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ABSTRACT

Despite the importance of denoising in modern machine learning and ample empir-
ical work on supervised denoising, its theoretical understanding is still relatively
scarce. One concern about studying supervised denoising is that one might not
always have noiseless training data from the test distribution. It is more reasonable
to have access to noiseless training data from a different dataset than the test dataset.
Motivated by this, we study supervised denoising and noisy-input regression under
distribution shift. We add three considerations to increase the applicability of our
theoretical insights to real-life data and modern machine learning. First, while
most past theoretical work assumes that the data covariance matrix is full-rank and
well-conditioned, empirical studies have shown that real-life data is approximately
low-rank. Thus, we assume that our data matrices are low-rank. Second, we drop
independence assumptions on our data. Third, the rise in computational power
and dimensionality of data have made it important to study non-classical regimes
of learning. Thus, we work in the non-classical proportional regime, where data
dimension d and number of samples N grow as d/N = c+ o(1).
For this setting, we derive general test error expressions for both denoising and
noisy-input regression, and study when overfitting the noise is benign, tempered
or catastrophic. We show that the test error exhibits double descent under general
distribution shift, providing insights for data augmentation and the role of noise as
an implicit regularizer. We also perform experiments using real-life data, where we
match the theoretical predictions with under 1% MSE error for low-rank data.

1 INTRODUCTION

Denoising and noisy-input problems have a rich history in machine learning and signal processing
(Vincent et al., 2010; Tian et al., 2020; Elad et al., 2023). Aside from its natural application to
noisy input data, the idea of noise as a regularizer has led to denoising being tied to many areas
of modern machine learning, such as pretraining and feature extraction (Krizhevsky et al., 2012),
data-augmentation for representation learning (Chen et al., 2020), generative modeling (Rombach
et al., 2022). While unsupervised methods like PCA (F.R.S., 1901) and low rank matrix recovery
(Davenport & Romberg, 2016) have been addressed in prior theoretical work (Baldi & Hornik, 1989),
supervised methods like denoising autoencoders are theoretically less well-understood.

One of the biggest practical qualms to studying a supervised setting is that a learner needs access to
noiseless data sampled from the test distribution. However, this is resolved by considering distribution
shift, which is when the training and test data can come from different distributions. As a toy example,
one might have access to noiseless dog pictures containing mostly German shepherds and collies, but
would want to denoise noisy dog pictures containing mostly pomeranians and poodles. As long as the
training data “spans" the structured subset of features containing dog pictures, meaningful learning
is possible. The same argument can be made for regression with noisy inputs, say for predicting
click-rates for these pictures. Given this practical motivation, we study supervised denoising and
noisy-input regression under distribution shift.

It is well understood that non-trivial denoising is made possible by the presence of additional structure
in the data (see, for example, section 3.2 of Vincent et al. (2010)). One of the most natural such
structures is low rank, specifically the idea that the true inputs live in a low dimensional space.
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In fact, past work from Udell & Townsend (2019) has demonstrated that a lot of real-life data is
approximately low-rank – that is, its covariance matrix only has a few significant eigenvalues.

The classical theory of learning problems would keep the data dimension d fixed and let the number
of samples N grow to ∞. These can be theoretically analysed using elementary tools. However,
with growing access to computational power and richness of data, it has become important to study
non-classical regimes. One important and popular example is the proportional regime, where d ∝ N
and so d is comparable to N (Cheng & Montanari, 2022; Sahraee-Ardakan et al., 2022). Phenomena
like double-descent and benign overfitting discovered in noiseless-input settings demonstrate the
surprising advantages of this kind of high dimensionality. There has been a lot of recent work on
whether overfitting output noise is beneficial or harmful in these regimes (Mallinar et al., 2022).
However, there is very little work on learning with noisy inputs in non-classical regimes. Our paper
takes one of the first steps towards filling this gap.

Additionally, most past theoretical work in non-classical regimes does not test on real-life data.
As argued above and in Cheng & Montanari (2022), a big reason for this issue is that past work
assumes that the data covariance matrix is well-conditioned, while low-rank assumptions better
model real-life data covariance matrices. In real life, one has little control over the independence or
even the distribution of the data (Kirchler et al., 2023). There is also a growing need to be robust
to adversarially chosen data in machine learning Kotyan (2023). Additionally, explicit structural
assumptions made about distribution shift in past work like the simultaneous diagonalizability of the
train and test covariance matrices (LeJeune et al., 2022) or joint distributions of the training data’s
eigenvalues and certain overlap coefficients (Tripuraneni et al., 2021a;b). We thus aim to address the
following question:

Q.1. Can we derive test error expressions for linear denoising and regression with noisy inputs
that:
(a) work with data from a low-dimensional subspace under a non-classical regime,
(b) make minimal assumptions on the training data, test data and how they are related,
(c) match experiments that use real-life data distributions?

Q.2. What insights can we obtain from these?

Contributions. The major contributions of the paper are as follows.

Q.1 (a) (Low-Rank Data, Proportional Regime) We work with low-rank data instead of needing
full-rank data. This better models the approximate low-rank structure empirically seen in
real-life data.

Q.1 (b) (Dropping Independence Assumptions, Arbitrary Test Data) We do not assume that
the training data is IID or even independent, and we work with arbitrary test data from our
low-dimensional subspace.

Q.1 (c) (Experiments using Real-Life Data) We have a relative error of under 1% in experiments
using real-life data, establishing that our theoretical results can be used with real data.1

Q.2 (i) (Double Descent and Overfitting Under Distribution Shift) We show theoretically and
empirically that our test error curves exhibit double descent, even for general distribution
shifts. We relate this to the role of noise as an implicit regularizer. Further, we generalize
ideas about overfitting to our setting and examine what conditions lead to benign, tempered,
or catastrophic overfitting.

Q.2 (ii) (Data Augmentation) We examine when data augmentation improves in-distribution and
out-of-distribution generalization, giving theoretical results and practical insights.

One limitation is our theoretical result for the over-parameterized regime has non-trivial error only
if one assumes that ∥Xtrn∥2F = o(Ntrn). That is, the norm of the data points must decay as Ntrn

grows. This is not a concern for many prior works Hastie et al. (2022); Bartlett et al. (2020); Cheng
& Montanari (2022). Another limitation is the simplicity of the model. Prior work such as Cui &
Zdeborová (2023) have results, for different data assumptions, but more general models.

Paper Structure. Section 2 provides details and theoretical assumptions for the model we analyze.
Section 3 discusses our main theoretical results for the denoising problem as well as experiments

1The code for the experiments can be found in the following anonymized repository [Link].
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verifying these results. Section 4 discusses insights obtained from these results for double descent,
data augmentation, and overfitting paradigms.

Denoising. Significant work has also been done to understand the role of noise as a regularizer
and its impact on generalization (Bishop, 1995; Camuto et al., 2020; Hu et al., 2020; Neelakantan
et al., 2015; Sonthalia & Nadakuditi, 2023). There has also been work to understand Bayes optimal
denoiser using matrix factorization (Nadakuditi, 2014; Lelarge & Miolane, 2017; Lesieur et al., 2017;
Maillard et al., 2022; Troiani et al., 2022). Finally, there has been some preliminary recent work on
the learning dynamics of supervised denoising (Cui et al., 2021; Pretorius et al., 2018). In this paper,
we continue the study of understanding supervised denoising from the lens of test error.

Theoretical Work on Generalization in Non-Classical Regimes. There has been significant work
in understanding the generalization error and benign overfitting for linear regression (Dobriban &
Wager, 2018; Mel & Ganguli, 2021; Muthukumar et al., 2019; Bartlett et al., 2020; Belkin et al.,
2020; Derezinski et al., 2020; Hastie et al., 2022; Loureiro et al., 2021b) and kernelized regression
(Mei et al., 2022; Mei & Montanari, 2021; Mei et al., 2018; Tripuraneni et al., 2021a; Gerace et al.,
2020; Woodworth et al., 2020; Loureiro et al., 2021a; Ghorbani et al., 2019; 2020) in non-classical
regimes. Our work benefits from their insights and techniques. Generalization for low dimensional
data is partially addressed by work on Principal Component Regression (Huang et al., 2022; Xu &
Hsu, 2019), although they do not test on real data. In this paper, we continue the study of linear
models and their test errors in non-classical regimes. However, we do so in the context of denoising
and low rank data.

Testing on Real-Life Data. Some past theoretical work in non-classical regimes tests on real data
(Paquette et al., 2022; Loureiro et al., 2021b;a; Wei et al., 2022). However, all the results require
that the training data is I.I.D. and that the test data is from the same distribution as the training data.
Cheng & Montanari (2022) also study a more general model of ill-conditioned covariances. However,
they do not do this in the denoising setup considered in this paper. In this paper, we test on real data
and show that our predictions have less than 1% error.

OOD Generalization and Distribution Shift. Empirically, studies such as Miller et al. (2021);
Recht et al. (2019); Miller et al. (2020); McCoy et al. (2020) have noticed that there is a strong linear
correlation between in-distribution accuracy and out-of-distribution accuracy. There has been some
theoretical work(Tripuraneni et al., 2021a;b; Mania & Sra, 2020; Wu & Xu, 2020; Darestani et al.,
2021; LeJeune et al., 2022) that has looked into this phenomenon. In other examples, Ben-David et al.
(2006) approaches this from a domain adaptation perspective and computes bounds dependent on an
abstract notion of distribution distance; Lei et al. (2021) provides analysis for the minimax risk; and
Lampinen & Ganguli (2019) studies the generalization when training models with gradient descent.
In this paper, we continue theoretically understanding distribution shift. We do so in the novel setting
of denoising.

Double Descent and Implicit Regularization. The generalization curves in our paper display
double descent (Opper & Kinzel, 1996; Belkin et al., 2019), which is believed to occur due to implicit
bias due to some form of regularization. There has been significant theoretical work on understanding
implicit biases (Jacot et al., 2020; Shamir, 2022; Neyshabur, 2017) and gradient descent (Soudry
et al., 2018; Ji & Telgarsky, 2019; Du et al., 2019a;b). However, there is little work on double descent
under distribution shift or for noisy inputs, which we establish in this work in relation to implicit
regularization due to input noise.

2 PROBLEM SETUP AND NOTATION

Let Xtrn ∈ Rd×N be a noiseless data matrix of N samples in d dimensional space. Let β ∈ Rd×k

be a target multivariate linear regressor, and let Ytrn = βTXtrn. Note that when β = I , our target is
the noiseless data Xtrn itself. Let Atrn ∈ Rd×N be a d×N noise matrix. For this paper, we assume
that we have access to Ytrn and Xtrn + Atrn while training. The goal is to study the test error of
the minimum norm linear function Wopt that minimizes the MSE training error. The MSE training
error is a natural choice – it is one of the most common targets for non-linear denoising autoencoders
(Vincent et al., 2010). We formalize the definition of Wopt below.

Wopt = argmin
W

{
∥W∥2F

∣∣∣∣W ∈ argmin
W

∥Ytrn −W (Xtrn +Atrn)∥2F
}
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Given test data Xtst ∈ Rd×Ntst and Ytst = βTXtst, we formally define the test error for arbitrary
linear functions W by R(W,Xtst) below. Since we are not assuming anything about the distribution
of the training or test data, we only take the expectation over the training and test noise.

R(W,Xtst) := EAtrn,Atst

[
∥Ytst −W (Xtst +Atst)∥2F

Ntst

]
. (1)

We would like to study the test error R(Wopt, Xtst) ofWopt in terms of properties of the data matrices
Xtrn and Xtst as well as the noise distributions. All prior work besides Sonthalia & Nadakuditi
(2023); Cui & Zdeborová (2023); Pretorius et al. (2018) only considers models where we have access
to noisy outputs Y and noiseless inputs X , while we consider the case where we have noisy inputs
X . For simplicity, we assume access to noiseless outputs Y . It is easy to see from elementary linear
algebra that Wopt = Ytrn(Xtrn + Atrn)

†. Notice that when β = I , we are studying the linear
denoising problem, and when β ∈ Rd, we are studying real-valued regression with noisy inputs.
We work in the proportional regime, where d/N = c+ o(1) as N grows, for some constant c > 0.
Notice that we are not in the limit N → ∞; we will in fact bound the deviation from our estimates by
o(1/N) as N grows. We now detail our assumptions on data and noise.

Assumptions about the data. The assumptions below formalize three natural requirements on the
data – (1) that it lies in a low-dimensional subspace as argued above; (2) that the norm of the training
data does not grow too much faster than the norm of the training noise, otherwise there will not be
enough noise to train on; (3) that the training data “sees enough" of the subspace containing the data.
Assumption 1. We have d-dimensional data Xtrn ∈ Rd×N and Xtst ∈ Rd×Ntst so that

1. Low-rank: There is a fixed r > 0 so that Xtrn and Xtst have data-points lying in an
r-dimensional subspace V ⊂ Rd, and the column span of Xtrn is V .

2. Data growth: ∥Xtrn∥2F = O(N).
3. Low-rank well-conditioning: For the r singular values σi of Xtrn, σj

σi
= Θ(1) and 1

σi
=

o(1) as N grows, for any i, j.

Notice that we don’t assume that Xtrn is IID or even independent, and Xtst is completely arbitrary,
besides lying in the subspace V . In our results, we will characterize the dependence of the error on
Xtrn and Xtst using their singular values. These intuitively measure "how much each direction is
sampled," and don’t depend on the distribution of the data. Finally, let Xtrn = UΣtrnV

T
trn be the

SVD of Xtrn with U ∈ Rd×r, Σtrn ∈ Rr×r and V T
trn ∈ Rr×N . Note that the columns of U span V .

Then there exists a matrix L such that Xtst = UL. For Theorem 4, we will relax our assumption on
Xtst to say that there exists L and α > 0 so that ∥Xtst − UL∥ < α.

Comparison with assumptions in prior work. Most prior work assumes that the data comes
from a Gaussian or Gaussian-like distribution. Specifically, (Tripuraneni et al., 2021a; Dobriban &
Wager, 2018; Mel & Ganguli, 2021; Belkin et al., 2020; Mei & Montanari, 2021; Huang et al., 2022;
Xu & Hsu, 2019; Tripuraneni et al., 2021b) assume that x ∼ N (0,Σ). Most real data cannot be
modeled as Gaussian data. Another common assumption is that x = Σ1/2z where the coordinates of
z are independent, centered, and have a variance of 1. This setting is a little bit more general than
the previous setting. The independence of data is still a limiting assumption that prevents it from
modeling real-life data well. In addition, as the dimension increases, due to the (Lyapunov’s) central
limit theorem, the data’s higher moments tend towards those of a Gaussian distribution again. This
makes this assumption nearly as limiting as the first one. Papers with this (or very similar) assumption
include (Wu & Xu, 2020; Bartlett et al., 2020; Hastie et al., 2022; Cheng & Montanari, 2022). These
papers have many important and seminal results and provide the foundation for our study. .

In conclusion, we provide results on test error in a very different low-rank setting inspired by real-life
data, and drop many restrictive assumptions. A small number of papers (Huang et al., 2022; Xu
& Hsu, 2019; Sonthalia & Nadakuditi, 2023) that do assume a low-rank structure. However, the
first two further assume that the data is low-rank Gaussian, while the third only provides results for
one-dimensional data.

Assumptions about the training noise. Our assumptions on noise are fairly natural and general.
Informally, we require the training noise to (1) have finite second moments, (2) be uncorrelated
across entries, (3) be isotropic, and (4) follow a natural limit theorem. On the other hand, the test
noise only needs (1) finite second moments and (2) uncorrelated entries. Our assumptions include a
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broad class of noise distributions (see Proposition 1 of (Sonthalia & Nadakuditi, 2023)). One of the
many examples of noise distributions satisfying these is Gaussian noise, with each coordinate having
variance 1/d. Formally, we assume the following.
Assumption 2. Let the train and test noise matrices Atrn, Atst ∈ Rd×N be sampled from distribu-
tions Dtrn and Dtst such that Atrn satisfies points 1− 4 below and Atst satisfies points 1, 2.

1. For all i, j, ED[Aij ] = 0, and ED[A
2
ij ] = η2/d. Here η = Θ(1) as N grows.

2. For all {i1, j1} ≠ {i2, j2}, ED[Ai1j1Ai2j2 ] = ED[Ai1j1 ]ED[Ai2j2 ].
3. D is a rotationally bi-invariant distribution2 and A ∼ D is full rank with probability one.
4. Suppose Ad,N is a sequence of matrices such that with d/N = c+ o(1) as N grows, for c > 0.

Let λd,N1 , . . . , λd,NN be the eigenvalues of (Ad,N )TAd,N . Let µd,N =
∑

i δλd,N
i

be the sum of
dirac delta measures for the eigenvalues. Then we shall assume that µd,N converges weakly in
probability to the Marchenko-Pastur measure with shape c as N grows (see Appendix A).

Assumption 2.4 may seem odd, but the Marchenko Pastur is the natural universal limiting distribution
for many classes of random matrices.

Comparison with assumptions in prior work. There are three papers in denoising to compare
to, namely Sonthalia & Nadakuditi (2023); Cui & Zdeborová (2023); Pretorius et al. (2018). Our
assumptions on noise are strictly more general than the first two. However, the model for Cui et al.
(2021) is more general than ours. Pretorius et al. (2018) has the same assumptions as ours, except
that they do not require rotational invariance of noise. In contrast to our general closed form results,
they analyse learning dynamics for denoising by choosing a specific orthogonal initialization for the
coupled ODE that they derive.

Terminology. We introduce some terminology that we will use throughout the paper.
Definition 1. • We call a linear model overparametrized if d > N and underparametrized if d < N .
• In-subspace distributions refer to test data distributions whose support is in V , while out-of-

subspace distributions are test data distributions whose support is not contained in V .
• A curve exhibits double descent if it has a local maximum or a peak.
• By test error we mean R(Wopt, Xtst), and by generalization error we mean EXtst

[R(Wopt, Xtst)],
assuming that Xtst is sampled (possibly dependently) from some distribution.

We now define the overfitting paradigms that we will study. Motivated by past work on benign
overfitting, we present a reasonable generalization of overfitting paradigms (benign, tempered and
catastrophic, see Mallinar et al. (2022)) to our setting. Consider the minimum norm denoiser that
minimizes expected MSE training error, similar in spirit to θ∗ in Bartlett et al. (2020).

W ∗ = argmin
W

{
∥W∥2F

∣∣∣∣W ∈ argmin
W

EAtrn
[∥Ytrn −W (Xtrn +Atrn)∥2F ]

}
Recall that we obtain Wopt by instead minimizing the MSE error for a single noise instance Atrn,
which means that Wopt overfits Atrn in the overparametrized regime. We would like to see if this
overfitting is benign, tempered or catastrophic for test error. Following the definition of overfitting
paradigms in Mallinar et al. (2022), we want to take N → ∞. Since we are in the proportional
regime, we must let d → ∞ as well, maintaining the relation d/N = c + o(1). For studying
overfitting, a natural goal would be to study how the excess error R(Wopt, Xtst) − R(W ∗, Xtst)
behaves as d,N → ∞. This is analogous to the excess risk studied in overfitting for noiseless
inputs (Bartlett et al., 2020). However, we will see that both errors in our difference individually
tend to zero as d,N → ∞, making this a somewhat meaningless criterion. As noted in Shamir
(2022), benign overfitting is traditionally restricted to scenarios where the minimum possible error
is non-zero. A natural generalization to consider then is to instead study the limit of relative excess
error R(Wopt,Xtst)−R(W∗,Xtst)

R(W∗,Xtst)
as d,N → ∞ with d/N = c+ o(1).

Definition 2. We say that overfitting is benign when this limit is 0, tempered when it is finite and
positive, and catastrophic when it is ∞.

2A distribution over matrices A ∈ Rm×n is rotationally bi-invariant if for all orthogonal U1 ∈ Rm×m and all
orthogonal U2 ∈ Rn×n, U1AU2 has the same distribution as A. Another way to phrase rotational bi-invariance
is if the SVD of A is given by A = UAΣAV

T
A , then UA and VA are uniformly random orthogonal matrices and

are independent of ΣA and each other.
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3 THEORETICAL RESULTS

This section presents our main result – Theorem 1. We present the results here and discuss insights in
section 4. All proofs are in Appendix E.
Theorem 1 (In-Subspace Test Error). Let r < |d − N |. Let the SVD of Xtrn be UΣtrnV

T
trn, let

L := UTXtst, βU := UTβ, and c := d/N . Under our setup and Assumptions 1 and 2, the test error
(Equation 1) is given by the following. If c < 1 (under-parameterized regime)

R(Wopt, UL) =
η4trn
Ntst

∥∥βT
U (Σ

2
trnc+ η2trnI)

−1L
∥∥2
F

+
η2tst
d

c2

1− c
Tr

(
βUβ

T
UΣ

2
trn

(
Σ2

trn +
1

η2trn
I

)(
Σ2

trnc+ η2trnI
)−2
)
+ o

(
1

N

)
If c > 1 (over-parameterized regime)

R(Wopt, UL) =
η4trn
Ntst

∥∥βT
U (Σ

2
trn + η2trnI)

−1L
∥∥2
F

+
η2tst
d

c

c− 1
Tr(βUβ

T
U (I + η2trnΣ

−2
trn)

−1) +O

(
∥Σtrn∥2

N2

)
+ o

(
1

N

)

Proof Sketch: The proof can be broken into multiple steps. First, the generalization error can be
decomposed as follows (Sonthalia & Nadakuditi, 2023).

R(W,Xtst) =
1

Ntst
∥Ytst −WXtst∥2F︸ ︷︷ ︸

Bias

+
1

d
∥W∥2F︸ ︷︷ ︸

Variance

.

Second, we solve for Wopt. From classical theory we know that Wopt = Ytrn(Xtrn +Atrn)
†. Using

Wei (2001), we expand these to get

Wopt =

{
UΣtrn(P

TP )−1ZTK−1
1 H − UΣtrnZ

−1HHTK−1
1 ZP+ c > 1

−UΣtrnH
−1
1 KTA+

trn + UΣtrnH
−1
1 ZT (QQT )−1H. c < 1

The exact expression for the variables in the expansion can be found in Appendix E.

Third, we substitute this back into our expressions for the bias and variance and expand the norms in
terms of trace. Then, we group quadratic terms together. Specifically, we shall see that for c > 1, the
error is decomposed in the sums and products of the following terms - HHT , PTP , and Z.

Finally, we estimate these terms using random matrix theory. We show that the terms concentrate to
values that only depend on the spectrum of Atrn. Then, using assumption 2.4, we approximate the
spectrum of Atrn using the Marchenko Pastur distribution. Then, since the terms concentrate, we can
approximate the expectation of the product with the product of the expectation.

Comments on Expression. The asymmetry between c > 1 and c < 1 comes from the asymmetry
in the expressions for Wopt and the need for renormalizing things in the case when c > 1. We further
note that, in general, the expression does not depend on the right singular vectors of Xtrn as Xtrn

only appears as its gram matrix XtrnX
T
trn. Finally, L is the coordinates of Xtst in the basis given

by U . Then suppose Xtst = UtstΣtstV
T
tst. Then we see that L = UTUtstΣtstV

T
tst. Then, using the

unitary invariance of the norm, we have that

∥∥β_UT (Σ_trn2c+ η_trn2I)−1L∥∥_F 2 = ∥∥β_UT (Σ2
trnc+ η_trn2I)−1UTUtstΣtst∥∥_F 2.

Hence, the error depends on an alignment term UTUtst and the singular values Σtst.

We reiterate here that Theorem 1 is significant for various reasons. First, it can be considered
the noisy-input counterpart to Dobriban & Wager (2018); Hastie et al. (2022), which works with
noisy outputs instead. Second, it is one of the few results that do not require high dimensional
well-conditioned covariance. Cheng & Montanari (2022) consider more general ill-conditioned
covariance but for the output noise setting. Third, it generalizes Sonthalia & Nadakuditi (2023) to
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higher rank settings. Fourth, it is one of five results that are empirically verified using real data (Wei
et al., 2022; Loureiro et al., 2021b;a; Paquette et al., 2022).

It is important to note that while the result may seem involved at first, we do in fact use it to develop
insights in Section 4. To better understand Theorem 1, let us examine the scale of the terms in the
test error expressions. In Theorem 1, the bias is the norm term, and the variance is the trace term.
Consider the setting where Σ2

trn grows as fast as possible and is Θ(N). This is also what happens
when Xtrn is low-rank Gaussian (Huang et al., 2022). Then, the bias term is O(1/N2), while the
variance term is O(1/d) = O(1/N). The estimation error is o(1/N) in the underparametrized case,
so the only significant term, in this case, is the variance term. In the overparametrized case, the
only significant terms are the variance term and the O(∥Σtrn∥2/N2) deviation from the estimate. If
∥Xtrn∥2F = o(N) instead ofO(N), then the variance term is the only significant term again. Specific
instantiations of Theorem 1 can be found in Appendix C and Appendix D.

Out-of-Distribution and Out-of-Subspace Generalization. Theorem 1 can be used to understand
OOD and out-of-subspace test error. For the former, Corollary 1 below bounds the change in general-
ization error in terms of in-subspace distribution shift. It follows from Theorem 3 in Appendix C,
which expresses the change in test error in terms of test instances.
Corollary 1 (Distribution Shift Bound). Consider a linear denoiser Wopt trained on training
data Xtrn = UΣtrnV

T
trn. Let it be tested on test data Xtst,1 = UL1 and Xtst,2 = UL2

generated possibly dependently from distributions supported in the span of U with mean Uµi

and covariance ΣU,i = UΣiU
T respectively. Then, the difference in generalization errors

Gi := EXtst,i [R(Wopt, Xtst,i)] is bounded for c < 1 by

|G2 − G1| ≤
σ1(β)

2η4trnr

(σr(Xtrn)2f(c) + η2trn)
2
∥Σ2 − Σ1 + µ2µ

T
2 − µ1µ

T
1 ∥F + o

(
1

N

)
where f(c) = c for c < 1 and f(c) = 1 otherwise. We add O(∥Σtrn∥2F /N2) when c ≥ 1.

Corollary 1 is interesting as it implies that out-of-distribution error is primarily governed by the
different between the means and covariances of the two distributions. Since these are relatively
constant (population means and covariance changes slightly based on the data), this implies that in
practice the error curves versus c are very similar. We see this in our experimental results. So far, we
have considered in-subspace distributional shifts. However, the distributional shift can take the test
data out of the low-dimensional subspace V . For such cases, we bound the change in test error using
Theorem 4 in Appendix C. Theorem 4 shows us the surprising result that even if our test data is not in
the subspace, we can exhibit double descent. This is also verified experimentally in the next section. .

Overfitting Paradigms. We now compute the test error from W ∗ in the Theorem 2, from which
we compute the limit of the relative excess error in Corollary 2, when data does not grow too slowly.
Theorem 2 (Test Error for W ∗). In the same setting as Theorem 1, we have that W ∗ =

βT
U

(
I +

η2
trn

c Σ−2
trn

)−1

UT and

R(W ∗, UL) =
η4trnN

2

Ntstd2

∥∥∥∥∥βT
U

(
Σ2

trn +
η2trnN

d
I

)−1

L

∥∥∥∥∥
2

F

+
η2tst
d
Tr

(
βUβ

T
U

(
I +

η2trnN

d
Σ−2

trn

)−2
)
.

Corollary 2 (Relative Excess Error). Let ∥Σtrn∥2F = Ω(N1/2+ϵ). As d,N → ∞ with d/N → c, the
relative excess error tends to c

1−c in the underparametrized regime. In the overparametrized regime,
when ∥Σtrn∥2F = o(N), it tends to 1

c−1 and to 1
c−1 +k for some constant k when ∥Σtrn∥2F = Θ(N).

3.1 EXPERIMENTAL VERIFICATION

To experimentally verify our test error predictions using real-life data with distribution shift, we train
a linear function Wopt on CIFAR (Krizhevsky, 2009) and test on CIFAR, STL10 (Coates et al., 2011),
and SVHN (Netzer et al., 2011). For computing test error, we simply compute Wopt and plot the
empirical average of 1

Ntst
∥Xtst −Wopt(Xtst +Atst)∥2F over 200 trials. We run three main kinds of

experiments. (a) First, to enforce the low-rank assumption to isolate the effect of distribution shift, we
use principal component regression or PCR (Xu & Hsu, 2019; Huang et al., 2022). In PCR, instead

7



Under review as a conference paper at ICLR 2024

0.5 1.0 1.5 2.0 2.5 3.0 3.5
1/c = N/d

10 2

10 1

100

101

Te
st

 E
rro

r

r = 25
r = 50
r = 100
r = 150

0.5 1.0 1.5 2.0 2.5 3.0 3.5
1/c = N/d

10 2

10 1

100

101

Te
st

 E
rro

r

r = 25
r = 50
r = 100
r = 150

0.5 1.0 1.5 2.0 2.5 3.0 3.5
1/c = N/d

10 2

10 1

100

101

Te
st

 E
rro

r

r = 25
r = 50
r = 100
r = 150

(a) In-subspace test error.
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(b) For the out-of-subspace curves, we add full-dimensional Gaussian noise such that α = 0.1. The upper and
lower bounds for the empirical markers are given by Theorem 4).
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(c) Test error estimated without projecting data, relying on the approximate low-rank structure of real-life data.

Figure 1: Figures showing the test error for β = I vs 1/c = N/d. In (a) and (b), training data from
the CIFAR dataset is projected onto its first r principal components for r = 25, 50, 100, 150. 2500
test data points from CIFAR (Green, Left col.), STL10 (Blue, Middle col.), and SVHN (Red, Right
col.) datasets are projected onto the same low-dimensional subspace. (a) is in-subspace test error
and (b) is out-of-subspace test error. In (c), we don’t project the test data and report the standard test
error, relying on the approximate low-rank structure in data instead of imposing it. For empirical data
points, shown by markers, we report the mean test error over at least 200 trials. Similar results are
obtained for single-variable regression with β ∈ Rd (see Appendix B.1)

of working with the true (and approximately low-rank) training data matrices Xtst, we find the best
low-rank approximation X̂trn of the training data by projecting it to an embedded subspace of the
highest principal components. When testing, we project the test datasets to the same subspace to
enforce the low-rank assumption before computing the empirical test error. (b) Second, to explicitly
control the amount of deviation α from the low-rank subspace, we perturb the low-rank testing data
from setting (a) and test using X̃tst := X̂tst +Ktst, where Ktst is Gaussian noise with covariance
designed to control α. (c) Third, we rely on the approximate low-rank nature of real-life data, and
report the test error for the matricesXtst themselves. Since d is fixed, we vary c by varyingN . Figure
1 shows that the theoretical curves and the empirical results align perfectly for experimental setup (a)
and that we have tight bounds for experimental setup (b). Numerically, we find that the relative error
between the generalization error estimate and the average empirical error in experimental setup (a)
is under 1% on average. For setup (c), since real-life data is only approximately low rank, we see a
non-negligible error. However, the predictions align well with the empirical results.
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4 INSIGHTS FOR NOISY-INPUT PROBLEMS

Double Descent under Distribution Shift Notice that all our curves plotting test error against 1/c
have a similar shape – they rise when c approaches 1 from either side, and there is a peak at c = 1.
More discussion can be found in Appendix D.5.

Data Augmentation to Reduce Test Error. In contrast with (Nakkiran et al., 2020), but similar to
(Sonthalia & Nadakuditi, 2023), optimally picking the noise parameter will not remove the peak in
the test error (see Appendix A). Instead, we use data augmentation and increase N to try to move
away from the peak, studying Theorem 1 to understand how this will affect test error. We take two
approaches to data augmentation that individually exploit the absence of the IID assumptions. Since
the data does not have to be independent, we can take the same training data and add fresh noise to
increase N . Alternatively, since the data does not have to be sampled from a specific distribution, we
can combine two different datasets into a larger training dataset to increase N . When c < 1, applying
data augmentation increases N , thus decreasing c further away from the peak at 1 and decreasing
test error. When c > 1, applying data augmentation increases N , decreasing c towards the peak at
1 and increasing test error. Of course, the latter phenomenon could be mitigated by adding other
regularizers or by further augmenting the data. Figures 2 and 6 empirically verify the validity of
Theorem 1 for the training data obtained from data augmentation. We also see that increasing the
number of in-distribution training data points reduces the out-of-distribution test error.
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(a) CIFAR Dataset
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(b) STL10 Dataset
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(c) SVHN Dataset

Figure 2: Data augmentation exploiting non-independence. For different Ntrn the training data is
formed by repeating the same 1000 images from the CIFAR dataset.

Overfitting Paradigms. Recall from Corollary 2 that the relative excess error is given by c
1−c for the

underparameterized regime. This means that we approach benign overfitting as c becomes arbitrarily
small (which is essentially the classical regime). On the other hand, for the overparameterized case,
we have that the relative excess error is given by 1

1−c when ∥Σtrn∥2 = o(N). Then as c becomes
arbitrarily large we again approach benign overfitting. This is interesting as this is the case when
the norm of the signal grows slower than the norm of the noise. Hence we see benign overfilling
when the signal-to-noise ratio goes to zero. If we had ∥Σtrn∥2 = Θ(N), then our results suggest that
the relative excess error may increase by a constant, leading to no benign overfitting. However, we
believe that this is an artifact of the proof technique. In Appendix D, we discuss an exciting link
between our insights on data augmentation and overfitting.

5 CONCLUSION AND FUTURE WORK

We studied the problem of denoising low-dimensional input data perturbed with high-dimensional
noise. Under very general assumptions, we provided estimates test error in terms of the specific
instantiations of the training data and test data. This result is significant, as there is scarce prior work
in the area of generalization for noisy inputs as well as generalization for low-rank data. Further, we
tested our results with real data and achieved a relative MSE of 1%. Finally, the instance-specific
estimate lets us provide many insights that would be harder to get with results on generalization error,
such as showing double descent for arbitrary test data in our low-dimensional subspace, theoretically
understanding data augmentation, and provably demonstrating as well as explaining the lack of
benign overfitting.
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A ADDITIONAL REMARKS AND DEFINITIONS

A.1 EXTENSION TO NON-LINEAR MODELS.

Many prior works d'Ascoli et al. (2020); Tripuraneni et al. (2021a); Loureiro et al. (2021b) study
non-linear models using what is known as the Gaussian Equivalence Principle. This is a fact that
comes from the Pennington-Worah distribution Pennington & Worah (2017); Benigni & Péché (2021);
Péché and states the following. Suppose X ∈ Rd×N with I.I.D. elements with mean 0 and variance 1
is our data matrix and W ∈ Rm×d is a weight matrix with I.I.D. entries with mean zero and variance

1. Let f be any real analytic activation function and let Y =
1√
N
f

(
1√
d
WX

)
, then the limiting

distribution (as N, d,m→ ∞, d/n→ ϕ, d/m→ ψ) of the eignevalues of Y Y T is the same as the
limiting distribution of the eigenvalues of

1

N

(√
κ2(f)

WX√
d

+
√
κ1(f)− κ2(f)Z

)(√
κ2(f)

WX√
d

+
√
κ1(f)− κ2(f)Z

)T

.

Here Z is a matrix with I.I.D standard normal entries. If we consider the case when k > d, we can
imagine d being the rank of the data. Then is similar to our case, except that we consider the case
when the rank is fixed, whereas here we need the rank to go to infinity proportionally to the number
of data points.

A.2 MARCHENKO-PASTUR DISTRIBUTION

We recall the definition of the Marchenko-Pastur distribution with shape c, for completeness.
Definition 3. Let c ∈ (0,∞) be a shape paramter. Then the Marchenko-Pastur distribution with
shape c is the measure µc supported on [c−, c+], where c± = (1±

√
c)2 is such that

µc =

{(
1− 1

c

)
δ0 + ν c > 1

ν c ≤ 1

where ν has density

dν(x) =
1

2πxc

√
(c+ − x)(x− c−).

A.3 AMOUNT OF TRAINING NOISE
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Figure 3: Optimal ηtrn that minimizes the test error given in Theorem 1 versus c = d/Ntrn.

It was highlighted in Sonthalia & Nadakuditi (2023) that optimally picking the training noise level
does not mitigate the double-descent phenomena observed in the generalization error for a linear
model. In this section, we support this claim using our result from Theorem 1. Figure 3 shows the
double descent curve of ηtrn and figure 4 shows the generalization error when using the optimal
amount of training noise. As in other works such as Sonthalia & Nadakuditi (2023); Yilmaz & Heckel
(2022), we see double descent in the regularization strength. As we can see, increasing r decreases α,
which improves our bounds.

17



Under review as a conference paper at ICLR 2024

0.25 0.50 0.75 1.00 1.25 1.50 1.75
c = d

N

10 1

100

Te
st

 E
rro

r

(a) Training Data with New
Noise

0.25 0.50 0.75 1.00 1.25 1.50 1.75
c = d

N

10 1

Te
st

 E
rro

r

(b) CIFAR Dataset

0.25 0.50 0.75 1.00 1.25 1.50 1.75
c = d

N

10 1

100

Te
st

 E
rro

r

(c) STL10 Dataset

0.25 0.50 0.75 1.00 1.25 1.50 1.75
c = d

N

10 1

Te
st

 E
rro

r

(d) SVHN Dataset

Figure 4: Test Error using Theorem 1 versus 1/c with optimal ηtrn.
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B ADDITIONAL EXPERIMENTAL RESULTS

B.1 SINGLE-VARIABLE REGRESSION

Theorem 1 is for any β∗ ∈ Rd×k. In the main text, we presented figures for when β∗ = Id. That is
the denoising case. Here, we present a similar figure for the single variable regression case. That is
when β ∈ Rd×1. Figure 5 shows the results. As before, we train all models on CIFAR and then test
on CIFAR, SVHN, and STL10 with the same target β∗. As we can see the theory closely matches the
empirical results.
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Figure 5: Figures showing the test error for Linear Regression vs 1/c = N/d. Training data from the
CIFAR dataset is projected onto its first r principal components for r = 25, 50, 100, 150. 2500 test
data points from CIFAR, STL10, and SVHN datasets are projected onto the same low-dimensional
subspace. For empirical data points, shown by markers, we report the mean test error over at least
200 trials.

B.2 DATA AUGMENTATION

In the main text, we mentioned two different forms of data augmentation. First, we took the same
data points and added new independent noise. Second was the situation where we augmented one
dataset by taking points from different datasets. Theorem 1 holds for both cases. Here, we present
experimental evidence verifying this for the second case. We numerically verify the second form of
data augmentation by taking training data from CIFAR and STL10. The results can be seen in Figure
6.
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Figure 6: Data augmentation exploiting non-identicality of the distribution. The training data is
formed by mixing CIFAR train split with STL10 train split dataset.
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C ADDITIONAL THEORETICAL RESULTS

C.1 TEST ERROR AND GENERALIZATION ERROR

Recall from the introduction that the work of LeJeune et al. (2022) requires the simultaneous
diagonalizability of the covariance matrices of training and test data. In a similar spirit, if we assume
that the training and test data have the same left singular vectors, we recover the conjectured formula
in (Sonthalia & Nadakuditi, 2023) as an immediate consequence of Theorem 1.
Corollary 3 (Conjecture of Sonthalia & Nadakuditi (2023)). Let the SVD of Xtst be UtstΣtstV

T
tst.

In Theorem 1, if we further assume that UTUtst = I , then If c < 1 (under-parameterized regime)

R(Wopt, UL) = η4trn
∥∥βT

U (Σ
2
trnc+ η2trnI)

−1Σtst

∥∥2
F

+
η2tst
d

c2

1− c
Tr

(
βUβ

T
UΣ

2
trn

(
Σ2

trn +
1

η2trn
I

)(
Σ2

trnc+ η2trnI
)−2
)
+ o

(
1

N

)
If c > 1 (over-parameterized regime)

R(Wopt, UL) = η4trn
∥∥βT

U (Σ
2
trn + η2trnI)

−1Σtst

∥∥2
F

+
η2tst
d

c

c− 1
Tr(βUβ

T
U (I + η2trnΣ

−2
trn)

−1) +O

(
∥Σtrn∥2

N2

)
+ o

(
1

N

)
Additionally, we can use Theorem 1 to give an expression for generalization error when the test data
points are drawn from a distribution, possibly dependently.
Corollary 4 (Generalization Error). Let r < |d − N |. Let the SVD of Xtrn be UΣtrnV

T
trn, let

L := UTXtst, βU := UTβ, and c := d/N . Under our setup and Assumptions 1 and 2, with
the further assumption that the columns of L are drawn IID from a distribution with mean µ and
Covariance Σ, the test error (Equation 1) is given by the following.
If c < 1 (under-parameterized regime)

EL[R(Wopt, UL)] = η4trn

∥∥∥βT
U (Σ

2
trnc+ η2trnI)

−1(Σ + µµT )1/2
∥∥∥2
F

+
η2tst
d

c2

1− c
Tr

(
βUβ

T
UΣ

2
trn

(
Σ2

trn +
1

η2trn
I

)(
Σ2

trnc+ η2trnI
)−2
)
+ o

(
1

N

)
If c > 1 (over-parameterized regime)

EL[R(Wopt, UL)] = η4trn

∥∥∥βT
U (Σ

2
trn + η2trnI)

−1(Σ + µµT )1/2
∥∥∥2
F

+
η2tst
d

c

c− 1
Tr(βUβ

T
U (I + η2trnΣ

−2
trn)

−1) +O

(
∥Σtrn∥2

N2

)
+ o

(
1

N

)
C.2 OUT-OF-DISTRIBUTION GENERALIZATION

Consider the following theorem bounding the difference in generalization error in terms of the change
in the test set. Our main distribution shift result is a corollary of its proof.
Theorem 3 (Test Set Shift Bound). Under the assumptions of Theorem 1, consider a linear regressor
Wopt trained on training data Xtrn = UΣtrnV

T
trn with Σtrn such that σr(Xtrn) > M , and tested

on test data Xtst,1 = UL1 and Xtst,2 = UL2 with noise Atst,1, Atst,2 with the same variance
ηtst2/d. Then, the generalization errors R1 and R2 differ for c < 1 by

|R2 −R1| ≤
σ1(β)

2

Ntst

η4trnr

(σr(Xtrn)2f(c) + η2trn)
2
∥L2L

T
2 − L1L

T
1 ∥F + o

(
1

N

)
where f(c) = c for c < 1 and f(c) = 1 for c ≥ 1. We add O(∥Σtrn∥2F /N2) to the bound when
c > 1.
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D ADDITIONAL IMPLICATIONS OF OUR RESULTS

D.1 OUT-OF-SUBSPACE GENERALIZATION

As mentioned in Section 3, we numerically verify Theorem 4 in two out-of-distribution setups namely
small α and large α. The application of our result to the small α case was already presented in the
main paper; see Figure 1b. Here, we present the additional numerical results when the value of α is
relatively large. We do not project the test datasets onto the low-dimensional subspace for this. The
training dataset from the CIFAR train split is projected onto its first r principal components where
r = 25, 50, 100 and 150. Figure 7 shows the theoretical bounds on the generalization error from
Theorem 4. Unfortunately, for the large α case, the proposed lower bound in Theorem 4 is negative.
However, we conjecture that R(UL) is a lower bound instead. The results for the large α case, shown
in Figure 7, suggest the same. However, these bounds do not tell us anything about the shape of the
generalization error curve.

Theorem 4 (Out-of-Subspace Shift Bound). If we have the same training data and solution Wopt

assumptions as in Theorem 1. Then, for any Xtst for which there exists an L and an α > 0 such that
∥Xtst − UL∥F ≤ α, and Atst that satisfies 1,2 from Assumption 2, we have that the generalization
error R(Wopt, Xtst) satisfies

|R(Wopt, Xtst)−R(Wopt, UL)| ≤ α2σ1(Wopt + I)2.

The following corollary follows immediately from Theorem 4 and Theorem 3.

Corollary 5. If Xtst,1 and Xtst,2 are two different test datasets and Xtrn = UΣtrnV
T
trn is the

training data such that there exists Li with αi = ∥Xtst,i − ULi∥F , then for Ri := R(Wopt, Xtst,i)

|R2 −R1| ≤ (α2
1 + α2

2)σ1(Wopt + I)2

+
σ1(β)

2

Ntst

η4trnr

(σr(Xtrn)2f(c) + η2trn)
2
∥L2L

T
2 − L1L

T
1 ∥F + o

(
1

N

)
D.2 INDEPENDENT IDENTICAL TEST DATA

Let us assume that the test data is identically and independently drawn from some distribution Dtst

with mean zero and covariance Σ. Then the generalization error is given by the following corollary.

Corollary 6 (IID Test Data). Let r < |d−N |. Let the SVD of Xtrn be UΣtrnV
T
trn, let L := UTXtst,

βU := UTβ, and c := d/N . Under our setup and Assumptions 1 and 2, with the further assumption
that the columns of L are drawn IID from a distribution with mean zero and Covariance Σ, the test
error (Equation 1) is given by the following.
If c < 1 (under-parameterized regime)

EL[R(Wopt, UL)] = η4trn

∥∥∥βT
U (Σ

2
trnc+ η2trnI)

−1Σ1/2
∥∥∥2
F

+
η2tst
d

c2

1− c
Tr

(
βUβ

T
UΣ

2
trn

(
Σ2

trn +
1

η2trn
I

)(
Σ2

trnc+ η2trnI
)−2
)
+ o

(
1

N

)
If c > 1 (over-parameterized regime)

EL[R(Wopt, UL)] = η4trn

∥∥∥βT
U (Σ

2
trn + η2trnI)

−1Σ1/2
∥∥∥2
F

+
η2tst
d

c

c− 1
Tr(βUβ

T
U (I + η2trnΣ

−2
trn)

−1) +O

(
∥Σtrn∥2

N2

)
+ o

(
1

N

)
Remark 1. Given any distribution on V , we can consider the diffeomorphism that changes the basis
to U . Hence, making assumptions on the distribution of L versus the distribution of Xtst does not
cost us any generality.

Figure 8, shows that the theoretical error aligns perfectly with the empirical result. The model is
trained on the CIFAR dataset and tested on data drawn from an anisotropic Gaussian. The case of IID
training data is presented in Appendix D.3.
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(d) r = 25; We find that α is approximately 66, 85 and 44 for (a)-(c) respectively.
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(h) r = 50; We find that α is approximately 54, 75 and 31 for (a)-(c) respectively.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
1/c = N/d

100

Te
st

 E
rro

r

Theoretical
Empirical

(i) CIFAR Dataset

0.5 1.0 1.5 2.0 2.5 3.0 3.5
1/c = N/d

100

Te
st

 E
rro

r

Theoretical
Empirical

(j) STL10 Dataset

0.5 1.0 1.5 2.0 2.5 3.0 3.5
1/c = N/d

100
Te

st
 E

rro
r

Theoretical
Empirical

(k) SVHN Dataset

(l) r = 100; We find that α is approximately 44, 66 and 20 for (a)-(c) respectively.
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(p) r = 150; We find that α is approximately 37, 60 and 15 for (a)-(c) respectively.

Figure 7: Figure showing the test error vs 1/c when the test datasets retain their high dimensions.
The training data is projected onto its first r principal components. The markers denote the square
root of test error obtained from empirical experiments. The dashed black lines, which act as the
upper bounds for the empirical results, are given by

√
R(UL) + ασ1(Wopt + I) where R(UL) is

the theoretical generalization error (refer Theorem 4). The dashed black lines, which act as the lower
bounds, are given by

√
R(UL).
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Figure 8: Figure showing the generalization error vs 1/c obtained for IID test data for r =
25, 50, 100, 150. The theoretical solid line curve is given by Corollary 6. We report the mean
generalization error over at least 200 trials for empirical data points, shown by markers.
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(a) CIFAR Dataset
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(b) STL10 Dataset
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(c) SVHN Dataset

Figure 9: Figure showing the test error vs 1/c for I.I.D. training data. The theoretical solid curves are
obtained from the formula in Theorem 5. We report the mean test error over at least 200 trials for
empirical data points, shown by markers.

D.3 INDEPENDENT ISOTROPIC IDENTICAL TRAINING DATA

Next, we consider the case of I.I.D training data. Let U ∈ Rd×r be a matrix whose columns form an
orthonormal basis for an r-dimensional space V . Suppose the data is of the form Uz for z ∈ Rr such
that the coordinates of z are sampled independently, have mean 0, variance 1/r, and have bounded
forth moments. Hence, in this case, we get the following theorem. Proof in Section E.8.
Theorem 5 (I.I.D. Training Data With Isotropic Covariance). Let c = d/N and cr = r/N . Then if
c < 1

EXtrn [R] =
η4trn
Ntst

∥(Σ2
trnc+ η2trnI)

−1L∥2F

+ η2tst
r

d

1

1− c

(
T1(cr, η

2
trn/c) +

1

η2trn
T2(cr, η

2
trn/c)

)
+ o

(
1

N

)
and if c > 1

EXtrn
[R] =

η4trn
Ntst

∥(Σ2
trn + η2trnI)

−1L∥2F + η2tst
r

d

c

c− 1
T3(cr, η

2
trn) +O

(
1

N

)
where T1(cr, z) = T3(cr, z)− zT2(cr, z), and

T2(cr, z) =
1 + cr + zcr

2
√
(1− cr + crz)2 + 4c2rz

−1

2
, T3(cr, z) =

1

2
+
1 + zcr −

√
(1− cr + zcr)2 + 4c2rz

2cr
.

Figure 9 shows that the theoretical curves align perfectly with the empirical results where the training
data is I.I.D. from a Gaussian with dimension 50. The test datasets from CIFAR, STL10, and SVHN
datasets are also projected onto the low-dimensional subspace.
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I.I.D Test and Training Data We can combine the two cases where training and test data are
I.I.D.. Specifically, for the case when Xtst has κI as the covariance and Xtrn is as in the previous
instantiation Section. Then the generalization error is given by the following corollary.
Corollary 7 (I.I.D. Train and Tests Data With Isotropic Covariance). Let c = d/N and cr = r/N .
Then if c < 1

EXtrn
[R] = η4trn · r · κ · T4(cr, η2trn/c)

+
r

d

1

1− c

(
T1(cr, η

2
trn/c) +

1

η2trn
T2(cr, η

2
trn/c)

)
+ o

(
1

N

)
and if c > 1

EXtrn [R] = η4trn · r · κ · T4(cr, η2trn) +
r

d

c

c− 1
T3(cr, η

2
trn) +O

(
1

N

)
where T1(cr, z) = T3(cr, z)− zT2(cr, z), and

T2(cr, z) =
1 + cr + zcr

2
√
(1− cr + crz)2 + 4c2rz

−1

2
, T3(cr, z) =

1

2
+
1 + zcr −

√
(1− cr + zcr)2 + 4c2rz

2cr
,

T4(cr, z) =
zc2r + c2r + zcr − 2cr + 1

2z2cr
√
(1− cr + crz)2 + 4c2rz

− 1

2z2

(
1− 1

cr

)
.

Figure 10 shows that the theoretical error aligns perfectly with the empirical result.
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Figure 10: Figure showing the generalization error vs 1/c where training and test datasets are both
I.I.D. The theoretical solid curve is obtained from Corollary 7. The empirical generalization error,
shown by markers, is averaged over 50 trials.

D.4 BENIGN OVERFITTING THROUGH THE LENS OF DATA AUGMENTATION

Notice we don’t observe benign overfitting except in the limit of arbitrarily large or arbitrarily
small c. We make sense of this phenomenon using the following argument. Recall that while Wopt

is the minimum-norm matrix minimizing the MSE error for a single noise instance, W ∗ is the
minimum-norm matrix minimizing its expectation over noise.

We can use this observation to view W ∗ as Wopt over an augmented dataset. Taking the expectation
over noise in the training target is in spirit like augmenting the data with “infinitely many" copies
of itself, each with fresh noise. So, W ∗ can be viewed as the outcome of training Wopt over an
augmented dataset with a "changed c," where c is replaced with a vanishingly small value while
keeping Σ2

trn/N = Σ2
trnc/d constant.

We can compute the effect of this "change in c" on the test error using Theorem 1, computationally
justifying our overfitting phenomena. For intuition, we relate this "change in c" to the explanation
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behind double descent. The implicit regularization due to noise is much more unstable for c close to
1. This means that Wopt has much higher test error when c is close to 1 than if it were obtained from
an augmented dataset with c→ 0 (corresponding to W ∗). On the other hand, the performance of W ∗

and Wopt is much closer when c is far from 1, since the effect of implicit regularization on Wopt is
stronger. This intuitively explains our overfitting phenomena.

D.5 DOUBLE DESCENT

This matches our theoretical results and establishes that denoising test error curves exhibit double
descent, even for arbitrary test data in V . To understand why this is happening, consider the denoising
target, given by the MSE error below.

EAtst
[∥Ytrn−W (Xtrn+Atrn)∥2F ] = ∥Ytrn−WXtrn∥2F+2Tr(Ytrn−WXtrn)

TAtrn)+∥WAtrn∥2F .

Notice that minimizing this sum forces us to reduce both ∥Ytrn −WXtrn∥F and ∥W∥F , due to the
third term (the "variance" term). We see that The noise is regularizing ∥W∥F through the variance
term Tr(WTWAtrnA

T
trn). This is the implicit regularization of W due to noise. However, the

strength of regularization due to the noise instance Atrn is not the same across different values of c.
When c is close to 1, the distribution of the spectrum ofAtrnA

T
trn (the Marchenko-Pastur distribution)

has support very close to zero. On the other hand, for c far from 1, the non-zero eigenvalues of
AtrnA

T
trn are all bounded away from zero. This establishes that the effect of regularization weakens

most near c = 1,3 leading to a spike in the test error coming from the large norm of the learnt Wopt.
This explanation is similar in spirit to the explanations for double descent in Xu & Hsu (2019) and
others, but crucially adapts to implicit regularization due to noise.

3The eigenvalues that are exactly zero do not contribute to weakening of the regularization. This is because
we are choosing the minimum-norm optimizer W ∗ for expected MSE error, and more zero eigenvalues increases
flexibility, creating a larger set of optimizers to minimize the norm over. This helps decrease the components
of W ∗ by spreading them into more dimensions. This is identical in spirit to arguments about variance in
overparametrized regimes in section 1.1 of Hastie et al. (2022).
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E PROOFS

In all proofs, WLOG we assume d/N = c since even though d/N = c+ o(1), the relative error we
will accumulate from this assumption be o(1). For instance, this means that the absolute error from
this assumption in Theorem 1 will be o(1/N), which can be absorbed into the o(1/N) estimation
error in the theorem.

E.1 PROOF FOR THEOREM 1, TEST ERROR

One useful piece of notation for the following proof is that of big O in probability.

Definition 4. Let χk be a sequence of random variables. Then we say that χk is OP (ak) as k → ∞,
if for all ϵ > 0, we have there exists an M and K such that for all k > K, we have that

Pr

[∣∣∣∣χk

ak

∣∣∣∣ > M

]
< ϵ.

Definition 5. Let χk be a sequence of random variables. Then we say that χk is oP (ak) as k → ∞,
if for all ϵ > 0, we have that

lim
k→∞

Pr

[∣∣∣∣χk

ak

∣∣∣∣ ≥ ϵ

]
= 0.

Note that big-OP behaves a lot like big-O. Specifically, if αn = OP (an) and βn = OP (bn). Then
αnβn = OP (anbn) and αn + βn = OP (an + bn). Further, it is easy to see that mean zero random
variables are big-OP of the square root of the variance (using Chebyshev’s inequality).

E.1.1 THE OVERPARAMETRIZED REGIME, d > N

We derive test error bounds for β = I in our problem setting. We also denote Wopt by W in this
subsection, for ease of notation.

Theorem 6. For rank r data and d > N + r, with c = d
N the following is true.

1. For the β = I case, we denote the minimum norm linear denoiser Wopt by just W in this
subsection. It is given by

W = UΣtrn(P
TP )−1ZTK−1

1 H − UΣtrnZ
−1HHTK−1

1 ZP †

2. The test error when Xtst = UL is given by

EAtrn

[
1

Ntst
∥UΣtrn(P

TP )−1ZTK−1
1 Σ−1

trnL∥2F +
η2tst
d

∥W∥2F
]
,

where P = −(I − AtrnA
†
trn)UΣtrn, H = V T

trnA
†
trn, Z = I + V T

trnA
†
trnUΣtrn, K1 = HHT +

Z(PTP )−1ZT .

The sizes of the matrices:

1. U is d× r with UTU = Ir×r.

2. Σtrn is r × r, with rank r.

3. Atrn is d×N with rank N .

4. AtrnA
†
trn is d× d

5. H is r × d, with rank r.

6. Z is r × r, with rank r.

7. K1 is r × r, with rank r.

8. Atrn = ηtrnŨ Σ̃Ṽ T .

9. Ũ is d× d unitary.
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10. Σ̃ is d×N .

Proof. Part 1 follows from Lemma 1. For part 2, note that the test error is given by R(W,Xtst) =

EAtrn,Atst

[
1

Ntst
∥Xtst −W (Xtst +Atst)∥2F

]
, which is the same as the folllowing.

R(W,Xtst) =
1

Ntst
EAtrn,Atst

[
∥Xtst −WXtst∥2F

]
+

2

Ntst
EAtrn,Atst

[Tr((Xtst −WXtst)Atst)

+
1

Ntst
EAtrn,Atst

[
∥WAtst∥2F

]
=

1

Ntst
EAtrn

[
∥Xtst −WXtst∥2F

]
+ 0 +

1

Ntst
EAtrn,Atst

[
Tr(WTWAtstA

T
tst)
]

=
1

Ntst
EAtrn

[
∥Xtst −WXtst∥2F

]
+ 0 +

1

Ntst
EAtrn

[
Tr(WTWEAtst

[
AtstA

T
tst

]
)
]

=
1

Ntst
EAtrn

[
∥Xtst −WXtst∥2F

]
+ 0 +

η2tstNtst

dNtst
EAtrn

[Tr(WTW )]

= EAtrn

[
1

Ntst
∥UΣtrn(P

TP )−1ZTK−1
1 Σ−1

trnL∥2F +
η2tst
d

∥W∥2F
]
.

We will henceforth drop the subscript Atrn in the expectation EAtrn .

Lemma 1. Let P = −(I − AtrnA
†
trn)UΣtrn, H = V T

trnA
†
trn, Z = I + V T

trnA
†
trnUΣtrn, K1 =

HHT + Z(PTP )−1ZT . If d > N and Atrn has full column rank, then

W = UΣtrn(P
TP )−1ZTK−1

1 H − UΣtrnZ
−1HHTK−1

1 ZP †. (2)

Proof. Note that P has full column rank and Atrn has rank N . Thus, we can use corollary 2.2 from
Wei (2001) to obtain

(Atrn+UΣtrnV
T
trn)

† = A†
trn+A

†
trnUΣtrnP

†−(A†
trnH

T+A†
trnUΣtrn(P

TP )−1ZT )K−1
1 (H+ZP †).

We are interested in simiplifying the expression for W = (UΣtrnV
T
trn)(Atrn + UΣtrnV

T
trn)

†.
Multiplying this through, we obtain

W = UΣtrnV
T
trnA

†
trn + UΣtrnV

T
trnA

†
trnUΣtrnP

†

− UΣtrnV
T
trn(A

†
trnH

T +A†
trnUΣtrn(P

TP )−1ZT )K−1
1 (H + ZP †).

Replacing V T
trnAtrn = H ,

W = UΣtrnH + UΣtrnHUΣtrnP
† − UΣtrnV

T
trn(A

†
trnH

TK−1
1 H +A†

trnH
TK−1

1 ZP †

+A†
trnUΣtrn(P

TP )−1ZTK−1
1 H +A†

trnUΣtrn(P
TP )−1ZTK−1

1 ZP †).

Through further simplification, we obtain

W = UΣtrnH + UΣtrnHUΣtrnP
† − UΣtrnHH

TK−1
1 H − UΣtrnHH

TK−1
1 ZP †

− UΣtrnHUΣtrn(P
TP )−1ZTK−1

1 H − UΣtrnHUΣtrn(P
TP )−1ZTK−1

1 ZP †.

Setting HUΣtrn = Z − I yields

W = UΣtrnH + UΣtrnZP
† − UΣtrnP

† − UΣtrnHH
TK−1

1 H − UΣtrnHH
TK−1

1 ZP †

− UΣtrnZ(P
TP )−1ZTK−1

1 H + UΣtrn(P
TP )−1ZTK−1

1 H

− UΣtrnZ(P
TP )−1ZTK−1

1 ZP † + UΣtrn(P
TP )−1ZTK−1

1 ZP †.
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Combining terms and replacing HHT + Z(PTP )−1ZT = K1, we prove

W = −UΣtrnP
† + UΣtrn(P

TP )−1ZTK−1
1 H + UΣtrn(P

TP )−1ZTK−1
1 ZP †,

= UΣtrn(P
TP )−1ZTK−1

1 H − UΣtrnZ
−1(K1 − Z(PTP )−1ZT )K−1

1 ZP †,

= UΣtrn(P
TP )−1ZTK−1

1 H − UΣtrnZ
−1HHTK−1

1 ZP †.

Lemma 2. For d > N + r, Xtst −WXtst = UΣtrn(P
TP )−1ZTK−1

1 Σ−1
trnL.

Proof. Here, Xtst = UL and W is given by equation 2. Substituting this, we get

Xtst −WXtst = UL− UΣtrn(P
TP )−1ZTK−1

1 HUL+ UΣtrnZ
−1HHTK−1

1 ZP †UL.

Note that P †U = −Σ−1
trn and HUΣtst = V T

trnA
†
trnUΣtrnΣ

−1
trnΣtst = (Z − I)Σ−1

trnΣtst which
yields

Xtst −WXtst = UL− UΣtrn(P
TP )−1ZTK−1

1 (Z − I)Σ−1
trnL− UΣtrnZ

−1HHTK−1
1 ZΣ−1

trnL,

= UΣtrnZ
−1(Z − Z(PTP )−1ZTK−1

1 (Z − I)−HHTK−1
1 Z)Σ−1

trnL,

= UΣtrnZ
−1(Z − (Z − I) +HHTK−1

1 (Z − I)−HHTK−1
1 Z)Σ−1

trnL,

= UΣtrnZ
−1(K1 −HHT )K−1

1 Σ−1
trnL,

= UΣtrn(P
TP )−1ZTK−1

1 Σ−1
trnL.

Lemma 3. For c > 1, we have that

E[HHT ] =
c

η2trn(c− 1)
Ir + o(1)

and the variance of each entry is O(1/(η4trnN)). For c < 1, we have that

E[HHT ] =
c2

η2trn(1− c)
Ir + o(1)

and the variance is O(1/(η4trnd)).

Proof. Here we see that

HHT = V T
trnA

†
trn(A

†
trn)

TVtrn = V T
trn(A

T
trnAtrn)

†Vtrn.

Thus, if Vtrn = [v1 · · · vr]. Then we see that HHT is an r × r matrix such that

(HHT )ij = vTi (A
T
trnAtrn)

†vj .

Using ideas from Sonthalia & Nadakuditi (2023), we see that if i ̸= j, then we see that the expectation
is 0. On the other hand if i = j, then using Lemma 6 from Sonthalia & Nadakuditi (2023), with
p = N , q = d and A = 1

ηtrn
Atrn, we get that for c > 1

E[vTi (AT
trnAtrn)

†vi] =
c

η2trn(c− 1)
+ o(1).

while for c < 1

E[vTi (AT
trnAtrn)

†vi] =
c2

η2trn(1− c)
+ o(1).

For the variance, let Atrn = ηtrnŨ Σ̃Ṽ T , then we have that

vTi (A
T
trnAtrn)

†vj =
1

η2trn
vTi Ṽ Σ̃2Ṽ T vj

=
1

η2trn
aT Σ̃2b

=

N∑
i=1

1

η2trn

1

σ̃2
i

aibi.
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Where a, b are orthogonal vectors (when i ̸= j). Then for computing the variance when c > 1,

E
[(
vTi (A

T
trnAtrn)

†vj
)2]

= E

( 1

η2trn

N∑
i=1

1

σ̃2
i

aibi

)2


=
1

η4trn
E

 N∑
i=1

N∑
j=1

1

σ̃2
i σ̃

2
j

aibiajbj



=

(
c2

η4trn(c− 1)2
+ o(1)

)
E

( N∑
i=1

aibi

) N∑
j=1

ajbj


+

(
c3

η4trn(c− 1)3
− c2

η4trn(c− 1)2
+ o(1)

) N∑
i=1

E[a2i b2i ]

= 0 +

(
c2

η4trn(c− 1)3
+ o(1)

) N∑
i=1

1

N2
+ o

(
1

N

)
=

c2

η4trn(c− 1)3
1

N
+ o

(
1

N

)
.

Here even though a, b are not independent, because of the smaller variance in the entries, the error is
absorbed in the o

(
1
N

)
term.

When i = j, we use the same proof Sonthalia & Nadakuditi (2023), to see that the variance is at most

c2(2c− 1)

η4trn(c− 1)3
1

N
+ o

(
1

N

)
.

A very similar computation follows for the variance when c < 1.

We prove a general result on inverses of matrices that whose expected norms are Ω(1).

Lemma 4. If ∥E[XN ]∥ = Ω(1) as N grows and Var((XN )ij) = sN , then E[X−1
N ] = E[XN ]−1 +

O(sN ). Additionally, if Var((XN − E[XN ])2ij) = O(tN ), then Var((X−1
N )ij) = O(sN + tN ).

Proof. Let δXN = XN − E[Xn]. Notice that δXN = OP (sN ) and E[δXN ] = 0. Additionally, by
the Taylor expansion (Y + δY )−1 = Y −1 + Y −1δY Y −1 +O(δY 2) we have that

X−1
N = E[XN ]−1 + E[XN ]−1δXNE[XN ]−1 +O(δX2

N ).

In particular, since E[Xn]
−1 = O(1), we have

O(E[X−1
N ] = E[XN ]−1 +O(Var((XN )ij)) = E[XN ]−1 +O(sN ).

Finally, note that Var((δX2
N )ij) = O(tN ) by assumption. So,

Var((X−1
N )ij) = Var((E[XN ]−1δXNE[XN ]−1)ij) +O(Var((δX2

N )ij)) = O(sN + tN )

since E[XN ]−1 = O(1).

Lemma 5. For c > 1, we claim that E[Σ−1
trnP

TPΣ−1
trn] =

(
1− 1

c

)
Ir, each entry has variance

O
(
1
d

)
, and

E[Σtrn(P
TP )−1Σtrn] =

c

c− 1
Ir +O

(
1

d

)
.

with element-wise variance O(1/d).
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Proof. Recall that P = −(I −AtrnA
†
trn)UΣtrn Thus, we have that

PTP = ΣT
trnU

T (I −AtrnA
†
trn)UΣtrn.

= ΣT
trnΣtrn − ΣT

trnU
TAtrnA

†
trnUΣtrn

= ΣT
trnΣtrn − ΣT

trnU
T Ũ Σ̃Σ̃†ŨTUΣtrn

= ΣT
trnΣtrn − ΣT

trnR

[
IN 0
0 0d−N

]
RTΣtrn.

Where R is a uniformly random r × d unitary matrix. Then by symmetry (of the sign of rows of R),
we have that

E[PTP ] = Σ2
trn − ΣT

trn

(
1

c
Ir

)
Σtrn =

(
1− 1

c

)
Σ2

trn.

So, we have that

E
[
Σ−1

trnP
TPΣ−1

trn

]
= UT

(
I − E

[
AtrnA

†
trn

])
U =

(
1− 1

c

)
Ir.

Thus to compute the variance, we first compute the variance of (AtrnA
†
trn)ij . For this, we first note

that [
1
c IN 0
0 0

]
= E

[
Ũ Σ̃Σ̃†ŨT

]
= E

[
AtrnA

†
trn

]
= E

[
AtrnA

†
trnAtrnA

†
trn

]
.

The first equality follows from the symmetry of the signs of the rows of Ũ . Then we can see that
d∑
k

(AtrnA
†
trn)

2
ik =

{
1
c i ≤ N

0 i > N
.

From Lemma 14 in Sonthalia & Nadakuditi (2023), we have that E[(AtrnA
†
trn)

2
ii] =

1
c2 + 2

cd + o(1).
Then combining this with the computation above and using symmetry, we have that for i ̸= j and
min(i, j) ≤ N

E[(AtrnA
†
trn)

2
ij ] =

1

N − 1

(
1

c
− 1

c2
+

2

cd
+ o(1)

)
.

Now consider the other (full) SVD of Xtrn given by Ûd×dΣ̂d×N V̂
T
N×N . Note that the top left r × r

block of Σ̂ is Σtrn, and we can choose Û so that the first r columns of Û give U . Note that since ÛT Ũ

is still uniformly random, the symmetry argument above follows for ÛTAtrnA
†
trnÛ . Additionally,

for i, j ≤ r, (ÛTAtrnA
†
trnÛ)ij = (UTAtrnA

†
trnU)ij Thus, we see that for i, j ≤ r

E
[
(UTAtrnA

†
trnU)2ij

]
=

1

N − 1

(
1

c
− 1

c2
+

2

cd
+ o(1)

)
,

while for i = j, we get that it is O
(

1
N

)
by Lemma 14 of Sonthalia & Nadakuditi (2023). Thus,

finally, we have that arranged as a matrix

E
[
(Σ−1

trnP
TPΣ−1

trn)⊙ (Σ−1
trnP

TPΣ−1
trn)

]
= O

(
1

d

)
.

By an analogous symmetry argument, since (AtrnA
†
trn)

i = AtrnA
†
trn for any i, we can show that

Var
(
(UTAtrnA

†
trnU)2ij

)
= O

(
1

d

)
.

We can in principle show a faster decay for this with a more involved argument, but this is enough for
our purposes. We can now apply Lemma 4 with XN = I − (UTAtrnA

†
trnU) to see that

E[Σtrn(P
TP )−1Σtrn] =

c

c− 1
Ir +O

(
1

d

)
and has element-wise variance O(1/d).
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Lemma 6. We have that

E[Z] = I and Var(Zij) = O

(
∥Σtrn∥2

η2trnd

)
.

Further, E[ZΣ−1
trn] = E[Σ−1

trnZ] = Σ−1
trn and each element has variance O

(
1
d

)
. Finally,

E[Z−1] = I +O

(
∥Σtrn∥2

d

)
with Var((Z−1)ij) = O

(
∥Σtrn∥2

d
+

∥Σtrn∥4

d2

)
.

Proof. The element-wise variance and expectation of Z can be computed exactly as in the proof
of Lemma 11 in Sonthalia & Nadakuditi (2023). Specifically, by considering the row uj of U and
the row vi of V , treating Zij as β, and replacing θtrn by σj . The expressions for the element-wise
expectation and variance of ZΣ−1

trn and Σ−1
trnZ immediately follow from those of Z and the fact that

σi/σj = Θ(1) by Assumption 1.

For Z−1, we continue the computation using Zij = 1 + Tij with

Tij = σj

min(d,N)∑
k=1

1

λk
akbk

with a and b obtained using vj and ui respectively, and λk a singular value of Atrn. It is easy to
check that

Var(T 2
ij) = O

(
∥Σtrn∥4

N2

)
using a symmetry argument for ak and bk and the fact that E[1/λ4k] = O(1) by Lemma 5 of Sonthalia
& Nadakuditi (2023). Now we can use Lemma 4 to conclude that

E[Z−1] = I +O

(
∥Σtrn∥2

d

)
with Var((Z−1)ij) = O

(
∥Σtrn∥2

d
+

∥Σtrn∥4

d2

)
.

Lemma 7. For c > 1, E[K1] =
1

η2
trn

c
c−1Ir +

c
c−1Σ

−2
trn + o(1) with element-wise variance O(1/d).

Further,

E[K−1
1 ] = η2trn

(
1− 1

c

)(
η2trnΣ

−2
trn + Ir

)−1
+ o(1)

with element-wise variance O(1/d).

Proof. From Lemma 5, we have that

E[Σtrn(P
TP )−1Σtrn] =

c

c− 1
Ir +O

(
1

d

)
.

Recall that

K1 = HHT + Z(PTP )−1ZT = HHT + ZΣ−1
trn(Σtrn(P

TP )−1Σtrn)Σ
−1
trnZ

T .

Then recall from Lemma 3 that

E[HHT ] =
1

η2trn

c

c− 1
Ir + o(1).

For the second term in the expression for K1, we want to use Lemmas 5 and 6, but they give
expectations of each term separately. Note that

|E[XY ]− E[X]E[Y ]| = |Cov(X,Y )| ≤
√

Var(X)Var(Y )

and also note the following fact, from Bohrnstedt & Goldberger (1969).

Cov(XY,WZ) = EXEWCov(Y, Z) + EY EZCov(X,W ) + EXEZCov(Y,W )+

EY EWCov(X,Z) + Cov(X,W )Cov(Y,Z) + Cov(Y,W )Cov(X,Z)
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We use the facts above along with Lemmas 5 and 6 to compute the expectation. Specifically, the
second term in K1 is the product of three terms ZΣ−1

trn, (Σtrn(P
TP )−1Σtrn), and Σ−1

trnZ
T . Hence

we need the first fact to replace the expectation of the product of two terms with the product of the
expectation of the two terms. To use this again, we would need to bound the variance of the product.
Hence we need the second fact. Doing this computation, we get that

E[K1] =
1

η2trn

c

c− 1
Ir +

c

c− 1
Σ−2

trn +O

(
1

d

)
+ o(1)

For the element-wise variance, consider δK1 = K1 − E[K1]. We cover the i ̸= j case. The
i = j case is analogous. From the proofs of Lemmas 3, 5, and 6, we have Zij = I + Tij and
(Σtrn(P

TP )−1Σtrn)ij = UTAtrnA
†
trnU)ij . The expanding the product, we get that

(δK1)ij =
(
vi(A

T
trnAtrn)

†vj
)
+O

(
(UTAtrnA

†
trnU)ij

)
+O

(
(UTAtrnA

†
trnU)2ij

)
+O(Tij)

+O

(
N∑

k=1

Tik(U
TAtrnA

†
trnU)kj

)
+O

(
N∑

k=1

Tik(U
TAtrnA

†
trnU)2kj

)
+O

(
N∑

k=1

TikTkj

)

+O

 d∑
k,l=1

Tik(U
TAtrnA

†
trnU)klTlj

+O

 d∑
k,l=1

Tik(U
TAtrnA

†
trnU)2klTlj


Then since
Var(XY ) = Cov(X2, Y 2) + (Var(X) + (EX)2)(Var(Y ) + (EY )2)− (Cov(X,Y ) + EXEY )2

using this for terms five through nine, we get that

Var ((δK1)ij) = O

(
1

d

)
.

For the inverse, we cover the i ̸= j case again. The i = j case is analogous. We can perform an
analogous computation to the one in the proof of Lemma 3 to get that

Var
(
(vi(A

T
trnAtrn)

†vj)
2
)
= O

(
1

N

)
,

using the fact that E
[

1
λ4

]
= O(1) for a random eigenvalue λk of Atrn. We also use the fact that

(AtrnA
†
trn)

p = AtrnA
†
trn for any p and a symmetry argument analogous to the one in the proof of

Lemma 5 to note that

E
[
(UTAtrnA

†
trnU)pij

]
= O

(
1

d

)
p = 2, . . . , 8.

One can also check by the arguments in the proof of Lemma 6 that

E
[
T 2p
ij

]
= O

(
σp
i σ

p
j

dp

)
= O(1).

These together with the facts about Var(XY ) and Cov(XY,ZW ) above establish after a tedious but
straightforward computation that

Var((δK1)
2
ij) = O

(
1

d

)
.

We can now use Lemma 4 to establish that

E[K−1
1 ] = η2trn

(
1− 1

c

)(
η2trnΣ

−2
trn + Ir

)−1
+O

(
1

d

)
+ o(1)

= η2trn

(
1− 1

c

)(
η2trnΣ

−2
trn + Ir

)−1
+ o(1)

and

Var((K−1
1 )ij) = O

(
1

d

)
.
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Lemma 8. When c > 1, we have for W =Wopt that

E[∥W∥2F ] =
c

c− 1
Tr(Σ2

trn(Σ
2
trn + η2trnI)

−1) +O

(
∥Σtrn∥2

d

)
+ o(1).

Proof. We first use the estimates for the expectations from Lemmas 3, 5, 6, and 7 to get an estimate
for the expectation of ∥W∥2F . We get this estimate by treating various matrices in the product as
independent. We then bound the deviation of the true expectation from this estimate using the
variance estimates above. We begin the calculation as

∥W∥2F = Tr(WTW )

Using Lemma 1, we see that the trace has three terms. The first term is

Tr
(
HT (K−1

1 )TZ((PTP )−1)TΣT
trnU

TUΣtrn(P
TP )−1ZTK−1

1 H
)
.

Here we have that U is d× r with orthonormal columns. Hence we get that UTU = I . Then since
the trace is invariant under cyclic permutations, we get the following term

Tr
(
(Σtrn(P

TP )−1Σtrn)(Σ
−1
trnZ

T )K−1
1 HHT (K−1

1 )T (ZΣ−1
trn)(Σtrn(P

TP )−1Σtrn)
T
)
.

Now we use our random matrix theory estimates for various terms in the product. From Lemma 6,
we have that EAtrn

[ZΣ−1
trn] = Σ−1

trn. Thus, that first term’s expectation can be estimated by

Tr
(
(Σtrn(P

TP )−1Σtrn)Σ
−1
trnK

−1
1 HHT (K−1

1 )TΣ−1
trn(Σtrn(P

TP )−1Σtrn)
T
)
.

Then using Lemma 3, we can further estimate this by

1

η2trn

c

c− 1
Tr
(
(Σtrn(P

TP )−1Σtrn)Σ
−1
trnK

−1
1 (K−1

1 )TΣ−1
trn(Σtrn(P

TP )−1Σtrn)
T
)
+ o(1).

Here, the error contribution of the o(1) error from Lemma 3 is still o(1) since we will see that all the
other estimates are O(1). Then we use Lemma 5, to replace Σtrn(P

TP )−1Σtrn to get

1

η2trn

c

c− 1

(
1− 1

c

)−2

Tr
(
Σ−1

trnK
−1
1 (K−1

1 )T (ΣT
trn)

−1
)
+ o(1).

Finally, we use Lemma 7 to replace the last term and get

1

η2trn

c

c− 1

(
c

c− 1

)2

Tr

(
Σ−2

trnη
4
trn

(
1− 1

c

)2 (
Ir + η2trnΣ

−2
trn

)−2

)
+ o(1).

This immediately simplifies to

η2trn
c

c− 1
Tr
(
Σ2

trn(Σ
2
trn + η2trnIr)

−2
)
+ o(1). (3)

The second term in Tr(WTW ) is

−2Tr
(
HT (K−1

1 )TZT ((PTP )−1)TΣT
trnU

TUΣtrnZ
−1HHTZP †) .

We can rearrange this using cyclic invariance to

−2Tr
(
(K−1

1 )TZTΣ−1
trn(Σtrn(P

TP )−1Σtrn)
TΣtrnZ

−1HHTZP †HT
)
.

Let us focus on the P †HT term. Since PTP is invertible, we have that P has full column rank.
Hence we have that

P † = (PTP )−1PT .

Further, since P = −(I −AtrnA
†
trn)UΣtrn and H = V T

trnA
†
trn, we have that

P †HT = (PTP )−1ΣT
trnU

T (I −AtrnA
†
trn)(A

†
trn)

TVtrn.

Finally, we notice that
AtrnA

†
trn(A

†
trn)

T = (A†
trn)

T .
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Thus, we have that

P †HT = (PTP )−1ΣT
trnU

T (I −AtrnA
†
trn)(A

†
trn)

TVtrn = 0. (4)

Finally, the last term in Tr(WTW ) is

Tr
(
(P †)TZT (K−1

1 )THHT (Z−1)TΣT
trnU

TUΣtrnZ
−1HHTK−1

1 ZP †) .
We note that

P †(P †)T = (PTP )† = (PTP )−1.

We use this observation along with cyclic invariance to get that the last term is the same as

Tr
(
(K−1

1 )THHTΣ2
trnZ

−1HHTK−1
1 ZΣ−1

trn(Σtrn(P
TP )−1Σtrn)Σ

−1
trnZ

T
)
.

We again use Lemmas 3 and 6 to get that its expectation is estimated by

1

η4trn

(
c

c− 1

)2

Tr
(
(K−1

1 )TΣ2
trnK

−1
1 Σ−1

trn(Σtrn(P
TP )−1Σtrn)Σ

−1
trn

)
+O

(
∥Σtrn∥2

d

)
+ o(1).

The contribution of the O
(

∥Σtrn∥2

d

)
error from Lemma 6 is still O

(
∥Σtrn∥2

d

)
since the estimate for

the expectation is O(1). We now use Lemma 5, and 7 to see that the final term’s expectation can be
estimated by

1

η4trn

(
c

c− 1

)3

η4trn

(
c− 1

c

)−2

(Ir + ηtrnΣ
−2
trn)

−2 +O

(
∥Σtrn∥2

d

)
+ o(1)

=
c

c− 1
Tr(Σ4

trn(Σ
2
trn + η2trnIr)

−2) +O

(
∥Σtrn∥2

d

)
+ o(1). (5)

Finally, to bound the deviation from this estimate, note that for real valued random variables X,Y we
have that |E[XY ] − E[X]E[Y ]| = |Cov(X,Y )| ≤

√
Var(X)Var(Y ) and for real valued random

variables X,Y, Z,W , we have the following fact, from Bohrnstedt & Goldberger (1969).

Cov(XY,WZ) = EXEWCov(Y, Z) + EY EZCov(X,W ) + EXEZCov(Y,W )+

EY EWCov(X,Z) + Cov(X,W )Cov(Y,Z) + Cov(Y,W )Cov(X,Z)

We repeatedly apply these two to upper bound the deviation between the product of the expectations
in the estimates above and the expectation of the product. It is then straightforward to see that since all
variances are O(1/d) except for those of Z−1 and Z, which are both O(1) whenever Σtrn = O(

√
d),

the estimation error is O(1/
√
d) = o(1).

So, we can conclude that each of the estimates in equations 3, 4 and 5 have error o(1). Combining
the terms together, we get from equations 3, 4 and 5 that

∥W∥2F =
c

c− 1
Tr
(
Σ2

trn(Σ
2
trn + η2trnIr)(Σtrn + η2trnIr)

−2
)
+O

(
∥Σtrn∥2

d

)
+ o(1)

=
c

c− 1
Tr(Σ2

trn(Σ
2
trn + η2trnI)

−1) +O

(
∥Σtrn∥2

d

)
+ o(1).

Theorem 7. When d > N + r and β = I , then the test error R(W,Xtst) for W =Wopt is given by

η4trn
Ntst

∥
(
Σ2

trn + η2trnI
)−1

L∥2F +
η2tst
d

c

c− 1
Tr(Σ2

trn(Σ
2
trn+η

2
trnI)

−1)+O

(
∥Σtrn∥2

d2

)
+o

(
1

d

)
.

Proof. Recall from theorem 6 that

R(W,Xtst) = E
[

1

Ntst
∥UΣtrn(P

TP )−1ZTK−1
1 Σ−1

trnL∥2F +
η2tst
d

∥W∥2F
]
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To compute the expectation of the first term, we observe that it is given by

1

Ntst
Tr(UΣtrn(P

TP )−1ZTK−1
1 Σ−1

trnLL
TΣ−1

trnK
−1
1 Z(PTP )−1ΣtrnU

T ).

We apply cyclic invariance to get that it is the same as

1

Ntst
Tr(Σ−1

trnK
−1
1 ZΣ−1

trn(Σtrn(P
TP )−1Σtrn)(Σtrn(P

TP )−1Σtrn)Σ
−1
trnZ

TK−1
1 Σ−1

trnLL
T ).

We finally use Lemmas 5, 6, and 7 to estimate it by

1

Ntst
Tr

(
Σ−2

trn

(
c

c− 1

)2(
c− 1

c

)2(
Σ−2

trn +
1

η2trn
I

)−2

Σ−2
trnLL

T

)
+ o

(
1

d

)
=
η4trn
Ntst

Tr
(
(Σ2

trn + η2trnI)
−2LLT

)
+ o

(
1

d

)
=
η4trn
Ntst

∥
(
Σ2

trn + η2trnI
)−1

L∥2F + o

(
1

d

)
Since test and train data are decoupled, we can treat LLT /Ntst as a constant as N grows, noting that
due the Σ−2

trn, the final estimate is o(1). So, repeating the deviation argument at the end of the proof
of Lemma 8 above, we then have that the deviation from this estimate is o

(
1
d

)
.

Combining this with Lemma 8, we get that

η4trn
Ntst

∥
(
Σ2

trn + η2trnI
)−1

L∥2F +
η2tst
d

c

c− 1
Tr(Σ2

trn(Σ
2
trn + η2trnI)

−1)+O

(
∥Σ2

trn∥
d2

)
+ o

(
1

d

)
.

E.1.2 THE UNDERPARAMETRIZED REGIME, d < N

We derive test error bounds for β = I in our problem setting. We also denote Wopt by W in this
subsection, for ease of notation.
Theorem 8. For rank r data and d < N − r, with c = d

N , the following is true.

1. For the β = I case, we denote the minimum norm linear denoiser Wopt by just W in this
subsection. It is given by

W = −UΣtrnH
−1
1 KTA†

trn + UΣtrnH
−1
1 ZT (QQT )−1H

2. The test error when Xtst = UL is given by

EAtrn

[
1

Ntst
∥UΣtrnH

−1
1 ZT (QQT )−1Σ−1

trnL∥2F +
η2tst
d

∥W∥2F
]
,

where Q = V T (I − A†
trnAtrn), H = V T

trnA
†
trn, K = −A†

trnUΣtrn, Z = I + V T
trnA

†
trnUΣtrn,

H1 = KTK + ZT (QQT )−1Z.

The sizes of the matrices:

1. U is d× r with UTU = Ir×r.
2. Σtrn is r × r, with rank r.
3. Atrn is d×N with rank d.

4. A†
trnAtrn is N ×N

5. H is r × d, with rank r.
6. K is N × r, with rank r.

35



Under review as a conference paper at ICLR 2024

7. Z is r × r, with rank r.
8. H1 is r × r, with rank r.
9. Atrn = ηtrnŨ Σ̃Ṽ T .

10. Ũ is d× d unitary.

11. Σ̃ is d×N .

Proof. Part 1 follows from Lemma 1. For part 2, note that the test error is given by R(W,Xtst) =

EAtrn,Atst

[
1

Ntst
∥Xtst −W (Xtst +Atst)∥2F

]
, which is the same as the following.

R(W,Xtst) =
1

Ntst
EAtrn,Atst

[
∥Xtst −WXtst∥2F

]
+

2

Ntst
EAtrn,Atst [Tr((Xtst −WXtst)Atst)

+
1

Ntst
EAtrn,Atst

[
∥WAtst∥2F

]
=

1

Ntst
EAtrn

[
∥Xtst −WXtst∥2F

]
+ 0 +

1

Ntst
EAtrn,Atst

[
Tr(WTWAtstA

T
tst)
]

=
1

Ntst
EAtrn

[
∥Xtst −WXtst∥2F

]
+ 0 +

1

Ntst
EAtrn

[
Tr(WTWEAtst

[
AtstA

T
tst

]
)
]

=
1

Ntst
EAtrn

[
∥Xtst −WXtst∥2F

]
+ 0 +

η2tstNtst

dNtst
EAtrn

[Tr(WTW )]

= EAtrn

[
1

Ntst
∥UΣtrnH

−1
1 ZT (QQT )−1Σ−1

trnL∥2F +
η2tst
d

∥W∥2F
]

We will henceforth drop the subscript Atrn in the expectation EAtrn
.

Lemma 9. When d < N − r, for Q = V T (I − A†
trnAtrn), K = −A†

trnΣtrnU , H1 = KTK +
ZT (QQT )−1Z and other notation as in previous lemmas, we have that

W = −UΣtrnH
−1
1 KTA†

trn + UΣtrnH
−1
1 ZT (QQT )−1H.

Proof. We know that W = X(X + Atrn)
†. By Corollary 2.3 of Wei (2001), setting X = −CB

with C = −UΣtrn and B = V T , we have that

(X +Atrn)
† = A†

trn −Q†H − (K +Q†Z)H−1
1 (KTA†

trn − ZT (QQT )−1H).

So, using the facts that X = UΣtrnV
T , K = −A†

trnUΣtrn, we have that

W = X(X +A†
trn)

= UΣtrnV
TA†

trn − UΣtrnQ
†H + UΣtrnV

TA†
trnUΣtrnH

−1
1 KTA†

trn

− UΣtrnV
TQ†ZH−1

1 KTA†
trn − UΣtrnV

TA†
trnUΣtrnH

−1
1 ZT (QQT )−1H

+ UΣtrnV
TQ†ZH−1

1 ZT (QQT )−1H.

Using the fact that H = V TA†
trn, we get that

W = UΣtrnH − UΣtrnQ
†H + UΣtrnHUΣtrnH

−1
1 KTA†

trn − UΣtrnV
TQ†ZH−1

1 KTA†
trn

− UΣtrnHUΣtrnH
−1
1 ZT (QQT )−1ZZ−1H + UΣtrnV

TQ†ZH−1
1 ZT (QQT )−1ZZ−1H.

Using the fact that Z = I + V TA†
trnUΣtrn = I +HUΣtrn, we get that

W = UΣtrnH − UΣtrnQ
†H + UΣtrn(Z − I)H−1

1 KTA†
trn − UΣtrnV

TQ†ZH−1
1 KTA†

trn

− UΣtrn(Z − I)H−1
1 ZT (QQT )−1ZZ−1H + UΣtrnV

TQ†ZH−1
1 ZT (QQT )−1ZZ−1H.
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Using the fact that H1 = KTK + ZT (QQT )−1Z, we get that

W = UΣtrnH − UΣtrnQ
†H + UΣtrnZH

−1
1 KTA†

trn − UΣtrnH
−1
1 KTA†

trn

− UΣtrnV
TQ†ZH−1

1 KTA†
trn − UΣtrnZH

−1
1 (H1 −KTK)Z−1H

+ UΣtrnH
−1
1 ZT (QQT )−1H + UΣtrnV

TQ†ZH−1
1 (H1 −KTK)Z−1H

= UΣtrnH − UΣtrnQ
†H + UΣtrnZH

−1
1 KTA†

trn − UΣtrnH
−1
1 KTA†

trn

− UΣtrnV
TQ†ZH−1

1 KTA†
trn − UΣtrnH + UΣtrnZH

−1
1 KTKZ−1H

+ UΣtrnH
−1
1 ZT (QQT )−1H + UΣtrnV

TQ†H − UΣtrnV
TQ†ZH−1

1 KTKZ−1H.

Cancelling terms, we get that

W = UΣtrnZH
−1
1 KTA†

trn − UΣtrnH
−1
1 KTA†

trn − UΣtrnV
TQ†ZH−1

1 KTA†
trn

+ UΣtrnZH
−1
1 KTKZ−1H + UΣtrnH

−1
1 ZT (QQT )−1H

− UΣtrnV
TQ†ZH−1

1 KTKZ−1H.

And we rearrange to get that

W = −UΣtrnH
−1
1 KTA†

trn + UΣtrnH
−1
1 ZT (QQT )−1H + UΣtrn(I − V TQ†)ZH−1

1 KTA†
trn

+ UΣtrn(I − V TQ†)ZH−1
1 KTKZ−1H

= −UΣtrnH
−1
1 KTA†

trn + UΣtrnH
−1
1 ZT (QQT )−1H,

where the last equality is because Q = V T (I −A†
trnAtrn) has full rank, so Q† = QT (QQT )−1, so

V TQ† = V T (I −A†
trnAtrn)V (V T (I −A†

trnAtrn)V )−1 = I .

Lemma 10. For d < N − r, with notation as in Lemma 9 have that

Xtst −WXtst = UΣtrnH
−1
1 ZT (QQT )−1Σ−1

trnL.

Proof. Note that

Xtst −WXtst = UL− UΣtrnH
−1
1 KTA†

trnUL− UΣtrnH
−1
1 ZT (QQT )−1HUL.

Remember that K = −AtrnUΣ, so AtrnUΣtst = −KΣ−1
trnΣtst and HUΣtst =

(HUΣ)Σ−1
trnΣtst = (Z − I)Σ−1

trnΣtst This gives us the following equality.

Xtst −WXtst = UL− UΣtrnH
−1
1 KTKΣ−1

trnL− UΣtrnH
−1
1 ZT (QQT )−1ZΣ−1

trnL

+ UΣtrnH
−1
1 ZT (QQT )−1Σ−1

trnL

= U(I − ΣtrnH
−1
1 (KTK + ZT (QQT )−1Z)Σ−1

trn +ΣtrnH
−1
1 ZT (QQT )−1Σ−1

trn)L.

Using the fact that H1 = KTK + ZT (QQT )−1Z, we get that

Xtst −WXtst = UL− UΣtrnH
−1
1 H1Σ

−1
trnL+ UΣtrnH

−1
1 ZT (QQT )−1Σ−1

trnL

= UΣtrnH
−1
1 ZT (QQT )−1Σ−1

trnL.

Lemma 11. For c < 1, we have that

E[Σ−1
trnK

TKΣ−1
trn] =

1

η2trn

c

1− c
+ o(1)

and the variance of the ijth entry is O
(

1
N

)
.

Proof. Note that KTK = ΣtrnU
T (AtrnA

T
trn)

†UΣtrn. So, (KTK)ij = σiu
T
i (AtrnA

T
trn)

†ujσj .
Using ideas from Sonthalia & Nadakuditi (2023), we see that if i ̸= j, then the expectation is 0. On
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the other hand if i = j, then using Lemma 6 from Sonthalia & Nadakuditi (2023), with p = N ,
q = d, A = 1

ηtrn
AT

trn, we get that

E[(Σ−1
trnK

TKΣ−1
trn)ii] =

1

η2trn

c

1− c
+ o(1).

The result on the expectation follows immediately from this.

For the variance, pick arbitrary i ̸= j and fix them. Consider a = Ũ∗ui and b = Ũ∗uj . They are
uniformly random orthogonal unit vectors, not necessarily independent. Now note that

(Σ−1
trn(K

TK)Σ−1
trn)ij = σiu

T
i (AtrnA

T
trn)

†ujσj

= uTi (Ũ Σ̃Σ̃∗Ũ∗)†uj

= uTi Ũ(Σ̃Σ̃∗)†Ũ∗uj

= aT (Σ̃Σ̃∗)†b

=

d∑
k=1

1

σ̃2
k

akbk.

So, we get that

E[((Σ−1
trn(K

TK)Σ−1
trn)ij)

2] = E

( d∑
k=1

1

σ̃2
k

akbk

)2


= E

[
d∑

k=1

d∑
l=1

1

σ̃2
kσ̃

2
l

akbkalbl

]

=

(
c2

(1− c)2
+ o(1)

)
E

( d∑
k=1

akbk

)2


+

(
c2

(1− c)3
− c2

(1− c)2
+ o(1)

)
E

[
d∑

k=1

a2kb
2
k

]

=

(
c2

(1− c)3
− c2

(1− c)2
+ o(1)

)
E

[
d∑

k=1

a2kb
2
k

]

=

(
c3

(1− c)3
+ o(1)

)
E

[
d∑

k=1

a2kb
2
k

]

=
c3

(1− c)3

d∑
k=1

E[a2k]E[b2k] + o

(
1

d

)
,

where the last line holds due to the following reasoning, even though a and b are not independent.
We then use the fact that

E[a2kb2k]− E[a2k]E[b2k] ≤
√

Var(a2k)Var(b
2
k)

and Lemma 13 of Sonthalia & Nadakuditi (2023), to get that

Var

(
d∑

k=1

a2k

)
= O

(
1

d

)
.

So, by symmetry of coordinates,

Var(a2k) = O

(
1

d2

)
.

The same holds for bk, giving us that∣∣E[a2kb2k]− E[a2k]E[b2k]
∣∣ ≤ O

(
1

d2

)
.
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This gives us that

Var
(
(Σ−1

trn(K
TK)Σ−1

trn)
2
ij

)
=

c3

d(1− c)3
+ o

(
1

d

)
i ̸= j.

For i = j, we use Sonthalia & Nadakuditi (2023) to see that the variance is O
(
1
d

)
= O

(
1
N

)
since

d = cN .

Lemma 12. For c < 1, we have that

E[Σ−1
trnK

TA†
trn(A

†
trn)

TKΣ−1
trn] =

1

η2trn

c2

(1− c)3
+ o(1)

and the variance of the ijth entry is O
(

1
N

)
.

Proof. Let M := Σ−1
trnK

TA†
trn(A

†
trn)

TKΣ−1
trn and note that

Σ−1
trnK

TA†
trn(A

†
trn)

TKΣ−1
trn = ΣtrnU

T (AtrnA
T
trn)

†(AtrnA
T
trn)

†UΣtrn.

So,
Mij = σiu

T
i (AtrnA

T
trn)

†(AtrnA
T
trn)

†ujσj .

Using ideas from Sonthalia & Nadakuditi (2023), we see that if i ̸= j, then the expectation is 0. On
the other hand if i = j, then using Lemma 6 from Sonthalia & Nadakuditi (2023), with p = N ,
q = d, we get that

E[Mii] =
σ2
i

η2trn

c2

(1− c)3
+ o(1).

For the variance, pick arbitrary i ̸= j and fix them. Consider a = Ũ∗ui and b = Ũ∗uj . They are
uniformly random orthogonal unit vectors, not necessarily independent. Now note that

Mij = uTi (AtrnA
T
trn)

†(AtrnA
T
trn)

†uj

= uTi (Ũ Σ̃Σ̃∗Σ̃Σ̃∗Ũ∗)†uj

= uTi Ũ(Σ̃Σ̃∗Σ̃Σ̃∗)†Ũ∗uj

= aT (Σ̃Σ̃∗Σ̃Σ̃∗)†b

=

d∑
k=1

1

σ̃4
k

akbk.

So, we get that

E[M2
ij ] = E

( d∑
k=1

1

σ̃4
k

akbk

)2


= E

[
d∑

k=1

d∑
l=1

1

σ4
kσ

4
l

akbkalbl

]

=

(
c4(c2 + 22/6c+ 1)

(1− c)7
+ o(1)

)
E

( d∑
k=1

akbk

)2
+ (χ(c) + o(1))E

[
d∑

k=1

a2kb
2
k

]

= (χ(c) + o(1))E

[
d∑

k=1

a2kb
2
k

]

= (χ(c) + o(1))E

[
d∑

k=1

a2kb
2
k

]

= χ(c)

d∑
k=1

E[a2k]E[b2k] + o

(
1

d

)
,

39



Under review as a conference paper at ICLR 2024

where the last line holds due to the argument in the proof of Lemma 11. Here χ(c) is some function of
c. This gives us that Var[Mij ] =

1
dχ(c)+ o

(
1
d

)
for i ̸= j. For i = j, we use Sonthalia & Nadakuditi

(2023) to see that the variance is O
(
1
d

)
.

Lemma 13. For c < 1, we have that E[QQT ] = (1− c)Ir and the variance of each entry is O
(
1
d

)
.

Further,

E[(QQT )−1] =
1

1− c
Ir +O

(
1

d

)
.

and each element has variance O(1/d)

Proof. Recall that Q = V T (I −AtrnA
†
trn). We thus have that

PTP = V T (I −A†
trnAtrn)V.

= V TV − V TA†
trnAtrnV

= Ir − V T Ṽ Σ̃†Σ̃Ṽ TV

= Ir −R

[
Id 0
0 0N−d

]
RT .

Where R is a uniformly random r ×N unitary matrix. Then by symmetry (of the sign of rows of R),
we have that

E[QQT ] = Ir − cIr = (1− c) Ir.

Next notice that
E[QQT ] = V T (I − E[A†

trnAtrn])V,

thus to compute the variance, we first compute the variance of (A†
trnAtrn)ij . For this, we first note

that [
cId 0
0 0

]
= E[A†

trnAtrn] = E[A†
trnAtrnA

†
trnAtrn].

Since A†
trnAtrn is symmetric, we can see that

d∑
k

((A†
trnAtrn)ik)

2 =

{
c i ≤ d

0 i > d
.

From Lemma 15 in Sonthalia & Nadakuditi (2023), we have that E[((A†
trnAtrn)ii)

2] = c2+ 2c
N +o(1).

Then combining this with the computation above and using symmetry, we have that for i ̸= j and
min(i, j) ≤ d

E[(A†
trnAtrn)

2
ij ] =

1

d− 1

(
1

c
− 1

c2
+

3

cd
+ o(1)

)
.

Now consider the other (full) SVD of Xtrn given by Ûd×dΣ̂d×N V̂
T
N×N . Note that the top left

r × r block of Σ̂ is Σtrn, and the first r rows of V̂ give V . Note that since V̂ T Ṽ is still uni-
formly random, the variance argument above follows for V̂ TA†

trnAtrnV̂ . Additionally, for i, j ≤ r,
(V̂ TA†

trnAtrnV̂ )ij = (V TA†
trnAtrnV )ij Thus, we see that for i, j ≤ r,

E[((V TA†
trnAtrnV )ij)

2] =
1

d− 1

(
c− c2 +

2

cd
+ o(1)

)
.

Thus, finally, we have that arranged as a matrix

E[QQT ⊙QQT ] = O

(
1

d

)
.

By an analogous symmetry argument, we can show that

Var
(
(V TA†

trnAtrnV )2ij

)
= O

(
1

d

)
.
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In principle, one can get a faster decay bound with a more sophisticated argument, but this is sufficient
for our purposes. Now, by Lemma 4, we get that

E[(QQT )−1] =
1

1− c
Ir +O

(
1

d

)
.

and each element has variance O(1/d).

Lemma 14. For c < 1,

E
[
Σ−1

trnH1Σ
−1
trn

]
=

1

1− c
Σ−2

trn +
1

η2trn

c

1− c
Ir + o(1)

and the variance of each element is O
(
1
d

)
. Additionally

E
[
ΣtrnH

−1
1 Σtrn

]
= (1− c)η2trn(η

2
trnΣ

−2
trn + cIr)

−1 + o(1),

and the variance of each term is O
(
1
d

)
Proof. Recall that

H1 = KTK + ZT (QQT )−1Z = KTK + ZTΣ−1
trn(Σtrn(P

TP )−1Σtrn)Σ
−1
trnZ.

Using Lemmas 6, 11 and 13 along with an argument analogous to the one in Lemma 7, we get that

E[Σ−1
trnH1Σ

−1
trn] =

1

1− c
Σ−2

trn +
1

η2trn

c

1− c
Ir +O

(
1

d

)
+ o(1)

and the variance of each element is O
(
1
d

)
.

For the inverse, we define δH1 := H1 −E[H1] and by an argument analogous to the one in the proof
of Lemma 7, we get that

E
[
ΣtrnH

−1
1 Σtrn

]
= (1− c)η2trn(η

2
trnΣ

−2
trn + cIr)

−1 + o(1)

and the variance of each term is O
(
1
d

)
.

Lemma 15. When c < 1, we have for W =Wopt that

E[∥W∥2F ] =
c2

1− c
Tr

(
Σ2

trn

(
Σ2

trn +
1

η2trn
Ir

)
(Σ2

trnc+ η2trnIr)
−2

)
+ o(1).

Proof. Again, like in Lemma 8, we first use the estimates for the expectations from the lemmas
above to get an estimate for the expectation of ∥W∥2F , and then bound the deviation from it using the
variance estimates in this section. We see that the first term in Tr(WTW ) is

Tr((A†
trn)

TK(H−1
1 )TΣ2

trnH
−1
1 KTA†

trn) = Tr(KTA†
trn(A

†
trn)

TK(H−1
1 )TΣ2

trnH
−1
1 ).

Then using Lemma 12 along with cyclic invariance of traces, we see that this is estimated by

1

η2trn

c2

(1− c)3
Tr(Σtrn(H

−1
1 )TΣ2

trnH
−1
1 Σtrn) + o(1).

Then using Lemma 14, we get that this is estimated by

η2trn
c2

(1− c)3
(1− c)2(cIr + η2trnΣ

−2
trn)

−2 + o(1)

= η2trn
c2

1− c
Tr
(
Σ4

trn(Σ
2
trnc+ η2trnIr)

−2
)
+ o(1).

The second term is

Tr(((QQT )−1)TZ(H−1
1 )TΣ2

trnH
−1
1 ZT (QQT )−1HHT ).
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We can rewrite this as

Tr(((QQT )−1)TZΣ−1
trn(Σtrn(H

−1
1 )TΣtrn)(ΣtrnH

−1
1 Σtrn)Σ

−1
trnZ

T (QQT )−1HHT ).

Using Lemmas 3 and 6, we can estimate its expectation by

1

η2trn

c2

1− c
Tr
(
((QQT )−1)TΣ−1

trn(Σtrn(H
−1
1 )TΣtrn)(ΣtrnH

−1
1 Σtrn)Σ

−1
trn(QQ

T )−1
)
+ o(1).

Then using Lemma 13 and the fact that HT
1 = H1, we get that this be further estimated by

1

η2trn

c2

(1− c)3
Tr(Σ−1

trn(Σtrn(H
−1
1 )Σtrn)

2Σ−1
trn) + o(1).

Then using Lemma 14, we can simplify this estimate to

1

η2trn

c2

(1− c)3
(1− c)2η4trn(cIr + η2trnΣ

−2
trn)

−2 + o(1)

= η2trn
c2

1− c
Tr
(
Σ2

trn(Σ
2
trnc+ η2trnIr)

−2
)
+ o(1).

The cross term in Tr(WTW ) is

−2Tr((A†
trn)

TK(H−1
1 )TΣ2

trnH
−1
1 ZT (QQT )−1H).

Here the term (after cyclically permuting) that we should focus on is

Tr(H(A†
trn)

TK) = −Tr(V T
trnA

†
trn(A

†
trn)

TA†
trnΣtrnU).

Here since Atrn = ηtrnŨ Σ̃Ṽ T and Ũ , Ṽ are independent of each other, we see that using ideas from
Lemma 8 in Sonthalia & Nadakuditi (2023) and extending them to rank r as before, the expectation
of this term is 0 with O(1/d) variance. Thus, the whole cross-term has an expectation equal to 0.

Again, to bound the deviation from this estimate, note that for real valued random variables X,Y
we have that |E[XY ]− E[X]E[Y ]| = |Cov(X,Y )| ≤

√
Var(X)Var(Y ). For real valued random

variables X,Y, Z,W , we have the following fact, from Bohrnstedt & Goldberger (1969).

Cov(XY,WZ) = EXEWCov(Y,Z) + EY EZCov(X,W ) + EXEZCov(Y,W )+

EY EWCov(X,Z) + Cov(X,W )Cov(Y, Z) + Cov(Y,W )Cov(X,Z).

We repeatedly apply these two to upper bound the deviation between the product of the expectations
in the estimates above and the expectation of the product. It is then straightforward to see that since
all variances are O(1/d), the estimation error is O(1/d) = o(1).

Finally, combining the terms, we get that

E[∥W∥2F ] =
c2

1− c
Tr

(
Σ2

trn

(
Σ2

trn +
1

η2trn
Ir

)
(Σ2

trnc+ η2trnIr)
−2

)
+ o(1).

Theorem 9. When d < N − r and β = I , then the test error R(W,Xtst) for W =Wopt is given by

η4trn
Ntst

∥
(
Σ2

trnc+ η2trnI
)−1

L∥2F

+
η2tst
d

c2

1− c
Tr

(
Σ2

trn

(
Σ2

trn +
1

η2trn
Ir

)
(Σ2

trnc+ η2trnIr)
−2

)
+ o

(
1

d

)
.

Proof. Note from theorem 8 that R(W,Xtst) = 1
Ntst

∥UΣtrnH
−1
1 ZT (QQT )−1Σ−1

trnL∥2F +
η2
tst

d ∥W∥2F .

To compute the first term, we observe that it is given by

1

Ntst
Tr(UΣtrnH

−1
1 ZT (QQT )−1Σ−1

trnLL
TΣ−1

trn(QQ
T )−1ZH−1

1 ΣtrnU
T ).
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This can be rewritten using cyclic invariance as

1

Ntst
Tr(UTUΣtrnH

−1
1 ZTΣ−1

trnΣtrn(QQ
T )−1Σ−1

trnLL
TΣ−1

trn(QQ
T )−1ΣtrnΣ

−1
trnZH

−1
1 Σtrn).

We apply Lemmas 13, 14 and 6 to get that its expectation can be estimated by

1

Ntst
Tr

((
(c− 1)η2trn(η

2
trnI + cΣ2

trn)
−1
)2( 1

1− c

)2

LLT

)
+ o(1/d)

=
η4trn
Ntst

Tr
((

Σ2
trnc+ η2trnI

)−2
LLT

)
+ o(1/d)

=
η4trn
Ntst

∥
(
Σ2

trnc+ η2trnI
)−1

L∥2F + o(1/d).

We get o
(
1
d

)
due to the Σ−2

trn term. Again, we can argue as in the proof of Lemma 15 to bound the
deviation of the true expectation from this estimate by o(1/d), noting that since train and test data
assumptions are decoupled, LLT /Ntst can be treated as constant as N grows.

Combining this with Lemma 8, we get that

η4trn
Ntst

∥
(
Σ2

trnc+ η2trnI
)−1

L∥2F

+
η2tst
d

c2

1− c
Tr

(
Σ2

trn

(
Σ2

trn +
1

η2trn
Ir

)
(Σ2

trnc+ η2trnIr)
−2

)
+ o

(
1

d

)
.

Theorem 1 (In-Subspace Test Error). Let r < |d − N |. Let the SVD of Xtrn be UΣtrnV
T
trn, let

L := UTXtst, βU := UTβ, and c := d/N . Under our setup and Assumptions 1 and 2, the test error
(Equation 1) is given by the following. If c < 1 (under-parameterized regime)

R(Wopt, UL) =
η4trn
Ntst

∥∥βT
U (Σ

2
trnc+ η2trnI)

−1L
∥∥2
F

+
η2tst
d

c2

1− c
Tr

(
βUβ

T
UΣ

2
trn

(
Σ2

trn +
1

η2trn
I

)(
Σ2

trnc+ η2trnI
)−2
)
+ o

(
1

N

)
If c > 1 (over-parameterized regime)

R(Wopt, UL) =
η4trn
Ntst

∥∥βT
U (Σ

2
trn + η2trnI)

−1L
∥∥2
F

+
η2tst
d

c

c− 1
Tr(βUβ

T
U (I + η2trnΣ

−2
trn)

−1) +O

(
∥Σtrn∥2

N2

)
+ o

(
1

N

)
Proof. The version for β = I follows immediately from Theorem 7 and Theorem 9.

We now demonstrate how the the general version is a straightforward repetition of the proofs of the
two theorems. First denote by Zopt the minimum norm solution to the denoising problem (where
β = I). Then Zopt = Xtrn(Xtrn +Atrn)

† and note that

Wopt = Ytrn(Xtrn +Atrn)
† = βTXtrn(Xtrn +Atrn)

† = βTZopt

We present the adaptation of Lemma 8, the other lemmas can be adapted accordingly.

We first use the estimates for the expectations from the lemmas to get an estimate for ∥Wopt∥2F =
∥βTZopt∥2F , and then bound the deviation from it using the variance estimates above. We begin the
calculation as

∥βTZopt∥2F = Tr(ZT
optββ

TZopt)

Using Lemma 1, we see that the trace has three terms. The first term is

Tr(HT (K−1
1 )TZ((PTP )−1)TΣT

trnU
TββTUΣtrn(P

TP )−1ZTK−1
1 H)
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Using βT
U = βT

optU Then since the trace is invariant under cyclic permutations, we get the following
term

Tr(βT
UΣtrn(P

TP )−1ZTK−1
1 HHT (K−1

1 )TZ((PTP )−1)TΣT
trnβU )

The rest of the proof for this term is the same as Lemma 8.

The second term in Tr(WTββTW ) is

−2Tr(HT (K−1
1 )TZT ((PTP )−1)TΣT

trnβUβ
T
UΣtrnZ

−1HHTZP †)

Then the rest of the proof for this term is identical to the one in the proof of Lemma 8.

Finally, the last term in Tr(WTββTW ) is

Tr((P †)TZT (K−1
1 )THHT (Z−1)TΣT

trnβUβ
T
UΣtrnZ

−1HHTK−1
1 P †)

The rest of the proof is the same again, after using the cyclic invariance of the trace.

E.2 PROOF OF COROLLARY 1, THE DISTRIBUTION SHIFT BOUND

We first prove Theorem 3, bounding the difference in generalization error in terms of the change in
the test set. Recall the theorem below.
Theorem 3 (Test Set Shift Bound). Under the assumptions of Theorem 1, consider a linear regressor
Wopt trained on training data Xtrn = UΣtrnV

T
trn with Σtrn such that σr(Xtrn) > M , and tested

on test data Xtst,1 = UL1 and Xtst,2 = UL2 with noise Atst,1, Atst,2 with the same variance
ηtst2/d. Then, the generalization errors R1 and R2 differ for c < 1 by

|R2 −R1| ≤
σ1(β)

2

Ntst

η4trnr

(σr(Xtrn)2f(c) + η2trn)
2
∥L2L

T
2 − L1L

T
1 ∥F + o

(
1

N

)
where f(c) = c for c < 1 and f(c) = 1 for c ≥ 1. We add O(∥Σtrn∥2F /N2) to the bound when
c > 1.

Proof. We will first show this for c < 1. Let Ri := R(Wopt, Xtst,i). Remember that the test error is
given by

Ri =
η4trn
Ntst

∥∥βT
U (Σ

2
trnc+ η2trnI)

−1Li

∥∥2
F

+ η2tstη
2
trn

1

d

c2

1− c
Tr

(
βUβ

T
UΣ

2
trn

(
Σ2

trn +
1

η2trn
I

)(
Σ2

trnc+ η2trnI
)−2
)
+ o

(
1

N

)
Note that the second term above has no dependence on Xtst,i, so the difference is given by

R2 −R1 =
η4trn
Ntst

(∥∥βT
U (Σ

2
trnc+ η2trnI)

−1L2

∥∥2
F
−
∥∥βT

U (Σ
2
trnc+ η2trnI)

−1L1

∥∥2
F

)
+ o

(
1

N

)
=
η4trn
Ntst

Tr
(
(Σ2

trnc+ η2trnI)
−1βUβ

T
U (Σ

2
trnc+ η2trnI)

−1(L2L
T
2 − L1L

T
1 )
)
+ o

(
1

N

)
(i)

≤ η4trn
Ntst

∥(Σ2
trnc+ η2trnI)

−1βUβ
T
U (Σ

2
trnc+ η2trnI)

−1∥F ∥(L2L
T
2 − L1L

T
1 )∥F + o

(
1

N

)
=
η4trn
Ntst

∥βUβT
U (Σ

2
trnc+ η2trnI)

−2∥F ∥(L2L
T
2 − L1L

T
1 )∥F + o

(
1

N

)
(ii)

≤ η4trn
Ntst

∥βUβT
U∥2∥(Σ2

trnc+ η2trnI)
−2∥F ∥(L2L

T
2 − L1L

T
1 )∥F + o

(
1

N

)

44



Under review as a conference paper at ICLR 2024

where (i) above is by the Cauchy-Schwarz inequality for the Frobenius norm and (ii) above holds
since ∥AB∥F ≤ ∥A∥2∥B∥F . So, for Σtrn with lower bounded diagonal entries σi > M , we have
that

|R2 −R1| ≤
η4trnr

Ntst(σr(Xtrn)2c+ η2trn)
2
∥βUβT

U∥2∥(L2L
T
2 − L1L

T
1 )∥F + o

(
1

N

)
=

η4trnr

Ntst(σr(Xtrn)2c+ η2trn)
2
∥UTββTU∥2∥(L2L

T
2 − L1L

T
1 )∥F + o

(
1

N

)
=

η4trnr

Ntst(σr(Xtrn)2c+ η2trn)
2
∥ββT ∥2∥(L2L

T
2 − L1L

T
1 )∥F + o

(
1

N

)
=
σ1(β)

2

Ntst

η4trnr

(σr(Xtrn)2c+ η2trn)
2
∥L2L

T
2 − L1L

T
1 ∥F + o

(
1

N

)

Similarly, for c > 1, we have that

|R2 −R1| ≤
σ1(β)

2

Ntst

η4trnr

(σr(Xtrn)2 + η2trn)
2
∥L2L

T
2 − L1L

T
1 ∥F +O

(
∥Σtrn∥2F
N2

)
+ o

(
1

N

)

We now prove our corollary below.

Corollary 1 (Distribution Shift Bound). Consider a linear denoiser Wopt trained on training
data Xtrn = UΣtrnV

T
trn. Let it be tested on test data Xtst,1 = UL1 and Xtst,2 = UL2

generated possibly dependently from distributions supported in the span of U with mean Uµi

and covariance ΣU,i = UΣiU
T respectively. Then, the difference in generalization errors

Gi := EXtst,i
[R(Wopt, Xtst,i)] is bounded for c < 1 by

|G2 − G1| ≤
σ1(β)

2η4trnr

(σr(Xtrn)2f(c) + η2trn)
2
∥Σ2 − Σ1 + µ2µ

T
2 − µ1µ

T
1 ∥F + o

(
1

N

)
where f(c) = c for c < 1 and f(c) = 1 otherwise. We add O(∥Σtrn∥2F /N2) when c ≥ 1.

Proof. Let L̄i := Li − [µi µi . . . µi] be the centered version of the test data matrix. In that case,
EXtst,i

[L̄i] = EXtst,i
[UT X̄tst,i] = 0 and

EXtst,i [L̄iL̄
T
i ] = EXtst,i [U

T X̄tst,iX̄
T
tst,iU ] = NtstΣi

Now note the following elementary computation.

EXtst,i
[LiL

T
i ] = EXtst,i

[(L̄i + [µi µi . . . µi])(L̄i + [µi µi . . . µi])
T ]

= EXtst,i [L̄iL̄
T
i ] + 0 + 0 +Ntstµiµ

T
i

= NtstΣtrn +Ntstµiµ
T
i

We can now follow the initial part of the proof of Theorem 3 to get the following for c < 1.

G2 − G1 =
η4trn
Ntst

Tr
(
βUβ

T
U (Σ

2
trnc+ η2trnI)

−2(EXtst,2[L2L
T
2 ]− EXtst,1[L1L

T
1 ])
)
+ o

(
1

N

)
= η4trnTr

(
βUβ

T
U (Σ

2
trnc+ η2trnI)

−2(Σ2 − Σ1 + µ2µ
T
2 − µ1µ

T
1 )
)
+ o

(
1

N

)
Now, we can follow the rest of the proof of Theorem 3 to complete the proof.
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E.3 PROOFS FOR THEOREM 4, OUT-OF-SUBSPACE GENERALIZATION

Theorem 4 (Out-of-Subspace Shift Bound). If we have the same training data and solution Wopt

assumptions as in Theorem 1. Then, for any Xtst for which there exists an L and an α > 0 such that
∥Xtst − UL∥F ≤ α, and Atst that satisfies 1,2 from Assumption 2, we have that the generalization
error R(Wopt, Xtst) satisfies

|R(Wopt, Xtst)−R(Wopt, UL)| ≤ α2σ1(Wopt + I)2.

Proof. Here we see that

∥(I −W )Xtst − (I −W )UL∥2F = ∥(I −W )(Xtst − UL)∥2F
≤ σ1(W − I)2∥Xtst − UL∥2F
= α2σ1(W − I)2

The inequality is due to Cauchy-Schwarz inequality. Then using the reverse triangle inequality, we
have that ∣∣∣∥(I −W )Xtst∥2F − ∥(I −W )UL∥2F

∣∣∣ ≤ α2σ1(W + I)2.

E.4 PROOFS FOR COROLLARY 4, GENERALIZATION ERROR

Corollary 4 (Generalization Error). Let r < |d − N |. Let the SVD of Xtrn be UΣtrnV
T
trn, let

L := UTXtst, βU := UTβ, and c := d/N . Under our setup and Assumptions 1 and 2, with
the further assumption that the columns of L are drawn IID from a distribution with mean µ and
Covariance Σ, the test error (Equation 1) is given by the following.
If c < 1 (under-parameterized regime)

EL[R(Wopt, UL)] = η4trn

∥∥∥βT
U (Σ

2
trnc+ η2trnI)

−1(Σ + µµT )1/2
∥∥∥2
F

+
η2tst
d

c2

1− c
Tr

(
βUβ

T
UΣ

2
trn

(
Σ2

trn +
1

η2trn
I

)(
Σ2

trnc+ η2trnI
)−2
)
+ o

(
1

N

)
If c > 1 (over-parameterized regime)

EL[R(Wopt, UL)] = η4trn

∥∥∥βT
U (Σ

2
trn + η2trnI)

−1(Σ + µµT )1/2
∥∥∥2
F

+
η2tst
d

c

c− 1
Tr(βUβ

T
U (I + η2trnΣ

−2
trn)

−1) +O

(
∥Σtrn∥2

N2

)
+ o

(
1

N

)

Proof. We begin by noting that the variance term is independent of Xtst. Hence we only need to
focus on the bias term. Let L̄ := L− [µ µ . . . µ] be the centered version of the test data matrix. In
that case, EXtst,i

[L̄] = EXtst,i
[UT X̄tst,i] = 0 and

EXtst,i [L̄L̄
T ] = EXtst,i

[UT X̄tst,iX̄
T
tst,iU ] = NtstΣ

Now note the following elementary computation.

EXtst,i [LL
T ] = EXtst,i [(L̄+ [µ µ . . . µ])(L̄+ [µ µ . . . µ])T ]

= EXtst,i
[L̄L̄T ] + 0 + 0 +Ntstµµ

T

= NtstΣtrn +Ntstµµ
T
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Consider the following sequence on computations about the bias term.

EXtst

[
η4trn
Ntst

∥∥βT
U (Σ

2
trnc+ η2trnI)

−1L
∥∥2
F

]
=
η4trn
Ntst

Tr
(
βT
U (Σ

2
trnc+ η2trnI)

−1EXtst
[LLT ](Σ2

trnc+ η2trnI)
−1βU

)
=
η4trn
Ntst

Tr
(
βT
U (Σ

2
trnc+ η2trnI)

−1(Σ + µµT )(Σ2
trnc+ η2trnI)

−1βU
)

=
η4trn
Ntst

∥∥∥βT
U (Σ

2
trnc+ η2trnI)

−1(Σ + µµT )1/2
∥∥∥2
F

This establishes our claim.

E.5 PROOF FOR THEOREM 2, TEST ERROR FOR W ∗

Theorem 2 (Test Error for W ∗). In the same setting as Theorem 1, we have that W ∗ =

βT
U

(
I +

η2
trn

c Σ−2
trn

)−1

UT and

R(W ∗, UL) =
η4trnN

2

Ntstd2

∥∥∥∥∥βT
U

(
Σ2

trn +
η2trnN

d
I

)−1

L

∥∥∥∥∥
2

F

+
η2tst
d
Tr

(
βUβ

T
U

(
I +

η2trnN

d
Σ−2

trn

)−2
)
.

Proof. To prove the first part of the theorem, we first note that

EAtrn

[
∥Ytrn −W (Xtrn +Atrn)∥2F

]
= ∥Ytrn −WXtrn∥2F +

η2trnN

d
∥W∥2F .

Solving this is equivalent to solving

∥ [Ytrn 0]−W [Xtrn µI] ∥2F .

where µ2 =
η2
trnN
d . We know from classical linear algebra that the solution to the above is

W ∗ =
[
βTXtrn 0

]
[Xtrn µI]

†
.

Using Lemmas 5 and 6 from Sonthalia et al. (2023), we have that if Xtrn = UΣtrnV
T
trn where U is

d by d, Σtrn is d by d and Vtrn is N × d, then

[Xtrn µI] = U



√
σ1(Xtrn)2 + µ2 0 · · · 0

0
. . . 0

...
√
σr(Xtrn)2 + µ2

...
0 µ 0

0
. . . 0

0 0 µ


︸ ︷︷ ︸

Σ̂

[
VtrnΣtrnΣ̂

−1

µU Σ̂−1

]T
.

Thus, we have that

W ∗ =
[
βTUΣtrnV

T
trn 0

] [VtrnΣtrnΣ̂
−1

µU Σ̂−1

]


1√
σ1(Xtrn)2+µ2

0 · · · 0

0
. . . 0

... 1√
σr(Xtrn)2+µ2

...

0 1
µ 0

0
. . . 0

0 0 1
µ


UT .
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Simplifying, we get

W ∗ = βT
UΣ

2
trnΣ̂

−2UT

= βT
U



σ1(Xtrn)
2

σ1(Xtrn)2+µ2 0 · · · 0

0
. . . 0

... σr(Xtrn)
2

σr(Xtrn)2+µ2

...
0 0 0

0
. . . 0

0 0 0


UT

= βT
UΣ

2
trn(Σ

2
trn + µ2I)−1UT

= βT
UΣ

2
trn

(
Σ2

trn +
η2trnN

d
I

)−1

UT

= βT
U

(
I +

η2trnN

d
Σ−2

trn

)−1

UT

Hence we have finished proving the first part.

For the second part, we note that similar to before, we need to calculate

1

Ntst
EAtst

[
∥Ytst −W ∗(Xtst +Atst)∥2F

]
=

1

Ntst
∥Ytst −W ∗Xtst∥2F +

η2tst
d

∥W ∗∥2F .

For the first term recall that Xtst = UL and Ytst = βTXtst. Hence we have that

1

Ntst
∥Ytst −W ∗Xtst∥2F =

1

Ntst

∥∥∥∥∥βT
U

(
I −

(
I +

η2trnN

d
Σ−2

trn

)−1
)
L

∥∥∥∥∥
2

F

=
1

Ntst

η4trnN
2

d2

∥∥∥∥∥βT
U

(
Σ2

trn +
η2trnN

d

)−1

L

∥∥∥∥∥
2

F

For the second term, we have that

η2tst
d

∥W ∗∥2F =
η2tst
d

Tr

(
βT
U

(
I +

η2trnN

d
Σ−2

trn

)−2

βU

)

=
η2tst
d

Tr

(
βUβ

T
U

(
I +

η2trnN

d
Σ−2

trn

)−2
)

E.6 PROOF FOR COROLLARY 2, RELATIVE EXCESS ERROR

Corollary 2 (Relative Excess Error). Let ∥Σtrn∥2F = Ω(N1/2+ϵ). As d,N → ∞ with d/N → c, the
relative excess error tends to c

1−c in the underparametrized regime. In the overparametrized regime,
when ∥Σtrn∥2F = o(N), it tends to 1

c−1 and to 1
c−1 +k for some constant k when ∥Σtrn∥2F = Θ(N).

Proof. Recall from Theorem 2 that the test error for W ∗ is given by

R(W ∗, UL) =
η4trnN

2

d2

∥∥∥∥∥βT
U

(
Σ2

trn +
η2trnN

d
I

)−1

L

∥∥∥∥∥
2

+
η2tst
d
Tr

(
βUβ

T
U

(
I +

η2trnN

d
Σ−2

trn

)−2
)

We prove this for c > 1, the proof for c < 1 is analogous and in fact simpler. Notice that when
|Σtrn∥2F = Ω(N1/2+ϵ), in both R(Wopt, Xtst) and R(W ∗, Xtst), the bias terms are O(1/d1+2ϵ)
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while the variance terms are Θ(1/d). In particular, as d,N → ∞, with d/N → c, the limit of the
excess risk is given by only considering the variance terms and the estimation errors.

lim
d,N→∞,d/N→c

R(Wopt, Xtst)−R(W ∗, Xtst)

R(W ∗, Xtst)

= lim
d,N→∞,d/N→c

η2
tst

d Tr

(
βUβ

T
U

(
I +

η2
trnN
d Σ−2

trn

)−2
)
− η2

tst

d
c

c−1 Tr(βUβ
T
U (I + η2trnΣ

−2
trn)

−1)

η2
tst

d Tr

(
βUβT

U

(
I +

η2
trnN
d Σ−2

trn

)−2
)

+ lim
d,N→∞,d/N→c

O
(

∥Σtrn∥2
F

N2

)
+ o

(
1
N

)
η2
tst

d Tr

(
βUβT

U

(
I +

η2
trnN
d Σ−2

trn

)−2
)

= lim
d,N→∞,d/N→c

Tr

(
βUβ

T
U

(
I +

η2
trn

c Σ−2
trn

)−2
)
− c

c−1 Tr(βUβ
T
U (I + η2trnΣ

−2
trn)

−1)

Tr

(
βUβT

U

(
I +

η2
trn

c Σ−2
trn

)−2
)

+ lim
d,N→∞,d/N→c

O
(

c∥Σtrn∥2
F

N

)
+ o (c)

η2tstTr

(
βUβT

U

(
I +

η2
trn

c Σ−2
trn

)−2
)

= lim
d,N→∞,d/N→c

Tr
(
βUβ

T
U

)
− c

c−1 Tr(βUβ
T
U )

Tr
(
βUβT

U

) + lim
d,N→∞,d/N→c

O
(

c∥Σtrn∥2
F

N

)
+ o(1)

η2tstTr
(
βUβT

U

)
= 1− c

c− 1
+ lim

d,N→∞,d/N→c
O

(
∥Σtrn∥2F

N

)
=

{
1

c−1 ; ∥Σtrn∥2F = o(N)
1

c−1 + k ; ∥Σtrn∥2F = Θ(N)

for some unknown problem-dependent constant k. This establishes the claim for c > 1, and the proof
for when c < 1 is analogous and in fact simpler.

E.7 PROOF FOR COROLLARY 6

Corollary 6 (IID Test Data). Let r < |d−N |. Let the SVD of Xtrn be UΣtrnV
T
trn, let L := UTXtst,

βU := UTβ, and c := d/N . Under our setup and Assumptions 1 and 2, with the further assumption
that the columns of L are drawn IID from a distribution with mean zero and Covariance Σ, the test
error (Equation 1) is given by the following.
If c < 1 (under-parameterized regime)

EL[R(Wopt, UL)] = η4trn

∥∥∥βT
U (Σ

2
trnc+ η2trnI)

−1Σ1/2
∥∥∥2
F

+
η2tst
d

c2

1− c
Tr

(
βUβ

T
UΣ

2
trn

(
Σ2

trn +
1

η2trn
I

)(
Σ2

trnc+ η2trnI
)−2
)
+ o

(
1

N

)
If c > 1 (over-parameterized regime)

EL[R(Wopt, UL)] = η4trn

∥∥∥βT
U (Σ

2
trn + η2trnI)

−1Σ1/2
∥∥∥2
F

+
η2tst
d

c

c− 1
Tr(βUβ

T
U (I + η2trnΣ

−2
trn)

−1) +O

(
∥Σtrn∥2

N2

)
+ o

(
1

N

)
Proof. Follows immediately from Corollary 4.
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E.8 PROOFS FOR THEOREM 5, IID TRAINING DATA WITH ISOTROPIC COVARIANCE

Theorem 5 (I.I.D. Training Data With Isotropic Covariance). Let c = d/N and cr = r/N . Then if
c < 1

EXtrn
[R] =

η4trn
Ntst

∥(Σ2
trnc+ η2trnI)

−1L∥2F

+ η2tst
r

d

1

1− c

(
T1(cr, η

2
trn/c) +

1

η2trn
T2(cr, η

2
trn/c)

)
+ o

(
1

N

)
and if c > 1

EXtrn
[R] =

η4trn
Ntst

∥(Σ2
trn + η2trnI)

−1L∥2F + η2tst
r

d

c

c− 1
T3(cr, η

2
trn) +O

(
1

N

)
where T1(cr, z) = T3(cr, z)− zT2(cr, z), and

T2(cr, z) =
1 + cr + zcr

2
√
(1− cr + crz)2 + 4c2rz

−1

2
, T3(cr, z) =

1

2
+
1 + zcr −

√
(1− cr + zcr)2 + 4c2rz

2cr
.

Proof. Then if Xtrn is the data matrix, the singular values squared for Xtrn are the eigenvalues of

XT
trnXtrn = ZTUTUZ = ZTZ

Then ZTZ is a N × N matrix, and due to the normalization of the variance of the entries, this
is a Wishart Matrix. Further, we know that the eigenvalue distribution can be approximated by
the Marchenko Pastur distribution with shape parameter r/N Marcenko & Pastur (1967); Götze &
Tikhomirov (2011; 2003; 2004; 2005); Bai et al. (2003).

Then we have that for the c < 1 case, we have the variance is

1

d

c

1− c

r∑
i=1

1

c2

(
σ4
i

(σ2
i + σ2

trn/c)
2
+

1

σ2
trn

σ2
i

(σ2
i + σ2

trn)
2

)
Then we simplify this as the following.

r

d

1

c(1− c)

(
E
[

σ4
i

(σ2
i + σ2

trn/c)
2

]
+

1

σ2
trn

E
[

σ2
i

(σ2
i + σ2

trn)
2

])
If λ is an eigenvalue of the training data gram matrix, then the variance term of the generalization
error has terms of the following form.

λ2

(λ+ 1/c)2
,

λ

(λ+ 1/c)2
,

λ

λ+ 1

The value of these for the Marchenko Pastur distribution can be found in Sonthalia et al. (2023).
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2
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λ
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(
E
[

λ

(λ+ η2trn)
2

])
cr = r/N

The proofs for the rest of the terms are similar.
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E.9 PROOFS FOR COROLLARY 7, IID TRAINING AND TEST DATA WITH ISOTROPIC
COVARIANCE

Corollary 7 (I.I.D. Train and Tests Data With Isotropic Covariance). Let c = d/N and cr = r/N .
Then if c < 1

EXtrn
[R] = η4trn · r · κ · T4(cr, η2trn/c)

+
r

d

1

1− c

(
T1(cr, η

2
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1
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2
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)
+ o

(
1

N

)
and if c > 1
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r
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2
trn) +O

(
1
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)
where T1(cr, z) = T3(cr, z)− zT2(cr, z), and
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1 + cr + zcr

2
√
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−1

2
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Proof. For the bias, we get
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c2
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2
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The value of these for the Marchenko Pastur distribution can be found in Sonthalia et al. (2023).
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F NUMERICAL DETAILS

In this section, we include the computational details required to reproduce the data and figures in the
paper. The code for the experiments can be found in the following anonymized repository [Link].

F.1 DATA

For our transfer learning results, we use real datasets namely CIFAR Krizhevsky (2009), STL10
Coates et al. (2011) and SVHN Netzer et al. (2011). We will mostly be working with the training and
test split of CIFAR, training split of STL10 and training split of SVHN. We will also use the test split
of STL10 for our data augmentation results, refer figure 6 and section F.5, to avoid overlaps between
training and test data.

To verify the application of our results to I.I.D. data, we generate datasets from certain distributions,
the details of which are presented in the upcoming sections.

The test data is normalized so that each coordinate has mean zero and a standard deviation of 5. This
is done before we do any other pre-processing.

F.2 COMPUTE TIME

For figures 1, 5, 8 and 7, we use the same training data from CIFAR train split. Thus, we combine
our code implementation for these figures. This saves up compute time for mean empirical error
since inversion of the matrix Xtrn +Atrn, for obtaining Wopt, occurs once for each empirical run
for all 4 figures. The code was implemented using Google Colab with A100 Nvidia GPU which took
approximately 1 hour for the 200 trials for each value of r. Since the results are computed for 4 values
of r, the entire experiment was completed within approximately 4 hours.

Figures 2 and 6 took approximately 4 hours each using A100 Nvidia GPU on Google Colab. Figures
3 and 4 were computed together in approximately 40 minutes. Figure 9 took approximately 1 hour to
compute. Figure 10 only took around 10 minutes due to less number of N values and only 50 trials.
All the above was implemented using A100 GPU on Colab. Figure 1c took approximately 4.5 hours
using T4 Nvidia GPU on Google Colab.

F.3 PRINCIPAL COMPONENT REGRESSION

We use four datasets for the set of results obtained through principal component regression namely,
CIFAR train split, CIFAR test split, STL10 dataset and SVHN dataset.

F.3.1 IN-SUBSPACE

For figure 1a, the test data lies in the same low-dimensional subspace as the training dataset. The
experimental setting is as follows.

• Training data, of order d×N , is sampled from flattened CIFAR train split such that d = 3072 and
N ranges between 1050 and 10500 with an increment of 550 for the results.

• We project our training data over the first r principal components where r refers to the rank and
varies as 25, 50, 100 and 150.

• Test datasets, of order d×Ntst, are sampled from CIFAR test split, STL10 train split and SVHN
train split where d = 3072 and Ntst = 2500.

• We also project these test datasets onto the low-dimensional subspace using the projection matrices.

• For denoising, we generate Gaussian noise matrix Atrn with norm
√
N for the training data and

Atst with norm
√
Ntst for the test datasets.

The theoretical error is calculated using the formula in Theorem 1 and the empirical error is the mean
squared error.
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F.3.2 OUT-OF-SUBSPACE

Next, we test our formulas for test datasets which lie outside the training distribution space.

Small α We detail the numerical setup required to generate figure 1b.

• Training data, of order d×N , is sampled from flattened CIFAR train split such that d = 3072 and
N ranges between 1050 and 10500 with an increment of 550 for the results.

• We project our training data over the first r principal components where r refers to the rank and
varies as 25, 50, 100 and 150.

• Test datasets, of order d×Ntst, are sampled from CIFAR test split, STL10 train split and SVHN
train split where d = 3072 and Ntst = 2500.

• We project these test datasets onto the low-dimensional subspace using the projection matrices.

• We add a small amount of full-dimensional Gaussian noise to the projected datasets to generate
out-of-subspace datasets with small α. Here, we consider the case where α = 0.1.

• For denoising, we generate Gaussian noise matrix Atrn with norm
√
N for the training data and

Atst with norm
√
Ntst for the test datasets.

The empirical error shown in figure 1b is the square root of the mean squared error. The theoretical
bounds on the error are calculated using Theorem 4.

Large α. For figure 7, the experimental setup is as follows.

• Training data, of order d×N , is sampled from flattened CIFAR train split such that d = 3072 and
N ranges between 1050 and 10500 with an increment of 550 for the results.

• We project our training data over the first r principal components where r refers to the rank and
varies as 25, 50, 100 and 150.

• Test datasets, of order d×Ntst, are sampled from CIFAR test split, STL10 train split and SVHN
train split where d = 3072 and Ntst = 2500.

• We do not project these test datasets onto the low-dimensional subspace. We retain their high
dimensions. The values of α for different values of r are provided in figure 7.

• For denoising, we generate Gaussian noise matrix Atrn with norm
√
N for the training data and

Atst with norm
√
Ntst for the test datasets.

F.4 LINEAR REGRESSION

To consider the linear regression case for figure 5,

• Training data, of order d×N , is sampled from flattened CIFAR train split such that d = 3072 and
N ranges between 1050 and 10500 with an increment of 550 for the results.

• We project our training data over the first r principal components where r refers to the rank and
varies as 25, 50, 100 and 150.

• Gaussian noise matrix with norm
√
N is added to the training data.

• We generate normally-distributed βopt of order d × 1 with norm 1. The learned estimator is
computed as βT = βT

optW where W is the minimum norm solution to the least squares denoising
problem. For theoretical error, we compute β̂T = βoptU .

• Test datasets, of order d×Ntst, are sampled from CIFAR test split, STL10 train split and SVHN
train split where d = 3072 and Ntst = 2500.

• We also project these test datasets onto the low-dimensional subspace using the projection matrices.

• Gaussian noise matrix with norm
√
Ntst is added to the test datasets.

• Finally, the test datasets, Xtst, are replaced with βTXtst to compute the error for the linear
regression problem.
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F.5 DATA AUGMENTATION

To emphasize the application of our results to non-I.I.D. data, we consider two cases of data augmen-
tation to our training data.

F.5.1 WITHOUT INDEPENDENCE

The experimental setting to obtain the empirical generalization error is as follows.

• We sample 1000 images from the CIFAR train split as the first batch of our training data. For
experimental results

• We augment the above batch with the same batch to vary N between 1000 and 6000 with an
increment of 1000. We project the dataset onto its first r principal components where r =
25, 50, 100 and 150.

• We add gaussian noise with norm
√
N to the training data as before. Note that the noise on

augmented batches would be independent of the noise in the original batch. This is the only
assumption required for our result.

• Test datasets, of order d×Ntst, sampled from CIFAR test split, STL10 train split and SVHN train
split where d = 3072 and Ntst = 2500 are also projected onto the low-dimensional subspace.

We calculate the theoretical generalization error for more values of c to obtain smoother curves. Note
that the left singular vectors i.e., the columns of matrix U , do not change when we augment our
training batches. We utilize this to speed-up our computation for theoretical curves.

• We sample 1000 images from the CIFAR train split as the first batch of our training data.

• We obtain the projection matrix P = UUT and the matrix L = UTXtst from the SVD of the first
batch itself.

• The generalization error is computed from the formula in Theorem 1 for values of N between 1000
and 6000 with an increment of 50.

• We scale the singular values by a factor of N/1000 to account for the augmenting.

F.5.2 WITHOUT IDENTICALITY

To generate figure 6,

• We use training data, of order d×N , such that d = 3072 and N ranges between 1050 and 10500
with an increment of 550 for the results.

• We use N/2 images from the CIFAR training split and N/2 images from the STL10 training split
concatenated together for our training data.

• We project our training data over the first r principal components where r refers to the rank and
varies as 25, 50, 100 and 150.

• Test datasets, of order d×Ntst, are sampled from CIFAR test split, STL10 test split and SVHN
train split where d = 3072 and Ntst = 2500. This is done to avoid any overlaps between training
and test data.

• We also project these test datasets onto the low-dimensional subspace using the projection matrices.

• For denoising, we generate Gaussian noise matrix Atrn with norm
√
N for the training data and

Atst with norm
√
Ntst for the test datasets.

F.6 I.I.D. DATA

We also perform experiments to verify our results in cases where training and test datasets are I.I.D.
The numerical details for those experiments are presented in this section.
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F.6.1 I.I.D. TEST DATA

To generate figure 8,

• Training data, of order d×N , is sampled from flattened CIFAR train split such that d = 3072 and
N ranges between 1050 and 10500 with an increment of 550 for the results.

• We project our training data over the first r principal components where r refers to the rank and
varies as 25, 50, 100 and 150.

• We generate L from Gaussian distribution of norm
√
Ntst where Ntst = 2500.

• We obtain our I.I.D. test data of order d×Ntst as Xtst = UL where U contains the left singular
vectors of the projected training data.

• For denoising, we generate Gaussian noise matrix Atrn with norm
√
N for the training data and

Atst with norm
√
Ntst for the test datasets.

F.6.2 I.I.D. TRAIN DATA

To generate figure 9,

• We generate the left singular matrix U from the SVD of a Gaussian matrix of order d× r where
M = 3072 and r = 50.

• We generate the training matrix Xtrn = UZ where Z is of order r ×N such that each column is
normally distributed with mean 0 and variance 1/r.

• Here, N varies from 1050 to 10500 with an increment of 550.

• Test datasets, of order d×Ntst, are sampled from CIFAR test split, STL10 train split and SVHN
train split where d = 3072 and Ntst = 2500.

• We also project these test datasets onto the r-dimensional subspace using projection matrices.

• For denoising, we generate Gaussian noise matrix Atrn with norm
√
N for the training data and

Atst with norm
√
Ntst for the test datasets.

F.6.3 I.I.D TRAIN AND TEST DATA

To generate figure 10,

• We generate the left singular matrix U from the SVD of a Gaussian matrix of order d× r where
M = 3072 and r = 50.

• We generate the training matrix Xtrn = UZ where Z is of order r ×N such that each column is
normally distributed with mean 0 and variance 1/r.

• Here, N varies from 500 to 6010 with an increment of 550 for the empirical markers and with an
increment of 55 for theoretical values on the solid curve.

• We generate L from Gaussian distribution of norm
√
Ntst where Ntst = 5000.

• We obtain our I.I.D. test data of order d×Ntst as Xtst = UL where U contains the left singular
vectors of the projected training data.

• For denoising, we generate Gaussian noise matrix Atrn with norm
√
N for the training data and

Atst with norm
√
Ntst for the test datasets.

F.7 FULL DIMENSIONAL DENOISING

To generate figure 1c,

• Training data, of order d×N , is sampled from flattened CIFAR train split such that d = 3072 and
N ranges between 1050 and 10500 with an increment of 550 for the results.

• We project our training data over the first r principal components where r is the minimum of d and
N . This implies that the data is full dimensional.
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• Test datasets, of order d×Ntst, are sampled from CIFAR test split, STL10 train split and SVHN
train split where d = 3072 and Ntst = 2500.

• We also project these test datasets onto the low-dimensional subspace using the projection matrices.

• For denoising, we generate Gaussian noise matrix Atrn with norm
√
N for the training data and

Atst with norm
√
Ntst for the test datasets.

F.8 OPTIMAL ηtrn

To generate figures 3 and 4,

• Training data, of order d×N , is sampled from flattened CIFAR train split such that d = 3072 and
N ranges between 500 and 5500 as {500, 750, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2600,
2700, 2800, 2900, 3000, 3020, 3130, 3200, 3300, 3400, 3500, 3750, 4000, 4250, 4500, 4750, 5000,
5250, 5500}.

• We project our training data over the first r principal components where r = 50.
• Test datasets, of order d×Ntst, are the training dataset with new noise and sampled from CIFAR

test split, STL10 train split and SVHN train split where d = 3072 and Ntst = N .
• We compute generalization error for 2000 ηtrn values ranging from 1/3.5 to 100 for each N from

our formula in Theorem 1.
• We report the optimal ηtrn found to minimise the generalization error in figure 3 and the optimal

generalization error in figure 4.
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