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Abstract

Motivated by applications such as cloud platforms allocating GPUs to users or
governments deploying mobile health units across competing regions, we study the
constrained dynamic allocation of a reusable resource to a group of strategic agents.
Our objective is to simultaneously (i) maximize social welfare, (ii) satisfy multi-
dimensional long-term cost constraints, and (iii) incentivize truthful reporting. We
begin by numerically evaluating primal-dual methods widely used in constrained
online optimization and find them to be highly fragile in strategic settings – agents
can easily manipulate their reports to distort future dual updates for future gain. To
address this vulnerability, we develop an incentive-aware framework that makes
primal-dual methods robust to strategic behavior. Our primal-side design combines
epoch-based lazy updates – discouraging agents from distorting dual updates
– with dual-adjust pricing and randomized exploration techniques that extract
approximately truthful signals for learning. On the dual side, we design a novel
online learning subroutine to resolve a circular dependency between actions and
predictions; this makes our mechanism achieve Õ(

√
T ) social welfare regret (where

T is the number of allocation rounds), satisfies all cost constraints, and ensures
incentive alignment. This Õ(

√
T ) performance matches that of non-strategic

allocation approaches while additionally exhibiting robustness to strategic agents.

1 Introduction

Modern platforms and public agencies often face the challenge of allocating limited, reusable
resources over time to self-interested agents, who may hide their true desire in sake of more favorable
allocations. For example, cloud providers must decide how to distribute scarce GPUs to competing
jobs under compute and energy constraints (Buyya et al., 2008; Nejad et al., 2014). Governments may
deploy mobile health units or medical devices such as ventilators across regions, where needs vary
over time and access is constrained by staffing or capacity (Stummer et al., 2004; Adan et al., 2009).
In these settings, a same unit of resource is reallocated across time, and the allocation must respect
some multi-dimensional long-term cost constraints – such as energy or staffing – while accounting
for the strategic behavior of agents with private information.

A central challenge in these dynamic environments is being both efficient – i.e., maximizing social
welfare subject to constraints – and robust to agents’ strategic manipulation. Focusing on efficiency,
primal-dual methods serve as a powerful tool in online resource allocation, offering principled ways
to handle constraints while adapting to changing demand (Devanur and Hayes, 2009; Golrezaei et al.,
2014; Molinaro and Ravi, 2014; Balseiro et al., 2023). These methods maintain dual variables that
act as shadow prices on resource usage, guiding allocations based on both values and costs. However,
these approaches typically assume truthful agents and ignore any strategic responses agents make.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Figure 1: We simulate a T -round game for 1000 trials, during which agents use Q-learning to optimize
their reporting strategy. Under the vanilla primal-dual algorithm of Balseiro et al. (2023), agents learn
to frequently misreport their values, resulting in reduced social welfare and low budget utilization
(blue). In contrast, under our incentive-aware mechanism, agents gradually learn to report truthfully,
leading to significantly improved social welfare while adhering to cost constraints (green).

Indeed, as we illustrate numerically in Figure 1, classical primal-dual mechanisms are highly vulnera-
ble to manipulation (see Section 5 for the detailed setup): Strategic agents game the learning process
by distorting their current reports to influence future dual updates, thereby improving their individual
utility but giving low budget utilization and less welfare. This fragility raises a natural question:

With strategic agents, is it still possible to optimize social welfare subject to long-term constraints?

To our knowledge, the only prior work addressing strategic agents in constrained online allocation is
that of Yin et al. (2022). While their framework is a valuable step, it has two key limitations. First, it
focuses on homogeneous agents with identical value distributions – an assumption critical for their
equilibrium argument, but unrealistic in many applications. Second, their mechanism focuses on a
specific type of cost constraint based on some “fair share” per agent, which requires knowing ideal
allocation proportions in advance. These assumptions limit the practical applicability of their results.
Due to space limitations, more discussions on related works are postponed to Appendix A.

This paper goes beyond these limitations and yields an incentive-aware primal-dual framework – one
that is robust to strategic manipulation. To limit agents’ influence on the future, we stabilize dual
updates through epoch-based lazy updates (fixing dual variables within each epoch), which reduce
the impact of any individual report on future duals and allocations. To further deter manipulation,
we combine dual-adjusted pricing rounds with randomized exploration which imposes immediate
utility loss on untruthful agents, thereby creating localized incentives for truthful reporting. We show
that, when the dual variables are updated via the classical Follow-the-Regularized-Leader (FTRL)
algorithm, our mechanism (i) achieves sublinear regret of Õ(T 2/3) w.r.t. offline optimal allocations,
where T is the number of rounds, (ii) satisfies all resource constraints exactly, and (iii) admits a
Perfect Bayesian Equilibrium (PBE) in which agents have no incentives to misreport in most rounds.

We show that FTRL is unable to get o(T 2/3) regret; however, we observe that property (iii) allows
the planner to treat historical reports as reliable estimates of true values, thus enabling optimistic
predictions of future outcomes. Building on this, we introduce a novel online learning algorithm
– Optimistic FTRL with Fixed Points (O-FTRL-FP) – which solves a small number of fixed-point
problems across the time horizon to incorporate such predictive structure.1 This gives an improved
regret bound of Õ(

√
T ), matching the Ω(

√
T ) lower bound for non-strategic constrained allocation

(Arlotto and Gurvich, 2019). In doing so, we bridge the gap between online constrained optimization
and dynamic mechanism design, enabling robust decision-making in complex, strategic environments.

2 Preliminaries

Notations. For an integer n ≥ 1, [n] denotes the set {1, 2, . . . , n}. For a set X , the probabilistic
simplex △(X ) contains all probability distributions over X . We use bold letters like v to denote

1Due to a circular dependency between actions and predictions, the O-FTRL framework (Rakhlin and
Sridharan, 2013) is not applicable. Our newly proposed O-FTRL-FP framework resolves this issue, and we
expect it to be of independent interest to the online learning literature; see Section 4.2.4 for more context.
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Protocol 1 Interaction Protocol for Repeated Resource Allocation
Input: Number of rounds T , number of agents K, value distributions {Vi}i∈[K], cost distributions

{Ci}i∈[K], mechanism M = (Mt)t∈[T ], agents’ strategy profile π = (πt,i)t∈[T ], i∈[K]

1: Initialize public history: H1,0 ← ∅
2: Initialize private history for each agent i: H1,i ← {(Vj , Cj)}j∈[K]

3: for each round t = 1, 2, . . . , T do
4: Each agent i ∈ [K] observes:

• Private value: vt,i ∼ Vi
• Public cost vector: ct,i ∼ Ci

5: Agent i submits report: ut,i ∼ πt,i(vt,i, ct;Ht,i)
6: Planner applies mechanism: (it, pt,it) ∼Mt(ut, ct;Ht,0)
7: Update public history: add (ut, ct, it, pt,it) toHt+1,0

8: Each agent i updates private history: add vt,i and (ut, ct, it, pt,it) toHt+1,i

a vector, and use normal letters like vi for an element therein. For a random variable X , we use
PDF(X) to denote its probability density function (PDF). We use O to hide all absolute constants,
Õ to additionally hide all logarithmic factors, and ÕT to focus on the polynomial dependency of T .

Setup. We consider the problem of allocating indivisible resources over T rounds from a central
planner to K strategic agents, indexed by 1, 2, . . . ,K. In each round, the planner allocates a single
indivisible resource to one of the agents, aiming to maximize social welfare while satisfying d
long-term cost constraints simultaneously; more details on this objective can be found in Section 2.3.

2.1 Agents’ Values and Costs, Planner’s Allocation and Payment

In each round t ∈ [T ], agent i ∈ [K] has a private scalar value vt,i ∈ [0, 1] and a public d-dimensional
cost vector ct,i ∈ [0, 1]d. Allocating the resource to agent i in round t yields a value of vt,i to the
agent and incurs ct,i,j units of cost along dimension j for all j ∈ [d]. We assume that values and costs
are independent across agents and rounds; specifically, vt,i and ct,i are i.i.d. samples from fixed but
unknown distributions Vi ∈ △([0, 1]) and Ci ∈ △([0, 1]d), respectively, for all t ∈ [T ] and i ∈ [K].

Every agent i ∈ [K], after observing their own private value vt,i, strategically generates a report
ut,i ∈ [0, 1] which may differ from vt,i. We defer the generation rule of such reports to Section 2.2.
After observing agents’ strategic reports ut and cost vectors ct (but without access to the true values
vt), the planner either irrevocably allocates the resource to one of the agents it ∈ [K] or forfeits it.

After the allocation, the planner decides a payment charged from the winner it, denoted by pt,it . For
all remaining agents i ̸= it, the payment pt,i = 0. The planner maximizes the T -round cumulative
social welfare

∑T
t=1 vt,it subject to long-term constraints that the T -round average costs are no more

than a pre-specified threshold ρ ∈ [0, 1]d, i.e., 1
T

∑T
t=1 ct,it ≤ ρ, where≤ is compared element-wise.

2.2 History, Planner’s Mechanism, and Agents’ Strategies

At the beginning of round t ∈ [T ], the public history is given by Ht,0 := {(uτ , cτ , iτ , pτ,iτ )}τ<t.
Each agent i ∈ [K] additionally has access to their own past values and all agents’ value and cost
distributions. Thus, the private history available to agent i at the beginning of round t is 2

Ht,i := Ht,0 ∪ {vτ,i}τ<t ∪ {(Vj , Cj)}j∈[K], ∀t ∈ [T ], i ∈ [K].

In each round t ∈ [T ], the planner determines the allocation and payment (it, pt,it) based on agents’
reports ut, cost vectors ct, public historyHt,0, and possibly some internal randomness used to break
ties or randomize decisions. We write it = pt,it = 0 when the allocation is forfeited. Formally,

(it, pt,it) ∼Mt(ut, ct;Ht,0), where Mt : (ut, ct,Ht,0) 7→ PDF(it, pt,it), ∀t ∈ [T ].

2We assume the distributional information is known across the agents since such information (or at least
some prior) is necessary for the definition of Perfect Bayesian Equilibrium (PBE) in Definition 2. We adopt this
mutually known setup as it is most challenging for the planner in terms of information asymmetry.
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The collection of decision rules M = (Mt)t∈[T ] is referred to as the planner’s mechanism. We
emphasize that the planner does not know the agents’ value or cost distributions, whereas the
mechanism M is publicly known to the agents, as is standard in the literature.

For each agent i ∈ [K], their report ut,i is determined based on their private value vt,i, the cost vector
ct, their private historyHt,i, and potentially some internal randomness. Formally, we write

ut,i ∼ πt,i(vt,i, ct;Ht,i), where πt,i : (vt,i, ct,Ht,i) 7→ PDF(ut,i), ∀t ∈ [T ], i ∈ [K].

Agent i’s decision rules collectively form their strategy πi := (πt,i)t∈[T ]. The agents’ strategies
together constitute a joint strategy π := (πi)i∈[K]. We summarize the interaction as Protocol 1.

2.3 Agents’ Behavior and Planner’s Regret

To model agents’ behavior in a dynamic environment, we adopt the γ-impatient agent framework
introduced by Golrezaei et al. (2021a, 2023) which captures the idea that agents often prioritize
immediate rewards over long-term gains – due to bounded rationality, uncertainty about future rounds,
or limited planning horizons – while the planner is more patiently optimizing the long-run welfare.
Assumption 1 (γ-Impatient Agents). For some fixed constant γ ∈ (0, 1) unknown to the planner,
every agent i ∈ [K] is γ-impatient in the sense that they maximize their γ-discounted T -round gain 3

V γ
i (π;M) := E

Protocol 1

[
T∑

t=1

γt(vt,i − pt,i)1[it = i]

]
, ∀i ∈ [K],π ∈ Π,M . (1)

In this paper, we study the equilibrium concept of Perfect Bayesian Equilibrium (PBE):
Definition 2 (Perfect Bayesian Equilibrium). Fix a mechanism M = (M1,M2, . . . ,MT ). An agents’
joint strategy π is a Perfect Bayesian Equilibrium (PBE) under M , if any single agent’s unilateral
deviation from π does not increase their own gain. Formally, a joint strategy π ∈ Π is a PBE if

V γ
i (πi ◦ π−i;M) ≥ V γ

i (π′
i ◦ π−i;M), ∀i ∈ [K],∀agent i’s strategy π′

i.

The planner aims to maximize social welfare, namely the expected total value yielded from allocations
E[
∑T

t=1 vt,it ], while satisfying the d long-term cost constraints 1
T

∑T
t=1 ct,it ≤ ρ simultaneously.

To evaluate a mechanism’s performance, we compare the allocations against the following offline
optimal benchmark, which performs a hindsight optimization using agents’ true values and costs:

{i∗t }t∈[T ] := argmax
i∗1 ,...,i

∗
T∈{0}∪[K]

T∑
t=1

vt,i∗t subject to
1

T

T∑
t=1

ct,i∗t ≤ ρ. (2)

We remark that benchmark in Eq. (2) depends on the full sequence of true values {vt}Tt=1 and costs
{ct}Tt=1, which are not observable to the planner. This distinguishes it from typical online learning
benchmarks, which fixes a policy before the game; see (Balseiro et al., 2023) for a related discussion.
Since Eq. (2) relies on information unavailable at decision time, it cannot be matched exactly. Instead,
we assess the mechanism’s performance by measuring its regret relative to the offline optimal:

RT (π,M) := E
Protocol 1

[
T∑

t=1

(
vt,i∗t − vt,it

)]
, (3)

where the expectation is over the randomness in the mechanism, agent strategies, and value/cost
realizations. This regret notion generalizes the one studied in the non-strategic setting of Balseiro
et al. (2023), where agents report truthfully (i.e., π = TRUTH such that ut,i = vt,i for all t and i). In
that setting, their mechanism M0 achieved regret RT (TRUTH,M0) = Õ(

√
T ). However, if agents

are strategic, they may deviate from truthful reporting. In contrast, our mechanism in Algorithm 2
guarantees the existence of a Perfect Bayesian Equilibrium (PBE) strategy profile π such that no
agent benefits from unilateral deviation, and under which the regret remains Õ(

√
T ) (Theorem 3.2).

3Two special cases of Assumption 1 are 0-impatient agents, who only care about their gains in the current
round (often referred to as myopic agent), and 1-impatient agents, who care about their total gains over the entire
T -round game (as is typical in extensive-form games).
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Algorithm 2 Primal-Dual Mechanism Robust to Strategic Manipulations
Input: Number of rounds T , agents K, resources d, cost constraint ρ ∈ [0, 1]d

Epochs {Eℓ}Lℓ=1, learning rates {ηℓ}Lℓ=1, regularizer Ψ: Rd
≥0 → R, sub-routine A

Output: Allocations i1, . . . , iT , where it = 0 denotes no allocation
1: Define dual region Λ := {λ ∈ Rd : λj ∈ [0, ρ−1

j ]}
2: for epoch ℓ = 1, 2, . . . , L do
3: Update dual variable λℓ ∈ Λ via the sub-routine A: λℓ ← A(ℓ, ηℓ,Ψ).
4: for each round t ∈ Eℓ do
5: Each agent i ∈ [K] observes their value vt,i ∼ Vi and costs ct ∼ C
6: Agent reports ut,i ∈ [0, 1] according to Protocol 1; ut and ct become public.
7: if round t is selected for exploration (w.p. 1/|Eℓ| independently) then
8: Sample tentative agent i ∼ Unif([K]) and payment p ∼ Unif([0, 1])
9: If ut,i ≥ p, set it = i and pt,it = p. Otherwise, set it = 0

10: else
11: Compute adjusted cost c̃t,i = λ⊤

ℓ ct,i and adjusted report ũt,i := ut,i − c̃t,i, ∀i ∈ [K]
12: Allocate to agent it := argmaxi ũt,i with payment pt,it = c̃t,it +maxj ̸=it ũt,j

13: if cost constraint is violated:
∑

s<t cs,is + ct,it ̸≤ Tρ then
14: Reject allocation by setting it = 0

In parallel, the planner also aims to minimize constraint violations, which we define as

BT (π,M) := E
Protocol 1

[∥∥( T∑
t=1

(ct,it − ρ)
)
+

∥∥
1

]
, (4)

where (·)+ is the coordinate-wise maximum with zero, i.e., x+ := [max(xi, 0)]i∈[d]. Our mechanism
M , presented in Algorithm 2, guarantees BT (π,M) = 0; that is, cost constraints are satisfied.

We conclude this section with a smoothness assumption on cost distributions. The idea is to ensure
that projected costs (linear combinations of the cost vector) do not place excessive probability mass
on any single value. This smoothness condition prevents pathological behaviors where a small change
in an agent’s report could drastically alter outcomes due to spiky distributions. Such assumptions
are common in strategic settings to ensure robustness to perturbations, including in bilateral trades
(Cesa-Bianchi et al., 2024a), first-price auctions (Cesa-Bianchi et al., 2024b), second-price auctions
with reserves (Golrezaei et al., 2021a), and smoothed revenue maximization (Durvasula et al., 2023).

Assumption 3 (Smooth Costs). For any agent i ∈ [K], the cost distribution Ci satisfies the following:
for all λ ∈ Λ := {λ ∈ Rd | λj ∈ [0, ρ−1

j ]}, the density of the projected cost PDFct∼Ci
(λ⊤ci) is

uniformly bounded above by some universal constant ϵc > 0. We do not assume this ϵc to be known.

3 Primal-Dual Mechanism Robust to Strategic Manipulation

We introduce our incentive-aware primal-dual mechanism, Algorithm 2, which overcomes the fragility
of standard primal-dual methods to strategic agents. As demonstrated in Figure 1, vanilla primal-dual
methods allow agents to manipulate future dual updates by misreporting, leading to misaligned
incentives and degraded performance. Our mechanism addresses this challenge through three key
innovations: epoch-based lazy dual updates, dual-adjusted allocation and payments, and randomized
exploration rounds, which we describe below before presenting the algorithm and its guarantees.

Epoch-Based Lazy Updates. We divide the game horizon [T ] into L epochs as [T ] = E1 ∪ · · · ∪ EL
and fix a single dual variable λℓ within each epoch Eℓ. These dual variables act as implicit prices on
resource consumption and adjust reported values accordingly. By holding λℓ constant within each
epoch, we reduce agents’ ability to manipulate future allocations through misreports. This “lazy
update” scheme is a central ingredient in limiting intertemporal strategic behavior.

Dual-Adjusted Allocation and Payments. In each round t ∈ [T ], agents submit reports based
on their private values and observed costs. With high probability, the mechanism enters a standard
round, allocating the resource to the agent with the highest dual-adjusted report (reported value
minus dual-weighted cost), and charging them their cost plus the second-highest dual-adjusted report.
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Algorithm 3 Dual Update Sub-Routine using Follow-the-Regularized-Leader (FTRL)
Input: Current epoch number ℓ, learning rate ηℓ > 0, regularizer Ψ: Rd

≥0 → R
1: Solve the following optimization problem for λℓ ∈ Λ and return λℓ.

λℓ = argmin
λ∈Λ

∑
ℓ′<ℓ

∑
τ∈Eℓ′

(ρ− cτ,iτ )
Tλ+

1

ηℓ
Ψ(λ). (5)

Algorithm 4 Dual Update Sub-Routine using Optimistic FTRL with Fixed Points (O-FTRL-FP)
Input: Current epoch number ℓ, learning rate ηℓ > 0, regularizer Ψ: Rd

≥0 → R
1: Solve the following fixed point problem for (λℓ, g̃ℓ) ∈ Λ× Rd and return λℓ.

λℓ = argmin
λ∈Λ

∑
ℓ′<ℓ

∑
τ∈Eℓ′

(ρ− cτ,iτ )
Tλ+ g̃ℓ(λℓ)

Tλ+
1

ηℓ
Ψ(λ),

g̃ℓ(λℓ) := |Eℓ| ·
1∑

ℓ′<ℓ|Eℓ′ |
∑

ℓ′<ℓ,τ∈Eℓ′

(
ρ− cτ,̃iτ (λℓ)

)
,

ĩτ (λℓ) := argmax
i∈[K]

(
uτ,i − λT

ℓ cτ,i
)
, ∀ℓ′ < ℓ, τ ∈ Eℓ′ . (6)

This payment rule, inspired by boosted second-price auctions (Golrezaei et al., 2021b), is incentive-
compatible in static (one-shot) settings and encourages truthful reporting in our dynamic setup. If the
allocation would violate the cumulative cost constraint, it is rejected to ensure feasibility.

Randomized Exploration Rounds. With a small probability, the mechanism initiates an exploration
round, offering a random price to a randomly selected agent. This structure penalizes misreports by
imposing a direct utility loss when the reported value deviates from the true value (see Theorem 4.2).
These rounds act as incentive-compatible signal extractors and are essential for maintaining the
accuracy of dual updates based on strategic reports. The idea of randomized pricing has been
explored in repeated second-price auctions (Amin et al., 2013; Golrezaei et al., 2021a, 2023), but to
our knowledge, our work is the first to leverage it for robust primal-dual learning.

Dual Updates via Online Learning. In the beginning of each epoch, the planner updates the dual
variable λℓ via an online learning approach. Equipped with Follow-the-Regularized-Leader (FTRL),
we prove Õ(T 2/3) is attainable; however, the epoch-based structure also poses an Ω(T 2/3) online
learning barrier (Theorem 4.4). To go beyond the Õ(T 2/3) regret of FTRL, we leverage the near-
truthfulness induced by our mechanism to make predictions about future behavior. Our Optimistic
FTRL with Fixed Points (O-FTRL-FP) augments classical FTRL with a forward-looking term that
estimates how the current dual variable λℓ would perform if agent behavior remains consistent.

Specifically, O-FTRL-FP solves a fixed-point problem: it chooses λℓ to minimize a combination
of past constraint violations

∑
τ (ρ − cτ,iτ )

Tλ, a prediction term g̃ℓ(λℓ)
Tλ based on simulated

allocations using prior reports, and a regularization term Ψ(λ)
ηℓ

. Since g̃ℓ(λℓ) itself depends on λℓ, the

optimization forms a self-consistent loop. We show that this method achieves Õ(
√
T ) regret while

maintaining feasibility and incentive alignment.

Main Results. We now state our two main theoretical guarantees, corresponding to different dual
update strategies. Full formal statements and proofs are provided in Appendix B.
Theorem 3.1 (Algorithm 2 with FTRL). Under appropriate choice of epoch lengths and learning
rates, Algorithm 2 using FTRL in Eq. (5) as the dual-update sub-routine A guarantees the existence
of a PBE π∗ such that RT (π

∗,Algorithm 2) = Õ(T 2/3) and BT (π
∗,Algorithm 2) = 0.

Theorem 3.2 (Algorithm 2 with O-FTRL-FP). Under appropriate choice of epoch lengths and
learning rates, Algorithm 2 using O-FTRL-FP in Eq. (6) as the dual-update sub-routineA guarantees
the existence of a PBE π∗ such that RT (π

∗,Algorithm 2) = Õ(
√
T ) and BT (π

∗,Algorithm 2) = 0.

Remarkably, Arlotto and Gurvich (2019) proved that even when agents are non-strategic, with
unknown value and cost distributions, it is unavoidable to suffer Ω(

√
T ) social welfare regret in the

worst case. Therefore, our mechanism – while additionally being robust to strategic agents – matches
this lower bound when focusing on poly(T ) dependencies.
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4 Analysis Sketch of Theorems 3.1 and 3.2

The safety property of Algorithm 2, namely that BT = 0, follows directly from Line 14. Thus, we
focus on analyzing the regret RT = E

[∑T
t=1(vt,i∗t −vt,it)

]
, which measures the expected difference

between our allocation {it}t∈[T ] and the offline optimal allocation {i∗t }t∈[T ] defined in Eq. (2). To
help control this regret, we introduce an intermediate allocation that maximizes the dual-adjusted
values (rather than the actual allocation it maximizing dual-adjusted reports, which may be strategic):

ĩ∗t := argmax
i∈[K]

(
vt,i − λT

ℓ ct,i
)
, ∀ℓ ∈ [L], t ∈ Eℓ.

Define a stopping time Tv := min{t ∈ [T ] |
∑t

τ=1 cτ,iτ + 1 ̸≤ Tρ} ∪ {T + 1} as the last round
where it is impossible for Line 14 to reject it. We decompose the regret RT as

RT = E

[
T∑

t=1

(vt,i∗t − vt,it)

]
≤ E

[ Tv∑
t=1

(vt,̃i∗t
− vt,it)︸ ︷︷ ︸

PRIMALALLOC

+

T∑
t=1

vt,i∗t −
Tv∑
t=1

vt,̃i∗t︸ ︷︷ ︸
DUALVAR

]
. (7)

4.1 Misallocations Due to Agents’ Strategic Behavior (PRIMALALLOC)

As discussed in Section 3, agents’ strategic reports in epoch ℓ can influence future dual variables
λℓ+1, which in turn affect subsequent allocations – potentially creating feedback loops that lead to
misallocation. We give an example of this scenario:

Example 4 (Agents are able to strategically affect λℓ+1). Consider two agents with identical value
distributions, i.e., V1 = V2. Suppose the cost vectors are fixed as ct,i ≡ ei for all t and i, and
the cost budget is ρ = (1/2, 1/2). If both agents report truthfully during epoch E1, the resource is
allocated approximately equally. As a result, the dual vector λ2, computed via Eq. (6), has similar
values across its coordinates. However, suppose that agent 1 strategically under-reports their value
throughout epoch 1, causing all allocations to go to agent 2 (i.e., it = 2 for all t ∈ E1). This skews
the observed cost consumption toward the second type, causing λ2,2 ≫ λ2,1. Consequently, agent 2 –
whose actions incur the second cost type – will face significantly higher penalties in future epochs.

To understand this effect, we decompose the total inefficiency due to agents’ strategic behavior,
namely the PRIMALALLOC in Eq. (7), into two parts: (i) INTRAEPOCH measuring misallocations
arisen due to agents’ incentives for immediate or short-term gains, and (ii) INTEREPOCH measuring
misallocations caused by agents influencing dual updates for future-epoch benefits. To isolate them,
we introduce two behavioral models for agents, where Model 1 is exactly Assumption 1:

Model 1: max
u

E

[
T∑

τ=t

γτ (vτ,i − pτ,i)1[iτ = i]

]
; Model 2: max

u
E

[ ∑
τ∈Eℓ,τ≥t

γτ (vτ,i − pτ,i)1[iτ = i]

]
. (8)

Model 2 essentially assumes agents only optimize over the current epoch Eℓ, ignoring long-term
impact. Let {iht }t∈[T ] be the allocations that would occur under Algorithm 2 if agents followed Model
2. Our goal is to first analyze this hypothetical setting to understand INTRAEPOCH, then examine the
deviation introduced by agents following the realistic Model 1, which leads to INTEREPOCH effects.

4.1.1 INTRAEPOCH: Misalignment Within Epochs

Under Model 2, each epoch ℓ ∈ [L] can be treated independently, which we call an “epoch-ℓ
game”. The planner selects allocations to maximize the total dual-adjusted value

∑
t∈Eℓ

ṽt,iht , where
ṽt,i := vt,i − λT

ℓ ct,i. In contrast, agents care about their true value vt,i rather than the dual-adjusted
objective. This introduces a mismatch between the planner’s and agents’ optimization criteria. Despite
this mismatch, we show that our mechanism’s dual-adjusted allocation rule in Line 12 incentivizes
truthful reporting within each epoch:

Theorem 4.1 (INTRAEPOCH Guarantee; Informal Theorem C.2). In the epoch-ℓ game under Model
2, the allocation rule iht = argmaxi ũt,i with payment pt,iht = λT

ℓ ct,iht + 2nd-highest ũt,i ensures
that truthful reporting is a PBE. Under this equilibrium, E[INTRAEPOCH] = 0.
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4.1.2 INTEREPOCH: Strategic Manipulation of Future Duals

We now return to Model 1, where agents optimize over the entire horizon t ∈ [T ]. In this setting, an
agent can misreport in the current epoch to influence the next epoch’s dual variable λℓ+1, thereby
improving their chances of allocation in future rounds. This creates a new avenue for strategic
behavior that was not captured under Model 2.

To mitigate this, our mechanism introduces randomized exploration rounds, which penalize deviations
from truthful reporting through stochastic pricing: Reporting ut,i > vt,i means paying a price higher
than value when p ∈ (vt,i, ut,i); reporting ut,i < vt,i means missing an opportunity to make profits
when p ∈ (vt,i, ut,i). These rounds – by ensuring misreports carry immediate utility losses that do
not outweigh the future gains – reduce agents’ willingness to manipulate dual updates.

Theorem 4.2 (PRIMALALLOC Guarantee; Informal Theorem C.5). There exists a PBE π∗ such that
for any epoch ℓ ∈ [L], the number of round-agent (t, i)-pairs where |ut,i − vt,i| ≥ 1

|Eℓ| is Õ(1) with
high probability. That is, agent reports under Models 1 and 2 rarely differ. Moreover, the resulting
allocations {it}t∈Eℓ

and {iht }t∈Eℓ
differ in at most Õ(1) rounds with high probability. Consequently,

this equilibrium ensures E[PRIMALALLOC] = Õ(L).

4.2 Inaccurate Dual Variables Due to Incomplete Information (DUALVAR)

The second source of inefficiency comes from sub-optimal dual variables – or more precisely, the gap
between the dual-adjusted allocation ĩ∗t := argmaxi

(
vt,i − λT

ℓ ct,i
)

that our mechanism maximizes
and the offline optimal benchmark i∗t defined in Eq. (2) – which we call DUALVAR in Eq. (7).

4.2.1 Translating DUALVAR to Online Learning Regret

Using primal-dual analysis similar to that of Balseiro et al. (2023), we relate this gap to the online
learning regret over dual variables λ1,λ2, . . . ,λL ∈ Λ (where Λ := {λ ∈ Rd : λj ∈ [0, ρ−1

j ]} is
chosen such that ρ−1

j ej ∈ Λ for all j ∈ [d]) as follows, which is an informal version of Lemma D.1:

Lemma 4.3 (DUALVAR as Online Learning Regret). Let ĩ∗t = argmaxi∈[K](vt,i − λT
ℓ ct,i) denote

the best allocation under dual prices and i∗t denote the offline optimal benchmark. Then,

E[DUALVAR] := E

[
T∑

t=1

vt,i∗t −
Tv∑
t=1

vt,̃i∗t

]
≲ E

[
sup
λ∗∈Λ

L∑
ℓ=1

∑
t∈Eℓ

(ρ− ct,it)
T(λℓ − λ∗)

]
︸ ︷︷ ︸

=:Rλ
L

+ Õ(L).

That is, DUALVAR reduces to an online learning problem where the planner selects a dual vector
λℓ ∈ Λ at the beginning of each epoch ℓ and incurs a linear loss based on constraint violations of
{it}t∈Eℓ

. Specifically, the loss function in epoch ℓ is given by Fℓ(λ) :=
∑

t∈Eℓ
(ρ− ct,it)

Tλ.

4.2.2 Achievements and Limitations of FTRL

Using FTRL, the planner selects λℓ by minimizing a regularized sum of historical losses, namely
λℓ = argminλ∈Λ

∑
ℓ′<ℓ Fℓ′(λ) +

1
ηℓ
Ψ(λ) where Ψ is a strongly convex regularizer. This choice

yields regret Rλ
L = Õ

(√∑L
ℓ=1 |Eℓ|2

)
. Choosing L = T 1/3 epochs each of size T 2/3 minimizes

Rλ
L + L, giving total regret Õ(T 2/3) as shown in Theorem 3.1.

However, vanilla FTRL is fundamentally limited due to epoch-based structures: Frequent updates to
λℓ would enable faster learning, but break incentive compatibility. Conversely, fewer updates protect
incentives, but slow learning. This tradeoff is formalized in the following hardness result:

Theorem 4.4 (Hardness for Low-Switching Online Learning (Dekel et al., 2014)). Consider an
online learning algorithm that guarantees regret Rλ

L = O(Tα) for some α ∈ [1/2, 1). Then, it
must switch decisions at least Ω(T 2(1−α)) times. In our setting, this means that the number of dual
updates – i.e., the number of epochs L – must satisfy L = Ω(T 2(1−α)). This infers that the Rλ

L + L

term in Lemma 4.3 suffers a worst-case bound of Ω
(
minα∈[1/2,1) T

α + T 2(1−α)
)
= Ω(T 2/3).
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Dual-optimal allocations
{̃i∗t } (i.i.d. given λℓ)

Hypothetical alloca-
tions {iht } (myopic

agents under Model 2)

Actual allocations
{it} (strategic agents

under Model 1)

Thm. 4.1 Thm. 4.2

Figure 2: From dual-optimal to actual allocations: fixing dual λℓ, our mechanism ensures that the
actual allocations {it} closely follow the dual-optimal {̃i∗t } via an intermediate myopic model {iht }.

4.2.3 Exploiting Incentive Alignments for Boosted Regret

The hardness result in Theorem 4.4 applies to the worst-case senario, i.e., when the loss functions
F1, F2, . . . , FL can be any arbitrary linear functions. But in our setting, due to the incentive-
compatible primal allocations (Theorems 4.1 and 4.2), the loss Fℓ(λ) has an almost-i.i.d. structure:

Claim 4.5 (Loss Structure; Informal). Fix any λℓ ∈ Λ. Then for all but Õ(1) rounds in epoch Eℓ,
the actual allocations it match the dual-optimal choices ĩ∗t = argmaxi(vt,i − λT

ℓ ct,i). Thus,

∇λFℓ(λ) =
∑
t∈Eℓ

(ρ− ct,it) ≈
∑
t∈Eℓ

(ρ− ct,̃i∗t
),

which behaves is the sum of |Eℓ| i.i.d. samples and thus has a variance of order Õ(|Eℓ|).

Proof Idea. To understand how our mechanism enables accurate dual updates despite incomplete
information and strategic behavior, we illustrate in Figure 2 the connection between three key
allocation sequences within a fixed epoch. First, the sequence {̃i∗t } represents the dual-optimal
allocations computed in hindsight, assuming access to true valuations and a fixed dual vector λℓ.
Second, {iht } denotes the hypothetical allocations made under Model 2, where agents are myopic and
only optimize within a single epoch. By Theorem 4.1, these allocations align with {̃i∗t } under our
incentive-compatible subroutine. Lastly, the actual sequence {it}, generated by strategic agents under
Model 1, is shown to be close to {iht } via Theorem 4.2. Together, these approximations establish that
{it} behaves almost like an i.i.d. sample from the dual-adjusted best responses.

This low-variance structure is essential for achieving Õ(
√
T ) regret. In general, linear losses with

gradients of norm Õ(|Eℓ|) can have variances as large as Õ(|Eℓ|2), which explains the T 2/3 regret
scaling of FTRL in Theorem 3.1 and the lower bound in Theorem 4.4. Even more importantly,
because this near-i.i.d. structure holds across previous epochs as well, it enables us to accurately
estimate losses associated with new dual choices using only historical data – without requiring
access to agents’ true values or distributions. These two insights provides predictability ahead of
time, which enables the application of optimistic online learning algorithms, for example, Optimistic
FTRL (O-FTRL) by Rakhlin and Sridharan (2013). O-FTRL ensures that if the actual loss Fℓ is
well-predicted by some predicted loss F̂ℓ, such that the expected squared error in gradients is of order
Õ(|Eℓ|), then one can break the Õ(T 2/3) regret barrier and attain Õ(

√
T ) performance (Lemma E.2).

4.2.4 Resolving Circular Dependencies between Actions and Predictions

The final issue stopping us from obtaining Theorem 3.2 is that, O-FTRL framework requires us to
construct the predicted loss F̂ℓ(λ) before deciding action λℓ; however, in our case, recall that

Fℓ(λ) =
∑
t∈Eℓ

(ρ− ct,it)
Tλ, where it is the primal allocation given dual λℓ.

In words, to construct a good F̂ℓ(λ) ≈ Fℓ(λ) and decide λℓ, we need to know λℓ first because Fℓ(λ)

depends on λℓ. This circular dependency between action λℓ and prediction F̂ℓ(λ) stops us from
applying O-FTRL. To circumvent this issue, we instead allow the prediction to have a form F̂ℓ(λ;λℓ)

– such that F̂ℓ(·;λℓ) ≈ Fℓ(·) if we really chose λℓ as our action for epoch ℓ – and decide the action
via a fixed point problem (as in Eq. (6)). We call this novel online learning algorithm Optimistic
FTRL with Fixed Points (O-FTRL-FP in short). In Lemma D.4, we prove that if a small perturbation
in λℓ doesn’t change ∇λF̂ℓ(λ;λℓ) by a lot, O-FTRL-FP always admits an approximate fixed point.
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To get the Õ(
√
T ) social welfare regret claimed in Theorem 3.2, it only remains to i) verify our F̂ℓ in

Eq. (6) indeed makes Lemma D.4 applicable; ii) show that E[∥∇ℓFℓ(λ)−∇ℓF̂ℓ(λ;λℓ)∥22] = Õ(|Eℓ|)
despite agents’ misreports in the current epoch Eℓ, the statistical barrier in reconstructing {(Vi, Ci)}i,
and agents’ historical misreports; and iii) properly tune all hyper-parameters. Due to space limitations,
these steps are deferred to Theorem D.3 in the appendix.

5 Numerical Study

Basic Setup. We simulate a game with T = 1000 rounds, K = 3 agents, a single resource dimension
d = 1, and a discount factor γ = 0.9. Each agent’s valuation is drawn from Vi = Unif[0, 1], and their
cost is drawn from Ci = Unif[0.7ρ, 1.3ρ], for all i = 1, 2, 3.

Agents’ Model. To reflect agents’ strategic behaviors, we assume that every agent i = 1, 2, 3 models
the game as a Markov Decision Process (MDP) with state defined as (t,λt, vt,i) – i.e., round number t,
current dual variable λt,4 and their own private value vt,i – and the action defined as ut,i. The reward
for agent i after playing a report ut,i is γt(vt,i − pt,i)1[it = i] as in Assumption 1. We discretize all
the values, duals, and reports to the nearest multiple of 0.1. We repeat the same game for N = 1000
independent trails, where every agent keeps refining their strategy via Q-learning (Watkins and
Dayan, 1992). In the n-th trial, every agent uses ϵn-greedy with a geometrically decaying schedule of
ϵ = 0.995n. We update Q-tables using Q(s, a)← Q(s, a) + α(r + γ(maxa′ Q(s′, a′))−Q(s, a))
where α = 0.1, r is the instantaneous reward, and s′ is the new state (t+ 1,λt+1, vt+1,i).

Mechanisms. The vanilla primal-dual algorithm we use is Algorithm 1 of Balseiro et al. (2023),
which ensures constraint satisfaction by rejecting any allocation that would violate the budget. When
implementing the O-FTRL-FP update rule in Eq. (6), instead of solving the fixed-point problem
λℓ = argminλ(· · ·+ g̃ℓ(λℓ)

Tλ+ Ψ(λ)
ηℓ

), we solve argminλ(· · ·+ g̃ℓ(λ)
Tλ+ Ψ(λ)

ηℓ
) for numerical

simplicity. The validity of this approximation is due to Lemma D.5, which says ∀λ1,λ2 ∈ Λ s.t.
∥λ1 − λ2∥1 ≤ ϵ, g̃ℓ(λ1) ≈ g̃ℓ(λ2) w.h.p. Thus the two objectives agree locally around the true λℓ.

Results. Figure 1 demonstrates that our mechanism significantly outperforms the standard primal-
dual method in the presence of strategic agents, both adhering to cost constraints. Under the primal-
dual approach of Balseiro et al. (2023, Algorithm 1) which is plotted in blue, agents systematically
over-report their valuations (left), hurting the overall social welfare (middle), and resulting in lower
budget utilization – when agents submit similar reports, the impact of cost minimization is amplified
(right). In contrast, our mechanism equipped with O-FTRL-FP (in green) incentivizes near-truthful
reporting, as shown by the alignment between reported and true values, resulting in a substantial
increase in long-term social welfare. These findings highlight the fragility of standard primal-dual
methods in strategic settings and the robustness of our proposed incentive-aware mechanism.

Computational Resources. Every illustration executes on a M1 MacBook Air 2020 in 10 minutes.

6 Conclusion and Future Directions

This paper investigates the dynamic allocation of reusable resources to strategic agents under multi-
dimensional long-term cost constraints. We show that standard primal-dual methods, though effective
in non-strategic settings, are vulnerable to manipulation when agents act strategically. To address
this, we introduce a novel incentive-aware mechanism that stabilizes dual updates via an epoch-based
structure and leverages randomized exploration rounds to extract truthful signals. Equipped with a
computationally efficient FTRL dual update rule, our mechanism guarantees sublinear regret with
respect to an offline benchmark, satisfies all cost constraints, and admits a PBE; further leveraging
a novel O-FTRL-FP framework for dual updates, we boost the regret to Õ(

√
T ) – which is near-

optimal even in non-strategic constrained dynamic resource allocation settings. Looking ahead,
several promising research directions remain open. For example, while our mechanism uses monetary
transfers to ensure incentive compatibility, many real-world applications, e.g., organ matching,
school admissions, or vaccine distribution, operate under non-monetary constraints. Extending our
framework to such settings is an important step toward more broadly applicable mechanism design.

4Since mechanism M is public and every agent knows every information the planner has, i.e., Ht,0 ⊆ Ht,i,
agents are able to calculate λt on their end.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: In Figure 1, we illustrated the fragility of primal-dual framework to agents’ strategic
behaviors. In Theorems 3.1 and 3.2 (with formal versions appearing as Theorems B.1 and B.2),
we prove the claimed performance guarantee of our proposed mechanism in Algorithm 2.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made in the

paper.
• The abstract and/or introduction should clearly state the claims made, including the contributions

made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: All assumptions are clearly stated. These limitations are discussed in the Conclusion.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that the

paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: Our main claims, Theorems 3.1 and 3.2, have their sketched proofs in Section 4 and
their full proofs in Appendices B to D.
Guidelines:
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The numerical illustration setup is clearly explained in Section 5, with codes attached
as supplementary materials.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: The code used for simulation is attached in the supplementary materials.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: They are described in Section 5.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The claim regarding agents’ truth-reporting, e.g., the first plot in Figure 1, is plotted
using repeated sampling and error bars.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
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Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [Yes]
Justification: See Section 5.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Work of purely theoretical nature.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [NA]
Justification: Work of purely theoretical nature.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?
Answer: [NA]
Justification: Work of purely theoretical nature.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [Yes]
Justification: In our numerical illustrations, we reproduced the algorithm designed by Balseiro
et al. (2023) with proper citations.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets released.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
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Answer: [NA]
Justification: No crowdsourcing and research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: No crowdsourcing and research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Work of purely theoretical nature without LLM involvement.
Guidelines:
• The answer NA means that the core method development in this research does not involve LLMs

as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what

should or should not be described.
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A More Discussions on Related Work

Dynamic Resource Allocation with Non-Strategic Agents. With non-strategic agents, dynamic
resource allocation, or more generally, online linear programming, was first studied under the random
permutation model where an adversary selects a set of requests that are presented in a random order
(Devanur and Hayes, 2009; Feldman et al., 2010; Gupta and Molinaro, 2016), which is more general
than our i.i.d. model where all values and costs are identically distributed. For the i.i.d. model, various
primal-dual-based algorithms were proposed with the main focus of refining computational efficiency
(Agrawal et al., 2014; Devanur et al., 2019; Kesselheim et al., 2018; Li et al., 2023); specifically, Li
et al. (2023) proposed a fast O(T 1/2)-regret algorithm for the online linear programming problem,
which matches the Ω(T 1/2) online resource allocation lower bound (Arlotto and Gurvich, 2019).

Recent progress on this problem includes o(T 1/2) regret with known distributions (Sun et al., 2020)
or better robustness and adaptivity to adversarial corruptions (Balseiro et al., 2023; Yang et al.,
2024). Another closely related problem is Bandits with Knapsacks (BwK), where the planner makes
allocations without observing the values or costs in advance but only learns via post-decision feedback
(Badanidiyuru et al., 2018; Castiglioni et al., 2022). Nevertheless, none of them considers strategic
behaviors of the agents but assume the values and costs are fully truthful. In contrast, our main focus
is to be robust to agents’ strategic behaviors while remaining efficient and obeying all the constraints.

Dynamic Resource Allocation with Strategic Agents. When agents are strategic, ensuring both
efficiency and incentive-compatibility provide a foundation for static truthful allocation with monetary
transfers. In static (one-shot) allocations when money can be redistributed, the celebrated VCG
mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973) provides a foundation way to achieve both.
We study the repeated setup where money can only be charged but not redistributed, the so-called
“money-burning” setup. A related problem is learning prices in repeated auctions (Amin et al., 2013,
2014; Kanoria and Nazerzadeh, 2014; Golrezaei et al., 2021a, 2023). These works focus on a seller
learning prices to maximize revenue where the agents strategically react to these prices, sometimes
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subject to buyer’s budget constraints. In our work, we study the different social welfare maximization
task and consider more general multi-dimensional cost constraints.

We also briefly discuss the settings where monetary transfers are completely disallowed. In static
setups, incentive-compatibility is in general hard due to the Arrow’s impossibility theorem (Arrow,
1950; Gibbard, 1973; Satterthwaite, 1975), though some positive results exist under restricted as-
sumptions (Miralles, 2012; Guo and Conitzer, 2010; Han et al., 2011; Cole et al., 2013). Many recent
efforts have been made to ensure efficiency and compatibility in repeated non-monetary allocations,
which have very different setups from ours, for example when agents’ value distributions are known
(Balseiro et al., 2019; Gorokh et al., 2021b; Blanchard and Jaillet, 2024), when a pre-determined
“fair share” is revealed to the planner (Gorokh et al., 2021a; Yin et al., 2022; Banerjee et al., 2023;
Fikioris et al., 2023), or when the planner has extra power like audits (Jalota et al., 2024; Dai et al.,
2025). We also remark that they either do not consider constraints or only have a specific “fair share”
constraint that we discuss later. In contrast, we consider general multi-dimensional constraints.

Multi-Agent Learning. While our planner learns for better allocation mechanisms, the agents are
also learning in reaction to it (e.g., in our numerical illustration in Figure 1, we consider agents who
use Q-learning to learn the best reporting strategies under different dual variables). There is a rich
literature investigating this dynamics as well, for example Balseiro and Gur (2019); Golrezaei et al.
(2020); Berriaud et al. (2024); Galgana and Golrezaei (2025) studying the convergence to equilibria
when multiple agents deploy no-regret online learning algorithms in reaction to some mechanism
at the same time. While such results are stronger than our existence of equilibrium results in the
sense that agents find such an equilibrium on their own, we remark that the main focus of this work is
designing robust mechanisms for the planner instead of designing learning algorithms for the agents.

Comparison with (Yin et al., 2022). Yin et al. (2022) also study the problem of ensuring efficiency
and incentive-compatibility in the dynamic constrained resource allocation problem. The first critical
difference is that they assume all the agents have identical value distributions, which is crucial for
incentive-compatibility: By comparing one agents’ reports to all the opponents’, unilateral deviation
from TRUTH is easily caught and thus TRUTH is a PBE even without using monetary transfers. In
contrast, we need more delicate algorithmic components, including epoch-based lazy updates, random
exploration rounds, and dual-adjusted allocation and payment plans, to ensure the near-truthfulness
of agents. Another main difference is the type of constraints. They study a specific “fair share” type
resource constraint, which says given some p ∈ △([K]), the number of allocations that agent i
receive should be roughly Tpi, ∀i ∈ [K]. In contrast, our multi-dimensional long-term constraint is
strictly more general than theirs, which can be written as 1

T

∑T
t=1 eit ≤ p in our language.

B Proof of Main Theorems

B.1 Main Theorem for Algorithm 2 with FTRL

Theorem B.1 (Formal Version of Theorem 3.1: Algorithm 2 with FTRL). In Algorithm 2, let

L = T 1/3, Eℓ =
[
(ℓ− 1)

T

L
+ 1, ℓ

T

L

]
, ηℓ =

∥ρ−1∥2√
2d

(
ℓ∑

ℓ′=1

|Eℓ|2
)−1/2

, Ψ(λ) =
1

2
∥λ∥22,

and the sub-routine A chosen as FTRL (Eq. (5)). Then under Assumptions 1 and 3, there exists a
PBE of agents’ joint strategies under Algorithm 2, denoted by π∗, such that

RT (π
∗,Algorithm 2 with Eq. (5))

≤ T 2/3

(
4 + 4K2ϵc∥ρ−1∥1 + 5 log T 1/3 +

log(1 + 4(1 + ∥ρ−1∥1)KT 4/3)

log γ−1
+
√
2d∥ρ−1∥2

)
+ ∥ρ−1∥1,

and BT (π
∗,Algorithm 2 with Eq. (5)) = 0.

Specifically, when only focusing on polynomial dependencies on d,K, and T , we have

RT (π
∗,Algorithm 2 with Eq. (5)) = Õd,K,T ((K

2 +
√
d)T 2/3),

BT (π
∗,Algorithm 2 with Eq. (5)) = 0.
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Proof. As mentioned in the main text, we introduce an intermediate allocation:

ĩ∗t := argmax
i∈[K]

(
vt,i − λT

ℓ ct,i
)
, ∀ℓ ∈ [L], t ∈ Eℓ. (9)

Define stopping time Tv as the last round where no constraint violations can happen:

Tv := min

{
t ∈ [T ]

∣∣∣∣∣
t∑

τ=1

cτ,iτ + 1 ̸≤ Tρ

}
∪ {T + 1}. (10)

Thus in rounds t ≤ Tv , Line 14 never rejects our allocation it. Decompose the regret RT as

RT = E

[
T∑

t=1

(vt,i∗t − vt,it)

]
≤ E

[ Tv∑
t=1

(vt,̃i∗t
− vt,it)︸ ︷︷ ︸

PRIMALALLOC

+

Tv∑
t=1

(vt,i∗t − vt,̃i∗t
)︸ ︷︷ ︸

DUALVAR

+(T − Tv)︸ ︷︷ ︸
NOACT

]
.

From Theorem C.5 presented later in Appendix C, there exists a PBE π∗ such that

E[PRIMALALLOC] ≤
L∑

ℓ=1

(Nℓ + 3),

Nℓ = 1 + 4K2ϵc∥ρ−1∥1 + 5 log|Eℓ|+ logγ−1(1 + 4(1 + ∥ρ−1∥1)K|Eℓ|4).

This is the first main technical contribution of our paper, namely justifying that Algorithm 2 –
equipped with epoch-based lazy updates, uniform exploration rounds, and dual-adjusted allocation
and payment plans – is robust to agents’ strategic manipulations.

From Theorem D.2 presented later in Appendix D, when setting

Ψ(λ) =
1

2
∥λ∥22, ηℓ =

∥ρ−1∥2√
2d

(
ℓ∑

ℓ′=1

|Eℓ|2
)−1/2

,

and under the same π∗, the E[DUALVAR] term is bounded by

E[DUALVAR] ≤
√
2d∥ρ−1∥2 ·

√√√√ L∑
ℓ=1

|Eℓ|2 +
L∑

ℓ=1

(Nℓ + 3)∥ρ−1∥1 + ∥ρ−1∥1.

Thus it only remains to balance the
∑L

ℓ=1 Nℓ = Õ(L) term and
√∑L

ℓ=1|Eℓ|2 term. Setting L = T 2/3

and |Eℓ| = T 1/3 for all ℓ ∈ [L] ensures
√∑L

ℓ=1|Eℓ|2 =
√
T 2/3 × T 2/3 = T 2/3 and thus

RT (π
∗,Algorithm 2 with Eq. (5)) ≤ E[PRIMALALLOC] + E[DUALVAR]

≤
L∑

ℓ=1

(Nℓ + 3) +
√
2d∥ρ−1∥2 · T 2/3 +

L∑
ℓ=1

(Nℓ + 3)∥ρ−1∥1 + ∥ρ−1∥1

=

L∑
ℓ=1

(Nℓ + 3)(1 + ∥ρ−1∥1) +
√
2d∥ρ−1∥2 · T 2/3 + ∥ρ−1∥1.

Plugging our specific epoching rule that L = T 2/3 and |Eℓ| = T 1/3 into Nℓ, we get

L∑
ℓ=1

(Nℓ + 3) ≤ T 2/3 ×
(
4 + 4K2ϵc∥ρ−1∥1 + 5 log T 1/3 +

log(1 + 4(1 + ∥ρ−1∥1)KT 4/3)

log γ−1

)
,

which gives our claimed bound after rearrangement. For BT , since Line 14 rejects every infeasible
allocation, we trivially have BT (π

∗,Algorithm 2 with Eq. (5)) = 0.
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B.2 Main Theorem for Algorithm 2 with O-FTRL-FP

Theorem B.2 (Formal Version of Theorem 3.2: Algorithm 2 with O-FTRL-FP). In Algorithm 2, let

L = ⌈log T ⌉, Eℓ =
[
2ℓ−1,min(2ℓ − 1, T )

]
, ηℓ =

∥ρ−1∥2√
112dK2

(
ℓ∑

ℓ′=1

|Eℓ|

)−1/2

, Ψ(λ) =
1

2
∥λ∥22,

and the sub-routine A chosen as O-FTRL-FP (Eq. (6)). Then under Assumptions 1 and 3, there exists
a PBE of agents’ joint strategies under Algorithm 2, denoted by π∗, such that

RT (π
∗,Algorithm 2 with Eq. (6))

≤ 2
√
T

∥ρ−1∥22
2

+ 8d2 + 48d log(dTL) + 48d

d∑
j=1

log
dK2ϵcT

Tρj
+ 16d+ 10


+

L∑
ℓ=1

(
2N2

ℓ + (Nℓ + 3)(∥ρ−1∥1 + 1) + 8dM2
ℓ

)
+ 3∥ρ−1∥1,

and BT (π
∗,Algorithm 2 with Eq. (6)) = 0,

where Nℓ and Mℓ is defined as follows for all ℓ ∈ [L].

Nℓ = 1 + 4K2ϵc∥ρ−1∥1 + 5 log|Eℓ|+ logγ−1(1 + 4(1 + ∥ρ−1∥1)K|Eℓ|4),

Mℓ = ℓ logγ−1

(
1 + 4(1 + ∥ρ−1∥1)K|Eℓ|3 · 4ℓδ−1

)
+ 4ℓϵc∥ρ−1∥1 + 4

log(dT ) +

d∑
j=1

log
dK2ϵcT

ρjϵ

.
Specifically, when only focusing on polynomial dependencies on d,K, and T , we have

RT (π
∗,Algorithm 2 with Eq. (6)) = Õd,K,T (d

2
√
T +K4),

BT (π
∗,Algorithm 2 with Eq. (6)) = 0.

Proof. The proof follows the same structure as the previous one, but the treatment of the E[DUALVAR]
term is extremely challenging and requests delicate analytical tools; we refer the readers to Theo-
rem D.3 for more details. We still include a full proof of this theorem for completeness.

As mentioned in the main text, we introduce an intermediate allocation:

ĩ∗t := argmax
i∈[K]

(
vt,i − λT

ℓ ct,i
)
, ∀ℓ ∈ [L], t ∈ Eℓ.

Define stopping time Tv as the last round where no constraint violations can happen:

Tv := min

{
t ∈ [T ]

∣∣∣∣∣
t∑

τ=1

cτ,iτ + 1 ̸≤ Tρ

}
∪ {T + 1}.

Thus in rounds t ≤ Tv , Line 14 never rejects our allocation it. Decompose the regret RT as

RT = E

[
T∑

t=1

(vt,i∗t − vt,it)

]
≤ E

[ Tv∑
t=1

(vt,̃i∗t
− vt,it)︸ ︷︷ ︸

PRIMALALLOC

+

Tv∑
t=1

(vt,i∗t − vt,̃i∗t
)︸ ︷︷ ︸

DUALVAR

+(T − Tv)︸ ︷︷ ︸
NOACT

]
.

For the PRIMALALLOC term, we still use Theorem C.5 presented later in Appendix C (which holds
regardless to the dual update rules). Theorem C.5 asserts that there exists a PBE π∗ such that

E[PRIMALALLOC] ≤
L∑

ℓ=1

(Nℓ + 3) ,

where
Nℓ = 1 + 4K2ϵc∥ρ−1∥1 + 5 log|Eℓ|+ logγ−1(1 + 4(1 + ∥ρ−1∥1)K|Eℓ|4).
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For the DUALVAR term, the O-FTRL-FP analysis is substantially harder. This is the second main
technical contribution of our paper. We first recall the O-FTRL-FP update rule from Eq. (6):

λℓ = argmin
λ∈Λ

∑
ℓ′<ℓ

∑
τ∈Eℓ′

(ρ− cτ,iτ )
Tλ+ g̃ℓ(λℓ)

Tλ+
1

ηℓ
Ψ(λ),

g̃ℓ(λℓ) = |Eℓ| ·
1∑

ℓ′<ℓ|Eℓ′ |
∑

ℓ′<ℓ,τ∈Eℓ′

(
ρ− cτ,̃iτ (λℓ)

)
,

ĩτ (λℓ) = argmax
i∈[K]

(
uτ,i − λT

ℓ cτ,i
)
, ∀ℓ′ < ℓ, τ ∈ Eℓ′ .

We highlight the main technical challenges here and refer the readers to Theorem D.3 for more
details:

1. Since ĩτ (λℓ) is not continuous w.r.t. λℓ due to the argmax, the predicted loss function F̃ℓ(λ;λℓ) :=
g̃ℓ(λℓ)

Tλ is non-continuous w.r.t. λℓ as well – which means an exact fixed point may not exist. In
Lemma D.4, we prove that our O-FTRL-FP framework only requires an approximate continuity,
which we show ensures the existence of an approximate fixed point.

2. In Lemma D.5, utilizing the smooth cost condition in Assumption 3 and an ϵ-based uniform
smoothness argument, we prove that our g̃ℓ(λℓ)

Tλ is indeed approximately continuous.
3. As agents can misreport in epoch Eℓ, the actual epoch-ℓ loss function Fℓ(λ) :=

∑
t∈Eℓ

(ρ −
ct,it)

Tλ may differ from the predicted F̃ℓ(λ;λℓ). We control this effect in Lemma D.6.
4. Due to the unknown distributions, namely {Vi}i∈[K] and {Ci}i∈[K], the planner can only use a

finite number of samples (more preciously,
∑

ℓ′<ℓ|Eℓ′ | ones) in ĩτ (λℓ). We control the statistical
error in Lemma D.7; however, since λℓ is not measurable in round τ , we develop an ϵ-net based
uniform smoothness analysis to ensure the statistical error is small for every possible λℓ ∈ Λ.

5. Finally, since agents could also misreport in the past, namely epoch Eℓ′ where ℓ′ < ℓ, the reports
used in ĩτ (λℓ) can also be very different from the true values. In Lemma D.8, we analyze this
type of error, again incorporating an ϵ-net based uniform smoothness analysis.

Via careful investigation, Theorem D.3 proves that when configuring

Ψ(λ) =
1

2
∥λ∥22, L = log T, Eℓ = [2ℓ−1,min(2ℓ − 1, T )], ηℓ =

(
ℓ∑

ℓ′=1

|Eℓ′ |

)−1/2

,

we can control the E[DUALVAR] as

E[DUALVAR] ≤ 2
√
T

∥ρ−1∥22
2

+ 8d2 + 48d log(dTL) + 48d

d∑
j=1

log
dK2ϵcT

Tρj
+ 16d+ 10


+

L∑
ℓ=1

(
2N2

ℓ + (Nℓ + 3)∥ρ−1∥1 + 8dM2
ℓ

)
+ 3∥ρ−1∥1.

where (the definition of Nℓ is the same as that in PRIMALALLOC)

Nℓ = 1 + 4K2ϵc∥ρ−1∥1 + 5 log|Eℓ|+ logγ−1(1 + 4(1 + ∥ρ−1∥1)K|Eℓ|4),

Mℓ = ℓ logγ−1

(
1 + 4(1 + ∥ρ−1∥1)K|Eℓ|3 · 4ℓδ−1

)
+ 4ℓϵc∥ρ−1∥1 + 4

log(dT ) +
d∑

j=1

log
dK2ϵcT

ρjϵ

.
Putting two parts together, we get

RT (π
∗,Algorithm 2 with Eq. (6)) ≤ E[PRIMALALLOC] + E[DUALVAR]

≤ 2
√
T

∥ρ−1∥22
2

+ 8d2 + 48d log(dTL) + 48d

d∑
j=1

log
dK2ϵcT

Tρj
+ 16d+ 10


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+

L∑
ℓ=1

(
2N2

ℓ + (Nℓ + 3)(∥ρ−1∥1 + 1) + 8dM2
ℓ

)
+ 3∥ρ−1∥1.

The bound that BT (π
∗,Algorithm 2 with Eq. (6)) = 0 directly follows from Line 14 of Algorithm 2.

For the Õd,K,T version, since L ≤ ⌈log2 T ⌉ = Õd,K,T (1) and |Eℓ| ≤ T for all ℓ, we know Nℓ =

Õd,K,T (K
2) and Mℓ = Õd,K,T (ℓ) = Õd,K,T (1). This gives RT = Õd,K,T (d

2
√
T +K4).

C PRIMALALLOC: Regret due to Agents’ Strategic Reports

C.1 INTRAEPOCH: Agents Lie to Affect Current-Epoch Allocations

Lemma C.1 (Truthfulness of a Cost-Adjusted Second-Price Auction). Consider a one-shot monetary
allocation setting with K agents. Each agent i ∈ [K] privately observes their value vi ∼ Vi and
publicly incurs a known cost ci ∼ Ci. Agents submit scalar reports ui ∈ [0, 1], and the planner
allocates the item to one agent it ∈ [K] and charges payment pit . The utility of the selected agent is
vit − pit , while all others receive zero utility.

Suppose the planner implements the following mechanism:

it = argmax
i∈[K]

(ui − ci), pit = cit +max
j ̸=it

(uj − cj).

Then:

(i) For any agent i ∈ [K] aiming to maximize their expected utility (vi − pi) · 1[it = i], truthful
reporting ui = vi is a weakly dominant strategy.

(ii) When all agents report truthfully (ui = vi), the allocation it = argmaxi∈[K](vi − ci), i.e., it
maximizes the value-minus-cost vi − ci across all the agents.

Proof. Define each agent’s pseudo-report as ũi := ui − ci, and let ũ∗
i := vi − ci be the truthful

pseudo-report. Fix any agent i ∈ [K] and suppose all other agents’ reports {uj}j ̸=i are fixed. We
evaluate the utility Ui that agent i obtains under various reporting strategies.

Case 1: Truthfully report ui = vi so that ũi = ũ∗
i :

• If ũ∗
i > maxj ̸=i ũj , then it = i, and Ui = vi − ci −maxj ̸=i ũj = ũ∗

i −maxj ̸=i ũj .
• If ũ∗

i < maxj ̸=i ũj , then it ̸= i, and Ui = 0.

Case 2: Over-reporting ui > vi so ũi > ũ∗
i :

• If ũi > ũ∗
i > maxj ̸=i ũj , Ui = ũ∗

i −maxj ̸=i ũj (same as truthful).
• If maxj ̸=i ũj > ũi > ũ∗

i , Ui = 0 (same as truthful).
• Otherwise if ũi > maxj ̸=i ũj > ũ∗

i , Ui = ũ∗
i −maxj ̸=i ũj < 0 (worse than truthful).

Case 3: Under-reporting ui < vi so ũi < ũ∗
i :

• If ũ∗
i > ũi > maxj ̸=i ũj , Ui = ũ∗

i −maxj ̸=i ũj (same as truthful).
• If maxj ̸=i ũj > ũ∗

i > ũi, Ui = 0 (same as truthful).
• Otherwise, if ũ∗

i > maxj ̸=i ũj > ũi, Ui = 0. But they originally get ũ∗
i −maxj ̸=i ũj ≥ 0.

In all cases, deviating from truth-telling does not improve agent i’s utility, and may strictly reduce it.
Hence, truthful reporting is a weakly dominant strategy, proving claim (i).

For claim (ii), when all agents report truthfully (ui = vi), the planner allocates the resource to
it = argmaxi(vi − ci), which maximizes net social value.

Theorem C.2 (Intra-Epoch Truthfulness; Formal Theorem 4.1). Fix any epoch Eℓ ⊆ [T ] and dual
variable λℓ ∈ Λ. Suppose that all the agents, when crafting their reports only consider their
discounted gains within the current epoch (Model 2 in Eq. (8)), namely Eq. (11). To highlight the
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different reports, allocations, and payments due to the different agent model, we add a superscript h.

max
{uh

t,i}t∈Eℓ

E

[∑
t∈Eℓ

γt(vt,i − pht,i) · 1[iht = i]

]
, ∀i ∈ [K]. (11)

The planner, on the other hand, uses the allocation and payment rule in Line 12. Formally, in round
t ∈ Eℓ the planner allocates to the agent with maximal dual-adjusted report – which we denote by iht
to highlight its difference with it due to the different agent model – and sets payments accordingly:

iht = argmax
i∈[K]

(uh
t,i − λT

ℓ ct,i), pht,iht
= λT

ℓ ct,iht +max
j ̸=iht

(uh
t,j − λT

ℓ ct,j), ∀t ∈ Eℓ.

Then, truthful reporting ut,i = vt,i for all t ∈ Eℓ and all i ∈ [K] – a joint strategy denoted as TRUTH
– constitutes a Perfect Bayesian Equilibrium (PBE). Furthermore, under this PBE, the planner always
chooses the optimal agent according to dual-adjusted value:

iht = ĩ∗t := arg max
i∈[K]

(
vt,i − λ⊤

ℓ ct,i
)
,

and the regret due to intra-epoch misallocations is zero, i.e., E[INTRAEPOCH] = 0.

Proof. For any round t ∈ Eℓ, we observe that the planner’s allocation and payment plan (iht ,p
h
t )

depends only on the current reports uh
t , current costs ct, and the fixed dual variable λℓ. Specifically,

it does not depend on historical reports {uh
τ}τ<t, past allocations {ihτ}τ<t, or payments {ph

τ}τ<t.

Likewise, for any fixed agent i ∈ [K], suppose that all the opponents follow truthful reporting
TRUTH−i, i.e., (ut,j = vt,j for all t ∈ Eℓ and j ̸= i). In this case, for any round t ∈ Eℓ whose value
is vt,i ∈ [0, 1], the expected gain of any tentative report ut,i ∈ [0, 1] does not depend on the history
but only on uh

t , ct, λℓ, and vt,i. Therefore, agent i does not benefit from unilaterally deviating to a
“history-dependent” strategy that depends on previous public or private information, namely {uh

τ}τ<t,
{ihτ}τ<t, {ph

τ}τ<t, and {vτ,i}τ<t.

Therefore we only need to consider agent i’s potential unilateral deviation to history-independent
policies, which means we can isolate each round t ∈ Eℓ. From Lemma C.1, we know that in any
such round t, given fixed costs and fixed dual λℓ, truthful reporting maximizes an agent’s expected
utility regardless of opponents’ actions. Hence, no agent can benefit from deviating – whether using
a history-dependent strategy or a history-independent one – and thus TRUTH is a PBE.

Finally, under PBE TRUTH, the planner allocates to the agent with maximal vt,i−λT
ℓ ct,i, i.e., iht = ĩ∗t .

Therefore, there is no misallocation in the epoch and thus INTRAEPOCH = 0.

C.2 INTEREPOCH: Agents Lie to Affect Next-Epoch Dual Variables

The key ideas of Lemmas C.3 and C.4 are largely motivated by Golrezaei et al. (2021a, 2023). The
main difference is due to the costs {ct}t∈[T ], which forbids us from using their results as black-boxes.

For epoch ℓ ∈ [L], consider the “epoch-ℓ game with exploration rounds” induced by Lines 4 to 12
in Algorithm 2. Theorem C.2 proves that under Model 2 in Eq. (8) (i.e., agents only care about
current-epoch gains) and when there are no exploration rounds, TRUTH is a PBE. Now, we claim that
under Model 1 in Eq. (8) (i.e., agents optimize over the whole future) and the actual mechanism with
exploration rounds (Lines 4 to 12 in Algorithm 2), there exists a PBE of agents’ joint strategies π
that is not too far from TRUTH. Formally, we present Lemma C.3.

Lemma C.3 (Large Misreport Happens Rarely). For an epoch ℓ ∈ [L], consider the agent Model 1
in Eq. (8) and the “epoch-ℓ game with exploration rounds” specified by Lines 4 to 12 in Algorithm 2.
There exists a PBE of agents’ joint strategies π, such that for all i ∈ [K],

Pr

{∑
t∈Eℓ

1

[
|ut,i − vt,i| ≥

1

|Eℓ|

]
≤ logγ−1(1 + 4(1 + ∥ρ−1∥1)K|Eℓ|4)

}
≥ 1− 1

|Eℓ|
,

where {ut,i}t∈Eℓ
are the reports made by agent i under π.
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Proof. Consider the history-independent auxiliary game defined in the proof of Theorem C.2, where
for every round t ∈ Eℓ, agent i ∈ [K] is only allowed to craft their reports ut,i based on current-epoch
dual variable λℓ, round number t, current-round private value vt,i, and current-round public costs ct.

Let π be a PBE in this history-independent auxiliary game. Using same arguments from Theorem C.2,
unilaterally deviating to a history-dependent strategy is not beneficial as all opponents’ strategies π−i

and the mechanism (Lines 4 to 12 in Algorithm 2) are history-independent. Hence, π remains a PBE
in the actual “epoch-ℓ game with exploration rounds” where history dependency is allowed.

To prove the claim for this PBE π, consider the unilateral deviation of any agent i ∈ [K] to the
truth-telling policy, i.e., πi := TRUTHi ◦π−i. Since π is a PBE, πi is no better than π under Model
1 (the actual model). That is, for sℓ := min{t | t ∈ Eℓ} and any historyHsℓ , we always have

0 ≤ E
π

[
T∑

τ=t

γτ (vτ,i − pτ,i)1[iτ = i]

∣∣∣∣∣ Hsℓ

]
− E

πi

[
T∑

τ=t

γτ (vτ,i − pτ,i)1[iτ = i]

∣∣∣∣∣ Hsℓ

]

= E
π

[∑
τ∈Eℓ

γτ (vτ,i − pτ,i)1[iτ = i]

∣∣∣∣∣ Hsℓ

]
− E

πi

[∑
τ∈Eℓ

γτ (vτ,i − pτ,i)1[iτ = i]

∣∣∣∣∣ Hsℓ

]
︸ ︷︷ ︸

Current-Epoch Difference

+

E
π

 ∑
ℓ′>ℓ,τ∈Eℓ′

γτ (vτ,i − pτ,i)1[iτ = i]

∣∣∣∣∣∣ Hsℓ

− E
πi

 ∑
ℓ′>ℓ,τ∈Eℓ′

γτ (vτ,i − pτ,i)1[iτ = i]

∣∣∣∣∣∣ Hsℓ


︸ ︷︷ ︸

Future-Epoch Difference

.

(12)

For the second term, fix any ℓ′ > ℓ and τ ∈ Eℓ′ . Since the values vτ , reports uτ , and costs cτ are all
bounded by [0, 1], and that λℓ′ ∈ Λ =

⊗d
j=1[0, ρ

−1
j ] (which infers ∥λℓ′∥1 ≤ ∥ρ−1∥1), we have

pτ,iτ = λT
ℓ′cτ,iτ +max

j ̸=iτ
(uτ,j − λT

ℓ′cτ,j) ∈
[
−2∥λℓ′∥1 · max

j∈[K]
∥cτ,j∥∞, 1 + 2∥λℓ′∥1 · max

j∈[K]
∥cτ,j∥∞

]
,

for all ℓ′ > ℓ, τ ∈ Eℓ′ . Since vt,i ∈ [0, 1], this suggests that vτ,i−pτ,i ∈ [−1−2∥ρ−1∥1, 1+2∥ρ−1∥1]
for all i ∈ [K], and thus

Future-Epoch Difference ≤
L∑

ℓ′=ℓ+1

∑
τ∈Eℓ′

γτ · 2(1 + 2∥ρ−1∥1) ≤ 2(1 + 2∥ρ−1∥1)
γsℓ+1

1− γ
,

where the second inequality uses the fact that
∑T

τ=sℓ+1
γτ ≤ γsℓ+1

1−γ .

We now focus on the current-epoch difference part. Since both π and πi are history independent
(recall that π is a joint strategy from the history-independent auxiliary game and πi = TRUTHi ◦π−i),
the conditioning onHsℓ is redundant and consequently

Current-Epoch Difference = E
π

[∑
τ∈Eℓ

γτ (vτ,i − pτ,i)1[iτ = i]

]
− E

πi

[∑
τ∈Eℓ

γτ (vτ,i − pτ,i)1[iτ = i]

]
.

For any round t ∈ Eℓ, we control this difference utilizing the exploration rounds:

• Suppose that round t ∈ Eℓ is an exploration round for agent i (which happens with probability
1

|Eℓ| ·
1
K ), the expected gain of reporting ut,i rather than vt,i (i.e., under π versus under πi) is

E
p∈Unif([0,1])

[(vt,i − p)1[ut,i ≥ p]− (vt,i − p)1[vt,i ≥ p]] = −1

2
(ut,i − vt,i)

2.

• If round t is an exploration round but not for agent i, then reporting ut,i and vt,i both give 0 gain.
• Finally, suppose that round t ∈ Eℓ is not an exploration round. Notice that i) both π and π−i are

history-independent, and ii) if round t ∈ Eℓ is not an exploration round, then the epoch-ℓ game
in Lines 4 to 12 in Algorithm 2 coincides with Line 12. Therefore, via Lemma C.1, the gain of
reporting ut,i is no larger than that of reporting vt,i, i.e., the expectation difference is non-positive.
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LetMℓ,i :=
{
t ∈ Eℓ | |ut,i − vt,i| ≥ 1

|Eℓ
|
}

be the set of large misreports from agent i (regardless of
whether t turns out to be an exploration round, since reports happen before it). Let the last round in
epoch Eℓ be eℓ := max{t | t ∈ Eℓ}. Since

∑
t∈Mℓ,i

γt ≥
∑eℓ

t=eℓ−|Mℓ,i|+1 γ
t, we have

Current-Epoch Difference ≤ −E

 ∑
t∈Mℓ,i

γt 1

|Eℓ| ·K
1

2
(ut,i − vt,i)

2


≤ −E

[
γeℓ−|Mℓ,i|+1(1− γ|Mℓ,i|)

1− γ

1

|Eℓ| ·K
1

2|Eℓ|2

]
.

In order for πi to be inferior when compared with π, i.e., Eq. (12) holds, we therefore must have

2(1 + 2∥ρ−1∥1)
γsℓ+1

1− γ
≥ E

[
γeℓ−|Mℓ,i|+1(1− γ|Mℓ,i|)

1− γ

1

|Eℓ| ·K
1

2|Eℓ|2

]
≥ Pr{|Mℓ,i| ≥ c} γ

sℓ+1

1− γ

γ−c − 1

2K|Eℓ|3
, ∀c > 0, (13)

where the last step uses the fact that sℓ+1 = eℓ + 1.

Picking c such that 2(1 + 2∥ρ−1∥1) 2K|Eℓ|3
γ−c−1 = 1

|Eℓ| , we reach our conclusion that

Pr
{
|Mℓ,i| ≥ logγ−1(1 + 4(1 + ∥ρ−1∥1)K|Eℓ|4)

}
≤ 1

|Eℓ|
.

This completes the proof.

Still focusing on a fixed epoch ℓ ∈ [L], Lemma C.3 bounds the number of rounds with large
misreports. We now turn to the remaining rounds, i.e., those t ∈ Eℓ such that |ut,i − vt,i| ≤ 1

|Eℓ| for
all i ∈ [K]. We claim that misallocations are rare among these rounds, formalized in Lemma C.4.

Lemma C.4 (Misallocation with Small Misreports Happens Rarely). Consider an epoch ℓ ∈ [L]
with dual variable λℓ ∈ Λ. We have

Pr

{∑
t∈Eℓ

1

[
argmax
i∈[K]

(ut,i − λT
ℓ ct,i) ̸= argmax

i∈[K]

(vt,i − λT
ℓ ct,i)

]
1

[
|ut,i − vt,i| ≤

1

|Eℓ|
,∀i ∈ [K]

]

≤ 4K2ϵc∥λℓ∥1 + 4 log|Eℓ|

}
≥ 1− 2

|Eℓ|
.

Proof. For any round t ∈ Eℓ, we bound the probability that the allocation based on reported utilities
differs from that based on true values, even when reports are close to truthful. Specifically, consider
the event

argmax
i∈[K]

(ut,i − λT
ℓ ct,i) ̸= argmax

i∈[K]

(vt,i − λT
ℓ ct,i) and |ut,i − vt,i| ≤

1

|Eℓ|
, ∀i ∈ [K].

Such a mismatch can only happen if there exists a pair of indices i ̸= j whose true dual-adjusted
values are very close – within 2

|Eℓ| – so that small deviations in reported utilities (bounded by 1
|Eℓ| )

are able to flip the argmax decision. We apply a union bound over all such pairs to upper bound this
probability:

Pr

{
argmax
i∈[K]

(ut,i − λT
ℓ ct,i) ̸= argmax

i∈[K]

(vt,i − λT
ℓ ct,i) ∧ |ut,i − vt,i| ≤

1

|Eℓ|

}

≤
∑

1≤i<j≤K

Pr

{
|(vt,i − λT

ℓ ct,i)− (vt,j − λT
ℓ ct,j)| ≤

2

|Eℓ|

}
≤ 2K2

|Eℓ|
ϵc∥λℓ∥1, (14)
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where the second inequality comes from Assumption 3: Since it assumes that PDF(λT
ℓ ct,i) is

uniformly upper bounded by ϵc where λℓ ∈ Λ, we know

Pr
ct,i∼Ci

{
− 2

|Eℓ|
≤ λT

ℓ ct,i − (vt,i − vt,j + λT
ℓ ct,j) ≤

2

|Eℓ|

}
≤ 4

|Eℓ|
ϵc.

Now consider the martingale difference sequence {Xt − E[Xt | Ft−1]}t∈Eℓ
where

Xt := 1

[
argmax
i∈[K]

(ut,i − λT
ℓ ct,i) ̸= argmax

i∈[K]

(vt,i − λT
ℓ ct,i)

]
1

[
|ut,i − vt,i| ≤

1

|Eℓ

]
,

and (Ft)t is the natural filtration defined as Ft = σ(X1, X2, . . . , Xt).

We apply the multiplicative Azuma-Hoeffding inequality restated as Lemma E.4 (Koufogiannakis
and Young, 2014, Lemma 10) with Yt = E[Xt | Ft−1], ϵ = 1

2 , and A = 2 log|Eℓ|. Since Xt ∈ [0, 1]
a.s. and E[Xt − Yt | Ft−1] = E[Xt − E[Xt | Ft−1] | Ft−1] = 0, the two conditions in Lemma E.4
hold and thus

Pr

{
1

2

∑
t∈Eℓ

Xt ≥
∑
t∈Eℓ

E[Xt | Ft−1] + 2 log|Eℓ|

}
≤ exp(− log|Eℓ|).

From Eq. (14), we know E[Xt | Ft−1] = Pr{Xt | Ft−1} ≤ 2K2

|Eℓ| ϵc∥λℓ∥1. Therefore, rearranging
the above concentration result gives

Pr

{∑
t∈Eℓ

Xt ≤ 4K2ϵc∥λℓ∥1 + 4 log|Eℓ|

}
≥ 1− 1

|Eℓ|
.

Plugging back the definition of Xt completes the proof.

Putting the previous two parts together for all ℓ ∈ [L] gives the following theorem.
Theorem C.5 (INTEREPOCH Guarantee; Formal Theorem 4.2). Under the mechanism specified in
Algorithm 2, there exists a PBE of agents’ strategies π∗, such that the PRIMALALLOC term (which is
the sum of INTRAEPOCH and INTEREPOCH terms) is bounded as

E[PRIMALALLOC] = E

[ Tv∑
t=1

(vt,̃i∗t
− vt,it)

]
≤

L∑
ℓ=1

(Nℓ + 3),

where Nℓ := 1 + 4K2ϵc∥ρ−1∥1 + 5 log|Eℓ|+ logγ−1(1 + 4(1 + ∥ρ−1∥1)K|Eℓ|4),∀ℓ ∈ [L].

Proof. Applying Lemma C.3 to every epoch ℓ ∈ [L], we get a PBE πℓ for every “epoch-ℓ game with
exploration rounds” (Lines 4 to 12 in Algorithm 2). By definition of Tv , the safety constraint is never
violated before that and thus Line 14 has no effect. Furthermore, since Algorithm 2’s allocations and
payments within every epoch ℓ ∈ [L] only directly depend on the current dual variable λℓ but not
anything else from the past, using the same auxiliary game arguments as in Theorem C.2, there is a
PBE π∗ for the whole game under mechanism Algorithm 2 that matches (πℓ)ℓ∈[L] up to Tv .

For every epoch t ∈ Eℓ, it can be either i) an exploration round, which happens w.p. 1
|Eℓ| independently,

ii) a standard round with large misreports: ∃i ∈ [K] such that |ut,i − vt,i ≥ 1
|Eℓ| , or iii) a standard

round with only small misreports. For ii), we apply Lemma C.3; for iii), we apply Lemma C.4. For i),
applying Chernoff inequality,

Pr

{∑
t∈Eℓ

1[t exploration round] > 1 + c

}
≤ exp

(
− c2

2 + 2c/3

)
, ∀c > 0.

Setting c = log|Eℓ| so that the RHS is no more than 1
|Eℓ| , we get

Pr

{∑
t∈Eℓ

1[t exploration round] ≤ 1 + log|Eℓ|

}
≥ 1− 1

|Eℓ|
. (15)
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Now we put the aforementioned three cases together:

E[PRIMALALLOC]
(a)

≤ E

[ Tv∑
t=1

1[̃i∗t ̸= it]

]
(b)

≤
L∑

ℓ=1

E

[∑
t∈Eℓ

(
1[t exploration round] + 1

[
∃i ∈ [K], |ut,i − vt,i| ≥

1

|Eℓ

]

+ 1

[
argmax
i∈[K]

(ut,i − λT
ℓ ct,i) ̸= argmax

i∈[K]

(vt,i − λT
ℓ ct,i) ∧ |ut,i − vt,i| ≤

1

|Eℓ|
,∀i ∈ [K]

])]
(c)

≤
L∑

ℓ=1

(
1 + log|Eℓ|+ 4K2ϵc∥ρ−1∥1 + 4 log|Eℓ|+ logγ−1(1 + 4(1 + ∥ρ−1∥1)K|Eℓ|4) +

3|Eℓ|
|Eℓ|

)
(16)

=

L∑
ℓ=1

(Nℓ + 3), Nℓ := 1 + 4K2ϵc∥ρ−1∥1 + 5 log|Eℓ|+ logγ−1(1 + 4(1 + ∥ρ−1∥1)K|Eℓ|4),

where (a) uses the fact that vt,i ∈ [0, 1] for all t and i, (b) uses the above discussions of (i), (ii), and
(iii), and (c) applied Line 9 to (i), Lemma C.3 to (ii), Lemma C.4 to (iii), and the trivial bound that∑

t∈Eℓ
1[̃i∗t ̸= it] ≤ |Eℓ| if any of the conclusions in Line 9 or Lemmas C.3 and C.4 do not hold

(every conclusion holds with probability 1− 1
|Eℓ| , and thus a Union Bound controls the overall failure

probability by 3
|Eℓ| ). This completes the proof.

D DUALVAR: Regret due to Primal-Dual Framework

D.1 DUALVAR and Online Learning Regret

Lemma D.1 (DUALVAR and Online Learning Regret; Formal Lemma 4.3). Under Algorithm 2, the
DUALVAR term can be controlled as follows:

E[DUALVAR] = E

[
T∑

t=1

vt,i∗t −
Tv∑
t=1

vt,̃i∗t

]

≤ E

[
sup
λ∗∈Λ

Tv∑
t=1

(ρ− ct,it)
T(λt − λ∗)

]
+

L∑
ℓ=1

(Nℓ + 3)∥ρ−1∥1 + ∥ρ−1∥1,

where
Nℓ = 1 + 4K2ϵc∥ρ−1∥1 + 5 log|Eℓ|+ logγ−1(1 + 4(1 + ∥ρ−1∥1)K|Eℓ|4).

Proof. This lemma largely adopts Theorem 1 of Balseiro et al. (2023), but we incorporate some
arguments of Castiglioni et al. (2022) to fix a measurability issue in the original proof.

Slightly abusing the notations, for any round t belonging to an epoch Eℓ, we define λt := λℓ. Let
(Ft)t≥0 be the filtration specified as Ft = σ(λ1, . . . ,λt,v1, . . . ,vt, c1, . . . , ct).

For any t ∈ [T ], let v∗t be the convex conjugate (Fenchel dual) function of vt, namely

v∗t (λ) = max
i∈[K]

(vt,i − λTct,i), ∀λ ∈ Λ,

which is convex in λ since it’s the maximum of convex functions. We further define v∗(λ) =
Ev∼V,c∼C [maxi∈[K](vi −λTci)], which is an expectation of a convex function and thus also convex.

Step 1: Lower bound the values collected by {̃i∗t }t∈[Tv ]. By definition of ĩ∗t from Eq. (9) that
ĩ∗t = argmaxi∈[K](vt,i − λT

t ct,i), we have

vt,̃i∗t
= v∗t (λt) + λT

t ct,̃i∗t
, ∀t ≤ Tv.
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Since λt is Ft−1-measurable but vt and ct are sampled from V and C independently to Ft−1,

E
[
vt,̃i∗t

∣∣∣ Ft−1

]
= E

[
v∗t (λt) + λT

t ct,̃i∗t

∣∣∣ Ft−1

]
= v∗(λt) + E

[
λT
t ct,̃i∗t

∣∣∣ Ft−1

]
.

Put this equality in another way, the stochastic process (Xt)t≥1 adapted to (Ft)t≥0 defined as

Xt := vt,̃i∗t
− λT

t ct,̃i∗t
− v∗(λt), ∀t ≤ Tv,

ensures E[Xt | Ft−1] = 0 and is thus a martingale difference sequence. Since Tv ≤ T + 1 a.s. by
definition from Eq. (10), Optional Stopping Time theorem (Williams, 1991, Theorem 10.10) gives

E

[ Tv∑
t=1

Xt

]
= 0 =⇒ E

[ Tv∑
t=1

vt,̃i∗t

]
= E

[ Tv∑
t=1

v∗(λt) +

Tv∑
t=1

λT
t ct,̃i∗t

]
.

We now utilize the convexity of v∗, which is the expectation of a convex function, and conclude that

E

[ Tv∑
t=1

vt,̃i∗t

]
= E

[
Tv ·

1

Tv

Tv∑
t=1

v∗(λt) +

Tv∑
t=1

λT
t ct,̃i∗t

]
(a)

≥ E

[
Tv · v∗

(
1

Tv

Tv∑
t=1

λt

)
+

Tv∑
t=1

λT
t ct,̃i∗t

]
(b)

≥ E[Tv] inf
λ∈Λ

v∗(λ) + E

[ Tv∑
t=1

λT
t ct,̃i∗t

]
, (17)

where (a) uses Jensen’s inequality and (b) uses the fact that λ = 1
Tv

∑Tv

τ=1 λτ ∈ Λ because λτ ∈ Λ

for all τ and the fact that Λ =
⊗d

j=1[0, ρ
−1
j ] is convex.

Step 2: Upper bound the offline optimal social welfare
∑T

t=1 vt,i∗t . We now work on the other
term in E[DUALVAR], namely E[

∑T
t=1 vt,i∗t ]. For any fixed λ ∈ Λ, since v∗t (λ) = maxi∈[K](vt,i −

λTct,i) ≥ vt,i∗t − λTct,i∗t for all t ∈ [T ], we have

T∑
t=1

vt,i∗t ≤
T∑

t=1

v∗t (λ) +

T∑
t=1

λTct,i∗t , ∀λ ∈ Λ. (18)

Further recall from Eq. (2) that {i∗t }t∈[T ] is the optimum of the offline optimization problem

max

T∑
t=1

vt,i∗t s.t.
1

T

T∑
t=1

ct,i∗t ≤ ρ,

it ensures 1
T

∑T
t=1 ct,i∗t ≤ ρ. Therefore, for any fixed λ ∈ Λ, we further know

E

[
Tv
T

T∑
t=1

vt,i∗t

]
(a)

≤ E

[
Tv
T

(
T∑

t=1

v∗t (λ) +

T∑
t=1

λTct,i∗t

)]
(b)
= E

[
Tv
T

T∑
t=1

v∗t (λ) + TvλT

(
1

T

T∑
t=1

ct,i∗t

)]
(c)

≤ E

[
Tv ·

1

T

T∑
t=1

v∗t (λ) + TvλTρ

]
,

(d)
= E [Tv] (v∗(λ) + λTρ), ∀λ ∈ Λ,

where (a) uses Eq. (18), (b) rearranges the terms, (c) uses 1
T

∑T
t=1 ct,i∗t ≤ ρ, (d) uses the definition

that v∗(λ) = Ev∼V,c∼C [maxi∈[K](vi − λTci)] (and thus E[vt(λ)] = v∗(λ) for any fixed λ ∈ Λ).
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Taking infimum of λ ∈ Λ and further recalling that all the values vt,i∗t are [0, 1]-bounded, we get

E

[
T∑

t=1

vt,i∗t

]
≤ E

[
Tv
T

T∑
t=1

vt,i∗t + (T − Tv)

]
≤ E[Tv] inf

λ∈Λ
(v∗(λ) + λTρ) + E[T − Tv]

≤ E[Tv] inf
λ∈Λ

v∗(λ) + E[Tv] inf
λ∈Λ

λTρ+ E[T − Tv]. (19)

Step 3: Combine Steps 1 and 2. Putting Eqs. (17) and (19) together, we get

E[DUALVAR] = E

[
T∑

t=1

vt,i∗t −
Tv∑
t=1

vt,̃i∗t

]

≤
(
E[Tv] inf

λ∈Λ
v∗(λ) + E[Tv] inf

λ∈Λ
λTρ+ E[T − Tv]

)
−

(
E[Tv] inf

λ∈Λ
v∗(λ) + E

[ Tv∑
t=1

λT
t ct,̃i∗t

])

=

(
E[Tv] inf

λ∈Λ
λTρ− E

[ Tv∑
t=1

λT
t ct,̃i∗t

])
+ E[T − Tv].

Consider the following stochastic process (Yt)t≥1 adapted to (Ft)t≥0:

Yt := inf
λ∈Λ

λTρ− λT
t ρ, ∀t ≤ Tv,

we must have E[Yt | Ft−1] ≤ 0 since λt ∈ Λ, which means (Yt)t≥1 is a super-martingale difference
sequence. Again utilizing the fact that Tv ≤ (T + 1) a.s. and the Optional Stopping Time theorem
(Williams, 1991, Theorem 10.10), we know

E

[ Tv∑
t=1

Yt

]
≤ 0 =⇒ E[Tv] inf

λ∈Λ
λTρ = E

[ Tv∑
t=1

inf
λ∈Λ

λTρ

]
≤ E

[ Tv∑
t=1

λT
t ρ

]
.

This reveals that

E[DUALVAR] ≤

(
E

[ Tv∑
t=1

λT
t ρ

]
− E

[ Tv∑
t=1

λT
t ct,̃i∗t

])
+ E[T − Tv]

= E

[ Tv∑
t=1

λT
t (ρ− ct,̃i∗t

)

]
+ E[T − Tv]. (20)

Comparing Eq. (20) to our conclusion, it only remains to associate λT
t ct,̃i∗t

with λT
t ct,it and control

E[T − Tv]. We first focus on the former objective.

Step 4: Relate λT
t (ρ− ct,̃i∗t

) to λT
t (ρ− ct,it). Using Eq. (16) from Theorem C.5, with probability

1− 3
|Eℓ| , the sequence {̃i∗t }t∈Eℓ

and {it}t∈Eℓ
only differs by no more than Nℓ, where

Nℓ := 1 + 4K2ϵc∥ρ−1∥1 + 5 log|Eℓ|+ logγ−1(1 + 4(1 + ∥ρ−1∥1)K|Eℓ|4), ∀ℓ ∈ [L].

That is, we have shown than E
[∑Tv

t=1 1[̃i
∗
t ̸= it]

]
≤
∑L

ℓ=1(Nℓ+3) where the 3 comes from the 3
|Eℓ|

failure probability and the fact that
∑

t∈Eℓ
1[̃i∗t ̸= it] ≤ |Eℓ|. Combining it with the observation that

|cTt,iλt − cTt,jλt| ≤ ∥λt∥1 · ∥ct,i − ct,i∥1 ≤ ∥ρ−1∥1, ∀i ̸= j,

where we shall recall that ct,i, ct,j ∈ [0, 1]d and that λt ∈ Λ =
⊗d

j=1[0, ρ
−1
j ], Eq. (20) gives

E[DUALVAR] ≤ E

[ Tv∑
t=1

λT
t (ρ− ct,̃i∗t

)

]
+ E[T − Tv]
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≤ E

[ Tv∑
t=1

(λT
t (ρ− ct,it) + ∥ρ−1∥1 · 1[̃i∗t ̸= it])

]
+ E[T − Tv]

≤ E

[ Tv∑
t=1

λT
t (ρ− ct,it)

]
+ ∥ρ−1∥1

L∑
ℓ=1

(Nℓ + 3) + E[T − Tv]. (21)

Step 5: Control E[T − Tv]. We recall the definition of Tv from Eq. (10):

Tv := min

{
t ∈ [T ]

∣∣∣∣∣
t∑

τ=1

cτ,iτ + 1 ̸≤ Tρ

}
∪ {T + 1}.

If Tv = T + 1, then (T −Tv) is trivially bounded. Otherwise, suppose that
∑Tv

τ=1 cτ,iτ + 1 ̸≤ Tρ is
violated for the j ∈ [d]-th coordinate (if there are multiple j’s, pick one arbitrarily). We have

Tv∑
t=1

ct,it,j + 1 > Tρj =⇒
Tv∑
t=1

(ρj − ct,it,j) < 1− (T − Tv)ρj . (22)

Let λ∗ = 1
ρj
ej where ej is the one-hot vector over coordinate j, we know λ∗ ∈ Λ and that

Tv∑
t=1

(ρ− ct,it)
Tλ∗ =

Tv∑
t=1

ρj − ct,it,j
ρj

Eq. (22)
<

1− (T − Tv)ρj
ρj

= ρ−1
j − (T − Tv).

Rearranging gives

(T − Tv) ≤ max
j∈[d]

ρ−1
j + sup

λ∗∈Λ

( Tv∑
t=1

(ρ− ct,it)
Tλ∗

)
.

Final Bound. Taking expectation and plugging it back to Eq. (21), we yield

E[DUALVAR] ≤ E

[ Tv∑
t=1

(ρ− ct,it)
Tλt

]
+

L∑
ℓ=1

(Nℓ + 3)∥ρ−1∥1 + E[T − Tv]

≤ E

[ Tv∑
t=1

(ρ− ct,it)
Tλt

]
+

L∑
ℓ=1

(Nℓ + 3)∥ρ−1∥1 + E

[
max
j∈[d]

ρ−1
j + sup

λ∗∈Λ

( Tv∑
t=1

(ρ− ct,it)
Tλ∗

)]

≤ E

[
sup
λ∗∈Λ

Tv∑
t=1

(ρ− ct,it)
T(λt − λ∗)

]
+

L∑
ℓ=1

(Nℓ + 3)∥ρ−1∥1 + ∥ρ−1∥∞.

This completes the proof.

D.2 DUALVAR Guarantee for FTRL in Eq. (5)

Theorem D.2 (DUALVAR Guarantee with FTRL). When using Follow-the-Regularized-Leader
(FTRL) in Eq. (5) to decide {λℓ}ℓ∈[L], the online learning regret is no more than

Rλ
L := E

[
sup
λ∗∈Λ

Tv∑
t=1

(ρ− ct,it)
T(λt − λ∗)

]
≤ sup

λ∗∈Λ

Ψ(λ∗)

ηL
+ d

L∑
ℓ=1

ηℓ|Eℓ|2.

Specifically, when setting

Ψ(λ) =
1

2
∥λ∥22, ηℓ =

∥ρ−1∥2√
2d

(
ℓ∑

ℓ′=1

|Eℓ′ |2
)−1/2

,
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the E[DUALVAR] term is bounded by

E[DUALVAR] ≤
√
2d∥ρ−1∥2 ·

√√√√ L∑
ℓ=1

|Eℓ|2 +
L∑

ℓ=1

(Nℓ + 3)∥ρ−1∥1 + ∥ρ−1∥1,

where
Nℓ = 1 + 4K2ϵc∥ρ−1∥1 + 5 log|Eℓ|+ logγ−1(1 + 4(1 + ∥ρ−1∥1)K|Eℓ|4).

Proof. We apply the FTRL guarantee stated as Lemma E.1 with their decision region X as our dual
decision region Λ =

⊗d
j=1[0, ρ

−1
j ], their norm ∥·∥ as ℓ2-norm, their round number R as our epoch

number L, their round-ℓ loss function fℓ as our observed loss Fℓ(λ) :=
∑

t∈Eℓ
(ρ − ct,it)

Tλ, the
FTRL decisions {λℓ}ℓ∈[L] suggested by Lemma E.1 recover our dual-decision rule in Eq. (5), i.e.,

λℓ = argmin
λ∈λ

∑
ℓ′<ℓ

∑
τ∈Eℓ′

(ρ− cτ,iτ )
Tλ+

1

ηℓ
Ψ(λ), ∀ℓ ∈ [L].

Since∇λFℓ(λ) =
∑

t∈Eℓ
(ρ−ct,it) and the dual norm of ℓ2-norm is still ℓ2-norm, Lemma E.1 gives

Rλ
L = E

[
sup
λ∗∈Λ

Tv∑
t=1

(ρ− ct,it)
T(λt − λ∗)

]
≤ sup

λ∗∈Λ

Ψ(λ∗)

ηL
+

L∑
ℓ=1

ηℓ E

∥∥∥∥∥∑
t∈Eℓ

(ρ− ct,it)

∥∥∥∥∥
2

2

 .

Recalling that ρ, ct,i ∈ [0, 1]d, we have ∥
∑

t∈Eℓ
(ρ− ct,it)∥22 ≤ d|Eℓ|2 and hence

Rλ
L ≤ sup

λ∗∈Λ

Ψ(λ∗)

ηL
+ d

L∑
ℓ=1

ηℓ|Eℓ|2.

This gives the first conclusion in this theorem.

We now move on to the second conclusion in this theorem, namely the online learning regret under

the given configuration of Ψ(λ) = 1
2∥λ∥

2
2 and ηℓ =

∥ρ−1∥2√
2d

(∑ℓ
ℓ′=1|Eℓ′ |2

)−1/2

. First of all,

Ψ(λ∗) =
1

2
∥λ∗∥22 ≤

1

2
∥ρ−1∥22, ∀λ∗ ∈ Λ =

d⊗
j=1

[0, ρ−1
j ].

Plugging in the specific choice that ηℓ =
∥ρ−1∥2√

2d

(∑ℓ
ℓ′=1|Eℓ′ |2

)−1/2

, we therefore have

Rλ
L ≤

√
2d

∥ρ−1∥2
· 1
2
∥ρ−1∥22

√√√√ L∑
ℓ=1

|Eℓ|2 +
∥ρ−1∥2√

2d
· d

L∑
ℓ=1

|Eℓ|2√∑
ℓ′≤ℓ|Eℓ′ |2

(a)

≤
√
2d · 1

2
∥ρ−1∥2

√√√√ L∑
ℓ=1

|Eℓ|2 +
∥ρ−1∥2√

2d
· 2d
2

√√√√ L∑
ℓ=1

|Eℓ|2

(b)
=
√
2d∥ρ−1∥2

√√√√ L∑
ℓ=1

|Eℓ|2,

where (a) uses the folklore summation lemma that
∑T

t=1
xt√∑t
s=1 xs

≤ 2
√∑T

t=1 xt for all

x1, x2, . . . , xT ∈ R≥0 (Duchi et al., 2011, Lemma 4) and (b) follows from rearranging the terms.

Plugging the online learning regret Rλ
L into Lemma D.1, we therefore get

E[DUALVAR] ≤
√
2d∥ρ−1∥2

√√√√ L∑
ℓ=1

|Eℓ|2 +
L∑

ℓ=1

(Nℓ + 3)∥ρ−1∥1 + ∥ρ−1∥1,
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where
Nℓ = 1 + 4K2ϵc∥ρ−1∥1 + 5 log|Eℓ|+ logγ−1(1 + 4(1 + ∥ρ−1∥1)K|Eℓ|4).

This finishes the proof.

D.3 DUALVAR Guarantee for O-FTRL-FP in Eq. (6)

Theorem D.3 (DUALVAR Guarantee with O-FTRL-FP). When using Optimistic Follow-the-
Regularized-Leader with Fixed-Points (O-FTRL-FP) in Eq. (6) to decide {λℓ}ℓ∈[L], the online
learning regret is no more than 5

Rλ
L := E

[
sup
λ∗∈Λ

Tv∑
t=1

(ρ− ct,it)
T(λt − λ∗)

]

≤ sup
λ∗∈Λ

Ψ(λ∗)

ηL
+

L∑
ℓ=1

ηℓ
|Eℓ|2∑
ℓ′<ℓ|Eℓ′ |

4d2 + 24d log(dTL) + 24d

d∑
j=1

log
dK2ϵcT

ρj


+

L∑
ℓ=1

ηℓ|Eℓ|(16d+ 10) +
L∑

ℓ=1

ηℓ

(
2N2

ℓ +
2d|Eℓ|2M2

ℓ

(
∑ℓ−1

ℓ′=1|Eℓ′ |)2

)
+ 2∥ρ−1∥1,

where for any ℓ ∈ [L], Nℓ and Mℓ are defined as follows:

Nℓ = 1 + 4K2ϵc∥ρ−1∥1 + 5 log|Eℓ|+ logγ−1(1 + 4(1 + ∥ρ−1∥1)K|Eℓ|4),

Mℓ = ℓ logγ−1

(
1 + 4(1 + ∥ρ−1∥1)K|Eℓ|3 · 4ℓδ−1

)
+ 4ℓϵc∥ρ−1∥1 + 4

log(dT ) +
d∑

j=1

log
dK2ϵcT

ρjϵ

.
Specifically, when setting

Ψ(λ) =
1

2
∥λ∥22, L = log T, Eℓ = [2ℓ−1,min(2ℓ − 1, T )], ηℓ =

∥ρ−1∥2√
112dK2

(
ℓ∑

ℓ′=1

|Eℓ′ |

)−1/2

,

the E[DUALVAR] term is bounded by

E[DUALVAR] ≤ 2
√
T

∥ρ−1∥22
2

+ 8d2 + 48d log(dTL) + 48d

d∑
j=1

log
dK2ϵcT

Tρj
+ 16d+ 10


+

L∑
ℓ=1

(
2N2

ℓ + (Nℓ + 3)∥ρ−1∥1 + 8dM2
ℓ

)
+ 3∥ρ−1∥1.

Proof. We would like to apply the O-FTRL-FP guarantee stated as Lemma D.4. One main challenge
we face is the discontinuity of our predictions; recall the O-FTRL-FP dual update rule from Eq. (6):

λℓ = argmin
λ∈λ

∑
ℓ′<ℓ

∑
τ∈Eℓ′

(ρ− cτ,iτ )
Tλ+ g̃ℓ(λℓ)

Tλ+
1

ηℓ
Ψ(λ),

g̃ℓ(λℓ) = |Eℓ| ·
1∑

ℓ′<ℓ|Eℓ′ |
∑

ℓ′<ℓ,τ∈Eℓ′

(
ρ− cτ,̃iτ (λℓ)

)
,

ĩτ (λℓ) = argmax
i∈[K]

(
uτ,i − λT

ℓ cτ,i
)
, ∀ℓ′ < ℓ, τ ∈ Eℓ′ .

Step 1: Make sure Lemma D.4 is applicable. Since predicted loss term g̃ℓ(λℓ)
Tλ – where g̃ℓ(λℓ)

is the estimated gradient from historical reports and costs – is not continuous w.r.t. λℓ due to the
argmax in ĩτ (λℓ), we cannot directly apply the Brouwer’s Fixed Point theorem (Munkres, 2000,

5For the readers to better interpret this long inequality, we provide an ÕT version as Eq. (29) in the proof.
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Theorem 55.6) to conclude the existence of an exact fixed point λℓ. Fortunately, in Lemma D.4, we
prove the existence of an (ηℓLℓϵℓ)-approximate fixed point given (ϵℓ, Lℓ)-approximate continuity,
which requires the existence of two constants (ϵℓ, Lℓ) such that

∥g̃ℓ(λ1)− g̃ℓ(λ
2)∥2 ≤ Lℓ, ∀λ1,λ2 ∈ Λ s.t. ∥λ1 − λ2∥ ≤ ϵℓ.

We refer the readers to Lemma D.4 for a more general version of the (ϵℓ, Lℓ)-approximate continuity
condition that we propose, which generalizes to non-linear predicted losses. In Lemma D.5, we prove

∥g̃ℓ(λ1)− g̃ℓ(λ2)∥2 ≤ 4|Eℓ|K2ϵℓϵcd+
4|Eℓ|(log 1

δℓ
+
∑d

j=1 log
√
d

ρjϵℓ
)∑

ℓ′<ℓ|Eℓ′ |
√
d,

∀λ1,λ2 ∈ Λ s.t. ∥λ1 − λ2∥2 ≤ ϵℓ, w.p. 1− δℓ, (23)

for any fixed constant ϵℓ > 0 and δℓ ∈ (0, 1). Roughly speaking, Lemma D.5 first picks an ϵℓ
2 -net of

Λ and then utilizes the smooth cost condition (Assumption 3) to conclude that close λ’s give similar
ĩτ (λ)’s for all τ , which consequently give similar g̃ℓ(λ)’s within every small ball in the net.

Properly tuning ϵℓ to minimize the RHS in Eq. (23), it translates to the (ϵℓ, Lℓ)-approximate continuity
of prediction g̃ℓ(λℓ)

Tλ w.r.t. λℓ where

ϵℓ =

√
d

K2ϵc
∑

ℓ′<ℓ|Eℓ′ |
, Lℓ =

4|Eℓ|
√
d∑

ℓ′<ℓ|Eℓ′ |

d+ log
1

δℓ
+

d∑
j=1

log

√
d

ρjϵℓ

 , ∀ℓ ∈ [L].

Under this specific configuration of ϵℓ and Lℓ, we call the event defined in in Eq. (23) Gℓ. Conditioning
on G1, . . . ,GL which happens with probability at least 1−

∑L
ℓ=1 δℓ (the conditioning is valid because

Gℓ only depends on a fixed ϵℓ
2 -net of Λ and historical reports and costs, and is thus measurable before

the start of epoch Eℓ), we can apply the O-FTRL-FP guarantee stated as Lemma D.4.

Specifically, set their decision region X as our dual decision region Λ =
⊗d

j=1[0, ρ
−1
j ], their norm

∥·∥ as ℓ2-norm, their round number R as our epoch number L, their round-ℓ loss function fℓ as
our observed loss Fℓ(λ) :=

∑
t∈Eℓ

(ρ− ct,it)
Tλ, their prediction f̃ℓ(λℓ,λ) as our g̃ℓ(λℓ)

Tλ. The
O-FTRL-FP decisions {λℓ}ℓ∈[L] suggested by Lemma D.4 recover our dual-decision rule in Eq. (5):

λℓ ≈ argmin
λ∈λ

∑
ℓ′<ℓ

∑
τ∈Eℓ′

(ρ− cτ,iτ )
Tλ+ g̃ℓ(λℓ)

Tλ+
1

ηℓ
Ψ(λ), ∀ℓ ∈ [L],

where the ≈ means the (ηℓLℓ)-approximate fixed point suggested by Lemma D.4.

Further noticing that ∇λFℓ(λ) =
∑

t∈Eℓ
(ρ − ct,it), ∇λ(g̃ℓ(λℓ)

Tλ) = g̃ℓ(λℓ), the loss Fℓ(λ) is√
d|Eℓ|-Lipschitz since (ρ− ct,it) ∈ [0, 1]d, the loss and predictions are 0-smooth w.r.t. λ since they

are linear, and the dual norm of ℓ2-norm is still ℓ2-norm, Lemma D.4 gives

E

[
sup
λ∗∈Λ

Tv∑
t=1

(ρ− ct,it)
T(λt − λ∗)

]
≤ sup

λ∗∈Λ

Ψ(λ∗)

ηL︸ ︷︷ ︸
Diameter

+

L∑
ℓ=1

ηℓ E

∥∥∥∥∥∑
t∈Eℓ

(ρ− ct,it)− g̃ℓ(λℓ)

∥∥∥∥∥
2

2


︸ ︷︷ ︸

Stabilityℓ

+

L∑
ℓ=1

√
d|Eℓ|ηℓLℓ +

(
L∑

ℓ=1

δℓ

)
2T∥ρ−1∥1︸ ︷︷ ︸

Fixed Point Error

, (24)

where the last term considers the failure probability of G1, . . . ,GL, in which case we use the trivial
bound that

∑T
t=1(ρ− ct,it)

T(λt − λ∗) ≤ T · (maxt,i∥ρ− ct,i∥∞)(2 supλ∈Λ∥λ∥1) ≤ 2T∥ρ−1∥1,
where the last inequality is due to ρ− ct,i ∈ [−1, 1]2 and λ ∈

⊗d
j=1[0, ρ

−
j ].

Step 2: Control the Stability terms. For analytical convenience, we add a superscript u to the
notation g̃ℓ(λ) to highlight it is yielded from reports {uτ}ℓ′<ℓ,τ∈Eℓ′ . Analogous to g̃u

ℓ (λ), which
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is computed from agents’ strategic reports {uτ}ℓ′<ℓ,τ∈Eℓ′ , we define g̃v
ℓ (λ) using the true values

{vτ}ℓ′<ℓ,τ∈Eℓ′ , and g̃∗
ℓ (λ) using the underlying true distributions V = {Vi}i∈[K] and C = {Ci}i∈[K]:

g̃u
ℓ (λ) = |Eℓ| ·

1∑
ℓ′<ℓ|Eℓ′ |

∑
ℓ′<ℓ,τ∈Eℓ′

(
ρ− cτ,̃iuτ (λ)

)
, ĩuτ (λ) = argmax

i∈[K]

(
uτ,i − λTcτ,i

)
;

g̃v
ℓ (λ) = |Eℓ| ·

1∑
ℓ′<ℓ|Eℓ′ |

∑
ℓ′<ℓ,τ∈Eℓ′

(
ρ− cτ,̃ivτ (λ)

)
, ĩvτ (λ) = argmax

i∈[K]

(
vτ,i − λTcτ,i

)
;

g̃∗
ℓ (λ) = |Eℓ| · E

v∗∼V,c∗∼C

[
ρ− c∗,̃i∗(λ)

]
, ĩ∗(λ) = argmax

i∈[K]

(
v∗,i − λTc∗,i

)
. (25)

We now decompose the Stabilityℓ term above as

Stabilityℓ = E

∥∥∥∥∥∑
t∈Eℓ

(ρ− ct,it)− g̃u
ℓ (λℓ)

∥∥∥∥∥
2

2


≤ 2E

∥∥∥∥∥∑
t∈Eℓ

(ρ− ct,it)− g̃∗
ℓ (λℓ)

∥∥∥∥∥
2

2


︸ ︷︷ ︸

Difference between {it}t∈Eℓ
and {̃i∗t }t∈Eℓ

+2E
[
∥g̃∗

ℓ (λℓ)− g̃v
ℓ (λℓ)∥22

]︸ ︷︷ ︸
Empirical Estimation

+2E
[
∥g̃v

ℓ (λℓ)− g̃u
ℓ (λℓ)∥22

]︸ ︷︷ ︸
Untruthful Reports

.

In Lemmas D.6 to D.8 presented immediately after this theorem, we control these three terms one by
one. Specifically, Lemma D.6 relates g̃∗

ℓ (λℓ) first to
∑

t∈Eℓ
(ρ− ct,̃i∗t

) and then to
∑

t∈Eℓ
(ρ− ct,it),

which gives

E

∥∥∥∥∥∑
t∈Eℓ

(ρ− ct,it)− g̃∗
ℓ (λℓ)

∥∥∥∥∥
2

2

 ≤ (d+ 3)|Eℓ|+N2
ℓ , (26)

where Nℓ = 1 + 4K2ϵc∥ρ−1∥1 + 5 log|Eℓ|+ logγ−1(1 + 4(1 + ∥ρ−1∥1)K|Eℓ|4).

Meanwhile, in Lemmas D.7 and D.8, by an ϵ-net argument, we first prove g̃∗
ℓ (λ) ≈ g̃v

ℓ (λ) (resp.
g̃v
ℓ (λ) ≈ g̃u

ℓ (λ)) for all λ’s in the ϵ-net and then extend this similarity to all λ ∈ Λ using the smooth
cost condition; we refer the readers to corresponding proofs for more details. Summing up their
conclusions and taking Union Bound, they together ensure that for any ϵ > 0 and δ ∈ (0, 1), with
probability 1− 6δ, we have

sup
λ∈Λ

(
∥g̃∗

ℓ (λ)− g̃v
ℓ (λ)∥22 + ∥g̃v

ℓ (λ)− g̃u
ℓ (λ)∥22

)
≤ 7d|Eℓ|2 · (K2ϵϵc)

2 + 10d|Eℓ|2 ·
log 1

δ +
∑d

j=1 log
d

ρjϵ∑ℓ−1
ℓ′=1|Eℓ′ |

+
d|Eℓ|2

(
∑ℓ−1

ℓ′=1|Eℓ′ |)2
M2

ℓ , (27)

where

Mℓ := ℓ logγ−1

(
1 + 4(1 + ∥ρ−1∥1)K|Eℓ|3 · 4ℓδ−1

)
+ 4ℓϵc∥ρ−1∥1 + 4

log
1

δ
+

d∑
j=1

log
d

ρjϵ

 .

Step 3: Plug Stability back to O-FTRL-FP guarantee. Now we plug the Stability bounds
from Eqs. (26) and (27) into the online learning regret bound derived in Eq. (24). For every ℓ ∈ [L],
Eq. (27) happen with probability 1 − 6δ; in case it does not hold, we use the trivial bound that
∥g̃∗

ℓ (λ)− g̃v
ℓ (λ)∥22 + ∥g̃v

ℓ (λ)− g̃u
ℓ (λ)∥22 ≤ 2d|Eℓ|2. Therefore, Eq. (24) translates to:

Rλ
L = E

[
sup
λ∗∈Λ

Tv∑
t=1

(ρ− ct,it)
T(λt − λ∗)

]

≤ sup
λ∗∈Λ

Ψ(λ∗)

ηL
+ 2

L∑
ℓ=1

ηℓ

(
(d+ 3)|Eℓ|+N2

ℓ + 7d|Eℓ|2 · (K2ϵϵc)
2
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+ 10d|Eℓ|2 ·
log 1

δ +
∑d

j=1 log
d

ρjϵ∑ℓ−1
ℓ′=1|Eℓ′ |

+
d|Eℓ|2

(
∑ℓ−1

ℓ′=1|Eℓ′ |)2
M2

ℓ + 6δ · 2d|Eℓ|2
)

+

L∑
ℓ=1

√
d|Eℓ|ηℓ

4|Eℓ|
√
d∑

ℓ′<ℓ|Eℓ′ |

d+ log
1

δℓ
+

d∑
j=1

log

√
d

ρjϵℓ

+

(
L∑

ℓ=1

δℓ

)
2T∥ρ−1∥1,

where ϵℓ =
√
d

K2ϵc
∑

ℓ′<ℓ|Eℓ′ |
and {δℓ}ℓ∈[L], ϵ, and δ are some parameters that we can tune. We also

recall the definitions of Nℓ and Mℓ:

Nℓ = 1 + 4K2ϵc∥ρ−1∥1 + 5 log|Eℓ|+ logγ−1(1 + 4(1 + ∥ρ−1∥1)K|Eℓ|4),

Mℓ = ℓ logγ−1

(
1 + 4(1 + ∥ρ−1∥1)K|Eℓ|3 · 4ℓδ−1

)
+ 4ℓϵc∥ρ−1∥1 + 4

log
1

δ
+

d∑
j=1

log
d

ρjϵ

 .

Step 4: Deriving first half of this theorem. We now configure ϵ, δ, and δℓ’s as follows:

ϵ =
1√

TK2ϵc
, δ =

1

6dT
, δℓ =

1

TL
,

We remark that we did not make every effort to make the overall online learning regret as small as
possible. Instead, the above tuning mainly focuses on polynomial dependencies on T and L.

Under this specific tuning and simplifying using the fact that
∑L

ℓ=1|Eℓ| ≤ T , we get

Rλ
L ≤ sup

λ∗∈Λ

Ψ(λ∗)

ηL

+ 2

L∑
ℓ=1

ηℓ

(
(8d+ 5)|Eℓ|+N2

ℓ + 10d|Eℓ|2
log(dT ) +

∑d
j=1 log

dK2ϵcT
ρj∑ℓ−1

ℓ′=1|Eℓ′ |
+

d|Eℓ|2M2
ℓ

(
∑ℓ−1

ℓ′=1|Eℓ′ |)2

)

+

L∑
ℓ=1

ηℓ
4d|Eℓ|2∑
ℓ′<ℓ|Eℓ′ |

d+ log(TL) +

d∑
j=1

log
K2ϵc

∑
ℓ′<ℓ|Eℓ′ |
ρj

+ 2∥ρ−1∥1

≤ sup
λ∗∈Λ

Ψ(λ∗)

ηL
+

L∑
ℓ=1

ηℓ
|Eℓ|2∑
ℓ′<ℓ|Eℓ′ |

4d2 + 24d log(dTL) + 24d

d∑
j=1

log
dK2ϵcT

ρj


+

L∑
ℓ=1

ηℓ|Eℓ|(16d+ 10) +

L∑
ℓ=1

ηℓ

(
2N2

ℓ +
2d|Eℓ|2M2

ℓ

(
∑ℓ−1

ℓ′=1|Eℓ′ |)2

)
+ 2∥ρ−1∥1. (28)

For the readers to better interpret, we annotate the order of every term in terms of ÕT , which only
highlights the polynomial dependency on T , and consequently, also L, {|Eℓ|}ℓ∈[L], and {ηℓ}ℓ∈[L]:

Rλ
L = ÕT

(
η−1
L +

L∑
ℓ=1

ηℓ
|Eℓ|2∑
ℓ′<ℓ|Eℓ′ |

+

L∑
ℓ=1

ηℓ|Eℓ|+
L∑

ℓ=1

ηℓ + 1

)
. (29)

Step 5: Plug in specific tuning of Ψ, L, {Eℓ}ℓ∈[L], and {ηℓ}ℓ∈[L]. We now plug in the following
specific configuration:

Ψ(λ) =
1

2
∥λ∥22, L = log T, Eℓ = [2ℓ−1,min(2ℓ − 1, T )], ηℓ =

(
ℓ∑

ℓ′=1

|Eℓ′ |

)−1/2

.

Due to the doubling epoch length structure, we observe that

|Eℓ|∑ℓ−1
ℓ′=1|Eℓ′ |

≤ (2ℓ−1)

2ℓ−1 − 1
≤ 2, ∀ℓ > 1.
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Therefore the informal bound in Eq. (29) becomes ÕT (η
−1
L +

∑L
ℓ=1 ηℓ|Eℓ|). This explains our choice

that ηℓ = (
∑ℓ

ℓ′=1|Eℓ′ |)−1/2. To make it formal, substituting |Eℓ|∑ℓ−1

ℓ′=1
|Eℓ′ |
≤ 2 into Eq. (28):

Rλ
L ≤ sup

λ∗∈Λ

Ψ(λ∗)

ηL
+

L∑
ℓ=1

ηℓ|Eℓ|

8d2 + 48d log(dTL) + 48d

d∑
j=1

log
dK2ϵcT

Tρj
+ 16d+ 10


+

L∑
ℓ=1

ηℓ
(
2N2

ℓ + 8dM2
ℓ

)
+ 2∥ρ−1∥1.

Under the specific choice of Ψ(λ∗) = 1
2∥λ∥

2
2 and that ηℓ = (

∑ℓ
ℓ′=1|Eℓ′ |)−1/2, we get

Rλ
L ≤

∥ρ−1∥22
2

(
L∑

ℓ=1

|Eℓ|

)1/2

+

L∑
ℓ=1

|Eℓ|√∑ℓ
ℓ′=1|Eℓ′ |

8d2 + 48d log(dTL) + 48d

d∑
j=1

log
dK2ϵcT

Tρj
+ 16d+ 10


+

L∑
ℓ=1

ηℓ
(
2N2

ℓ + 8dM2
ℓ

)
+ 2∥ρ−1∥1

≤ 2

√√√√ L∑
ℓ=1

|Eℓ|

∥ρ−1∥22
2

+ 8d2 + 48d log(dTL) + 48d

d∑
j=1

log
dK2ϵcT

Tρj
+ 16d+ 10


+

L∑
ℓ=1

(
2N2

ℓ + 8dM2
ℓ

)
+ 2∥ρ−1∥1.

where the second inequality again uses the folklore summation lemma that
∑T

t=1
xt√∑t
s=1 xs

≤

2
√∑T

t=1 xt for all x1, x2, . . . , xT ∈ R≥0 (Duchi et al., 2011, Lemma 4); we also used the trivial
bound that ηℓ ≤ 1 for the non-dominant terms. Once again, we remark that the final bound is only
optimized w.r.t. poly(T ) dependencies.

To translate the online learning regret Rλ
L to the E[DUALVAR] guarantee, we use Lemma D.1 (we

also usd the fact that
∑L

ℓ=1|Eℓ| = T ):

E[DUALVAR] ≤ E

[
sup
λ∗∈Λ

Tv∑
t=1

(ρ− ct,it)
T(λt − λ∗)

]
+

L∑
ℓ=1

(Nℓ + 3)∥ρ−1∥1 + ∥ρ−1∥1

≤ 2
√
T

∥ρ−1∥22
2

+ 8d2 + 48d log(dTL) + 48d

d∑
j=1

log
dK2ϵcT

Tρj
+ 16d+ 10


+

L∑
ℓ=1

(
2N2

ℓ + (Nℓ + 3)∥ρ−1∥1 + 8dM2
ℓ

)
+ 3∥ρ−1∥1.

This finishes the proof.

D.3.1 O-FTRL-FP Framework for Non-Continuous Predictions

Lemma D.4 (O-FTRL-FP Guarantee). For a convex and compact region X within an Euclidean
space Rd, an 1-strongly-convex regularizer Ψ: X → R w.r.t. some norm ∥·∥ with minx∈X Ψ(x) = 0,
a sequence of continuous, differentiable, convex, L-Lipschitz, and Lf -smooth losses f1, f2, . . . , fR,
a sequence of learning rates η1 ≥ η2 ≥ · · · ≥ ηR ≥ 0, a (stochastic) action-dependent prediction
sequence {f̃r : X × X → R}r∈[R] such that the following conditions hold:
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1. f̃r is Fr−1-measurable where (Fr)t is the natural filtration that Fr = σ(f1, f2, . . . , fr),

2. For any fixed y ∈ X , f̃r(y, ·) is continuous, differentiable, convex, and Lf -smooth, and

3. f̃r(y,x) is (ϵr, Lr)-approximately-continuous w.r.t. its first parameter y in the sense that

sup
x∈X

∥∥∥∇2f̃r(y1,x)−∇2f̃r(y2,x)
∥∥∥
∗
≤ Lr, ∀y1,y2 ∈ X s.t. ∥y1 − y2∥ < ϵr,

where∇2f̃r is the gradient of f̃r(y,x) taken only w.r.t. the second parameter x, and ∥·∥∗ is the
dual norm of ∥·∥.

Then, for all r = 1, 2, . . . , R, consider the following fixed-point system:

xr = argmin
x∈X

(
r−1∑
r=1

fr(x) + f̃r(xr,x) +
1

ηr
Ψ(x)

)
. (30)

First of all, the argmin in the RHS of Eq. (30) exists and is unique. Furthermore, Eq. (30) allows an
(ηrLr)-approximate fixed point xr such that∥∥∥∥∥xr − argmin

x∈X

(
r−1∑
r=1

fr(x) + f̃r(xr,x) +
1

ηr
Ψ(x)

)∥∥∥∥∥ ≤ ηrLr, ∀r ∈ [R].

Using this {xr}r∈[R], we have the following guarantee for all x∗ ∈ X :

R∑
r=1

(fr(xr)− fr(x
∗)) ≤ Ψ(x∗)

ηR
+

1

2

R∑
r=1

ηr∥∇fr(xr)−∇f̂r(xr)∥2∗ +
R∑

r=1

(LηrLr + 2L2
fη

2
rL

2
r).

Proof. We first study the system Eq. (30) for any fixed r ∈ [R]. For simplicity, we drop the subscripts
r from F (x) and G(y) defined soon. Since Ψ(x) is 1-strongly-convex and fr(x) is convex, ∀r < r,

F (x) :=

r−1∑
r=1

fr(x) +
1

ηr
Ψ(x) is η−1

r -strongly-convex, ∀r ∈ [R].

Fix any y1,y2 ∈ X such that ∥y1−y2∥ < ϵr. From Condition 2 of f̃r, H1(x) := F (x)+ f̃r(y1,x)

and H2(x) := F (x) + f̃r(y2,x) are continuous, differentiable, and η−1
r -strongly-convex. Hence

x1 := argminx∈X H1(x) and x2 := argminx∈X H2(x) exist and are unique. Further utilizing the
η−1
r -strong-convexity of H1, we have (Bertsekas et al., 2003, Exercise 1.10)

η−1
r ∥x1 − x2∥2 ≤ ⟨∇H1(x1)−∇H1(x2),x1 − x2⟩

= ⟨∇H1(x1),x1 − x2⟩+ ⟨∇H1(x2),x2 − x1⟩
(a)

≤ ⟨∇H1(x2),x2 − x1⟩
(b)

≤ ⟨∇H1(x2),x2 − x1⟩+ ⟨∇H2(x2),x1 − x2⟩
(c)

≤ ∥x1 − x2∥ · ∥∇H1(x2)−∇H2(x2)∥∗,

where (a) uses the first-order condition of H1(x1) that ⟨∇H1(x1),x2 − x1⟩ ≥ 0, (b) uses the
first-order condition of H2(x2) that ⟨∇H2(x2),x1 − x2⟩ ≥ 0, and (c) applies Cauchy-Schwartz
inequality. Using Condition 3 of f̃r and rearranging terms, we further have

∥x1 − x2∥ ≤ ηr · ∥∇H1(x2)−∇H2(x2)∥∗ = ηr · ∥∇2f̃r(y1,x2)−∇2f̃r(y2,x2)∥∗ ≤ ηrLr.

For any y ∈ X , due to strong convexity of F (x) + f̃r(y,x), the following G(y) is well-defined:

G(y) := argmin
x∈X

(
r−1∑
r=1

fr(x) + f̃r(y,x) +
1

ηr
Ψ(x)

)
= argmin

x∈X

(
F (x) + f̃r(y,x)

)
.
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Eq. (30) translates to xr = G(xr), and the aforementioned x1 = G(y1), x2 = G(y2). Thus

∥G(y1)−G(y2)∥ = ∥x1 − x2∥ ≤ ηrLr, ∀y1,y2 ∈ X s.t. ∥y1 − y2∥ < ϵr. (31)

We now utilize the partitions of unity tool in topology. Consider an ϵr
2 -net of X , whose size is finite

sinceX is a compact subset of the Euclidean space. Denote it byX ⊆
⋃M

i=1 Bi where Bi is a ball with
radius ϵr

2 centered at some ỹi ∈ X . It induces a continuous partition of unity {ϕi : Bi → [0, 1]}i∈[M ]

such that
∑M

i=1 ϕi(y) = 1 for all y ∈ X (Munkres, 2000, Theorem 36.1). Consider

G̃(y) :=

M∑
i=1

ϕi(y)G(ỹi), ∀y ∈ X ,

which is continuous since every ϕi is. Furthermore, as G(ỹi) ∈ X for all i ∈ [M ], we know G̃
is a continuous map from X to X . As X is a non-empty, convex, and compact set, the Brouwer’s
Fixed Point theorem (Munkres, 2000, Theorem 55.6) suggests the existence of y∗ ∈ X such that
G̃(y∗) = y∗. This y∗ ∈ X then ensures

∥y∗ −G(y∗)∥ = ∥G̃(y∗)−G(y∗)∥ =

∥∥∥∥∥
M∑
i=1

ϕi(y)(G(ỹi)−G(y∗))

∥∥∥∥∥
≤

M∑
i=1

ϕi(y
∗)∥G(ỹi)−G(y∗)∥

(a)

≤
M∑
i=1

ϕi(y
∗) · ηrLr ≤ ηrLr,

where (a) uses the fact that if ϕi(y
∗) ̸= 0, then y∗ ∈ Bi and hence ∥y∗ − ỹi∥ < ϵr, which gives

∥G(y∗) −G(ỹi)∥ ≤ ηrLr from Eq. (31). Therefore, for any round r ∈ [R], the system Eq. (30)
indeed allows an (ηrLr)-approximate fixed point xr ∈ X .

After proving the existence of approximate fixed points in Eq. (30), we utilize the vanilla O-FTRL
result stated as Lemma E.2. Since every term in Eq. (30) is Fr−1-measurable, the approximate fixed
point xr and its induced prediction ℓ̂r(·) := ℓ̃r(xr, ·) are Fr−1-measurable. Therefore, the {ℓ̂r}r∈[R]

serves as a valid prediction required by Lemma E.2. Applying Lemma E.2, for the sequence

x∗
r = argmin

x∈X

(
r−1∑
r=1

fr(x) + f̂r(x) +
1

ηr
Ψ(x)

)
= G(xr), ∀r ∈ [R],

we have

R∑
r=1

(fr(x
∗
r)− fr(x

∗)) ≤ Ψ(x∗)

ηR
+

1

2

R∑
r=1

ηr∥∇fr(x∗
r)−∇f̂r(x∗

r)∥2∗, ∀x∗ ∈ X .

Since xr is an (ηrLr)-approximate fixed point of G, we know ∥xr−x∗
r∥ = ∥xr−G(xr)∥ ≤ ηrLrϵr.

Further realizing that∇f̂r(x) = ∇2f̃r(xr,x) by definition of f̂r(·) = f̃r(xr, ·), we get

|fr(xr)− fr(x
∗
r)| ≤ L · ηrLr,

∥∇fr(xr)−∇fr(x∗
r)∥∗ ≤ Lf · ηrLr,

∥∇2f̃r(xr,xr)−∇2f̃r(xr,x
∗
r)∥∗ ≤ Lf · ηrLr, ∀r ∈ [R],

where the first inequality uses the L-Lipschitzness of fr, and the second and third inequalities use the
Lf -smoothness of fr and f̃r(xr, ·). Plugging back gives our conclusion that for any x∗ ∈ X ,

R∑
r=1

(fr(xr)− fr(x
∗)) ≤ Ψ(x∗)

ηR
+

1

2

R∑
r=1

ηr∥∇fr(xr)−∇f̂r(xr)∥2∗ +
R∑

r=1

(LηrLr + 2L2
fη

2
rL

2
r).

This finishes the proof.
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D.3.2 Approximate Continuity of Predictions in O-FTRL-FP

Lemma D.5 (Approximate Continuity of Predictions). Recall the definition of g̃ℓ(λ) from Eq. (6):

g̃ℓ(λ) = |Eℓ| ·
1∑

ℓ′<ℓ|Eℓ′ |
∑

ℓ′<ℓ,τ∈Eℓ′

(
ρ− cτ,̃iτ (λ)

)
,

ĩτ (λ) = argmax
i∈[K]

(
uτ,i − λTcτ,i

)
, ∀ℓ′ < ℓ, τ ∈ Eℓ′ .

For any fixed ϵ > 0 and δ ∈ (0, 1), with probability at least 1− δ,

∥g̃ℓ(λ1)− g̃ℓ(λ2)∥2 ≤ 4|Eℓ|K2ϵϵcd+
4|Eℓ|(log 1

δ +
∑d

j=1 log
√
d

ρjϵ
)∑

ℓ′<ℓ|Eℓ′ |
√
d,

∀λ1,λ2 ∈ Λ s.t. ∥λ1 − λ2∥2 ≤ ϵ.

Proof. Take an ϵ
2 -net of Λ defined in Lemma E.3, and denote it by Λϵ (which we slightly abused the

notation; note that ϵ
2 -nets are also ϵ-nets since ϵ

2 < ϵ). Then we have |Λϵ| ≤
∏d

j=1(2d/ρjϵ).

Fix a λϵ ∈ Λϵ and consider the stochastic process (Xτ )τ≥1 adapted to (Fτ )τ≥0: 6

Xτ := 1[∃λ ∈ Bϵ(λϵ) s.t. ĩτ (λ) ̸= ĩτ (λϵ)], ∀ℓ′ < ℓ, τ ∈ Eℓ′ ,

where (Fτ )τ≥0 is defined as Fτ = σ(
⋃

i∈{0}∪[K]Hτ+1,i), i.e., the smallest σ-algebra containing
all revealed history up to the end of round τ . Then Xτ is Fτ -measurable. Using the Multiplicative
Azuma-Hoeffding inequality given as Lemma E.4 with Yt = E[Xt | Ft−1] and ϵ = 1

2 ,

Pr

1

2

∑
ℓ′<ℓ,τ∈Eℓ′

Xτ ≥
∑

ℓ′<ℓ,τ∈Eℓ′

E[Xτ | Fτ−1] +A

 ≤ exp

(
−A

2

)
, ∀A > 0.

For any ℓ′ < ℓ and τ ∈ Eℓ′ , the distribution of uτ conditional on all previous history, namely⋃
i∈{0}∪[K]Hτ,i, is Fτ−1-measurable (i.e., it follows a Fτ−1-measurable joint distribution U ∈
△([0, 1]d)). λϵ ∈ Λϵ is fixed before the game and thus also Fτ−1-measurable. Lemma E.3 gives

E[Xτ | Fτ−1] = Pr

{
∃λ ∈ Bϵ(λϵ) s.t. argmax

i∈[K]

(
uτ,i − λTcτ,i

)
̸= argmax

i∈[K]

(
uτ,i − λT

ϵ cτ,i
)}

≤ K2ϵϵc, ∀ℓ′ < ℓ, τ ∈ Eℓ′ ,

where the Pr is taken w.r.t. the randomness of generating uτ according to the conditional joint
distribution uτ |

⋃
i∈{0}∪[K]Hτ,i and the independent sampling of cτ ∼ C.

Hence, for any failure probability δ > 0 that we determine later, with probability 1− δ,∑
ℓ′<ℓ,τ∈Eℓ′

1[∃λ ∈ Bϵ(λϵ) s.t. ĩτ (λ) ̸= ĩτ (λϵ)] ≤ 2
∑
ℓ′<ℓ

|Eℓ′ | ·K2ϵϵc + 4 log
1

δ
.

Taking Union Bound over λϵ ∈ Λϵ, with probability 1 − δ
∏d

j=1(2d/ρjϵ), the above good event
holds for all λϵ ∈ Λ at the same time. Consider any λ1,λ2 ∈ Λ such that ∥λ1 − λ2∥2 ≤ ϵ

2
√
d

,
which immediately gives ∥λ1 −λ2∥1 ≤ ϵ

2 . Take λϵ ∈ Λϵ such that λ1 ∈ Bϵ/2(λϵ) (recall that Λϵ is
in fact a ϵ

2 -net), we therefore have ∥λ2 − λϵ∥1 ≤ ϵ, which means λ1,λ2 ∈ Bϵ(λϵ). Thus∥∥∥∥∥∥
∑

ℓ′<ℓ,τ∈Eℓ′

(ρ− cτ,̃iτ (λ1)
)−

∑
ℓ′<ℓ,τ∈Eℓ′

(ρ− cτ,̃iτ (λ2)
)

∥∥∥∥∥∥
2

≤

(
2
∑
ℓ′<ℓ

|Eℓ′ | ·K2ϵϵc + 4 log
1

δ

)
√
d,

6This ∃λ ∈ Bϵ(λϵ) is pivotal because we cannot afford to take a Union Bound over all λ ∈ Bϵ(λϵ). We call
this step “uniform smoothness”, since it ensures the similarity holds uniformly in the neighborhood of λϵ.
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∀λ1,λ2 ∈ Λ s.t. ∥λ1 − λ2∥2 ≤
ϵ

2
√
d
, w.p. 1− δ

d∏
j=1

(2d/ρjϵ),

where we used the fact that cτ,i ∈ [0, 1]d for any i ∈ [K]. This ensures that

∥g̃ℓ(λ1)− g̃ℓ(λ2)∥2 ≤
|Eℓ|∑

ℓ′<ℓ|Eℓ′ |

(
2
∑
ℓ′<ℓ

|Eℓ′ | ·K2ϵϵc + 4 log
1

δ

)
√
d

= 2|Eℓ|K2ϵϵc
√
d+

4|Eℓ| log 1
δ∑

ℓ′<ℓ|Eℓ′ |
√
d, ∀λ1,λ2 ∈ Λ s.t. ∥λ1 − λ2∥2 ≤

ϵ

2
√
d

with probability at least 1−δ
∏d

j=1(2d/ρjϵ). Substituting ϵ′ = ϵ
2
√
d

and δ′ = δ
∏d

j=1(2d/ρjϵ) gives
the conclusion.

D.3.3 Stability Term Bounds in O-FTRL-FP

Lemma D.6 (Difference between {it}t∈Eℓ
and {̃i∗t }t∈Eℓ

). For any epoch ℓ ∈ [L],

E

∥∥∥∥∥∑
t∈Eℓ

(ρ− ct,it)− g̃∗
ℓ (λℓ)

∥∥∥∥∥
2

2

 ≤ (d+ 3)|Eℓ|+N2
ℓ

where Nℓ is defined as in Lemma D.1:

Nℓ = 1 + 4K2ϵc∥ρ−1∥1 + 5 log|Eℓ|+ logγ−1(1 + 4(1 + ∥ρ−1∥1)K|Eℓ|4),

and we recall that

g̃∗
ℓ (λ) = |Eℓ| · E

v∗∼V,c∗∼C

[
ρ− c∗,̃i∗(λ)

]
, ĩ∗(λ) = argmax

i∈[K]

(
v∗,i − λTc∗,i

)
.

Proof. In this proof, we first control E[∥
∑

t∈Eℓ
(ρ− ct,̃i∗t

)− g̃∗
ℓ (λℓ)∥22], i.e., the squared ℓ2-error of

|Eℓ| random vectors from their mean – which is of order |Eℓ| because they are i.i.d. We then relate it
to E[∥

∑
t∈Eℓ

(ρ− ct,it)− g̃∗
ℓ (λℓ)∥22] by utilizing the similarity between {̃i∗t }t∈Eℓ

and {it}t∈Eℓ
that

we derived in Theorem C.5.

Step 1: Control E[∥
∑

t∈Eℓ
(ρ− ct,̃i∗t

)− g̃∗
ℓ (λℓ)∥22]. Recall the definition of {̃i∗t }t∈[T ] from Eq. (9):

ĩ∗t = argmax
i∈[K]

(
vt,i − λT

ℓ ct,i
)
, ∀t ∈ Eℓ,

and noticing that vt and ct are i.i.d. samples from V and C, we have PDF(̃i∗t ) = PDF(̃i∗(λℓ)) for
all t ∈ Eℓ. Therefore,

E
[
ρ− ct,̃i∗t

]
= E

v∗∼V,c∗∼C

[
ρ− c∗,̃i∗(λℓ)

]
=

1

|Eℓ|
g̃∗
ℓ (λℓ), ∀t ∈ Eℓ,

where the last equation is precisely the definition of g̃∗
ℓ (λℓ). Since for a d-dimensional random vector

X , E[∥X − E[X]∥22] = E[
∑d

i=1(Xi − E[Xi])
2] =

∑d
i=1 Var(Xi) = Tr(Cov(X)) where Tr is the

trace and Cov is the covariance matrix, we have

E

∥∥∥∥∥∑
t∈Eℓ

(ρ− ct,̃i∗t
)− g̃∗

ℓ (λℓ)

∥∥∥∥∥
2

2

 = Tr
(
|Eℓ| · Cov

v∗∼V,c∗∼C

(
ρ− c∗,̃i∗(λℓ)

))
≤ |Eℓ|d,

using the fact that ĩ∗t ’s are independent from each other and that ρ and c∗,i are all within [0, 1]d.

Step 2: Relate
∑

t∈Eℓ
(ρ− ct,̃i∗t

) to
∑

t∈Eℓ
(ρ− ct,it). Recall Eq. (16) from Theorem C.5:

Pr

{∑
t∈Eℓ

1[it ̸= ĩ∗t ] > Nℓ

}
≤ 3

|Eℓ|
, (32)
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where Nℓ := 1 + 4K2ϵc∥ρ−1∥1 + 5 log|Eℓ|+ logγ−1(1 + 4(1 + ∥ρ−1∥1)K|Eℓ|4).

As (ρ− ct,i) ∈ [−1, 1]d, we have

E

∥∥∥∥∥∑
t∈Eℓ

(ρ− ct,it)− g̃∗
ℓ (λℓ)

∥∥∥∥∥
2

2


≤ E

∥∥∥∥∥∑
t∈Eℓ

(ρ− ct,̃i∗t
)− g̃∗

ℓ (λℓ)

∥∥∥∥∥
2

2

+ E

d(∑
t∈Eℓ

1[it ̸= ĩ∗t ]

)2


≤ |Eℓ|d+N2
ℓ + 3

|Eℓ|2

|Eℓ|
,

where the last term considers the failure probability of Eq. (32), in which case we use the trivial
bound (

∑
t∈Eℓ

1[it ̸= ĩ∗t ])
2 ≤ |Eℓ|2. Rearranging gives the desired conclusion.

Lemma D.7 (Empirical Estimation). For any ℓ ∈ [L], ϵ > 0, and δ ∈ (0, 1), with probability 1− 2δ,

∥g̃∗
ℓ (λ)− g̃v

ℓ (λ)∥22 ≤ 3d|Eℓ|2 · (K2ϵϵc)
2 + 6d|Eℓ|2 ·

log 1
δ +

∑d
j=1 log

d
ρjϵ∑ℓ−1

ℓ′=1|Eℓ′ |

= Õ

|Eℓ|2ϵ2 + |Eℓ|2∑ℓ−1
ℓ′=1|Eℓ′ |

log
1

δ
+

d∑
j=1

log
d

ρjϵ

 , ∀λ ∈ Λ,

where we recall that

g̃v
ℓ (λ) = |Eℓ| ·

1∑
ℓ′<ℓ|Eℓ′ |

∑
ℓ′<ℓ,τ∈Eℓ′

(
ρ− cτ,̃ivτ (λ)

)
, ĩvτ (λ) = argmax

i∈[K]

(
vτ,i − λTcτ,i

)
;

g̃∗
ℓ (λ) = |Eℓ| · E

v∗∼V,c∗∼C

[
ρ− c∗,̃i∗(λ)

]
, ĩ∗(λ) = argmax

i∈[K]

(
v∗,i − λTc∗,i

)
.

Proof. In contrast to Lemma D.6 where we directly applied concentration bounds at the realized dual
iterate λℓ, here we cannot proceed in the same way. The reason is that the value samples vτ used to
compute g̃v

ℓ (λℓ) were drawn in the past, and λℓ itself is computed based on reports dependent on
these values. As a result, conditioning on the event that g̃∗

ℓ (λℓ) ≈ g̃v
ℓ (λℓ) introduces a dependence

on future information from the perspective of those past realizations, violating valid conditioning.

To overcome this, we establish uniform concentration over all λ ∈ Λ by discretizing the domain.
Specifically, we construct an ϵ-net Λϵ ⊆ Λ and first show that for every λϵ ∈ Λϵ, the approximation
g̃∗
ℓ (λϵ) ≈ g̃v

ℓ (λϵ) holds with high probability. We then extend this guarantee to all λ ∈ Λ by
considering the stochastic process {1[∃λ ∈ Bϵ(λϵ) s.t. ĩvτ (λ) ̸= ĩvτ (λϵ)]}ℓ′<ℓ,τ∈Eℓ′ where Bϵ(λϵ) is
the ϵ-radius ball centered at λϵ. The proof goes in three steps.

Step 1: Cover Λ with an ϵ-net. From Lemma E.3, for any ϵ > 0, there exists an ϵ-net Λϵ ⊆ Λ of
size O((d/ϵ)d), such that every λ ∈ Λ has some λϵ ∈ Λϵ with ∥λ− λϵ∥1 ≤ ϵ. We remark that our
final guarantee does not have a d-exponent, because the dependency on |Λϵ| is logarithmic.

Step 2: Yield concentration for any fixed λϵ ∈ Λϵ. Fix λϵ ∈ Λϵ. Let

xτ := (ρ− cτ,̃ivτ (λϵ)
)− E

v∗∼V,c∗∼C

[
ρ− c∗,̃i∗(λϵ)

]
, ∀ℓ′ < ℓ, τ ∈ Eℓ′ .

Since xτ only depends on vτ and cτ which are i.i.d. samples from V and C, these vectors are i.i.d.,
zero-mean, and ensures ∥xτ∥2 ≤

√
d a.s. since ρ− cτ ∈ [−1, 1]d. Applying the vector Bernstein

inequality (Kohler and Lucchi, 2017, Lemma 18) restated as Lemma E.5 gives:

Pr {∥g̃∗
ℓ (λϵ)− g̃v

ℓ (λϵ)∥2 ≥ |Eℓ|c} = Pr

{∥∥∥∥∥
∑

ℓ′<ℓ,τ∈Eℓ′
xτ∑

ℓ′<ℓ|Eℓ′ |

∥∥∥∥∥
2

≥ c

}
≤ exp

(
−
∑
ℓ′<ℓ

|Eℓ′ | ·
c2

8d
+

1

4

)
.
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Taking a union bound over all λϵ ∈ Λϵ, we obtain that

Pr

{
max
λϵ∈Λϵ

∥g̃∗
ℓ (λϵ)− g̃v

ℓ (λϵ)∥22 ≥ |Eℓ|2c2
}
≤

d∏
i=1

d

ρjϵ
· exp

(
−2

ℓ−1∑
ℓ′=1

|Eℓ′ | ·
c2

8d
+

1

4

)
, ∀c > 0.

Therefore, for the given failure probability δ, with probability at least 1− δ,

∥g̃∗
ℓ (λϵ)− g̃v

ℓ (λϵ)∥22 ≤ |Eℓ|2 · 4d ·
log 1

δ +
∑d

j=1 log
d

ρjϵ∑ℓ−1
ℓ′=1|Eℓ′ |

, ∀λϵ ∈ Λϵ. (33)

Step 3: Extend the similarity to all λ ∈ Λ. We now fix a λϵ ∈ Λϵ and try to ensure a uniform
concentration guarantee for all λ ∈ Bϵ(λϵ). Using boundedness ∥ρ− cτ,i∥2 ≤

√
d, we have:

∥g̃v
ℓ (λ)− g̃v

ℓ (λϵ)∥22 ≤ d

 |Eℓ|∑
ℓ′<ℓ|Eℓ′ |

∑
ℓ′<ℓ,τ∈Eℓ′

1[̃ivτ (λ) ̸= ĩvτ (λϵ)]

2

,

∥g̃∗
ℓ (λ)− g̃∗

ℓ (λϵ)∥22 ≤ d
(
|Eℓ| · Pr{̃i∗(λ) ̸= ĩ∗(λϵ)}

)2
, ∀λ ∈ Bϵ(λϵ).

From Lemma E.3, we know

Pr
v∼V,c∼C

{
∃λ ∈ Bϵ(λϵ) s.t. ĩ∗(λ) ̸= ĩ∗(λϵ)

}
≤ K2(ϵ · ϵc), ∀λϵ ∈ Λϵ, (34)

where we remark that the ∃λ ∈ Bϵ(λϵ) clause is important since it ensures “uniform smoothness” in
the neighborhood of λϵ. If we instead fix a λ and its corresponding λϵ and apply concentration to this
specific λ, we need to do an prohibitively expensive Union Bound afterwards; see also Footnote 6.

Hence the error between g̃∗
ℓ (λ) and g̃∗

ℓ (λϵ) is bounded by

max
λ∈Bϵ(λϵ)

∥g̃∗
ℓ (λ)− g̃∗

ℓ (λϵ)∥22 ≤ d|Eℓ|2 · (K2ϵϵc)
2, a.s. (35)

For the error between g̃v
ℓ (λ) and g̃v

ℓ (λϵ), consider a stochastic process (Xτ )τ≥1 adapted to (Fτ )τ≥0:

Xτ := 1[∃λ ∈ Bϵ(λϵ) s.t. ĩvτ (λ) ̸= ĩvτ (λϵ)], ∀ℓ′ < ℓ, τ ∈ Eℓ′ ,

whereFτ = σ(
⋃

i∈{0}∪[K]Hτ+1,i) = σ(v1, . . . ,vτ ,u1, . . . ,uτ , c1, . . . , cτ , i1, . . . , iτ ,p1, . . . ,pτ )

is the smallest σ-algebra containing all generated history up to the end of round τ .7 Then Xτ is
Fτ -measurable, and we have

E[Xτ | Fτ−1] = Pr
v∼V,c∼C

{
∃λ ∈ Bϵ(λϵ) s.t. ĩ∗(λ) ̸= ĩ∗(λϵ)

}
≤ K2(ϵ · ϵc),

where the last step uses Eq. (34). Applying Azuma-Hoeffding to martingale difference sequence
{Xτ − E[Xτ | Fτ−1]}ℓ′<ℓ,τ∈Eℓ′ , we know for any c > 0,

Pr

{∑
ℓ′<ℓ,τ∈Eℓ′

1[∃λ ∈ Bϵ(λϵ) s.t. ĩvτ (λ) ̸= ĩvτ (λϵ)]∑ℓ−1
ℓ′=1|Eℓ′ |

≥ K2ϵϵc + c

}
≤ exp

(
−2c2

ℓ−1∑
ℓ′=1

|Eℓ′ |

)
.

Applying a Union Bound over all λϵ ∈ Λϵ and recalling the expression of ∥g̃v
ℓ (λ)− g̃v

ℓ (λϵ)∥22,

Pr
{
∃λϵ ∈ Λϵ,λ ∈ Λ s.t. ∥g̃v

ℓ (λ)− g̃v
ℓ (λϵ)∥22 ≥ d|Eℓ|2(K2ϵϵc + c)2

}
≤

d∏
i=1

d

ρjϵ
· exp

(
−2c2

ℓ−1∑
ℓ′=1

|Eℓ′ |

)
.

7In fact, the Xτ ’s here are i.i.d. variables since vτ ∼ V and cτ ∼ C are independent. However, when
controlling ∥g̃u

ℓ (λ)− g̃u
ℓ (λϵ)∥22 in Lemma D.8, since reports uτ can be history-dependent, to make Lemma E.3

still applicable we need to make sure the conditional distribution of reports uτ | Hτ is Fτ−1-measurable.
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Therefore, with probability at least 1− δ, we have

∥g̃v
ℓ (λ)− g̃v

ℓ (λϵ)∥22 ≤ d|Eℓ|2
K2ϵϵc +

√
log 1

δ +
∑d

j=1 log
d

ρjϵ√∑ℓ−1
ℓ′=1|Eℓ′ |

2

, ∀λϵ ∈ Λϵ,λ ∈ Bϵ(λϵ).

(36)

Final Bound. Via Union Bound, with probability 1− 2δ, Eqs. (33), (35) and (36) are all true and

∥g̃∗
ℓ (λ)− g̃v

ℓ (λ)∥22 ≤ 3d|Eℓ|2 · (K2ϵϵc)
2 + 6d|Eℓ|2 ·

log 1
δ +

∑d
j=1 log

d
ρjϵ∑ℓ−1

ℓ′=1|Eℓ′ |
, ∀λ ∈ Λ.

This finishes the proof.

Lemma D.8 (Untruthful Reports). For any ℓ ∈ [L], ϵ > 0, and δ ∈ (0, 1), with probability 1− 4δ,

∥g̃u
ℓ (λ)− g̃v

ℓ (λ)∥22

≤ d|Eℓ|2
ℓ logγ−1

(
1 + 4(1 + ∥ρ−1∥1)K|Eℓ|3 · 4ℓδ−1

)
+ 4ℓϵc∥ρ−1∥1 + 4

(
log 1

δ +
∑d

j=1 log
d

ρjϵ

)
∑ℓ−1

ℓ′=1|Eℓ′ |

2

+4d|Eℓ|2
(K2ϵϵc)

2 +
log 1

δ +
∑d

j=1 log
d

ρjϵ∑ℓ−1
ℓ′=1|Eℓ′ |


= ÕT,δ,ϵ

|Eℓ|2ϵ2 + |Eℓ|2∑ℓ−1
ℓ′=1|Eℓ′ |

L+ log
1

δ
+

d∑
j=1

log
d

ρjϵ

2
 , ∀λ ∈ Λ,

where we recall that

g̃u
ℓ (λ) = |Eℓ| ·

1∑
ℓ′<ℓ|Eℓ′ |

∑
ℓ′<ℓ,τ∈Eℓ′

(
ρ− cτ,̃iuτ (λ)

)
, ĩuτ (λ) = argmax

i∈[K]

(
uτ,i − λTcτ,i

)
;

g̃v
ℓ (λ) = |Eℓ| ·

1∑
ℓ′<ℓ|Eℓ′ |

∑
ℓ′<ℓ,τ∈Eℓ′

(
ρ− cτ,̃ivτ (λ)

)
, ĩvτ (λ) = argmax

i∈[K]

(
vτ,i − λTcτ,i

)
.

Proof. We now bound the impact of untruthful reporting, specifically the difference between past
reported values ut and true values vt. Similar to the reason in Lemma D.7, we cannot directly apply
concentration inequalities to λℓ which is unmeasurable when the reports are generated. Therefore,
we still consider an ϵ-net Λϵ of Λ, ensure that g̃v

ℓ (λϵ) ≈ g̃u
ℓ (λϵ) for all λϵ ∈ Λϵ, and then extend it

to all λ ∈ Λ via Chernoff-Hoeffding inequalities.

Step 1: Cover Λ with an ϵ-net. From Lemma E.3, for any ϵ > 0, there exists an ϵ-net Λϵ ⊆ Λ of
size O((d/ϵ)d), such that every λ ∈ Λ has some λϵ ∈ Λϵ with ∥λ− λϵ∥1 ≤ ϵ. We remark that our
final guarantee does not have a d-exponent, because the dependency on |Λϵ| is logarithmic.

Step 2: Yield concentration for any fixed λϵ ∈ Λϵ. Fix λϵ ∈ Λϵ. From Lemma C.3, which
underpins the INTEREPOCH analysis in Theorem C.5, we know that for any previous epoch ℓ′ < ℓ,
the event |uτ,i − vτ,i| ≥ 1

|Eℓ′ |
occurs in only Õ(1) rounds (with τ ∈ Eℓ′) with probability at least

1 − 1
|Eℓ′ |

. Following the approach in Lemma C.4, we now leverage the smoothness of costs in
Assumption 3 in combination with Azuma-Hoeffding inequalities to conclude that g̃v

ℓ (λϵ) ≈ g̃u
ℓ (λϵ).

Formally, to compare g̃u
ℓ (λϵ) and g̃v

ℓ (λϵ), we need only to control the number of previous rounds τ
such that ĩuτ (λϵ) ̸= ĩvτ (λϵ). We decompose such events by whether large misreports happen:∑

ℓ′<ℓ, τ∈Eℓ′

1

[̃
iuτ (λϵ) ̸= ĩvτ (λϵ)

]
≤

∑
ℓ′<ℓ, τ∈Eℓ′

1

[
∃i ∈ [K] s.t. |uτ,i − vτ,i| ≥

1

|Eℓ′ |

]

+
∑

ℓ′<ℓ, τ∈Eℓ′

1

[
∃i ̸= j ∈ [K] s.t. (vτ,i − vτ,j)− λT

ϵ (cτ,i − cτ,j) ∈
[
0,

2

|Eℓ′ |

]]
, (37)
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where the second term plugs |uτ,i − vτ,i| ≥ 1
|Eℓ′ |

,∀i ∈ [K] into definitions of ĩuτ (λϵ) and ĩvτ (λϵ).

For the first term, we use the following inequality which appeared as Eq. (13) in Lemma C.3:

Pr

∑
τ∈Eℓ′

1

[
|uτ,i − vτ,i| ≥

1

|Eℓ′ |

]
≥ c

 ≤ 2(1 + 2∥ρ−1∥1) ·
2K|Eℓ′ |3

γ−c − 1
, ∀ℓ′ < ℓ, c > 0.

For any fixed failure probability δ ∈ (0, 1), for every ℓ′ < ℓ, picking c so that the RHS is δ
ℓ gives

Pr

 ∑
ℓ′<ℓ,τ∈Eℓ′

1

[
|uτ,i − vτ,i| ≥

1

|Eℓ′ |

]
≥ ℓ logγ−1

(
1 + 4(1 + ∥ρ−1∥1)K|Eℓ|3 · ℓδ−1

) ≤ δ.

For the second term, under Assumption 3 that PDF(λT
ϵ cτ,i) is uniformly bounded by ϵc, ∀i ∈ [K],

Pr

{
(vτ,i − vτ,j)− λT

ϵ (cτ,i − cτ,j) ∈
[
0,

2

|Eℓ′ |

]}
≤ 2

|Eℓ′ |
ϵc∥λϵ∥1, ∀i ̸= j ∈ [K], ℓ′ < ℓ, τ ∈ Eℓ′ .

Although we are now standing at epoch ℓ, the ϵ-nets are fixed before the game (as it only depends
on Λ). Hence, the indicator Xτ := 1[(vτ,i − vτ,j) − λT

ϵ (cτ,i − cτ,j) ∈ [0, 2
|Eℓ′ |

]] is indeed Fτ -
measurable back in the past when τ ∈ Eℓ′ and ℓ′ < ℓ, where (Fτ )τ≥0 is the natural filtration
Fτ = σ(X1, . . . , Xτ ). Thus, applying multiplicative Azuma-Hoeffding inequality in Lemma E.4 to
the martingale difference sequence {Xτ − E[Xτ | Fτ−1]}ℓ′<ℓ,τ∈Eℓ′ , we get

Pr

1

2

∑
ℓ′<ℓ,τ∈Eℓ′

Xτ ≥
∑

ℓ′<ℓ,τ∈Eℓ′

E[Xτ | Fτ−1] + 2A

 ≤ exp(−A), ∀A ∈ R.

Since Xτ only involves vτ ∼ V and cτ ∼ C which are i.i.d., we know E[Xτ | Fτ−1] = E[Xτ ] ≤
2

|Eℓ′ |
ϵc∥λϵ∥1. Setting the RHS as δ

|Λϵ|K2 and taking a Union Bound over all λϵ ∈ Λϵ, we have

Pr

{
max
λϵ∈Λϵ

∑
ℓ′<ℓ,τ∈Eℓ′

1

[
(vτ,i − vτ,j)− λT

ϵ (cτ,i − cτ,j) ∈
[
0,

2

|Eℓ′ |

]]

≥ 4ℓϵc∥ρ−1∥1 + 4

log
1

δ
+

d∑
j=1

log
d

ρjϵ

} ≤ δ

K2
, ∀i ̸= j ∈ [K].

Using another Union Bound over all i ̸= j ∈ [K] and plugging it back into Eq. (37), we get

max
λϵ∈Λϵ

∑
ℓ′<ℓ,τ∈Eℓ′

1[̃iuτ (λϵ) ̸= ĩvτ (λϵ)]

≤ ℓ logγ−1

(
1 + 4(1 + ∥ρ−1∥1)K|Eℓ|3 · 4ℓδ−1

)
+ 4ℓϵc∥ρ−1∥1 + 4

log
1

δ
+

d∑
j=1

log
d

ρjϵ

 ,

with probability at least 1− 2δ. Therefore, with probability at least 1− 2δ, we have

max
λϵ∈Λϵ

∥g̃u
ℓ (λϵ)− g̃v

ℓ (λϵ)∥22 ≤ d

 |Eℓ|∑
ℓ′<ℓ|Eℓ′ |

∑
ℓ′<ℓ,τ∈Eℓ′

1[̃iuτ (λϵ) ̸= ĩvτ (λϵ)]

2

≤ d|Eℓ|2

(
∑

ℓ′<ℓ|Eℓ′ |)2

(
ℓ logγ−1

(
1 + 4(1 + ∥ρ−1∥1)K|Eℓ|3 · 4ℓδ−1

)
+ 4ℓϵc∥ρ−1∥1

+ 4

log
1

δ
+

d∑
j=1

log
d

ρjϵ

)2

,
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where the first inequality uses the boundedness of ∥ρ− cτ,i∥22 ≤ d.

Step 3: Extend the similarity to all λ ∈ Λ. After yielding the similarity that g̃u
ℓ (λϵ) ≈ g̃v

ℓ (λϵ) for
all λϵ ∈ Λϵ, we extend it to all λ ∈ Λ using the arguments already derived in Lemma D.7. Recall
from Eq. (36) that we already proved that with probability 1− δ,

∥g̃v
ℓ (λ)− g̃v

ℓ (λϵ)∥22 ≤ d|Eℓ|2
K2ϵϵc +

√
log 1

δ +
∑d

j=1 log
d

ρjϵ√∑ℓ−1
ℓ′=1|Eℓ′ |

2

, ∀λϵ ∈ Λϵ,λ ∈ Bϵ(λϵ).

Using exactly the same arguments (see Footnote 7 for the reason why Lemma E.3 is still applicable
when reports {uτ}ℓ′<ℓ,τ∈Eℓ′ can be history-dependent), with probability 1− δ,

∥g̃u
ℓ (λ)− g̃u

ℓ (λϵ)∥22 ≤ d|Eℓ|2
K2ϵϵc +

√
log 1

δ +
∑d

j=1 log
d

ρjϵ√∑ℓ−1
ℓ′=1|Eℓ′ |

2

, ∀λϵ ∈ Λϵ,λ ∈ Bϵ(λϵ).

Final Bound. Putting the three inequalities together and taking Union Bound,

sup
λ∈Λ
∥g̃u

ℓ (λ)− g̃v
ℓ (λ)∥22

≤ d|Eℓ|2
ℓ logγ−1

(
1 + 4(1 + ∥ρ−1∥1)K|Eℓ|3 · 4ℓδ−1

)
+ 4ℓϵc∥ρ−1∥1 + 4

(
log 1

δ +
∑d

j=1 log
d

ρjϵ

)
∑ℓ−1

ℓ′=1|Eℓ′ |

2

+4d|Eℓ|2
(K2ϵϵc)

2 +
log 1

δ +
∑d

j=1 log
d

ρjϵ∑ℓ−1
ℓ′=1|Eℓ′ |

 , w.p. 1− 4δ.

This completes the proof.

E Auxiliary Lemmas

We first include several classical online learning guarantees.
Lemma E.1 (FTRL Guarantee (Orabona, 2019, Corollary 7.7)). For a convex regionX , an 1-strongly-
convex regularizer Ψ: X → R w.r.t. some norm ∥·∥ with minx∈X Ψ(x) = 0, a sequence of convex
and differentiable losses f1, f2, . . . , fR, a sequence of learning rates η1 ≥ η2 ≥ · · · ≥ ηR ≥ 0,

xr = argmin
x∈X

(
r−1∑
r=1

fr(x) +
1

ηr
Ψ(x)

)
, ∀r = 1, 2, . . . , R,

we have the following regret guarantee where ∥·∥∗ is the dual norm of ∥·∥:
R∑

r=1

(fr(xr)− fr(x
∗)) ≤ Ψ(x∗)

ηR
+

1

2

R∑
r=1

ηr∥∇fr(xr)∥2∗, ∀x∗ ∈ X .

Lemma E.2 (O-FTRL Guarantee (Orabona, 2019, Theorem 7.39)). For a convex region X , an
1-strongly-convex regularizer Ψ: X → R w.r.t. some norm ∥·∥ with minx∈X Ψ(x) = 0, a sequence
of convex and differentiable losses f1, f2, . . . , fR, a sequence of learning rates η1 ≥ η2 ≥ · · · ≥
ηR ≥ 0, a (stochastic) prediction sequence {f̂r : X → R}r∈[R] that is Fr−1-measurable (where
(Fr)t is the natural filtration that Fr = σ(f1, f2, . . . , fr)), and

xr = argmin
x∈X

(
r−1∑
r=1

fr(x) + ℓ̂r(x) +
1

ηr
Ψ(x)

)
, ∀r = 1, 2, . . . , R,

we have the following regret guarantee where ∥·∥∗ is the dual norm of ∥·∥:
R∑

r=1

(fr(xr)− fr(x
∗)) ≤ Ψ(x∗)

ηR
+

1

2

R∑
r=1

ηr∥∇(fr − f̂r)(xr)∥2∗, ∀x∗ ∈ X .
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We now present a covering of the dual variable space Λ.
Lemma E.3 (Covering of Dual Variables). For any fixed constant ϵ > 0, there exists a subset Λϵ of
Λ :=

⊗d
j=1[0, ρ

−1
j ] that has a size no more than

∏d
j=1(d/ρjϵ) and ensures

∀λ ∈ Λ, ∃λϵ ∈ Λϵ s.t. ∥λ− λϵ∥1 ≤ ϵ.

Furthermore, for any ϵ-net Λϵ such that Λ ⊆
⋃

λϵ∈Λϵ
Bϵ(λϵ) where Bϵ(λϵ) = {λ ∈ Λ | ∥λ −

λϵ∥1 ≤ ϵ} is the neighborhood of λϵ ∈ Λϵ, under Assumption 3, we have for all λϵ ∈ Λϵ and any
distribution U ∈ △([0, 1]K) that

Pr
u∼U,c∼C

{
∃λ ∈ Bϵ(λϵ) s.t. argmax

i∈[K]

(ui − λTci) ̸= argmax
i∈[K]

(ui − λT
ϵ ci)

}
≤ K2(ϵ · ϵc).

Proof. The first claim is standard from covering arguments and the fact that Λ =
⊗d

j=1[0, ρ
−1
j ] is

bounded. For the second part, we make use of Assumption 3: For any fixed i ̸= j ∈ [K],

Pr
u∼U,c∼C

{
∃λ ∈ Bϵ(λϵ) s.t. (ui − λT

ϵ ci > uj − λT
ϵ cj) ∧ (ui − λTci < uj − λTcj)

}
≤ Pr

u∼U,c∼C

{
0 ≤ (ui − λT

ϵ ci)− (uj − λT
ϵ cj) ≤ ϵ

}
≤ ϵ · ϵc,

where the first inequality uses |⟨λ−λϵ, ci− cj⟩| ≤ ∥λ−λϵ∥1 · ∥ci− cj∥∞ ≤ ϵ for all λ ∈ Bϵ(λϵ),
while the second uses Assumption 3 and the independence of ci and cj : If two independent real-
valued random variables X ⊥ Y have their PDFs fX and fY uniformly bounded by ϵc, then

fX−Y (z) =

∫ ∞

−∞
fX(z + y)fY (y)dy ≤ ϵc

∫ ∞

−∞
fY (y)dy ≤ ϵc, ∀z ∈ R.

Applying Union Bound to the K2 pairs of (i, j) ∈ [K]× [K] gives the second conclusion.

Finally, we introduce some martingale or random variable concentration inequalities.
Lemma E.4 (Multiplicative Azuma-Hoeffding Inequality (Koufogiannakis and Young, 2014, Lemma
10)). Let T be a stopping time such that E[T ] <∞. Let {Xt}t≥1 and {Yt}t≥1 be two sequence of
random variables such that

|Xt − Yt| ≤ 1 a.s.,E

[
Xt − Yt

∣∣∣∣∣ ∑
τ<t

Xτ ,
∑
τ<t

Yτ

]
≤ 0, ∀1 ≤ t ≤ T ,

then for any ϵ ∈ [0, 1] and A ∈ R, we have

Pr

{
(1− ϵ)

T∑
t=1

Xt ≥
T∑
t=1

Yt +A

}
≤ exp(−ϵA).

Lemma E.5 (Vector Bernstein Inequality (Kohler and Lucchi, 2017, Lemma 18)). Let x1,x2, . . . ,xn

be independent random d-dimensional vectors such that they are zero-mean E[xi] = 0, uniformly
bounded ∥xi∥2 ≤ C a.s. for some C > 0, and have bounded variance E[∥xi∥2] ≤ σ2 for some
σ > 0. Let z = 1

n

∑n
i=1 xi, then

Pr{∥z∥2 ≥ ϵ} ≤ exp

(
−n ϵ2

8σ2
+

1

4

)
, ∀0 < ϵ <

σ2

C
.
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