain-specific tasks,
multilingual capabilities, code generation, and mathematical reasoning, with each task containing
5, 000 instances. Specifically, the eight tasks are: C-STANCE, FOMC, MeetingBank, Py150,
ScienceQA, NumGLUE-cm, NumGLUE-ds, and, 20Minuten. All datasets are standardized into a
unified format, allowing for effortless automatic evaluation of LLMs. Therefore, it contains a total of
200, 000 samples, with 40, 000 training examples and 16, 000 testing examples.

Note that TRACE contains a wide range of different tasks, including domain-specific tasks, multi-
lingual capabilities, code generation, and mathematical reasoning. The performance measure for
each task is different: For C-STANCE and FOMC tasks, we use accuracy as the evaluation metric
to assess the model’s classification performance. MeetingBank task performance is evaluated using
the ROUGE-L score, which measures the longest common subsequence between the generated and
reference summaries. For code-related task Py150, we employ a similarity score to evaluate the
quality of generated code. The ScienceQA task is evaluated using accuracy to measure the correctness
of scientific question answering. Both NumGLUE-cm and NumGLUE-ds tasks, which focus on
mathematical reasoning, use accuracy as their evaluation metrics. Lastly, for the multilingual task
20Minuten, we utilize the SARI score to assess the quality of text simplification.

Computer Vision ImageNet-R consists of 200 ImageNet classes (Deng et al., 2009) rendered
in artistic styles. As common practices (Wu et al., 2025), we split ImageNet-R into 5/10/20 tasks
(40/20/10 classes per task).
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A.2 METRICS

Accuracy For evaluation metric, we adopt the Average Accuracy (Acc). Formally, let ai,j denote
the test accuracy on the i-th task Ti after training on Tj . Then the average accuracy of all seen tasks
can be defined as,

Acc =

∑N
i=1 |Di| · ai,N∑N

i=1 |Di|
,

where |Di| refers to the number of test samples in task Ti.

Continual Learning Metrics We adopt the notation ai,N is the final accuracy on task Ti after
learning all N tasks. The metrics are defined as follows:

Backward Transfer (BWT)

BWT =
1

N − 1

N−1∑
i=1

(ai,N − ai,i)

This measures the change in performance on task Ti from immediately after its learning to after
learning all tasks; negative values indicate forgetting.

Forward Transfer (FWT)

FWT =
1

N − 1

N∑
i=2

(ai,i−1 − ascratch, i)

Here, ascratch, i is the accuracy when training task Ti from scratch, assessing how prior tasks positively
or negatively influence new task learning.

Forgetting Rate (FR)

FR =
1

N − 1

N−1∑
i=1

(
max
j≤i

ai,j − ai,N

)
This captures how much accuracy on each task Ti decreases from its peak (during training) to the
final performance after all tasks.

Table 8: The details of 15 datasets used in CL experiments. NLI denotes natural language inference,
QA denotes questions and answers task. First five tasks correspond to the standard CL benchmark,
all other tasks are used in long-sequence experiments.

Dataset name Category Task Domain

1. Yelp CL Benchmark sentiment analysis Yelp reviews
2. Amazon CL Benchmark sentiment analysis Amazon reviews
3. DBpedia CL Benchmark topic classification Wikipedia
4. Yahoo CL Benchmark topic classification Yahoo Q&A
5. AG News CL Benchmark topic classification news
6. MNLI GLUE NLI various
7. QQP GLUE paragraph detection Quora
8. RTE GLUE NLI news, Wikipedia
9. SST-2 GLUE sentiment analysis movie reviews
10. WiC SuperGLUE word sense disambiguation lexical databases
11. CB SuperGLUE NLI various
12. COPA SuperGLUE QA blogs, encyclopedia
13. BoolQA SuperGLUE boolean QA Wikipedia
14. MultiRC SuperGLUE QA various
15. IMDB SuperGLUE sentiment analysis movie reviews

A.3 TASK SEQUENCE ORDERS

The task sequences employed in our CL experiments for both T5 and LLaMA models are summarized
in Table 9. Order 1-3 correspond to the standard CL benchmark adopted by prior works. Long 1-3
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are long-sequence orders spanning 15 tasks, following ProgPrompt(Razdaibiedina et al., 2023) and
O-LoRA((Wang et al., 2023b)).

Table 9: Six different orders of task sequences used for continual learning experiments.

Order Model Task Sequence

order1 T5, LLaMA dbpedia → amazon → yahoo → ag
order2 T5, LLaMA dbpedia → amazon → ag → yahoo
order3 T5, LLaMA yahoo → amazon → ag → dbpedia

long1 T5, LLaMA mnli → cb → wic → copa → qqp → boolqa → rte → imdb →
yelp → amazon → sst-2 → dbpedia → ag → multirc → yahoo

long2 T5, LlaMA multirc → boolqa → wic → mnli → cb → copa → qqp → rte
→ imdb → sst-2 → dbpedia → ag → yelp → amazon → yahoo

long3 T5, LlaMA yelp → amazon → mnli → cb → copa → qqp → rte → imdb →
sst-2 → dbpedia → ag → yahoo → multirc → boolqa → wic

A.4 TASK INSTRUCTIONS

Table 10 presents the prompt templates used across various tasks. Specifically, natural language
inference (NLI) tasks include MNLI, RTE, and CB; sentiment classification (SC) comprises Amazon,
Yelp, SST-2, and IMDB; while topic classification (TC) includes AG News, DBpedia, and Yahoo
Answers.

Table 10: Instructions for different tasks.

Task Prompts

NLI What is the logical relationship between the "sentence 1" and the "sentence 2"?
Choose one from the option.

QQP Whether the "first sentence" and the "second sentence" have the same meaning?
Choose one from the option.

SC What is the sentiment of the following paragraph? Choose one from the option.

TC What is the topic of the following paragraph? Choose one from the option.

BoolQA According to the following passage, is the question true or false? Choose one
from the option.

MultiRC According to the following passage and question, is the candidate answer true or
false? Choose one from the option.

WiC Given a word and two sentences, whether the word is used with the same sense
in both sentence? Choose one from the option.

B PARAMETER SHIFT DISTRIBUTIONS IN LONG TASK SEQUENCES

This section provides the Parameter Shift Distributions under three long-task orders in Fig.8, Fig.9,
Fig.10 respectively. For each setting, we visualize the distribution of selected parameters after training
with both Incremental LoRA and our method. Our analysis focuses on the decoder block weights
in the T5 model.

For the Ti task, we compute the cumulative LoRA updates by summing over all previous low-rank
adapters:

∆Wi =

i∑
j=1

AjBj ,

where Aj and Bj denote the low-rank matrices of the Tj task’s LoRA adapter.
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Then, we identify the top 20% of parameters with the largest absolute values in ∆Wi as the important
parameters, and we perform average pooling on the parameters to enhance their feature representation.
Finally we plot their value distributions across tasks to analyze shift patterns.

Generally, our approach results in a more stable parameter distribution, indicating enhanced robustness
and less catastrophic forgetting.

(a) Parameter Shift Distribution under Incremental LoRA.

(b) Parameter Shift Distribution under Our Method.

Figure 8: Comparison of parameter shift distributions for Long1 under different methods. Our
method shows more consistent parameter evolution and reduced directional conflict across tasks.

C EXPERIMENTS DETAILS

C.1 IMPLEMENTING DETAILS

All experiments were conducted using two NVIDIA RTX 4090 GPUs (40GB each) with DeepSpeed-
enabled distributed training. Our method is implemented based on the training framework provided
by O-LoRA under the MIT License.

We insert LoRA adapters into the query and value projection matrices of all Transformer layers, with
each adapter configured to have a rank of r = 8, a dropout rate of 0.1, and a scaling factor of 1.
For the t5-large model, we use a learning rate of 0.001 and a batch size of 8, training each task
for one epoch. The parameter stability loss coefficient λ is set to 0.1 for long tasks and 0.001 for

17
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(a) Parameter Shift Distribution under Incremental LoRA.

(b) Parameter Shift Distribution under Our Method.

Figure 9: Comparison of parameter shift distributions for Long2 under different methods. Our
method shows more consistent parameter evolution and reduced directional conflict across tasks.

standard sequences. For the llama2-7b model, we use a learning rate of 0.0003 and a batch size
of 4, also training each task for one epoch, with the parameter stability loss coefficient set to 0.01
for long tasks and 0.001 for standard sequences. We conducted detailed hyperparameter sensitivity
experiments in Tab. 13 to clarify our choice. In all experiments using O-LoRA, the orthogonal loss
coefficient is fixed at λ = 0.5. When applying neuron merge, we scale the orthogonal component by
a factor of 3, and parallel component by a factor of 1. We report results based on three random seeds:
42, 1121, and 3407.

C.2 BASELINES

• Zero-shot: directly tests pretrained model on benchmarks without any finetuning.

• SeqLoRA: assigns one LoRA for all tasks, and sequentially finetuning this LoRA on each
task.

• Replay: This method mitigates forgetting by maintaining a fixed-size memory buffer that
stores a subset of past samples. During training on a new task, both the current task data and
replayed samples from earlier tasks are jointly used to fine-tune the model.
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(a) Parameter Shift Distribution under Incremental LoRA.

(b) Parameter Shift Distribution under Our Method.

Figure 10: Comparison of parameter shift distributions for Long3 under different methods. Our
method shows more consistent parameter evolution and reduced directional conflict across tasks.

• EWC (Kirkpatrick et al., 2017): Elastic Weight Consolidation imposes a quadratic penalty
on parameter updates, discouraging changes to weights that are crucial to previously learned
tasks, based on their estimated importance derived from the Fisher Information Matrix.

• LwF (Li & Hoiem, 2017): Learning without Forgetting avoids storing old data by preserving
responses of the shared representation on past tasks via a distillation loss. This helps maintain
stable internal representations when adapting to new tasks.

• L2P (Wang et al., 2022b): Learning to Prompt introduces a pool of learnable prompts
and selects task-relevant prompts for each input dynamically. This instance-wise prompt
retrieval enables the model to adapt without modifying the pretrained backbone.

• LFPT5 (Huang et al., 2021): A prompt-based continual learner built on T5, which jointly
optimizes soft prompts for task solving and sample generation. The generated pseudo-
examples are then utilized in a rehearsal-like manner to retain previous knowledge.

• IncLoRA: IncLoRA incrementally adds a task-specific LoRA module per task and keeps
previously learned modules frozen. Each task maintains its dedicated adapter.

• MIGU (Du et al., 2024): MIGU selectively updates gradient of parameters only with magni-
tude above threshold, supposing magnitude distribution among different tasks distinguishes
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them from each other. It can be added to different architecture. Since out method is based
on IncLoRA, we choose IncLoRA+MIGU as our baseline.

• O-LoRA(Wang et al., 2023b): O-LoRA bases on IncLoRA framework, while it imposes an
orthogonal regularization to restrict the update of parameters in subspace.

• LB-CL(Qiao & Mahdavi, 2024): LB-CL also bases on IncLoRA framework, it initializes
new LoRA with SVD decomposition of previous task parameters and enforces orthogonality
across task subspaces via gradient projection.

• MoCL(Wang et al., 2024b): MoCL calculats task similairty coefficient and dynamically
combines trained LoRAs in order to eliminate forgetting.

• AM-LoRA(Liu et al., 2024): AM-LoRA bases on IncLoRA and adaptively integrates their
knowledge using an attention mechanism with L1 sparsity constraints.

• PerTaskFT: trains a separate LoRA model for each task.
• MTL: trains a model on all tasks as multi-task learning, serving as the benchmark’s upper

bound of the performance limit.
• PS-LoRA: Our method trains model with Parameter Stability Loss and magnitude-selected

mergeing strategy.

C.3 TASK ACCURACY

In Fig.11, We provide additional sequential cases similar to this Fig.7, further validating the robustness
of the PS-LoRA method.

(a) Order1 (b) Order2 (c) Order3

(a) Long1 (b) Long2 (c) Long3

Figure 11: The average accuracy for each sequence with incremental tasks

D SUPPLEMENTARY EXPERIMENTS

D.1 EXPLORATION OF SAME SIGN PERFORMANCE

In this experiment, we adopt an incremental LoRA training strategy where a new trainable LoRA
module AtBt is assigned for each incoming taskTt. During training, no constraints are imposed on
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Table 11: Performance of experiments that manually add sign mask after each task

Method Standard (N = 4) Long (N = 15)
Order1 Order2 Order3 avg Long1 Long2 Long3 avg

IncLoRA 68.6 59.7 75.0 67.8 60.3 60.5 53.2 58.0
Decomposition 77.2 72.9 72.4 74.1 67.1 68.4 68.8 68.1
Ours 79.2 78.3 78.3 78.6 72.9 74.7 73.1 73.6

the parameter updates, allowing full flexibility for task-specific adaptation. After training on a task is
completed, we retain only the components of the current LoRA whose signs are consistent with the
element-wise sum of all previously learned LoRA modules

∑t−1
i=1 AiBi. This consistency check helps

mitigate interference with previously acquired knowledge. The resulting sign-consistent matrix is then
subjected to Singular Value Decomposition (SVD), and the low-rank factors from the decomposition
are used to construct the LoRA module for the current task. This process enables continual learning
by progressively integrating task-specific knowledge while controlling for conflicting parameter
directions across tasks. Results are shown in Table 11.

D.2 DIFFERENT MERGING PERFORMANCE ON TASKS

Specifically, for the long-order setting, we compute the change in average accuracy for each task
before and after merging, evaluated after training the final task. A corresponding heatmap is shown
in Fig.12.
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Figure 12: Heatmap showing the average accuracy change for each task before and after applying
different merge method, evaluated after the final task in the long-order training sequence.

As illustrated in Figure 12, most tasks benefit from the magnitude-selected merging process. A few
cases of accuracy drop suggest room for improving the merge strategy for better compatibility across
tasks.
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D.3 REGULARIZATION COMPONENT ANALYSIS.

We further evaluate the impact of the proposed Parameter Stability Loss by ablating its two
components in Eqn. (4): (i) Magnitude-constraint, which penalizes large-magnitude parameters to
control forgetting, and (ii) Sign-alignment, which encourages alignment between the signs of the
current task weights and the accumulated task vector; Table 12 shows that removing either component
leads to notable performance drops, with the full regularization achieving the best balance between
knowledge retention and new task acquisition. This validates our hypothesis that both sign alignment
and magnitude control are crucial for stable continual adaptation.

Table 12: Ablation study on regularization strategies in continual LoRA training. We evaluate different
components including sign-aware loss, magnitude restriction, and their combinations. Results are
reported across three task orderings on two benchmarks.

Method Standard (N = 4) Long (N = 15)
Order1 Order2 Order3 avg Long1 Long2 Long3 avg

IncLoRA 68.6 59.7 75.0 67.8 60.3 60.5 53.2 58.0
Magnitude-constraint 72.2 73.2 77.6 74.3 63.8 64.7 68.5 65.7

+Merging 76.9 78.7 79.0 78.2 69.9 68.3 69.1 69.1
Sign-alignment 77.6 76.2 78.3 77.4 70.3 67.8 67.9 68.6

+Merging 79.1 78.4 79.0 78.8 70.0 67.2 72.1 69.8
Both 79.2 78.3 78.3 78.6 72.9 74.7 73.1 73.6

+Merging 80.0 79.1 79.6 79.6 74.2 76.5 75.7 75.5

D.4 SENSITIVITY OF HYPER-PARAMETERS

We conducted a sensitivity analysis of the stability loss coefficient λ on benchmarks with different
task lengths (N ) and task sequence orders. The results, shown in the following table, indicate that
PS-LoRA is generally robust within a moderate range of λ values. We noticed that values of λ
between 0.001 and 0.1 consistently yield state-of-the-art performance. Noticeable performance
degradation occurs only at extreme values (e.g., 0.0001 or 10), suggesting that the proposed stability
loss is not highly sensitive to λ. For the experiments reported in the main paper, λ was chosen based
on performance on the evaluation sets, with the best-performing value selected for each case.

Table 13: Results for different λ values.

λ Test (N = 4) Test (N = 15) Eval (N = 4) Eval (N = 15)

10 72.19 69.37 72.46 72.56
1 76.22 73.20 72.07 76.85

0.1 78.91 75.25 80.68 78.44
0.01 78.61 74.20 82.93 76.58

0.001 79.60 72.70 84.05 74.32
0.0001 78.51 66.83 82.01 71.83

D.5 EFFECT OF STABILITY LOSS ON CONVERGENCE DYNAMICS
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Figure 13: Convergence speed in training.

To further assess the effect of the stability loss on train-
ing dynamics, we compared PS-LoRA and the baseline
IncLoRA on task order 1 of the Standard benchmark.
For each new task, we recorded the training accuracy
at several checkpoints (0%, 20%, ..., 100%) throughout
optimization, as reported in Table 14.

The results indicate that the introduction of the stabil-
ity loss does not lead to a slowdown in convergence.
Both PS-LoRA and IncLoRA display nearly identical
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convergence behavior across tasks. For example, on T4,
both methods exceed 94% accuracy at 60% of training and converge to comparable final levels. In
addition, PS-LoRA achieves consistently higher accuracy on all previously seen tasks, demonstrating
improved retention without sacrificing optimization efficiency.

Table 14: Training accuracy of PS-LoRA and IncLoRA across checkpoints.

Task Method 0% 20% 40% 60% 100% All Seen

T2 PS-LoRA 52.94 73.54 78.56 79.33 80.55 79.34
T2 IncLoRA 52.94 73.03 78.84 79.77 81.28 77.69
T4 PS-LoRA 77.27 86.68 93.35 95.10 95.60 79.57
T4 IncLoRA 75.70 87.33 93.03 94.34 95.23 62.62

D.6 GPU MEMORY EFFICIENCY

We examined the GPU memory efficiency of PS-LoRA, which is a critical factor in continual learning
with long task sequences. The evaluation was conducted from two perspectives: (i) parameter growth
and (ii) runtime memory footprint. Across both, PS-LoRA demonstrates strong memory efficiency.

Table 15: Trainable LoRA parameters relative to
full models.

Backbone Trainable % of full model Model Param

T5-large 2.4M 0.32% ∼740M
LLaMA2-7B 4.2M 0.06% ∼7B

Parameter growth. LoRA adapters con-
tribute only a small number of trainable parame-
ters per task (Table 15). Even when adapters for
all previous tasks are retained, the total parame-
ter growth remains limited, especially in light of
the substantial performance benefits. Compared
with baselines, the parameter count of PS-LoRA
is on pair with O-LoRA and IncLoRA, while significantly lower than MoE-style approaches such as
AM-LoRA and MoCL, which require additional routing modules.

Runtime memory. We first compared PS-LoRA with IncLoRA and full fine-tuning in terms of
latency and GPU memory usage. Batch sizes were set to 8 (training) and 128 (inference) on T5-large,
and 4 (training) and 16 (inference) on LLaMA2-7B. Results are reported in Table 16.

Table 16: Training/inference latency and memory usage.

Method Training Latency Inference Latency Memory Usage

PS-LoRA (T5) ∼1.2s/it ∼4.3s/it ∼15GB
PS-LoRA Merged (T5) – ∼2.1s/it ∼15GB
IncLoRA (T5) ∼1.1s/it ∼4.3s/it ∼15GB
MoCL (T5) ∼1.3s/it ∼4.5s/it ∼30GB
Full-Finetune (T5) ∼1.4s/it ∼2.1s/it ∼20GB

PS-LoRA (LLaMA-7B) ∼1.7s/it ∼2.3s/it ∼30GB
PS-LoRA Merged (LLaMA-7B) – ∼1.4s/it ∼30GB
IncLoRA (LLaMA-7B) ∼1.5s/it ∼2.3s/it ∼30GB
Full-Finetune (LLaMA-7B) ∼12.0s/it ∼1.5s/it ∼45GB

With regard to task length growth, we further recorded peak GPU memory usage (max_allocated)
and static model footprint (allocated) across 15 tasks during both training and inference (Tables 17
and 18). The results show that PS-LoRA adds only a modest overhead, and memory consumption
scales minimally with the number of tasks. This confirms that the stability-related parameters are not
a dominant factor in runtime GPU usage.

D.7 OTHER MERGING STRAGIES.

How does the magnitude-based merging strategy in PS-LoRA compare to other merging strate-
gies? We evaluate different merging strategies, as shown in Table 19. Compared to alternatives such
as simple averaging or Neuro Merging(Fang et al., 2025), our adopted merging strategy consistently
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Table 17: GPU memory usage during LLaMA-7B training.

Task 1 Task 3 Task 6 Task 9 Task 12 Task 15 ∆max (1→15)

allocated (GB) 12.64 12.68 12.67 12.72 12.72 12.74 +110 MB (+0.9%)
max_allocated (GB) 34.67 27.38 28.02 30.38 30.47 31.32 –3.35 GB (-9.7%)

Table 18: GPU memory usage during LLaMA-7B inference.

Task 1 Task 3 Task 6 Task 9 Task 12 Task 15 ∆max (1→15)

allocated (GB) 12.63 12.65 12.67 12.69 12.72 12.74 +110 MB (+0.9%)
max_allocated (GB) 21.13 14.25 16.48 21.46 21.48 21.50 +0.37 GB (+1.8%)

achieves the best performance. This supports the intuition that parameters with larger magnitudes
tend to be more important, which is consistent with the findings in Sec. 3.2. Therefore, the proposed
PS-LoRA enhances performance by preserving the parameter distribution through the Parameter
Stability loss, and by protecting high-magnitude parameters via the merging strategy.

Table 19: Ablation study on various post-training LoRA merging strategies based on T5-large. Results
(%) are averaged over three random task orders on two continual learning benchmarks.

Merging Strategy Standard (N = 4) Long (N = 15)
Order1 Order2 Order3 avg Long1 Long2 Long3 avg

None 79.2 78.3 78.3 78.6±0.5 72.9 74.7 73.1 73.6±1.0

Neuro(Fang et al., 2025) 58.5 50.8 64.9 58.1±7.1 61.9 66.5 55.4 61.3±5.6

Average 77.0 78.1 77.3 77.0±0.6 54.7 55.2 73.5 61.1±10.7

TIES(Yadav et al., 2023) 78.6 78.3 79.6 78.8±0.7 72.6 74.7 74.9 74.1±1.3

Ours 80.0 79.1 79.6 79.6±0.5 74.2 76.5 75.7 75.5±1.2

D.8 MERGING EFFICIENCY.

The merging operation in PS-LoRA is lightweight, based on an element-wise comparison between
the accumulated LoRA weights and the current task’s weights:

M(∆W1,∆W2)i,j =

{
[∆W2]i,j , if |∆W2| ≥ |∆W1|
[∆W1]i,j , otherwise.

(7)

This operation is highly parallelizable and scales linearly with the matrix size. For low-rank matrices
Ai ∈ Rr×d′

and Bi ∈ Rd×r, where r ≪ d, d′, the complexity is:

• Time complexity: O(t·r·d·d′), with each step involving low-rank multiplications O(r·d·d′)
and element-wise comparisons O(d · d′). The small LoRA rank r ensures efficiency even as
the task count t grows.

• Space complexity: only two intermediate tensors of size d× d′ are needed, i.e., O(d · d′)
additional memory.

In practice, merging all 15 tasks requires only 0.28 seconds on T5-large and 1.47 seconds on
LLaMA2-7B, confirming negligible cost even on large models.

Runtime acceleration. We benchmarked inference throughput (samples/sec) on the merged models.
Merging yields a 40%–50% speedup, which is particularly beneficial for deployment:

Table 20: Inference throughput before and after
merging.

Model w/o Merge With Merge

T5-Large 28.05 41.45
LLaMA2-7B 3.53 5.61

Reduced memory footprint. Unlike MoE-style
methods (e.g., MoCL, AM-LoRA) which cannot
merge adapters, PS-LoRA significantly reduces
memory usage. For instance, on T5-large, LoRA
adapters introduce ∼2.4M parameters per task.
Without merging, 15 tasks require 36M parameters
(∼4.6% of the backbone size, 776M). With merging, the overhead is negligible.
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E STATISTICAL ANALYSIS

E.1 FOR TABLES

We report standard deviation-based error bars for all results in Table 1, Table ??, Table 5, Table 7,
with Eqn.8

s =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2 (8)

This error bars in table are calculated across different orders, which reveal the stability for each
method under different random task orders.

Sources of Variability The error bars capture variability due to three different orders.

Method of Computation Error bars were calculated as the standard deviation across 3 different
orders.

E.2 FOR GRAPHS

In Fig. 1, 7, we also report mean value and standard deviation-based error bars for all results by line
plot and shadows.

Sources of Variability The error bars capture variability due to three different random seeds used for
model initialization and data shuffling.

Method of Computation Error bars were calculated as the standard deviation across 3 runs with
different seeds.

F LIMITATIONS AND FUTURE WORK

Large Number Task and Efficiency As the number of tasks increases, the memory overhead can
become significant, despite the relatively small size of each low-rank matrix. This issue becomes
particularly prominent in scenarios involving hundreds of tasks or when LoRA is injected into
multiple layers of the model. A promising future direction is to investigate how to merge task-specific
LoRA modules into the pretrained model incrementally during the continual learning process, or
alternatively, maintain a single consolidated LoRA module that retains the knowledge acquired so far
without catastrophic forgetting.

Mechanism behind Sign Patterns The underlying role of sign patterns in forgetting and learning
dynamics remains insufficiently explored. Experimental results suggest that the sign components
of LoRA parameters exhibit a certain degree of redundancy. Understanding how sign structures
influence continual learning and parameter-efficient finetuning is crucial, as it may reveal fundamental
mechanisms that drive knowledge retention and transfer in low-rank adaptation frameworks.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, we used a Large Language Model (LLM) as a writing assist tool. The
LLM was employed solely for language polishing, including improving grammar, readability, and
clarity of expression. It did not contribute to research ideation, experimental design, data analysis,
or the generation of scientific content. The authors take full responsibility for the entirety of the
manuscript.
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