
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STABILITY MATTERS: COMBATING PARAMETER
SHIFTS IN LOW-RANK ADAPTATION FOR CONTINUAL
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual Learning (CL) has increasingly embraced Parameter-Efficient Fine-
Tuning (PEFT) methods, particularly Low-Rank Adaptation (LoRA), to balance
task adaptability with parameter efficiency. Existing LoRA-based approaches resort
to low-rank matrices to inherently capture task-specific parameter shifts, whereas
meantime mitigate interference between tasks through architectural design (e.g.,
Mixture-of-Experts) or optimization constraint (e.g., orthogonality). However, they
largely overlook how these shifts evolve across tasks, i.e., the internal dynamics of
parameter space, which is a crucial yet underexplored factor in model forgetting.
In this work, our analysis reveals a key insight that abrupt performance drops
often coincide with drastic changes in the distribution of learned parameter shifts.
Motivated by this, we propose a simple yet effective Parameter Stability Loss
that regularizes both the sign and magnitude of parameter updates to mitigate
forgetting. Beyond training-time regularization, we also introduce a post-training
model merging step that bridges earlier directions with the current one and further
combats the inevitable drift toward new tasks. Our method Parameter Stable
LoRA (PS-LoRA) achieves state-of-the-art results on multiple continual learning
benchmarks, with performance improvements of up to 3%, and can be integrated
with existing approaches.

1 INTRODUCTION

Continual Learning (CL) (Parisi et al., 2019; Wang et al., 2024a; Wu et al., 2024) has emerged
as a crucial paradigm in natural language processing (NLP), where models are expected to learn
from a sequence of tasks without forgetting previously acquired knowledge. As NLP systems are
increasingly deployed in dynamic, real-world environments such as dialogue systems (Li et al., 2022),
personalized assistants (Yu et al., 2024a), and evolving domain applications (Chuang et al.), they
must adapt to new information over time while maintaining performance on earlier tasks. While large
pre-trained language models have shown remarkable success on static benchmarks (Brown et al.,
2020; Devlin et al., 2019; Raffel et al., 2020; Touvron et al., 2023), how to mitigate the notorious
catastrophic forgetting (McCloskey & Cohen, 1989) problem (i.e., losing knowledge learned from
earlier tasks) when trained sequentially on multiple tasks remains a daunting challenge.

Unlike traditional CL methods (Zenke et al., 2017; Kirkpatrick et al., 2017; Li & Hoiem, 2017) that
train models from scratch, recent approaches emphasize efficiently leveraging pre-trained models
to better mitigate forgetting. Specifically, state-of-the-art CL approaches increasingly adopt and
customize the Low-Rank Adaptation (LoRA)(Hu et al., 2022) strategy for sequential training, aiming
to reduce parameter interference and mitigate forgetting. For instance, AM-LoRA (Liu et al.,
2024), MoCL (Wang et al., 2024b) and MoeLoRA(Yu et al., 2024b) follow a Mixture-of-Experts
(MoE) (Jacobs et al., 1991) paradigm, selecting task-specific low-rank matrices at inference time to
enhance prediction accuracy from an architectural perspective. In contrast, InfLoRA (Liang & Li,
2024) and O-LoRA (Wang et al., 2023b) impose orthogonality constraints on the low-rank matrices
to address forgetting from an optimization perspective. While both approaches are effective, they
differ in managing parameter updates. MoE-based approaches aggregate task-specific LoRA weights
via attention mechanisms, whereas orthogonality-based methods regulate LoRA parameter updates
by constraining gradient update directions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

After !!

O
ur
s

In
cL
oR
A

(a) (b)

After !! After !" After !#
IncLoRA
Ours

Figure 1: Comparison between incremental LoRA training and our method. (a) shows the average
accuracy on all seen tasks after training on the i-th task Ti. (b) visualizes the parameter shift
distributions at each training stage for a randomly selected representative layer of the pre-trained
model. More detailed results about different task orders and parameter shifts please see Appendix B.

However, neither method directly examines how parameter shifts evolve across tasks (i.e., the internal
dynamics of parameter space), which is a crucial yet underexplored factor in model forgetting. To shed
light on this underexplored aspect, we begin with a CL task in the NLP domain. During incremental
LoRA finetuning, we observe that certain tasks cause the model to abruptly forget previously learned
knowledge, leading to a sudden drop in the overall average accuracy (e.g. after T4 in Fig. 1 (a)).
Different from prior LoRA-based CL approaches (Liu et al., 2024; Wang et al., 2024b; Wu et al.,
2025), we directly examine the parameter shift across tasks during training. Interestingly, we find that
the abrupt performance drop is consistently accompanied by rapid shifts in the distribution of model
parameters in LoRA’s subspace. As shown in Fig. 1 (b), the parameter shift pattern after training on
task T4 in the Incremental LoRA method exhibits a clear deviation from earlier tasks, coinciding with
the largest performance drop shown in Fig. 1 (a). We further verify this phenomenon across different
task orders, consistently observing the same patterns. Detailed analyses are provided in Appendix B.

Building on the observed correlation between forgetting and parameter shift in Fig. 1, we further
decouple the parameter shift into two components: magnitude and parameter-wise sign direction
(i.e., positive or negative), and apply targeted regularization to each component. We find that jointly
constraining both aspects effectively mitigates forgetting, particularly by reducing abrupt performance
drops during CL. In summary, our main contributions are as follows:

• We observe abrupt and severe forgetting during sequential training, closely tied to large shifts in
parameter space. Analyzing this in terms of magnitude and sign, we find that large updates with
opposite signs can reverse parameter directions, resulting in sharp performance drops.

• We propose a simple yet effective Parameter Stability Loss, which not only prevents reverse
parameter updates during LoRA training and mitigates forgetting, but also facilitates synergy with
state-of-the-art model merging strategies during inference to further boost CL performance.

• We conduct evaluations on diverse CL NLP and CV benchmarks with varying tasks, lengths and
orders, and our method achieves up to a 3% improvement over existing leading approaches.

2 RELATED WORK

Continual Learning aims to adapt models to new sequential tasks while maintaining the previously
acquired knowledge. Existing methods can be broadly categorized into regularization-based (Dhar
et al., 2019; Li & Hoiem, 2017; Kirkpatrick et al., 2017), optimization-based (Farajtabar et al., 2020)
and architecture-based methods (Wu et al., 2025; Liu et al., 2024; Wang et al., 2024b; Razdaibiedina
et al., 2023; Wang et al., 2022b; Qiao & Mahdavi, 2024).

• Regularization-based methods typically identify important weights and introduce penalty terms
to protect them so as to mitigate forgetting. For example, LwF (Li & Hoiem, 2017) preserves
previously learned knowledge by constraining the outputs of the model on old tasks while fine-
tuning it on new ones. In contrast, methods such as EWC (Kirkpatrick et al., 2017), IS (Zenke

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

et al., 2017), KFLA (Ritter et al., 2018), and VR-MCL (Wu et al., 2024) estimate the Hessian
matrix through different techniques to identify and protect the important weights.

• Optimization-based methodes aim to improve knowledge retention by projecting update gradients
or constraining the weight update space. For instance, O-LoRA (Wang et al., 2023b) and
InfLoRA (Liang & Li, 2024) both impose orthogonal constraints on the learnable low-rank matrix
to minimize interference, while MIGU (Du et al., 2024) restricts updates to parameters with the
largest gradient magnitudes.

• Architecture-based methods design specific module architectures to help model learning and
alleviate catastrophic forgetting. For instance, MoE mechanism allocates or selects task-specific
parameter subsets and route inputs accordingly. In the context of PEFT, prompt-based methods
L2P and DualPrompt (Wang et al., 2022b;a) maintain a bank of prompts chosen per task, while
LoRA-based methods such as MoCL (Wang et al., 2024b) and AM-LoRA (Liu et al., 2024)
dynamically combine multiple LoRA modules to reduce interference via task-aware routing.
These mechanisms reduce inter-task interference across different parameter locations.

Our proposed method extends the research line of optimization-based approaches. Unlike prior
work that uses orthogonality and MoE approach addressing different position or direction parameter
collision, we conduct a parameter-wise analysis during training, identifying a key issue in incremental
learning that large shifts in parameter distributions lead to forgetting and address it effectively.

Model Merging has become a de-facto practice in multi-task learning with large foundation mod-
els (Raffel et al., 2020; Touvron et al., 2023; Devlin et al., 2019). Different from traditional multi-task
learning, which jointly updates the full model by weighting gradients from multiple tasks, model
merging focuses on extracting task-specific parameter shift, such as LoRA, and combining these
shifted parameters while keeping the shared backbone frozen. These approaches enable efficient
knowledge transfer by applying various merging strategies to external memory components trained
independently on different tasks. For example, Task Arithmetic (Ilharco et al., 2023) merges task
vectors obtained through task-specific fine-tuning using direct interpolation. Ties-Merging (Yadav
et al., 2023) and Fisher-merge (Matena & Raffel, 2022) demonstrate that sparsity and parameter sign
play a critical role in the effectiveness of merging. Furthermore, MagMax (Marczak et al., 2024)
highlights the importance of parameter magnitudes in model merging. However, most model merging
approaches primarily focus on merging multi-task learning task vectors, with limited attention to
achieving the adaptation-retention trade-off in CL scenarios.

3 METHOD

3.1 PRELIMINARIES

Continual Learning Setup. Suppose there are N sequential tasks {T1, T2, . . . , TN}, where each task
Tt is associated with a training dataset Dt = {(x(t)

i , y
(t)
i)}|Dt|

i=1 containing |Dt| examples. Let fθ(·)
denote the predictive model parametrized by θ. Since samples from historical tasks are inaccessible,
the loss function for CL when training on current task Tt is given by:

Lf =
∑

(x,y)∈Dt

− log fθ(y | x). (1)

Low-Rank Adaptation (LoRA). Given a pre-trained fixed weight matrix W0 ∈ Rd×k, LoRA (Hu
et al., 2022) constrains the weight update ∆W by representing it as a product of two low-rank
matrices, enabling parameter efficient fine-tuning:

W = W0 +∆W = W0 +AB, (2)
where A ∈ Rd×r, B ∈ Rr×k are trainable parameters, and the rank r ≪ min(d, k). During inference,
the parameters ∆W can be incorporated into W0 without introducing any extra computation cost.

For each task Ti, fine-tuning yields a pair of corresponding low-rank matrices AiBi, which is qualified
to be a task vector in model merging methods (Yadav et al., 2023; Matena & Raffel, 2022), capturing
task-specific parameter shift and informing merging strategies to enhance overall performance.

3.2 MOTIVATION: LARGE-SCALE PARAMETER SHIFT

Rather than proposing an alternative to prior LoRA-based continual learning methods (Wang et al.,
2023b; Liu et al., 2024; Wang et al., 2024b), which employ orthogonality constraints or MoE strategies

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

to mitigate forgetting, we complement these efforts by taking a parameter-wise perspective to examine
the underlying training dynamics. Our analysis reveals that large shifts in parameter distributions,
particularly excessive updates with opposite signs, are strongly associated with severe forgetting.

Significant performance drop in CL is often aligned with large parameter distributional shifts.
As shown in Fig. 1 (a), we plot the training accuracy histogram of IncLoRA (defined in Eqn. (3)) over
sequential tasks and observe a notable drop in average accuracy after learning task T4. This decline is
a common phenomenon in CL (Caccia et al., 2022), with more examples provided in Appendix B.
This huge decline aligns with a substantial shift in the distribution of LoRA parameters, as illustrated
in Fig. 1 (b). Here, the visualized parameter distributions correspond to the cumulative parameter
shift

∑t
i=1 ∆Wi after task Tt, reflecting the progressive evolution of LoRA updates relative to the

frozen pre-trained model.

W = W0 +

t∑
i=1

∆Wi = W0 +

t−1∑
i=1

AiBi +AtBt. (3)

We further investigate how parameter dynamics relate to the above large forgetting phenomenon.
Building upon the analysis in Fig. 1 (b), we conduct a more fine-grained investigation, with the results
presented in Fig. 2. We decouple the parameter shift ∆W into two components: the previously learned
∆Wi = AiBi and the newly learned ∆Wt = AtBt. Except for ∆W1, which corresponds to the
initial update and naturally exhibits a relatively large change, the LoRA parameters learned for tasks
T2 and T3 (i.e., ∆W2 and ∆W3) show only minor shifts in parameter values. However, for T4, which
leads to a sharp performance drop, we observe a substantial shift in the newly learned parameters
∆W4. This indicates a strong correlation between significant parameter shifts and forgetting.

Δ#! Δ#" Δ## Δ#$

Figure 2: Detailed analysis of parameter shift in IncLoRA illustrated in Fig. 1(b), where ∆Wi denotes
the i-th specific learned AiBi reflecting the parameter shift introduced by Ti.

Bottom k (%)

Figure 3: Evaluation results of dif-
ferent update subsets selected from
the bottom-k% parameters of ∆Wt,
analyzing the effects of sign consis-
tency (same vs. opposite) and update
magnitude on performance.

Large updates with opposite signs flip the direction of
parameters, causing a sharp performance decline. To bet-
ter understand how parameter changes affect performance,
we perform a decomposition analysis on the update matrix
∆Wt at task Tt, separately examining the effects of sign and
magnitude. Specifically, we select the bottom-k% parameters
from ∆Wt. Then, we divide these parameters based on their
sign consistency with the accumulated updates from previ-
ous tasks, i.e.,

∑t−1
i=1 ∆Wi, yielding two subsets: ∆Wsa

t and
∆Wop

t . We evaluate the performance using weight: W =
W0 +

∑t−1
i=1 ∆Wi +∆W⋆

t where ⋆ ∈ {same, opposite, both}.
The corresponding performance is shown in Fig. 3. It is ev-
ident that retaining only the same-sign parameters preserves
high performance, while incorporating large opposite-sign
updates, as highlighted by the red box, leads to a substantial performance drop. However, manually
removing parameters with conflicting signs after each task yields performance gains under a small
number of tasks, it fails to prevent catastrophic forgetting as the task count grows. More details of
this experiments are in Appendix D.1.

These findings motivate us to constrain model updates and prevent sign-flipping behaviors use a
regularization-based method, thereby alleviating forgetting.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 THE PROPOSED PS-LORA ALGORITHM

Parameter Stability Loss. Based on the observation in Fig. 3 that large sign-flipping parameter
updates highly correlate with severe forgetting, we propose a parameter stability loss Ls to constrain
such disruptive changes. As defined in Eqn. (4), the designed Ls consists of two items: (a) a
magnitude constraint term, which applies L2 norm to the newly learned LoRA parameters AtBt to
suppress excessive updates; (b) a sign alignment term, which leverages the product tanh(α · (AtBt)) ·
tanh(α · (

∑t−1
i=1 AiBi) to encourage alignment in direction between new and previous updates, where

α denotes the temperature parameter. When AtBt and
∑t−1

i=1 AiBi exhibit consistent element-wise
signs, the resulting product tends toward 1, thus minimizing the associated loss.

Ls = ∥AtBt∥22︸ ︷︷ ︸
(a)

·
(
1− tanh (α · (AtBt)) · tanh(α · (

∑t−1
i=1 AiBi))︸ ︷︷ ︸

(b)

)
. (4)

During sequential training, we simply combine the proposed Ls with the fine-tuning loss Lf shown
in Eqn. (1). The overall training loss function L is given as L = Lf + λLs, where λ refers to a
hyper-parameter. As shown in Table 6, adding Ls effectively mitigates large updates with opposite
signs, thereby alleviating forgetting and improving the average accuracy.

According to the analysis in Sec. 3.2, we introduce the PS-LoRA algorithm, which combines a
Parameter Stability loss to guide the training of LoRAs towards minimal parameter shifts. The
resulting LoRAs are thus well tailored for a post-training merging strategy, further improving CL.
The following paragraphs detail each component, and the overall procedure is listed in Algorithm 1.

0.0 0.5 1.0 1.5

0.5

1

1.5 PS-LoRA
IncLoRA
O-LoRA

Figure 4: Distributions of different
LoRAs. Vectors represent the LoRA
directions; the angle between each
vector and the axis indicates its devi-
ation from the earliest task. Vectors
in dotted lines denote merged LoRAs.

As shown in Fig. 4, we visualize the angle between the LoRA
directions of the most recent task and those of the initial task,
where we quantify this similarity using the Frobenius inner
product sim(A,B) = ⟨A,B⟩F

∥A∥F ∥B∥F
, where⟨A,B⟩F = Tr(A⊤B).

The results confirm that our parameter stability loss signif-
icantly enhances stability, keeping LoRA updates closer to
earlier directions. Meantime, we can still observe an inevitable
shift in LoRA directions (highlighted in the red region), where
the updates drift toward newer tasks after continual training.
This naturally raises the question: can we take a step further
to bridge such shift? Motivated by the superior performance
of model merging in balancing between multiple tasks, we
introduce a post-training model merging stage. This stage
consolidates prior LoRA updates by realigning them toward
an intermediate direction, thereby better retaining knowledge from earlier tasks.

Merging Strategies. Building on prior model merging strategies and findings (Yadav et al., 2023;
Marczak et al., 2024) that emphasize the importance of large-magnitude parameters in resolving
merging conflict, we merge multiple LoRA weights ∆Wi (i∈ 1, 2,. . ., t) obtained from sequential
training and prioritize preserving parameters with higher magnitudes. As a post-training step, this
merging strategy complements the training-time parameter stability loss, as described below,

W = W0 +∆W[1:t] = W0 +M(∆W[1:t−1],∆Wt),

[M(∆W1,∆W2)]i,j =

{
[∆W2]i,j , if | [∆W2]i,j | ≥ | [∆W1]i,j |
[∆W1]i,j , otherwise

for all i, j,
(5)

where M(·, ·) denotes an element-wise merging operation that selects, for each position (i, j), the
value with the larger absolute magnitude between two weight update matrices. And the notation
∆W[1:t] means the merged model LoRA matrices accumulated from all t tasks.

Remark. The merging process only requires storing the current LoRA matrices and the previously
merged version, making it efficient in both computation and memory. During inference, the merged
weights can be directly integrated into the base model without introducing additional overhead. We
defer a detailed analysis to Appendix D.8.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Input: “What is the sentiment of
the following paragraph? Choose

one from the option… !

Pretrained
Weights

!! !" !#

Attention Layer

Transformer Blocks

· · ·

D
ur

in
g

Tr
ai

ni
ng

!! !

!

!!"

"
··· · · ·

!"#!"

"

!" !

!

"! ""

Po
st

-T
ra

in
in

g

···

Weights

ℳ()=

Parameter stability loss

· · ·

Final weights

Merging Strategyℳ
! Frozen " Trainable

#$! #$"#$"#!#$"#$#$!

%

Input: Given a word and two sentences, whether
the word is used with the same sense in both

sentence? Choose one from the option…

"

Figure 5: Overview of the proposed PS-LoRA. During training, Parameter Stability Loss is applied
to the new LoRA to prevent sign-flip updates. After training, all LoRAs are merged by selecting the
weights with the largest absolute magnitude and then added to the pre-trained model for inference.

Algorithm 1: The Proposed PS-LoRA Algorithm
Input: Pretrained weights W0, training datasets {D1, . . . ,DN}, hyper-parameters r, λ.
Output: Merged LoRA update ∆W
for t = 1 to N do

Initialize At ∈ Rd×r, Bt ∈ Rr×k;
for each minibatch (x, y) ∈ Dt do

Forward pass: h = W0x+∆W[1:t−1]x+∆Wtx;
Compute the total loss L = Lf + λLs as defined in Eqn. (1) and Eqn. (4);
Update At,Bt by minimizing L;

Merge all trained LoRAs (i.e., ∆Wi, i = 1, 2, .., t) based on Eqn. (5) ;

3.4 THEORETICAL ANALYSIS

To provide theoretical justification for our method, we consider the simplest case of two sequential
training datasets DA and DB . Let L denote the loss function, θ the model parameters, and θ∗i the
parameters after training on task Di. Assuming that L is twice differentiable and smooth near θ∗A,
that the model has approximately converged to DA (i.e., ∇LA(θ

∗
A) ≈ 0), and that parameter updates

are small, the loss increase on DA can be approximated by a second-order Taylor expansion:

∆LA ≈ 1
2 (θ − θ∗A)

⊤HA(θ − θ∗A), (6)
where HA is the Hessian of LA at θ∗A. Since HA is positive semi-definite near a local minimum, the
increase admits the bound ∆LA ≤ 1

2
λmax∥θ − θ∗A∥2, with λmax denoting the largest eigenvalue of

HA. This result shows that forgetting depends on both the magnitude of parameter updates and the
curvature of the loss surface. Our proposed PS-Loss is designed to mitigate this effect by explicitly
constraining ∥θ − θ∗A∥2 from two complementary perspectives: (i) a sign constraint, which prevents
disruptive flips in parameter direction that can lead to functional interference with previous tasks,
and (ii) a magnitude constraint, which limits the scale of parameter updates and thus reduces the
risk of loss increase in high-curvature directions. Together, these constraints provide a principled
mechanism to alleviate forgetting, consistent with the theoretical bound above.

4 EXPERIMENTS

Benchmarks. Following O-LoRA (Wang et al., 2023b), SD-LoRA(Wu et al., 2025) and Tree-LoRA
(Qian et al., 2025), we evaluate on three widely used CL benchmarks across NLP and CV modalities:
Standard & Long, TRACE, and ViT Benchmark. The Standard & Long benchmark, built from
GLUE (Wang et al., 2018), SuperGLUE (Wang et al., 2019), and IMDB (Maas et al., 2011), provides
task sequences of length 4 and 15 to assess short- and long-horizon NLP performance. The TRACE
benchmark includes 8 sub-datasets covering multilingual tasks, code generation, and mathematical
reasoning. For ViT Benchmark, we adopt Split ImageNet-R with varying task lengths. A detailed
description of these benchmarks can be found in Appendix A.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Experimental results on Standard & Long CL benchmarks with t5-large and Llama-2-7b-chat.
Bold and underlined numbers denote the best and second-best results, respectively.

Method Standard (N = 4) Long (N = 15)
Order1 Order2 Order3 Acc Long1 Long2 Long3 Acc

google-t5/t5-large

SeqLoRA 25.7 24.0 35.2 28.3±6.0 12.3 10.1 10.1 10.8±1.3

EWC(Kirkpatrick et al., 2017) 48.7 47.7 54.5 50.3±3.7 45.3 44.5 45.6 45.1±0.6

LwF(Li & Hoiem, 2017) 54.4 53.1 49.6 52.3±2.5 50.1 43.1 47.4 46.9±3.5

L2P(Wang et al., 2022b) 60.3 61.7 61.1 60.7±0.7 57.5 53.8 56.9 56.1±2.0

IncLoRA 68.6 59.7 75.0 67.8±7.7 60.3 60.5 53.2 58.0±4.2

MIGU(Du et al., 2024) 77.2 76.7 75.4 76.4±0.9 71.3 67.7 67.3 68.7±2.2

O-LoRA(Wang et al., 2023b) 74.9 73.4 75.6 74.6±1.1 71.5 66.7 71.3 69.8±2.7

SD-LoRA(Wu et al., 2025) 67.7 55.9 60.9 61.5±5.9 69.3 69.8 70.0 69.7±0.4

MoCL(Wang et al., 2024b) 75.6 75.4 76.7 75.9±0.7 69.6 70.2 70.9 70.2±0.7

AM-LoRA(Liu et al., 2024) 78.1 79.8 76.2 78.0±1.8 72.7 73.3 71.8 72.6±0.8

PS-LoRA 80.0 79.1 79.6 79.6±0.5 74.2 76.5 75.7 75.5±1.2

meta-llama/Llama-2-7b-chat

SeqLoRA 73.4 75.6 75.5 74.8±1.2 69.0 70.5 66.9 68.8±1.8

IncLoRA 75.9 72.6 76.8 75.1±2.2 70.7 70.8 69.2 70.2±0.9

MIGU(Du et al., 2024) 77.7 77.1 78.9 77.9±0.9 71.2 70.6 70.5 70.5±0.4

OLoRA(Wang et al., 2023b) 76.8 75.7 75.7 76.0±0.6 71.1 68.9 73.8 71.3±2.5

SD-LoRA (Wu et al., 2025) 76.6 74.5 76.8 76.0±1.3 70.2 68.4 70.9 69.8±1.3

MoCL(Wang et al., 2024b) 78.4 77.7 78.4 78.2±0.4 75.2 70.7 74.8 73.6±2.5

PS-LoRA 80.9 81.2 80.4 80.8±0.4 76.7 76.1 76.2 76.3±0.3

Backbones. For the Standard & Long benchmark, we follow O-LoRA (Wang et al., 2023b) to evaluate
both encoder-decoder (T5-Large (Raffel et al., 2020)) and decoder-only (LLaMA-2-7B (Touvron
et al., 2023)) models. For TRACE generation tasks, we include three LLM backbones: Mistral-7B-
Instruct-v0.3, LLaMA-2-7B, and Gemma-2B-it. In addition, for ViT tasks we follow SD-LoRA (Wu
et al., 2025) and use ViT-B/16 (Dosovitskiy et al., 2020) as the backbone. Please see Appendix A.2
and C.2 for the definition of the evaluation metrics and the baseline details.

4.1 EXPERIMENTAL RESULTS

Table 2: Comparison of FR, FWT, and BWT on
the Standard & Long benchmarks.

Method Standard (N = 4) Long (N = 15)

FR↓ FWT↑ BWT ↑ FR↓ FWT↑ BWT↑
SeqLoRA 67.82 -0.29 -67.82 70.05 -5.65 -69.19
IncLoRA 5.07 -0.46 -5.00 13.54 -9.07 -10.37
O-LoRA 3.29 -0.46 -3.26 10.00 -5.24 -7.03
SD-LoRA 3.06 -2.06 -2.87 9.12 -4.02 -8.17
MoCL 4.14 -2.37 -2.11 10.25 -2.60 -7.89
PS-LoRA 1.99 0.01 -1.84 6.32 -3.13 -0.68

Results on Standard & Long Benchmarks. To
evaluate effectiveness under varying task lengths
and orders, we conduct experiments on the Stan-
dard (4 tasks) and Long (15 tasks) benchmarks
with two LLM backbones. As shown in Table 1,
the long benchmark yields lower performance,
reflecting the increased sequence length and cu-
mulative task interference. Nevertheless, PS-
LoRA delivers consistent gains, outperforming
AM-LoRA by 1.6% and 2.9% on the Standard
and Long benchmarks, respectively. Across architectures, PS-LoRA shows consistent improvements,
achieving up to 5.7% gains over baselines on T5-Large and up to 5.0% on LLaMA-2-7B. Beyond over-
all accuracy, we analyze other CL metrics (i.e., FR, FWT, BWT) to assess forgetting and knowledge
transfer (see Table 2). PS-LoRA achieves the lowest FR on both Standard (1.99%) and Long (6.32%)
benchmarks, showing strong resistance to catastrophic forgetting, and it maintains competitive FWT
and BWT. The consistent gains across continual learning metrics demonstrate robustness in both short
and long horizons, evidencing our PS-LoRA’s effectiveness at reducing forgetting.

To better demonstrate the performance of PS-LoRA across different task lengths, we plot the test
accuracy after completing each task, as shown in Fig. 7(a)(b). Compared to other methods, PS-LoRA
exhibits significantly smaller performance fluctuations and consistently maintains strong performance
throughout the training process. This stable behavior highlights its strong ability to resist catastrophic
forgetting and adapt to new tasks without sacrificing previous knowledge.

Results on Computer Vision Tasks. As shown in Table 3, to evaluate the generalizability of PS-
LoRA beyond NLP tasks, we consider two widely used class-incremental learning vision benchmarks

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Experimental results on ImageNet-R with varying task lengths.

Method IN-R (N = 5) IN-R (N = 10) IN-R (N = 20)
Acc AAA Acc AAA Acc AAA

Full FT 64.92 75.57 60.57 72.31 49.95 65.32
L2P (Wang et al., 2022b) 73.04 76.94 71.26 76.13 68.97 74.16
DualPrompt (Wang et al., 2022a) 69.99 72.24 68.22 73.81 65.23 71.30
HiDe-Prompt (Wang et al., 2023a) 74.77 78.15 74.65 78.46 73.59 77.93
SD-LoRA(Wu et al., 2025) 79.15 83.01 77.34 82.04 75.26 80.22
PS-LoRA 79.68 83.82 77.15 82.12 75.35 80.50

Table 4: Experimental results on the TRACE benchmark with varying LLM backbones.

Method mistralai / Mistral-7B-Instruct-v0.3 meta-llama / LLaMA-2-7B-Chat google / Gemma-2B-it

AAA ↑ BWT ↑ AAA ↑ BWT ↑ AAA ↑ BWT ↑
SeqLoRA 46.94±1.2 −11.41±0.6 34.30±1.2 −18.50±0.8 31.89±0.8 −15.28±0.4

EWC 52.45±1.3 −5.98±0.8 42.36±1.2 −5.97±0.8 28.35±1.6 −16.96±1.2

L2P 49.32±0.8 −5.34±0.6 36.23±0.8 −8.25±0.8 31.14±1.2 −15.77±0.7

DualPrompt 51.14±1.2 −6.13±0.5 37.69±1.2 −8.03±0.8 32.42±1.0 −14.25±0.5

HiDeLoRA 51.81±0.9 −6.25±0.3 41.60±0.8 −7.12±0.4 33.25±0.9 −13.66±0.5

O-LoRA 52.02±0.8 −8.13±0.6 42.78±0.8 −7.16±0.4 33.73±0.8 −12.36±0.4

TreeLoRA 54.77±1.1 −3.77±0.4 43.52±1.0 −3.46±0.4 33.41±0.9 −8.50±0.5

PS-LoRA 54.95±0.8 −4.02±0.5 45.50±0.9 −3.24±0.4 35.80±1.1 −6.79±0.5

ImageNet-R under varying task lengths (N = 5, 10, 20). We integrate LoRA modules into ViT-
B/16 and apply our method across sequential tasks. While PS-LoRA matches the SOTA SD-LoRA
on vision benchmarks, it exceeds SD-LoRA on NLP tasks and simultaneously curbs catastrophic
forgetting. All these experiments demonstrate that PS-LoRA’s gains extend beyond NLP and validate
its robust cross-modal generalizability. Regarding results on the TRACE benchmark, table 4
presents the performance across the more challenging multilingual tasks, such as code generation,
and mathematical reasoning. It can be seen that our PS-LoRA consistently achieves competitive or
superior performance across different backbones. For example, PS-LoRA outperforms all methods by
at least 2.0% and 2.4% on Llama-2-7B and Gemma-2B-it, respectively. These results indicate that PS-
LoRA can generalize effectively to complex NLP tasks, further demonstrating robust generalization
beyond the training distribution.

Ablation Studies on PS-LoRA Components. We ablate two components: (1) Parameter Stability
loss, which aligns the signs of current-task weights with the accumulated task vector; and (2) Merging
strategies, which reuse prior model knowledge. All experiments follow the main setup. As shown in
Table 5, removing either component clearly degrades performance, confirming their complementary
roles in mitigating forgetting and stabilizing learning. Removing the stability loss causes the largest
drop, indicating that sign alignment helps prevent conflicting updates. Replacing the magnitude-based
merging with simple addition weakens knowledge consolidation and increases forgetting. Using both
components yields the best results, highlighting the importance of controlling update direction and
reusing historical parameters in continual NLP learning.

4.2 DISCUSSION

In addition to the improvements shown in Sec. 4.1, we further analyze its underlying behavior and
characteristics. In the following, we address several key questions to provide more insights into how
and why PS-LoRA works effectively in the continual learning setting.

50 25 0 25 50 75
MDS Dimension 1

50

25

0

25

50

M
D

S
D

im
en

si
on

 2

Task T1

Task T2

Task T3

Task T4

Figure 6: Feature visualization across tasks.

Q-1: Why does CL often lead to the abrupt perfor-
mance drop and the large parameter distribution
shift observed in Fig. 1? Using Long2 as an example,
we apply MDS (Kruskal, 1964b;a) to visualize the first
four tasks (Fig. 6).Task T4 departs markedly from the
first three, indicating low similarity and a pronounced
distribution shift. Under the SD-LoRA view (Wu et al.,
2025), CL seeks a shared low-loss region; a sharp shift
like T4 drives the model toward a task-specific optimum, triggering abrupt updates that disrupt prior

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Ablation study of different components of PS-LoRA on T5-large. Results (%) are averaged
over three random task orders on two continual learning benchmarks.

PS-Loss Merging Standard (N = 4) Long (N = 15)
Order1 Order2 Order3 avg Long1 Long2 Long3 avg

✗ ✗ 68.6 59.7 75.0 67.8±7.7 60.3 60.5 53.2 58.0±4.2

✗ ✓ 76.9 74.4 77.0 76.1±1.5 70.9 69.8 70.7 70.5±0.6

✓ ✗ 79.2 78.3 78.3 78.6±0.5 72.9 74.7 73.1 73.6±1.0

✓ ✓ 80.0 79.1 79.6 79.6±0.5 74.2 76.5 75.7 75.5±1.2

(a) (b) (c)

Figure 7: Test accuracy across different tasks. (a-b): Standard and Long benchmarks. (c) shows
average accuracy over three task orders on Long (order sensitivity). More orders are in Appendix C.3.
knowledge and yield large parameter shifts. To mitigate this, PS-LoRA explicitly limits update
magnitudes, preserving prior knowledge and reducing catastrophic forgetting. Results across different
task orders (Fig. 7c) show consistently stable performance, indicating reduced interference from
dissimilar tasks and improved order robustness in NLP continual learning.

Table 6: PS-LoRA w/o Merging helps avoid sign
flips in parameter updates.

Task IncLoRA PS-LoRA w/o Merging
Same Opposite Acc Same Opposite Acc

T2 49.16% 9.74% 73.9 63.22% 1.30% 74.4
T3 51.61% 5.72% 68.9 61.59% 1.07% 71.7
T4 49.84% 22.30% 39.2 60.52% 2.17% 56.0

Q-2: Does the proposed parameter stability
loss effectively alleviate the issue of large up-
dates with opposite signs flipping parameter
directions? To verify whether the proposed PS-
loss effectively mitigates the problem of large
updates with opposite signs, we analyze the pro-
portion of updates that align or misalign in sign
with the accumulated LoRAs. As shown in Table 6, the introduction of Parameter Stability loss
dramatically reduces the ratio of sign-inconsistent updates from 22.3% to 2.17%, indicating that
updates become more sign-consistent. This improvement enhances knowledge retention and yields
substantial accuracy gains.

Table 7: Performance of O-LoRA increases when
combined with PS-Loss and PS-LoRA.

Method Standard (N = 4) Long (N = 15)
Order1 Order2 Order3 Long1 Long2 Long3

O-LoRA 74.9 73.4 75.6 71.5 66.7 71.3
+PS-Loss 79.3 78.1 79.4 76.2 75.1 76.7
+PS-LoRA 79.4 79.6 79.2 74.3 77.2 76.2

Q-3: Can our proposed PS-LoRA be com-
bined with existing orthogonality constraints
to further enhance performance? As shown in
Table 7, integrating our PS-LoRA with O-LoRA
leads to a clear performance improvement over
using O-LoRA alone. This result suggests that
our method is complementary to orthogonality-
based approaches rather than conflicting with them. Moreover, these findings highlight the practical
utility of our PS-LoRA in facilitating stable knowledge accumulation and alleviating forgetting.

5 CONCLUSION

In this work, we identify an empirical phenomenon where abrupt performance drops correlate strongly
with significant shifts in parameter distribution during CL. A deeper analysis reveals that updates
with sign changes are a key factor causing forgetting. Motivated by this insight, we propose the
Parameter Stability Loss to explicitly constrain such sign-flipping updates and mitigate catastrophic
forgetting. In addition, we integrate a post-training magnitude-based merging strategy that bridges
earlier directions with the current one and further combats the inevitable drift toward new tasks
without incurring extra training costs. Extensive experiments across varying datasets, task lengths and
diverse backbone architectures demonstrate the consistent effectiveness of our PS-LoRA framework.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics. Our work does not involve human subjects,
personally identifiable information, or sensitive data. All datasets used in this study are publicly
available and have been released by their original authors with appropriate licenses. We are not
aware of any privacy, fairness, or security concerns directly arising from the methodology or results.
The authors take responsibility for ensuring that the work complies with ethical research standards,
including research integrity, data handling, and reproducibility.

REPRODUCIBILITY STATEMENT

We have taken steps to ensure the reproducibility of our results. The architecture, training procedures,
and evaluation protocols are described in detail in Sections 4. Hyper-parameters and implementation
details are provided in Appendix C.1. All datasets used in the experiments are standard benchmarks
with publicly available access. To further facilitate reproducibility, we will release the source code
and instructions for reproducing all experiments upon acceptance.

REFERENCES

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky.
New insights on reducing abrupt representation change in online continual learning. In International
Conference on Learning Representations, 2022.

Yun-Shiuan Chuang, Rheeya Uppaal, Yi Wu, Luhang Sun, Makesh Narsimhan Sreedhar, Sijia Yang,
Timothy T Rogers, and Junjie Hu. Evolving domain adaptation of pretrained language models
for text classification. In NeurIPS 2023 Workshop on Distribution Shifts: New Frontiers with
Foundation Models.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and Rama Chellappa. Learning
without memorizing. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 5138–5146, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Wenyu Du, Shuang Cheng, Tongxu Luo, Zihan Qiu, Zeyu Huang, Ka Chun Cheung, Reynold
Cheng, and Jie Fu. Unlocking continual learning abilities in language models. arXiv preprint
arXiv:2406.17245, 2024.

Zitao Fang, Guodong DU, Shuyang Yu, Yifei Guo, Yiwei Zhang, Jing Li, Ho-Kin Tang, and Sim Kuan
Goh. Disentangling task interference within neurons: Model merging in alignment with neuronal
mechanisms, 2025. URL https://arxiv.org/abs/2503.05320.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual
learning. In International conference on artificial intelligence and statistics, pp. 3762–3773.
PMLR, 2020.

10

https://arxiv.org/abs/2503.05320

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Yufan Huang, Yanzhe Zhang, Jiaao Chen, Xuezhi Wang, and Diyi Yang. Continual learning
for text classification with information disentanglement based regularization. arXiv preprint
arXiv:2104.05489, 2021.

Gabriel Ilharco, Mitchell Wortsman, Deep Ganguli, Pang Wei Koh, Barret Zoph, Xinyun Chen,
Xuechen Li, David R So, Quoc V Le, and Jascha Sohl-Dickstein. Editing models with task
arithmetic. In International Conference on Machine Learning, 2023.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

Joseph B Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.
Psychometrika, 29(1):1–27, 1964a.

Joseph B Kruskal. Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29(2):
115–129, 1964b.

Dingcheng Li, Zheng Chen, Eunah Cho, Jie Hao, Xiaohu Liu, Fan Xing, Chenlei Guo, and Yang Liu.
Overcoming catastrophic forgetting during domain adaptation of seq2seq language generation.
In Proceedings of the 2022 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 5441–5454, 2022.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free low-rank adaptation for continual learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
23638–23647, 2024.

Jialin Liu, Jianhua Wu, Jie Liu, and Yutai Duan. Learning attentional mixture of loras for language
model continual learning. arXiv preprint arXiv:2409.19611, 2024.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Dekang Lin, Yuji Matsumoto, and Rada Mihalcea
(eds.), Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pp. 142–150, Portland, Oregon, USA, June 2011. Association for
Computational Linguistics. URL https://aclanthology.org/P11-1015/.

Daniel Marczak, Bartłomiej Twardowski, Tomasz Trzciński, and Sebastian Cygert. Magmax: Lever-
aging model merging for seamless continual learning. In European Conference on Computer
Vision, pp. 379–395. Springer, 2024.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances in
Neural Information Processing Systems, 35:17703–17716, 2022.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural networks, 113:54–71, 2019.

Yu-Yang Qian, Yuan-Ze Xu, Zhen-Yu Zhang, Peng Zhao, and Zhi-Hua Zhou. Treelora: Efficient
continual learning via layer-wise loras guided by a hierarchical gradient-similarity tree. arXiv
preprint arXiv:2506.10355, 2025.

11

https://aclanthology.org/P11-1015/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Fuli Qiao and Mehrdad Mahdavi. Learn more, but bother less: parameter efficient continual learning.
Advances in Neural Information Processing Systems, 37:97476–97498, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Madian Khabsa, Mike Lewis, and Amjad Almahairi.
Progressive prompts: Continual learning for language models. arXiv preprint arXiv:2301.12314,
2023.

Hippolyt Ritter, Aleksandar Botev, and David Barber. Online structured laplace approximations
for overcoming catastrophic forgetting. Advances in Neural Information Processing Systems, 31,
2018.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. Advances in neural information processing systems, 32, 2019.

Liyuan Wang, Jingyi Xie, Xingxing Zhang, Mingyi Huang, Hang Su, and Jun Zhu. Hierarchical
decomposition of prompt-based continual learning: Rethinking obscured sub-optimality. Advances
in Neural Information Processing Systems, 36:69054–69076, 2023a.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
Theory, method and application, 2024a. URL https://arxiv.org/abs/2302.00487.

Mingyang Wang, Heike Adel, Lukas Lange, Jannik Strötgen, and Hinrich Schütze. Rehearsal-
free modular and compositional continual learning for language models. arXiv preprint
arXiv:2404.00790, 2024b.

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and
Xuanjing Huang. Orthogonal subspace learning for language model continual learning. arXiv
preprint arXiv:2310.14152, 2023b.

Xiao Wang, Yuansen Zhang, Tianze Chen, Songyang Gao, Senjie Jin, Xianjun Yang, Zhiheng Xi, Rui
Zheng, Yicheng Zou, Tao Gui, et al. Trace: A comprehensive benchmark for continual learning in
large language models. arXiv preprint arXiv:2310.06762, 2023c.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. In European conference on computer vision, pp. 631–648.
Springer, 2022a.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 139–149, 2022b.

Yichen Wu, Long-Kai Huang, Renzhen Wang, Deyu Meng, and Ying Wei. Meta continual learning
revisited: Implicitly enhancing online hessian approximation via variance reduction. In The Twelfth
international conference on learning representations, 2024.

Yichen Wu, Hongming Piao, Long-Kai Huang, Renzhen Wang, Wanhua Li, Hanspeter Pfister, Deyu
Meng, Kede Ma, and Ying Wei. Sd-lora: Scalable decoupled low-rank adaptation for class
incremental learning. In The Thirteenth International Conference on Learning Representations,
2025.

12

https://arxiv.org/abs/2302.00487

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models. Advances in Neural Information Processing Systems,
36:7093–7115, 2023.

Hao Yu, Xin Yang, Xin Gao, Yan Kang, Hao Wang, Junbo Zhang, and Tianrui Li. Personalized
federated continual learning via multi-granularity prompt. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 4023–4034, 2024a.

Jiazuo Yu, Yunzhi Zhuge, Lu Zhang, Ping Hu, Dong Wang, Huchuan Lu, and You He. Boosting
continual learning of vision-language models via mixture-of-experts adapters. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23219–23230, 2024b.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International conference on machine learning, pp. 3987–3995. PMLR, 2017.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification, 2016. URL https://arxiv.org/abs/1509.01626.

13

https://arxiv.org/abs/1509.01626

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Contents
1 Introduction 1

2 Related Work 2

3 Method 3

4 Experiments 6

5 Conclusion 9

A Benchmarks 14

B Parameter Shift Distributions in Long Task Sequences 16

C Experiments Details 17

D Supplementary Experiments 20

E Statistical Analysis 25

F Limitations and Future Work 25

G The Use of Large Language Models (LLMs) 25

A BENCHMARKS

A.1 DATASETS

Standard & Long Table 8 presents the detailed statistics of the 15 datasets utilized in our continual
learning (CL) experiments, along with their corresponding evaluation metrics. These datasets are
primarily drawn from established CL benchmarks (Zhang et al., 2016), as well as the GLUE (Wang
et al., 2018) and SuperGLUE (Wang et al., 2019) benchmarks. Additionally, we include the IMDB
movie review dataset, following the experimental setup of ProgPrompt(Razdaibiedina et al., 2023)
and O-LoRA((Wang et al., 2023b)).

TRACE (Wang et al., 2023c) is a benchmark designed especially for the continual learning with
LLMs. It consists of 8 distinct datasets spanning challenging tasks, including domain-specific tasks,
multilingual capabilities, code generation, and mathematical reasoning, with each task containing
5, 000 instances. Specifically, the eight tasks are: C-STANCE, FOMC, MeetingBank, Py150,
ScienceQA, NumGLUE-cm, NumGLUE-ds, and, 20Minuten. All datasets are standardized into a
unified format, allowing for effortless automatic evaluation of LLMs. Therefore, it contains a total of
200, 000 samples, with 40, 000 training examples and 16, 000 testing examples.

Note that TRACE contains a wide range of different tasks, including domain-specific tasks, multi-
lingual capabilities, code generation, and mathematical reasoning. The performance measure for
each task is different: For C-STANCE and FOMC tasks, we use accuracy as the evaluation metric
to assess the model’s classification performance. MeetingBank task performance is evaluated using
the ROUGE-L score, which measures the longest common subsequence between the generated and
reference summaries. For code-related task Py150, we employ a similarity score to evaluate the
quality of generated code. The ScienceQA task is evaluated using accuracy to measure the correctness
of scientific question answering. Both NumGLUE-cm and NumGLUE-ds tasks, which focus on
mathematical reasoning, use accuracy as their evaluation metrics. Lastly, for the multilingual task
20Minuten, we utilize the SARI score to assess the quality of text simplification.

Computer Vision ImageNet-R consists of 200 ImageNet classes (Deng et al., 2009) rendered
in artistic styles. As common practices (Wu et al., 2025), we split ImageNet-R into 5/10/20 tasks
(40/20/10 classes per task).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 METRICS

Accuracy For evaluation metric, we adopt the Average Accuracy (Acc). Formally, let ai,j denote
the test accuracy on the i-th task Ti after training on Tj . Then the average accuracy of all seen tasks
can be defined as,

Acc =

∑N
i=1 |Di| · ai,N∑N

i=1 |Di|
,

where |Di| refers to the number of test samples in task Ti.

Continual Learning Metrics We adopt the notation ai,N is the final accuracy on task Ti after
learning all N tasks. The metrics are defined as follows:

Backward Transfer (BWT)

BWT =
1

N − 1

N−1∑
i=1

(ai,N − ai,i)

This measures the change in performance on task Ti from immediately after its learning to after
learning all tasks; negative values indicate forgetting.

Forward Transfer (FWT)

FWT =
1

N − 1

N∑
i=2

(ai,i−1 − ascratch, i)

Here, ascratch, i is the accuracy when training task Ti from scratch, assessing how prior tasks positively
or negatively influence new task learning.

Forgetting Rate (FR)

FR =
1

N − 1

N−1∑
i=1

(
max
j≤i

ai,j − ai,N

)
This captures how much accuracy on each task Ti decreases from its peak (during training) to the
final performance after all tasks.

Table 8: The details of 15 datasets used in CL experiments. NLI denotes natural language inference,
QA denotes questions and answers task. First five tasks correspond to the standard CL benchmark,
all other tasks are used in long-sequence experiments.

Dataset name Category Task Domain

1. Yelp CL Benchmark sentiment analysis Yelp reviews
2. Amazon CL Benchmark sentiment analysis Amazon reviews
3. DBpedia CL Benchmark topic classification Wikipedia
4. Yahoo CL Benchmark topic classification Yahoo Q&A
5. AG News CL Benchmark topic classification news
6. MNLI GLUE NLI various
7. QQP GLUE paragraph detection Quora
8. RTE GLUE NLI news, Wikipedia
9. SST-2 GLUE sentiment analysis movie reviews
10. WiC SuperGLUE word sense disambiguation lexical databases
11. CB SuperGLUE NLI various
12. COPA SuperGLUE QA blogs, encyclopedia
13. BoolQA SuperGLUE boolean QA Wikipedia
14. MultiRC SuperGLUE QA various
15. IMDB SuperGLUE sentiment analysis movie reviews

A.3 TASK SEQUENCE ORDERS

The task sequences employed in our CL experiments for both T5 and LLaMA models are summarized
in Table 9. Order 1-3 correspond to the standard CL benchmark adopted by prior works. Long 1-3

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

are long-sequence orders spanning 15 tasks, following ProgPrompt(Razdaibiedina et al., 2023) and
O-LoRA((Wang et al., 2023b)).

Table 9: Six different orders of task sequences used for continual learning experiments.

Order Model Task Sequence

order1 T5, LLaMA dbpedia → amazon → yahoo → ag
order2 T5, LLaMA dbpedia → amazon → ag → yahoo
order3 T5, LLaMA yahoo → amazon → ag → dbpedia

long1 T5, LLaMA mnli → cb → wic → copa → qqp → boolqa → rte → imdb →
yelp → amazon → sst-2 → dbpedia → ag → multirc → yahoo

long2 T5, LlaMA multirc → boolqa → wic → mnli → cb → copa → qqp → rte
→ imdb → sst-2 → dbpedia → ag → yelp → amazon → yahoo

long3 T5, LlaMA yelp → amazon → mnli → cb → copa → qqp → rte → imdb →
sst-2 → dbpedia → ag → yahoo → multirc → boolqa → wic

A.4 TASK INSTRUCTIONS

Table 10 presents the prompt templates used across various tasks. Specifically, natural language
inference (NLI) tasks include MNLI, RTE, and CB; sentiment classification (SC) comprises Amazon,
Yelp, SST-2, and IMDB; while topic classification (TC) includes AG News, DBpedia, and Yahoo
Answers.

Table 10: Instructions for different tasks.

Task Prompts

NLI What is the logical relationship between the "sentence 1" and the "sentence 2"?
Choose one from the option.

QQP Whether the "first sentence" and the "second sentence" have the same meaning?
Choose one from the option.

SC What is the sentiment of the following paragraph? Choose one from the option.

TC What is the topic of the following paragraph? Choose one from the option.

BoolQA According to the following passage, is the question true or false? Choose one
from the option.

MultiRC According to the following passage and question, is the candidate answer true or
false? Choose one from the option.

WiC Given a word and two sentences, whether the word is used with the same sense
in both sentence? Choose one from the option.

B PARAMETER SHIFT DISTRIBUTIONS IN LONG TASK SEQUENCES

This section provides the Parameter Shift Distributions under three long-task orders in Fig.8, Fig.9,
Fig.10 respectively. For each setting, we visualize the distribution of selected parameters after training
with both Incremental LoRA and our method. Our analysis focuses on the decoder block weights
in the T5 model.

For the Ti task, we compute the cumulative LoRA updates by summing over all previous low-rank
adapters:

∆Wi =

i∑
j=1

AjBj ,

where Aj and Bj denote the low-rank matrices of the Tj task’s LoRA adapter.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Then, we identify the top 20% of parameters with the largest absolute values in ∆Wi as the important
parameters, and we perform average pooling on the parameters to enhance their feature representation.
Finally we plot their value distributions across tasks to analyze shift patterns.

Generally, our approach results in a more stable parameter distribution, indicating enhanced robustness
and less catastrophic forgetting.

(a) Parameter Shift Distribution under Incremental LoRA.

(b) Parameter Shift Distribution under Our Method.

Figure 8: Comparison of parameter shift distributions for Long1 under different methods. Our
method shows more consistent parameter evolution and reduced directional conflict across tasks.

C EXPERIMENTS DETAILS

C.1 IMPLEMENTING DETAILS

All experiments were conducted using two NVIDIA RTX 4090 GPUs (40GB each) with DeepSpeed-
enabled distributed training. Our method is implemented based on the training framework provided
by O-LoRA under the MIT License.

We insert LoRA adapters into the query and value projection matrices of all Transformer layers, with
each adapter configured to have a rank of r = 8, a dropout rate of 0.1, and a scaling factor of 1.
For the t5-large model, we use a learning rate of 0.001 and a batch size of 8, training each task
for one epoch. The parameter stability loss coefficient λ is set to 0.1 for long tasks and 0.001 for

17

https://github.com/cmnfriend/O-LoRA.git

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) Parameter Shift Distribution under Incremental LoRA.

(b) Parameter Shift Distribution under Our Method.

Figure 9: Comparison of parameter shift distributions for Long2 under different methods. Our
method shows more consistent parameter evolution and reduced directional conflict across tasks.

standard sequences. For the llama2-7b model, we use a learning rate of 0.0003 and a batch size
of 4, also training each task for one epoch, with the parameter stability loss coefficient set to 0.01
for long tasks and 0.001 for standard sequences. We conducted detailed hyperparameter sensitivity
experiments in Tab. 13 to clarify our choice. In all experiments using O-LoRA, the orthogonal loss
coefficient is fixed at λ = 0.5. When applying neuron merge, we scale the orthogonal component by
a factor of 3, and parallel component by a factor of 1. We report results based on three random seeds:
42, 1121, and 3407.

C.2 BASELINES

• Zero-shot: directly tests pretrained model on benchmarks without any finetuning.

• SeqLoRA: assigns one LoRA for all tasks, and sequentially finetuning this LoRA on each
task.

• Replay: This method mitigates forgetting by maintaining a fixed-size memory buffer that
stores a subset of past samples. During training on a new task, both the current task data and
replayed samples from earlier tasks are jointly used to fine-tune the model.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) Parameter Shift Distribution under Incremental LoRA.

(b) Parameter Shift Distribution under Our Method.

Figure 10: Comparison of parameter shift distributions for Long3 under different methods. Our
method shows more consistent parameter evolution and reduced directional conflict across tasks.

• EWC (Kirkpatrick et al., 2017): Elastic Weight Consolidation imposes a quadratic penalty
on parameter updates, discouraging changes to weights that are crucial to previously learned
tasks, based on their estimated importance derived from the Fisher Information Matrix.

• LwF (Li & Hoiem, 2017): Learning without Forgetting avoids storing old data by preserving
responses of the shared representation on past tasks via a distillation loss. This helps maintain
stable internal representations when adapting to new tasks.

• L2P (Wang et al., 2022b): Learning to Prompt introduces a pool of learnable prompts
and selects task-relevant prompts for each input dynamically. This instance-wise prompt
retrieval enables the model to adapt without modifying the pretrained backbone.

• LFPT5 (Huang et al., 2021): A prompt-based continual learner built on T5, which jointly
optimizes soft prompts for task solving and sample generation. The generated pseudo-
examples are then utilized in a rehearsal-like manner to retain previous knowledge.

• IncLoRA: IncLoRA incrementally adds a task-specific LoRA module per task and keeps
previously learned modules frozen. Each task maintains its dedicated adapter.

• MIGU (Du et al., 2024): MIGU selectively updates gradient of parameters only with magni-
tude above threshold, supposing magnitude distribution among different tasks distinguishes

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

them from each other. It can be added to different architecture. Since out method is based
on IncLoRA, we choose IncLoRA+MIGU as our baseline.

• O-LoRA(Wang et al., 2023b): O-LoRA bases on IncLoRA framework, while it imposes an
orthogonal regularization to restrict the update of parameters in subspace.

• LB-CL(Qiao & Mahdavi, 2024): LB-CL also bases on IncLoRA framework, it initializes
new LoRA with SVD decomposition of previous task parameters and enforces orthogonality
across task subspaces via gradient projection.

• MoCL(Wang et al., 2024b): MoCL calculats task similairty coefficient and dynamically
combines trained LoRAs in order to eliminate forgetting.

• AM-LoRA(Liu et al., 2024): AM-LoRA bases on IncLoRA and adaptively integrates their
knowledge using an attention mechanism with L1 sparsity constraints.

• PerTaskFT: trains a separate LoRA model for each task.
• MTL: trains a model on all tasks as multi-task learning, serving as the benchmark’s upper

bound of the performance limit.
• PS-LoRA: Our method trains model with Parameter Stability Loss and magnitude-selected

mergeing strategy.

C.3 TASK ACCURACY

In Fig.11, We provide additional sequential cases similar to this Fig.7, further validating the robustness
of the PS-LoRA method.

(a) Order1 (b) Order2 (c) Order3

(a) Long1 (b) Long2 (c) Long3

Figure 11: The average accuracy for each sequence with incremental tasks

D SUPPLEMENTARY EXPERIMENTS

D.1 EXPLORATION OF SAME SIGN PERFORMANCE

In this experiment, we adopt an incremental LoRA training strategy where a new trainable LoRA
module AtBt is assigned for each incoming taskTt. During training, no constraints are imposed on

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 11: Performance of experiments that manually add sign mask after each task

Method Standard (N = 4) Long (N = 15)
Order1 Order2 Order3 avg Long1 Long2 Long3 avg

IncLoRA 68.6 59.7 75.0 67.8 60.3 60.5 53.2 58.0
Decomposition 77.2 72.9 72.4 74.1 67.1 68.4 68.8 68.1
Ours 79.2 78.3 78.3 78.6 72.9 74.7 73.1 73.6

the parameter updates, allowing full flexibility for task-specific adaptation. After training on a task is
completed, we retain only the components of the current LoRA whose signs are consistent with the
element-wise sum of all previously learned LoRA modules

∑t−1
i=1 AiBi. This consistency check helps

mitigate interference with previously acquired knowledge. The resulting sign-consistent matrix is then
subjected to Singular Value Decomposition (SVD), and the low-rank factors from the decomposition
are used to construct the LoRA module for the current task. This process enables continual learning
by progressively integrating task-specific knowledge while controlling for conflicting parameter
directions across tasks. Results are shown in Table 11.

D.2 DIFFERENT MERGING PERFORMANCE ON TASKS

Specifically, for the long-order setting, we compute the change in average accuracy for each task
before and after merging, evaluated after training the final task. A corresponding heatmap is shown
in Fig.12.

Average TIES Mag Neuro

MNLI
CB

WiC
COPA

QQP
BoolQA

RTE
IMDB

yelp
amazon

SST-2
dbpedia
agnews

MultiRC
yahoo

NLI
SC
TC
avg

22 23 19 -27
16 14 13 -21

0.31 0.94 0.94 -5.8
2 3 0 -8

-4.1 -9.4 -7.1 -15
3.1 1.6 0.98 -16
6.5 -4.3 -1.8 -60
6.2 6.8 6.4 -15
-13 -0.28 0.74 -2.3
-11 0.91 1.2 -0.36

-0.23 0 0.46 -16
-39 1.1 1.3 -12
-59 -0.72 0.51 0.14
-16 -18 -13 -13
-70 -4.8 -1.5 -9.4
21 22 19 -28

-5.7 2.4 2.7 -6.3
-56 -1.5 0.097 -6.9
-19 0.56 1.4 -11

Accuracy Difference - long_1

60

40

20

0

20

(a) Long1

Average TIES Mag Neuro

MultiRC
BoolQA

WiC
MNLI

CB
COPA

QQP
RTE

IMDB
SST-2

dbpedia
agnews

yelp
amazon

yahoo
NLI
SC
TC
avg

2.4 2.2 1.4 -13
6.9 3.7 2.2 -14
-3.9 -0.16 -0.94 -6.9
24 13 11 -13
54 30 27 -8.9
8 5 1 0

1.8 -1.2 -2.1 -12
-0.36 2.2 -2.2 -53
-1.1 0.26 0.37 -0.33
1.1 0.8 1.4 -2.2
-28 0.33 0.38 -21
-74 -1.3 1.1 -2.5
-28 -5.6 1 -1.2
-30 -2.2 3.7 -0.12
-70 -3 -1.9 -14
23 12 11 -14
-19 -2.4 1.7 -0.6
-58 -1.3 -0.17 -13
-22 0.35 1.7 -8.8

Accuracy Difference - long_2

60

40

20

0

20

40

(b) Long2

Average TIES Mag Neuro

yelp
amazon

MNLI
CB

COPA
QQP
RTE

IMDB
SST-2

dbpedia
agnews

yahoo
MultiRC
BoolQA

WiC
NLI
SC
TC
avg

5.4 1.3 2.5 -22
2.7 1.8 1.2 -22
3.8 1.3 0.82 -42
3.6 3.6 1.8 -59
-2 3 4 0
23 20 17 -21
2.5 5.1 3.6 -58

0.16 0.14 0.16 -2.5
0.11 0 0.11 -7.3
-3.3 0.91 0.8 -36
-6.6 -7.8 -1.9 -39
-16 -2.2 -0.83 -50
8.2 9.9 6.1 -11

-0.67 1.6 1.7 -15
3.9 3.8 3 -0.47
3.8 1.5 0.92 -43
2.6 1 1.3 -15
-8.5 -3.1 -0.64 -42
1.6 2.5 2.6 -27

Accuracy Difference - long_3

50

40

30

20

10

0

10

20

(c) Long3

Figure 12: Heatmap showing the average accuracy change for each task before and after applying
different merge method, evaluated after the final task in the long-order training sequence.

As illustrated in Figure 12, most tasks benefit from the magnitude-selected merging process. A few
cases of accuracy drop suggest room for improving the merge strategy for better compatibility across
tasks.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D.3 REGULARIZATION COMPONENT ANALYSIS.

We further evaluate the impact of the proposed Parameter Stability Loss by ablating its two
components in Eqn. (4): (i) Magnitude-constraint, which penalizes large-magnitude parameters to
control forgetting, and (ii) Sign-alignment, which encourages alignment between the signs of the
current task weights and the accumulated task vector; Table 12 shows that removing either component
leads to notable performance drops, with the full regularization achieving the best balance between
knowledge retention and new task acquisition. This validates our hypothesis that both sign alignment
and magnitude control are crucial for stable continual adaptation.

Table 12: Ablation study on regularization strategies in continual LoRA training. We evaluate different
components including sign-aware loss, magnitude restriction, and their combinations. Results are
reported across three task orderings on two benchmarks.

Method Standard (N = 4) Long (N = 15)
Order1 Order2 Order3 avg Long1 Long2 Long3 avg

IncLoRA 68.6 59.7 75.0 67.8 60.3 60.5 53.2 58.0
Magnitude-constraint 72.2 73.2 77.6 74.3 63.8 64.7 68.5 65.7

+Merging 76.9 78.7 79.0 78.2 69.9 68.3 69.1 69.1
Sign-alignment 77.6 76.2 78.3 77.4 70.3 67.8 67.9 68.6

+Merging 79.1 78.4 79.0 78.8 70.0 67.2 72.1 69.8
Both 79.2 78.3 78.3 78.6 72.9 74.7 73.1 73.6

+Merging 80.0 79.1 79.6 79.6 74.2 76.5 75.7 75.5

D.4 SENSITIVITY OF HYPER-PARAMETERS

We conducted a sensitivity analysis of the stability loss coefficient λ on benchmarks with different
task lengths (N) and task sequence orders. The results, shown in the following table, indicate that
PS-LoRA is generally robust within a moderate range of λ values. We noticed that values of λ
between 0.001 and 0.1 consistently yield state-of-the-art performance. Noticeable performance
degradation occurs only at extreme values (e.g., 0.0001 or 10), suggesting that the proposed stability
loss is not highly sensitive to λ. For the experiments reported in the main paper, λ was chosen based
on performance on the evaluation sets, with the best-performing value selected for each case.

Table 13: Results for different λ values.

λ Test (N = 4) Test (N = 15) Eval (N = 4) Eval (N = 15)

10 72.19 69.37 72.46 72.56
1 76.22 73.20 72.07 76.85

0.1 78.91 75.25 80.68 78.44
0.01 78.61 74.20 82.93 76.58

0.001 79.60 72.70 84.05 74.32
0.0001 78.51 66.83 82.01 71.83

D.5 EFFECT OF STABILITY LOSS ON CONVERGENCE DYNAMICS

0% 20% 40% 60% 80% 100%
Training progress (%)

0
20
40
60
80

100

Ac
cu

ra
cy

 (%
)

Convergence of IncLoRA vs PS-LoRA

IncLoRA
PS-LoRA

Figure 13: Convergence speed in training.

To further assess the effect of the stability loss on train-
ing dynamics, we compared PS-LoRA and the baseline
IncLoRA on task order 1 of the Standard benchmark.
For each new task, we recorded the training accuracy
at several checkpoints (0%, 20%, ..., 100%) throughout
optimization, as reported in Table 14.

The results indicate that the introduction of the stabil-
ity loss does not lead to a slowdown in convergence.
Both PS-LoRA and IncLoRA display nearly identical

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

convergence behavior across tasks. For example, on T4,
both methods exceed 94% accuracy at 60% of training and converge to comparable final levels. In
addition, PS-LoRA achieves consistently higher accuracy on all previously seen tasks, demonstrating
improved retention without sacrificing optimization efficiency.

Table 14: Training accuracy of PS-LoRA and IncLoRA across checkpoints.

Task Method 0% 20% 40% 60% 100% All Seen

T2 PS-LoRA 52.94 73.54 78.56 79.33 80.55 79.34
T2 IncLoRA 52.94 73.03 78.84 79.77 81.28 77.69
T4 PS-LoRA 77.27 86.68 93.35 95.10 95.60 79.57
T4 IncLoRA 75.70 87.33 93.03 94.34 95.23 62.62

D.6 GPU MEMORY EFFICIENCY

We examined the GPU memory efficiency of PS-LoRA, which is a critical factor in continual learning
with long task sequences. The evaluation was conducted from two perspectives: (i) parameter growth
and (ii) runtime memory footprint. Across both, PS-LoRA demonstrates strong memory efficiency.

Table 15: Trainable LoRA parameters relative to
full models.

Backbone Trainable % of full model Model Param

T5-large 2.4M 0.32% ∼740M
LLaMA2-7B 4.2M 0.06% ∼7B

Parameter growth. LoRA adapters con-
tribute only a small number of trainable parame-
ters per task (Table 15). Even when adapters for
all previous tasks are retained, the total parame-
ter growth remains limited, especially in light of
the substantial performance benefits. Compared
with baselines, the parameter count of PS-LoRA
is on pair with O-LoRA and IncLoRA, while significantly lower than MoE-style approaches such as
AM-LoRA and MoCL, which require additional routing modules.

Runtime memory. We first compared PS-LoRA with IncLoRA and full fine-tuning in terms of
latency and GPU memory usage. Batch sizes were set to 8 (training) and 128 (inference) on T5-large,
and 4 (training) and 16 (inference) on LLaMA2-7B. Results are reported in Table 16.

Table 16: Training/inference latency and memory usage.

Method Training Latency Inference Latency Memory Usage

PS-LoRA (T5) ∼1.2s/it ∼4.3s/it ∼15GB
PS-LoRA Merged (T5) – ∼2.1s/it ∼15GB
IncLoRA (T5) ∼1.1s/it ∼4.3s/it ∼15GB
MoCL (T5) ∼1.3s/it ∼4.5s/it ∼30GB
Full-Finetune (T5) ∼1.4s/it ∼2.1s/it ∼20GB

PS-LoRA (LLaMA-7B) ∼1.7s/it ∼2.3s/it ∼30GB
PS-LoRA Merged (LLaMA-7B) – ∼1.4s/it ∼30GB
IncLoRA (LLaMA-7B) ∼1.5s/it ∼2.3s/it ∼30GB
Full-Finetune (LLaMA-7B) ∼12.0s/it ∼1.5s/it ∼45GB

With regard to task length growth, we further recorded peak GPU memory usage (max_allocated)
and static model footprint (allocated) across 15 tasks during both training and inference (Tables 17
and 18). The results show that PS-LoRA adds only a modest overhead, and memory consumption
scales minimally with the number of tasks. This confirms that the stability-related parameters are not
a dominant factor in runtime GPU usage.

D.7 OTHER MERGING STRAGIES.

How does the magnitude-based merging strategy in PS-LoRA compare to other merging strate-
gies? We evaluate different merging strategies, as shown in Table 19. Compared to alternatives such
as simple averaging or Neuro Merging(Fang et al., 2025), our adopted merging strategy consistently

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 17: GPU memory usage during LLaMA-7B training.

Task 1 Task 3 Task 6 Task 9 Task 12 Task 15 ∆max (1→15)

allocated (GB) 12.64 12.68 12.67 12.72 12.72 12.74 +110 MB (+0.9%)
max_allocated (GB) 34.67 27.38 28.02 30.38 30.47 31.32 –3.35 GB (-9.7%)

Table 18: GPU memory usage during LLaMA-7B inference.

Task 1 Task 3 Task 6 Task 9 Task 12 Task 15 ∆max (1→15)

allocated (GB) 12.63 12.65 12.67 12.69 12.72 12.74 +110 MB (+0.9%)
max_allocated (GB) 21.13 14.25 16.48 21.46 21.48 21.50 +0.37 GB (+1.8%)

achieves the best performance. This supports the intuition that parameters with larger magnitudes
tend to be more important, which is consistent with the findings in Sec. 3.2. Therefore, the proposed
PS-LoRA enhances performance by preserving the parameter distribution through the Parameter
Stability loss, and by protecting high-magnitude parameters via the merging strategy.

Table 19: Ablation study on various post-training LoRA merging strategies based on T5-large. Results
(%) are averaged over three random task orders on two continual learning benchmarks.

Merging Strategy Standard (N = 4) Long (N = 15)
Order1 Order2 Order3 avg Long1 Long2 Long3 avg

None 79.2 78.3 78.3 78.6±0.5 72.9 74.7 73.1 73.6±1.0

Neuro(Fang et al., 2025) 58.5 50.8 64.9 58.1±7.1 61.9 66.5 55.4 61.3±5.6

Average 77.0 78.1 77.3 77.0±0.6 54.7 55.2 73.5 61.1±10.7

TIES(Yadav et al., 2023) 78.6 78.3 79.6 78.8±0.7 72.6 74.7 74.9 74.1±1.3

Ours 80.0 79.1 79.6 79.6±0.5 74.2 76.5 75.7 75.5±1.2

D.8 MERGING EFFICIENCY.

The merging operation in PS-LoRA is lightweight, based on an element-wise comparison between
the accumulated LoRA weights and the current task’s weights:

M(∆W1,∆W2)i,j =

{
[∆W2]i,j , if |∆W2| ≥ |∆W1|
[∆W1]i,j , otherwise.

(7)

This operation is highly parallelizable and scales linearly with the matrix size. For low-rank matrices
Ai ∈ Rr×d′

and Bi ∈ Rd×r, where r ≪ d, d′, the complexity is:

• Time complexity: O(t·r·d·d′), with each step involving low-rank multiplications O(r·d·d′)
and element-wise comparisons O(d · d′). The small LoRA rank r ensures efficiency even as
the task count t grows.

• Space complexity: only two intermediate tensors of size d× d′ are needed, i.e., O(d · d′)
additional memory.

In practice, merging all 15 tasks requires only 0.28 seconds on T5-large and 1.47 seconds on
LLaMA2-7B, confirming negligible cost even on large models.

Runtime acceleration. We benchmarked inference throughput (samples/sec) on the merged models.
Merging yields a 40%–50% speedup, which is particularly beneficial for deployment:

Table 20: Inference throughput before and after
merging.

Model w/o Merge With Merge

T5-Large 28.05 41.45
LLaMA2-7B 3.53 5.61

Reduced memory footprint. Unlike MoE-style
methods (e.g., MoCL, AM-LoRA) which cannot
merge adapters, PS-LoRA significantly reduces
memory usage. For instance, on T5-large, LoRA
adapters introduce ∼2.4M parameters per task.
Without merging, 15 tasks require 36M parameters
(∼4.6% of the backbone size, 776M). With merging, the overhead is negligible.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

E STATISTICAL ANALYSIS

E.1 FOR TABLES

We report standard deviation-based error bars for all results in Table 1, Table ??, Table 5, Table 7,
with Eqn.8

s =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2 (8)

This error bars in table are calculated across different orders, which reveal the stability for each
method under different random task orders.

Sources of Variability The error bars capture variability due to three different orders.

Method of Computation Error bars were calculated as the standard deviation across 3 different
orders.

E.2 FOR GRAPHS

In Fig. 1, 7, we also report mean value and standard deviation-based error bars for all results by line
plot and shadows.

Sources of Variability The error bars capture variability due to three different random seeds used for
model initialization and data shuffling.

Method of Computation Error bars were calculated as the standard deviation across 3 runs with
different seeds.

F LIMITATIONS AND FUTURE WORK

Large Number Task and Efficiency As the number of tasks increases, the memory overhead can
become significant, despite the relatively small size of each low-rank matrix. This issue becomes
particularly prominent in scenarios involving hundreds of tasks or when LoRA is injected into
multiple layers of the model. A promising future direction is to investigate how to merge task-specific
LoRA modules into the pretrained model incrementally during the continual learning process, or
alternatively, maintain a single consolidated LoRA module that retains the knowledge acquired so far
without catastrophic forgetting.

Mechanism behind Sign Patterns The underlying role of sign patterns in forgetting and learning
dynamics remains insufficiently explored. Experimental results suggest that the sign components
of LoRA parameters exhibit a certain degree of redundancy. Understanding how sign structures
influence continual learning and parameter-efficient finetuning is crucial, as it may reveal fundamental
mechanisms that drive knowledge retention and transfer in low-rank adaptation frameworks.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, we used a Large Language Model (LLM) as a writing assist tool. The
LLM was employed solely for language polishing, including improving grammar, readability, and
clarity of expression. It did not contribute to research ideation, experimental design, data analysis,
or the generation of scientific content. The authors take full responsibility for the entirety of the
manuscript.

25

	Introduction
	Related Work
	Method
	Preliminaries
	Motivation: Large-Scale Parameter Shift
	The Proposed PS-LoRA Algorithm
	Theoretical Analysis

	Experiments
	Experimental Results
	Discussion

	Conclusion
	Benchmarks
	Parameter Shift Distributions in Long Task Sequences
	Experiments Details
	Supplementary Experiments
	Statistical Analysis
	Limitations and Future Work
	The Use of Large Language Models (LLMs)

