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Abstract

Proprietary LMs such as GPT-4 are often em-001
ployed to assess the quality of responses from002
various LMs. However, concerns including003
transparency, controllability, and affordability004
strongly motivate the development of open-005
source LMs specialized in evaluations. On the006
other hand, existing open evaluator LMs ex-007
hibit critical shortcomings: 1) they issue scores008
that significantly diverge from those assigned009
by humans, and 2) they lack the flexibility to010
perform both direct assessment and pairwise011
ranking, the two most prevalent forms of as-012
sessment. Additionally, they often do not pos-013
sess the ability to evaluate based on custom014
evaluation criteria, focusing instead on gen-015
eral attributes like helpfulness and harmless-016
ness. To address these issues, we introduce017
Prometheus 2. Prometheus 2 is more powerful018
than its predecessor, and closely mirrors hu-019
man and GPT-4 judgements. Moreover, it is020
capable of processing both direct assessment021
and pair-wise ranking formats grouped with a022
user-defined evaluation criteria. On four direct023
assessment benchmarks and four pairwise rank-024
ing benchmarks, PROMETHEUS 2 scores the025
highest correlation and agreement with humans026
and proprietary LM judges among all tested027
open evaluator LMs. Our models, code, and028
data are all publicly available. 1029

1 Introduction030

Evaluating the quality of outputs produced by lan-031

guage models (LMs) is progressively becoming032

difficult, as the outputs cover an extremely di-033

verse distribution of text and complex tasks. To034

address this issue, language model-based evalua-035

tion has emerged as a scalable and cheap paradigm036

for assessing LM-generated text (Li et al., 2024;037

Gao et al., 2024). In this paradigm, LMs are ei-038

ther prompted to output a scalar indicator of qual-039

1https://anonymous.4open.science/r/anon-prometheus-
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Figure 1: Weak evaluators (e.g., Llama-2-Chat-70B,
Prometheus, and GPT-3.5-Turbo) achieve low scoring
correlation with strong evaluators (e.g., Humans, GPT-4,
and Claude-3-Opus). On the other hand, scores provided
by strong evaluators highly correlate with each other.

ity (denoted as direct assessment) (Zheng et al., 040

2023; Liu et al., 2023b; Ye et al., 2023; Kim et al., 041

2023) or to determine which of two outputs are pre- 042

ferred (denoted as pairwise ranking) (Wang et al., 043

2023b; Li et al., 2023b; Lambert et al., 2024). Prior 044

works employing proprietary LMs as evaluators 045

have demonstrated not only high correlations with 046

human evaluations but also increased speed and 047

cost-effectiveness (Zheng et al., 2023; Liu et al., 048

2023b; Dubois et al., 2023; Ye et al., 2023). 049

However, relying on proprietary LMs for evalua- 050

tion poses significant challenges. The lack of trans- 051

parency about their training data compromises both 052

fairness and reproducibility, making it problematic 053

to use them in evaluation pipelines. Additionally, 054

concerns regarding controllability and affordability 055

also persist (Kim et al., 2023). To address these 056

issues, recent works have focused on developing 057

evaluator LMs that are open-access, transparent, 058

and controllable (Kim et al., 2023; Wang et al., 059

2023a,b; Li et al., 2023a; Zhu et al., 2023; Jiang 060

et al., 2023b,c; Lee et al., 2024). Yet, these models 061

often yield scoring decisions that do not correlate 062

well enough with human judgments or those made 063

by proprietary LMs, failing to effectively simu- 064

late them. Moreover, open evaluator LMs are not 065
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flexible since they are typically trained only to per-066

form either direct assessment or pairwise ranking067

and assess based on general public preferences like068

helpfulness and harmlessness, limiting their ability069

to handle diverse real-life scenarios.070

To close the gap with proprietary LMs, we in-071

vestigate unifying the two model-based evaluation072

paradigms - direct assessment and pairwise ranking073

- to train a robust unified evaluator LM. We propose074

a recipe based on merging the weights of two eval-075

uator LMs trained separately on direct assessment076

and pairwise ranking formats. Our key empirical077

observation is that weight merging can yield an078

evaluator LM that not only works in both formats,079

but also outperforms evaluator LMs that are jointly080

trained or only trained on a single format.081

To demonstrate our approach, we develop the082

PREFERENCE COLLECTION, a new fine-grained083

pairwise ranking feedback dataset that builds on084

the FEEDBACK COLLECTION (Kim et al., 2023),085

which is a direct assessment feedback dataset. We086

choose Mistral-7B (Jiang et al., 2023a) and Mixtral-087

8x7B (Jiang et al., 2024) as our base models, and088

merge the weights of evaluator LMs separately089

trained on the FEEDBACK COLLECTION and the090

PREFERENCE COLLECTION to obtain our resulting091

models, PROMETHEUS 2 (7B & 8x7B).092

On four direct assessment benchmarks (Vicuna093

Bench, MT Bench, FLASK, Feedback Bench), the094

PROMETHEUS 2 models demonstrate the highest095

correlation with both human evaluators and pro-096

prietary LM-based judges compared to existing097

open evaluator LMs, with the Pearson correla-098

tion surpassing other baselines by 0.2 units across099

all datasets. Similarly, on four pairwise ranking100

benchmarks (HHH Alignment, MT Bench Human101

Judgment, Auto-J Eval, Preference Bench), the102

PROMETHEUS 2 models show the highest agree-103

ment with human evaluators among all the open104

evaluator LMs we tested, reducing the performance105

gap with GPT-4 in half.106

Our contributions are summarized as follows:107

• We introduce PROMETHEUS 2 (7B & 8x7B),108

state-of-the-art open evaluator LMs that score109

high correlations with both human evaluators110

and proprietary LM-based judges on both di-111

rect assessment and pairwise ranking.112

• We introduce a pairwise ranking feedback113

dataset called the PREFERENCE COLLEC-114

TION, which includes 1K custom evaluation115

criteria beyond helpfulness and harmlessness.116

• We show that merging the weights of evaluator 117

LMs trained on direct assessment and pairwise 118

ranking feedback datasets results in a unified 119

evaluator LM that excels in both schemes. 120

2 Related Work 121

2.1 Language Model-based Evaluation 122

To assess the generation capabilities of LMs, prior 123

works such as the GEM benchmark (Gehrmann 124

et al., 2021, 2022) employed ROUGE (Lin, 125

2004), BLEU (Papineni et al., 2002), and 126

BERTScore (Zhang et al., 2019) as their metrics, 127

which measure the lexical or semantic similarity 128

between a reference answer and a response. How- 129

ever, these conventional metrics are prone to false 130

negatives because they are not expressive enough 131

to recognize responses that are of good quality but 132

differ from the reference answer (Schluter, 2017; 133

Freitag et al., 2020; Hanna and Bojar, 2021). 134

Recently, employing language models as a judge 135

has gained attention as a promising paradigm to 136

mimic the depth and granularity that human evalu- 137

ation offers (Zheng et al., 2023; Liu et al., 2023b; 138

Li et al., 2023b; Chan et al., 2023; Ye et al., 2023). 139

To reduce the over-reliance on proprietary LMs, 140

follow-up works suggest training language models 141

specialized in evaluations (Cui et al., 2023; Kim 142

et al., 2023; Jiang et al., 2023b,c; Li et al., 2023a; 143

Lee et al., 2024). Yet, open evaluator LMs do 144

not possess the flexibility to function in different 145

evaluation schemes and show weak evaluation per- 146

formance compared to proprietary LMs. We aim 147

to bridge this gap by introducing PROMETHEUS 2. 148

2.2 Weight Merging 149

Prior works have demonstrated that weight merg- 150

ing can enhance performance across various do- 151

mains, including language modeling (Li et al., 152

2022; Matena and Raffel, 2022; Ilharco et al., 153

2022; Don-Yehiya et al., 2022; Gururangan et al., 154

2023; Yadav et al., 2024; Sukhbaatar et al., 2024), 155

instruction-tuning (Jang et al., 2023b; Yu et al., 156

2023), and aligning to user preferences (Jang et al., 157

2023a; Rame et al., 2024; Wang et al., 2024). In 158

our work, we specifically focus on enhancing the 159

evaluation capabilities of open evaluator LMs. By 160

merging models trained on different assessment for- 161

mats—specifically, direct assessment and pairwise 162

ranking—we aim to obtain an evaluator LM that 163

not only functions in both formats but also shows as 164

good evaluation performances as proprietary LMs. 165
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Does the response accurately employ 

specific industry terminologies and jargon?

Pairwise Ranking

+

Both responses attempt to convey the fundamental concept of containerization, 
but with varying degrees of clarity and technical detail. Response A approaches 
the concept by using the metaphor of 'putting things in a box,' which, while easy 

to understand, lacks precision and industry-specific [...] 



On the other hand, Response B employs technical jargon more effectively, 

such as 'packaging,' 'configuration files,' 'libraries,' and 'dependencies.'



It can be concluded that Response B is better than Response A.

A B

B

Verbal Feedback

Scoring Decision

vs Does the response use simple language and 

explanations that are easy to understand for a beginner?

Direct Assessment

+

The response effectively uses simple and accessible language to explain 
containerization and Docker, which is great for beginners. The analogy of putting 

things in a box is particularly helpful as it visually illustrates the concept of [...]



However, the response could be improved by briefly mentioning why 
containerization is significant, such as its benefits in ensuring that software runs 

consistently across different computing environments. It loses a point for not fully 
addressing the significance of containerization in the broader context of software 

development, which could provide valuable insight for the reader.

Verbal Feedback

Scoring Decision

Response

A

Instruction

What is the meaning and significance of 'Containerization' in software development, and what role does Docker play in it?

Containerization in software is similar to putting items in 
a box. It involves packaging your software and all its 

components into a container. Docker is a tool that 
facilitates this process. It helps to encapsulate the 

software into containers and simplifies their use. [...]

Containerization in software development refers to the 
process of packaging up an application along with all its 
related configuration files, libraries, and dependencies 

required to run, into a standalone unit or a ‘container’. [...]

Response

B

Evaluation Criteria

A

Figure 2: Comparison of direct assessment and pairwise ranking. Both responses could be considered decent under
the umbrella of ‘helpfulness’. However, the scoring decision might change based on a specific evaluation criterion.

3 Methodology166

We propose a new recipe for training a unified167

evaluator LM based on merging the weights of168

models trained for direct assessment and pairwise169

ranking. We begin with background on direct as-170

sessment and pairwise ranking for evaluator LMs171

(Section 3.1, 3.2), followed by the construction pro-172

cess of our training data (Section 3.3). Finally, we173

present our methods to train state-of-the-art evalua-174

tor LMs, Prometheus 2 models (Section 3.4).175

3.1 Direct Assessment176

Direct assessment is mapping an instruction i and177

response r into a scalar value score s, such as178

fdirect : (i, r) 7→ s where s ∈ R. For the scor-179

ing range, we use an integer between 1 and 5.180

Prior works have identified several recipes to181

align the scores provided by evaluator LMs (sLM )182

and the scores assigned by humans (shuman). For183

instance, Liu et al. (2023a) and Zheng et al. (2023)184

have shown that it is crucial to add a reference an-185

swer a as input to the evaluator LM to maximize186

the correlation between sLM and shuman. Also,187

Zheng et al. (2023) and Ye et al. (2023) showed188

that prompting the language model to write verbal189

feedback vr before s also improves the correlation190

between sLM and shuman. Lastly, Ye et al. (2023)191

and Kim et al. (2023) showed that by explicitly192

integrating evaluation criteria e, users can define193

the standards for model assessment, ensuring eval-194

uations are flexible to specific needs rather than 195

generic qualities. Specifically, e is represented as 196

a score rubric including a description for the crite- 197

rion itself and a set of descriptions for each score 198

between the scoring range. This is expressed as: 199

fdirect : (i, r, a, e) 7→ (vr, s)

where s ∈ {1, 2, 3, 4, 5}
(1) 200

3.2 Pairwise Ranking 201

Pairwise ranking is mapping an instruction i and 202

two pair of responses (rm, rn) into either i or j, 203

such as fpair : (i, rm, rn) 7→ s where s ∈ {m,n}. 204

Similar to direct assessment, prior works have 205

identified that integrating a reference answer a and 206

verbal feedback vrm,rn into the evaluation pipeline 207

is crucial (Zheng et al., 2023; Li et al., 2023b,a). 208

In addition, to support granular assessment under 209

custom criterion, we add the evaluation criteria e 210

as input to the evaluator LM (Ye et al., 2023; Kim 211

et al., 2023). To the best of our knowledge, we are 212

the first to study such fine-grained evaluation in 213

pairwise ranking settings. This is expressed as: 214

fpair : (i, rm, rn, a, e) 7→ (vrm,rn , s)

where s ∈ {m,n}
(2) 215

In pairwise ranking, the evaluation criterion e 216

does not include a set of descriptions for each score; 217

instead, only the description of the evaluation cri- 218

terion itself. Also, it is noteworthy that the verbal 219

feedback vrm,rn compares the commonalities and 220

differences between rm and rn concerning e. 221
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Data
PREFERENCE FEEDBACK

COLLECTION COLLECTION

Evaluation Scheme Pairwise Ranking Direct Assessment
# Evaluation Criteria 1,000 1,000

# Instructions 20,000 20,000
# Reference Answer 20,000 20,000

# Instances 200,000 100,000
#Verbal Feedback 200,000 100,000

Table 1: Statistics of our training datasets, the FEED-
BACK COLLECTION and the PREFERENCE COLLEC-
TION. Note that the 1K evaluation criteria, 20K instruc-
tions, and 20K reference answers are shared among the
two datasets. Both datasets have an equal number of
scoring decisions (“A” or “B”; 100K each & 1-5; 20K
each) to prevent unintended biases after training.

3.3 The Preference Collection222

Popular pairwise ranking datasets such as HH-223

RLHF (Bai et al., 2022) or Ultra Feedback (Cui224

et al., 2023) do not include an evaluation criterion225

e and a verbal feedback vrm,rn . To train an evalu-226

ator LM that could assess based on such criteria,227

we construct the PREFERENCE COLLECTION, in-228

cluding 1K evaluation criteria. We apply two mod-229

ifications to the FEEDBACK COLLECTION. First,230

since the FEEDBACK COLLECTION includes five231

responses for each instruction, each corresponding232

to a scoring decision between 1 and 5, we pair two233

out of the five responses, resulting in a total of ten234

combinations per instruction. Using the existing235

scoring decisions for each response, we determine236

which response is better and assign a new scoring237

decision for that pair (i.e., “Response A is better” or238

“Response B is better”). Second, to generate new239

verbal feedback vrm,rn for each pair of responses,240

we prompt GPT-4-1106 to identify the commonali-241

ties and differences between the two responses.242

The statistics of the resulting dataset are listed in243

Table 1 along with the FEEDBACK COLLECTION.244

We explain about our quality verification process245

of the PREFERENCE COLLECTION in Appendix A.246

Also, we include the prompts we use for the aug-247

mentation process in Appendix H.248

3.4 Training Methods & Baselines249

Prompting Prompting involves querying an LM250

to make judgments in a specified evaluation for-251

mat without training. We employ Llama-2-Chat-252

7,13,70B (Touvron et al., 2023); Mistral-7B-253

Instruct-v0.2 (Jiang et al., 2023a); and Mixtral-254

8x7B-Instruct-v0.1 (Jiang et al., 2024) as our base-255

lines. It’s worth noting that models not explicitly256

trained on feedback data often fail to generate re- 257

sponses in the required format, making it extremely 258

difficult to parse scoring decisions. Although it is 259

impractical for regular use, we make a fair compari- 260

son by infinitely looping until scores can be parsed. 261

Also, we include proprietary LMs such as GPT-3.5- 262

Turbo-0613; GPT-4-1106; and Claude-3-Opus. 263

Single-Format Training Single-Format training 264

involves training a base model θ on either on a 265

direct assessment feedback dataset Dd or a pair- 266

wise ranking feedback dataset Dp. For single- 267

format trained evaluator LMs, we test Prometheus- 268

7,13B (Kim et al., 2023) (direct assessment); 269

UltraRM-13B (Cui et al., 2023) (pairwise rank- 270

ing); and PairRM-0.4B (Jiang et al., 2023c) (pair- 271

wise ranking). In addition, we also report the per- 272

formances of single-format training Mistral-7B- 273

Instruct-v0.2 and Mixtral-8x7B-Instruct-v0.1 on 274

either direct assessment or pairwise ranking. 275

Joint Training Joint training involves training a 276

base model θ on both a direct assessment feedback 277

dataset Dd and a pairwise ranking feedback dataset 278

Dp. This enables the resulting evaluator LM to 279

function across both evaluation formats. For jointly 280

trained evaluator LMs, we test Auto-J (Li et al., 281

2023a). In addition, we report the performances 282

of jointly training Mistral-7B and Mixtral-8x7B on 283

both direct assessment and pairwise ranking. 284

Weight Merging Weight Merging involves train- 285

ing two models, θd and θp, separately on a direct 286

assessment feedback dataset Dd and a pairwise 287

ranking feedback dataset Dp. Then, the final eval- 288

uator LM θfinal is obtained by merging θd and θp. 289

For example, linear merging is as follows: 290

θfinal = α× θd + (1− α)× θp (3) 291

In addition to linear merging, we test 5 additional 292

variants, namely Task Arithmetic merging (Ilharco 293

et al., 2022), TIES merging (Yadav et al., 2024), 294

DARE-TIES and DARE-Linear merging (Yu et al., 295

2023), and SLERP merging (Goddard et al., 2024). 296

We include an explanation of these merging meth- 297

ods and ablation experiment results of the perfor- 298

mance differences in Appendix G. Among them, 299

DARE-Linear showed the best performance, and 300

hence we used it to train the PROMETHEUS 2 (7B 301

& 8x7B) models. Details on the hyper-parameters 302

for training and inference along with the prompt 303

templates are all listed in Appendix B, I, J. 304
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Evaluation Method Benchmark Metrics Judgment Source Reference Answer # Score Rubrics # Instructions # Judgments

Direct Assessment

Vicuna Bench Correlation Proprietary LMs Y 80 80 320
MT Bench Correlation Proprietary LMs Y 80 80 320

FLASK Correlation Proprietary LMs & Humans Y 12 200 2,000
Feedback Bench Correlation Proprietary LMs Y 200 200 1,000

Pairwise Ranking

HHH Align. Accuracy Humans N 4 221 221
MT Bench Human Judg. Accuracy Humans N 1 80 3,360

Auto-J Eval Accuracy Humans N 1 58 1,392
Preference Bench Accuracy Proprietary LMs Y 200 200 2,000

Table 2: Statistics of our evaluation benchmarks to assess the evaluation capabilities of evaluator LMs.

4 Experimental Setup305

The statistics of all the benchmarks are in Table 2.306

The four direct assessment benchmarks are:307

• Vicuna Bench (Chiang et al., 2023): A single-308

turn chat benchmark that includes 80 test309

prompts, 80 hand-crafted score rubrics from310

Kim et al. (2023), and 320 responses obtained311

by WizardLM-13B, Vicuna-13B, Llama-2-312

Chat-13B, GPT-3.5-Turbo-0613.313

• MT Bench (Zheng et al., 2023): A multi-314

turn chat benchmark that consists of 80 test315

prompts, 80 hand-crafted score rubrics from316

Kim et al. (2023), and 320 responses obtained317

by WizardLM-13B, Vicuna-13B, Llama-2-318

Chat-13B, GPT-3.5-Turbo-0613.319

• FLASK (Ye et al., 2023): A fine-grained320

evaluation benchmark comprised of 200 test321

prompts, 12 score rubrics, and 2000 responses322

acquired from Alpaca-7B, Vicuna-13B, Bard,323

GPT-3.5-Turbo-0613. In addition to scores324

from proprietary LMs, this benchmark also325

includes scores marked by human evaluators.326

• Feedback Bench (Kim et al., 2023): The test327

set of the FEEDBACK COLLECTION with 1K328

score rubrics, 200 instructions, and 1K re-329

sponses that do not overlap with the train data.330

The four pairwise ranking benchmarks are:331

• HHH Alignment (Askell et al., 2021): A332

benchmark consisting of 221 prompts; 4 score333

rubrics (helpfulness, harmlessness, honesty,334

and other) and 221 response pairs (graded as335

‘win’ or ‘lose’) judged by human evaluators.336

• MT Bench Human Judgment (Zheng et al.,337

2023): A benchmark that shares the same 80338

prompts as MT-Bench. In addition, it provides339

3,360 response pairs (graded as ‘win’, ‘tie’, or340

‘lose’) judged by human evaluators.341

• Auto-J Eval (Li et al., 2023a): A benchmark 342

consisted of 58 prompts and 1,392 response 343

pairs (graded as ‘win’, ‘tie’, or ‘lose’) judged 344

by human evaluators. This benchmark is used 345

as the in-domain test set of Auto-J. 346

• Preference Bench: Our in-domain test set for 347

the PROMETHEUS models. Similar to how the 348

PREFERENCE COLLECTION was made with 349

the FEEDBACK COLLECTION, we adjust the 350

FEEDBACK BENCH and pair two out of the 351

five responses, resulting in a test set with 200 352

prompts, 2,000 response pairs (graded as ‘win’ 353

or ‘lose’), and 200 evaluation criteria. 354

In direct assessment, we conduct reference- 355

based evaluations by appending the reference an- 356

swer as the input. We use Pearson, Spearman, and 357

Kendall-Tau as performance metrics to measure 358

scoring correlations against reference evaluators. 359

Moreover, we include the results of the reference- 360

free direct assessment evaluation in Appendix F. 361

In pairwise ranking, we conduct reference-free 362

evaluations. Based on judgments assigned by hu- 363

mans, we use accuracy as our metric to measure 364

agreement between evaluator LMs and humans. 365

Also, the MT Bench Human Judgment and Auto- 366

J test set includes a ‘tie’ option assessed by human 367

evaluators. We evaluate in two ways: by excluding 368

all ‘tie’ options for pairwise ranking (denoted as 369

‘w/o tie’), or by using direct assessment where re- 370

sponses scored as ‘ties’ are grouped, and pairwise 371

rankings are applied to the remaining responses 372

with differing scores (denoted as ‘w/ tie’). 373

5 Experimental Results 374

In this section, we compare the evaluation capabil- 375

ities of PROMETHEUS-2 models with other base- 376

lines using a direct assessment format (Section 5.1) 377

and a pairwise ranking format (Section 5.2). Addi- 378

tionally, we measure the consistency of the scores 379

from evaluator LMs in Appendix E. 380
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Evaluator LM
VICUNA BENCH MT BENCH FLASK Feedback Bench

GPT-4-1106 Claude-3-Opus GPT-4-1106 Claude-3-Opus GPT-4-1106 Claude-3-Opus Humans GPT-4-0613

LLAMA2-CHAT 7B 0.205 0.243 0.036 0.055 0.317 0.256 0.299 0.523

LLAMA2-CHAT 13B 0.185 0.141 -0.042 -0.002 0.239 0.247 0.263 0.545

LLAMA2-CHAT 70B 0.350 0.463 0.178 0.228 0.388 0.402 0.317 0.592

MISTRAL-INSTRUCT-7B 0.486 0.561 0.284 0.396 0.448 0.437 0.377 0.586

MIXTRAL-INSTRUCT-8X7B 0.566 0.579 0.551 0.539 0.483 0.495 0.420 0.673

PROMETHEUS-7B 0.484 0.528 0.378 0.382 0.352 0.331 0.348 0.847

PROMETHEUS-13B 0.492 0.534 0.404 0.477 0.462 0.470 0.449 0.860

AUTO-J (13B) 0.351 0.262 0.432 0.375 0.430 0.370 0.473 0.637

PROMETHEUS-2-7B 0.666 0.654 0.548 0.517 0.617 0.561 0.545 0.882

PROMETHEUS-2-8X7B 0.685 0.635 0.665 0.614 0.659 0.626 0.555 0.898

GPT-3.5-TURBO-0613 0.335 0.349 0.183 0.194 0.437 0.396 0.450 0.594

GPT-4-1106 / 0.694 / 0.717 / 0.736 0.679 0.753

CLAUDE-3-OPUS 0.694 / 0.717 / 0.736 / 0.573 0.788

Table 3: Direct Assessment Results Pearson correlations between reference evaluators (listed on top) and evaluator LMs.
The best comparable statistics are bolded and second best underlined except proprietary LMs. Spearman and Kendall-Tau
correlations are reported in Appendix C. Note that the Feedback Bench is an in-domain test set of the PROMETHEUS models.

Evaluator LM
HHH ALIGNMENT MT BENCH HUMAN JUDG. AUTO-J EVAL Preference Bench

Help. Harm. Hon. Other Total Avg. w/ TIE w/o TIE w/ TIE w/o TIE Instance-wise Criteria

LLAMA2-CHAT 7B 55.93 62.07 49.18 62.79 57.01 46.68 50.39 45.76 45.73 58.60
LLAMA2-CHAT 13B 71.19 77.59 60.66 62.79 68.33 51.22 49.61 47.84 43.28 63.00
LLAMA2-CHAT 70B 62.71 81.03 65.57 65.12 68.78 55.14 60.88 53.38 50.64 64.70
MISTRAL-INSTRUCT-7B 59.32 68.97 63.93 81.40 67.42 53.81 63.82 53.88 60.94 79.40
MIXTRAL-INSTRUCT-8X7B 83.05 87.93 67.21 69.77 77.38 51.85 71.42 53.81 73.50 84.00
PAIR RM (0.4B) 84.75 84.48 80.33 90.70 84.62 - 59.00 - 59.05 81.80
ULTRA RM (13B) 86.44 79.31 81.97 88.37 83.71 - 56.00 - 59.85 86.97
AUTO-J (13B) 77.97 79.31 70.49 74.42 75.57 42.56 69.12 43.46 76.64 81.35
PROMETHEUS-2-7B 72.78 79.31 77.05 76.74 74.66 50.45 70.78 54.96 75.07 93.25
PROMETHEUS-2-8X7B 84.75 96.55 81.97 76.74 85.52 55.07 71.96 58.41 79.98 90.65

GPT-3.5-TURBO-0613 77.97 81.03 77.05 67.44 76.47 54.65 69.41 45.98 72.13 75.05
GPT-4-1106-PREVIEW 89.83 96.55 91.80 83.72 90.95 60.38 79.90 52.80 83.12 85.50
CLAUDE-3-OPUS 91.53 100.00 91.80 95.35 94.57 55.35 77.65 60.70 82.92 89.85

Table 4: Pairwise Ranking Results Accuracy on human preference datasets. The best comparable accuracies are bolded and
second best underlined except proprietary LMs. Note that HHH Alignment is an in-domain test set for PairRM, Auto-J Eval is
an in-domain test set for Auto-J, and the Preference Bench is an in-domain test set for Prometheus-2 models.

5.1 Direct Assessment Results381

The direct assessment results are shown in Table 3.382

The scoring decisions of PROMETHEUS 2 models383

(7B & 8x7B), GPT-4-1106, Claude-3-Opus, and384

human evaluators all strongly correlate with each385

other, yielding Pearson correlations higher than 0.5386

regardless of the reference evaluator and bench-387

mark. On the other hand, base LMs, single-format388

trained LMs, and jointly trained LMs show lower389

correlations, mostly falling below 0.5.390

Notably, PROMETHEUS 2 models outperform391

Prometheus and Auto-J by at least 0.2 units392

across benchmarks in their correlation with pro-393

prietary LMs. Moreover, on the FLASK bench-394

mark, while the correlation between humans and395

GPT-4 is 0.679, the highest correlation previously396

achieved by Prometheus-13B with humans was397

0.449. PROMETHEUS-2-8X7B achieves a correla-398

tion of 0.555 with humans, halving the gap. 399

5.2 Pairwise Ranking Results 400

The pairwise ranking results are shown in Table 4. 401

We exclude the results of Pair RM and Ultra RM 402

on ‘w/ Tie’ settings since they could not process it. 403

On all of the 4 benchmarks, the PROMETHEUS 404

2 models achieve the highest scores, showing that 405

they could effectively simulate human judgments. 406

Notably, while HHH Alignment is an in-domain 407

test set for Pair RM, and Auto-J Eval is for Auto- 408

J, PROMETHEUS-2-8X7B achieves higher scores. 409

This shows that training a large LM (i.e., Mixtral- 410

8x7B) with feedback data could be an effective 411

strategy to obtain a robust evaluator LM that could 412

generalize beyond its training data. Moreover, the 413

PROMETHEUS 2 models at least halve the perfor- 414

mance gap with proprietary LMs compared to ex- 415

isting evaluator LMs on out-of-domain test sets. 416
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Training Method
DIRECT ASSESSMENT BENCHMARKS PAIRWISE RANKING BENCHMARKS

Vicuna Ben. MT Ben. FLASK Average HHH Align. MT Ben. H.J. Auto-J Eval Average

Mistral-Instruct-7B

PROMPTING 0.486 0.284 0.480 0.417 67.42 63.82 60.94 64.06
DIRECT ASSESSMENT ONLY 0.537 0.561 0.519 0.539 73.33 56.76 64.38 64.82
PAIRWISE RANKING ONLY - - - - 78.73 67.06 72.03 72.61
JOINT TRAINING 0.548 0.450 0.457 0.485 80.09 65.49 73.60 73.06
WEIGHT MERGING 0.666 0.548 0.659 0.624 74.66 70.78 75.07 73.50

Mixtral-Instruct-8x7B

PROMPTING 0.566 0.551 0.507 0.541 77.38 71.42 73.55 74.56
DIRECT ASSESSMENT ONLY 0.625 0.664 0.587 0.625 74.21 53.14 65.85 64.40
PAIRWISE RANKING ONLY - - - - 84.16 66.27 75.66 75.36
JOINT TRAINING 0.628 0.560 0.596 0.595 82.35 68.73 74.78 75.29
WEIGHT MERGING 0.685 0.665 0.659 0.670 85.52 71.96 79.98 79.15

Table 5: Single-Format Training vs Joint Training vs Weight Merging Pearson correlations between evaluator LMs trained
with different methods and GPT-4-1106. Evaluator LMs trained with weight merging outperform single-format-trained and
jointly-trained evaluator LMs across multiple benchmarks.

Training Data Evaluation Format
DIRECT ASSESSMENT BENCHMARKS PAIRWISE RANKING BENCHMARKS

Vicuna Ben. MT Ben. FLASK Average HHH Align. MT Ben. H.J. Auto-J Eval Average

NO TRAINING (PROMPTING) 0.486 0.284 0.480 0.417 67.42 63.82 60.94 64.06

DIRECT ASSESSMENT ONLY 0.537 0.561 0.519 0.539 73.33 56.76 64.38 64.82
PAIRWISE RANKING ONLY - - - - 78.73 67.06 72.03 72.61

DIRECT ASSESSMENT & DIRECT ASSESSMENT 0.552 0.493 0.505 0.517 73.30 55.00 63.69 64.13
PAIRWISE RANKING & PAIRWISE RANKING - - - - 78.70 65.20 72.72 72.21

DIRECT ASSESSMENT & PAIRWISE RANKING 0.666 0.548 0.659 0.624 74.66 70.78 75.07 73.50

Table 6: Unifying Formats vs Ensembling Pearson correlations with GPT-4-1106 (Vicuna Bench, MT Bench, FLASK) and
agreement with human evaluators (HHH Alignment, MT Bench Human Judgment, Auto-J Eval). Merging models trained with
the same evaluation formats (ensembling) underperforms merging models trained with different formats (unifying formats).

6 Analyses of Weight Merging417

To understand the effectiveness of our proposed418

weight merging method in the context of evalua-419

tions, we address the following research questions:420

• RQ1: Is weight merging more effective com-421

pared to joint training? (Section 6.1)422

• RQ2: Is the effectiveness of weight merging423

due to model ensembling? (Section 6.2)424

• RQ3: To what extent does learning with di-425

rect assessment help pairwise ranking perfor-426

mance, and vice versa? (Section 6.3)427

6.1 Weight Merging vs Joint Training428

Table 5 compares the performance of evaluator429

LMs trained via weight merging and joint training.430

Alongside this, we also add and compare the results431

of prompting and single-format training.432

Surprisingly, evaluator LMs trained via joint433

training often show lower performance compared434

to those trained only in single-format, which indi- 435

cates negative task transfer. Specifically, evaluator 436

LMs trained only on direct assessment formats ob- 437

tain higher correlations compared to their jointly 438

trained counterparts across different model scales. 439

Similarly, evaluator LMs trained solely on pairwise 440

ranking formats achieve higher average accuracy 441

compared to those trained on multiple tasks, partic- 442

ularly when using Mixtral-8x7B as the base model. 443

On the other hand, evaluator LMs trained via 444

weight merging show superior performance not 445

only compared to jointly trained evaluator LMs 446

but also single-format trained evaluator LMs, in- 447

dicating positive task transfer. Also, while both 448

benefit each other, merging the pairwise ranking 449

evaluator LM weights improves direct assessment 450

performance more significantly than the reverse. 451

6.2 Is the Effectiveness of Weight Merging 452

due to Model Ensembling? 453

While we empirically find that weight merging is 454

effective, the underlying reason remains unclear. A 455
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Figure 3: When merging models, the influence of relative evaluation on absolute evaluation is greater than the
influence of absolute evaluation on relative evaluation. Performance of Direct Assessment (colored in green) and
Pairwise Ranking (colored in blue) when altering the α value to merge evaluator LMs trained on different formats.

natural assumption is that this effectiveness results456

from the ensembling effect of combining multiple457

models. To test this hypothesis, we conduct an abla-458

tion experiment where we train multiple evaluator459

LMs on different random seeds and merge them.460

Specifically, we merge two evaluator LMs trained461

on direct assessment formats (denoted as ‘Direct462

Assessment & Direct Assessment’) and two evalu-463

ator LMs trained on pairwise ranking formats (de-464

noted as ‘Pairwise Ranking & Pairwise Ranking’).465

We use Mistral-7B-Instruct as our base model.466

The results are presented in Table 6. Across mul-467

tiple benchmarks, merging evaluator LMs trained468

on the same evaluation format does not enhance469

evaluation performance. Specifically, merging two470

evaluator LMs trained on the same evaluation for-471

mat—whether direct assessment or pairwise rank-472

ing—negatively impacts performance on average473

for both direct assessment and pairwise ranking474

benchmarks. In contrast, merging two evaluator475

LMs, each trained on direct assessment and pair-476

wise ranking formats, results in superior perfor-477

mance compared to the other settings. This in-478

dicates that the beneficial task transfer in weight479

merging arises from integrating different evaluation480

formats, not ensembling multiple models.481

6.3 Quantifying Positive Transfer across482

Evaluation Formats483

To explore how training on direct assessment feed-484

back data influences pairwise ranking accuracy and485

vice versa, we experiment by adjusting the α value486

during linear merging. We evaluate the average487

performance using all eight benchmarks in our ex-488

periments. To illustrate the average performance489

(colored in black), we adjust the scale by multiply- 490

ing the Pearson correlations from direct assessment, 491

which originally range from 0 to 1, by 100 before 492

averaging them with the pairwise ranking accuracy. 493

The results are shown in Figure 3. For direct 494

assessment benchmarks, evaluator LMs obtain the 495

optimal performance when α is set to 0.5. This 496

indirectly indicates that both pairwise ranking and 497

direct assessment feedback data contribute equally. 498

On the other hand, for pairwise ranking bench- 499

marks, the performance is optimal when α is set to 500

0.3. This also implies that while both benefit each 501

other, training on pairwise ranking improves direct 502

assessment performance more than the reverse. 503

7 Conclusion 504

We introduce PROMETHEUS 2, an open-source LM 505

specialized in evaluating other responses. Unlike 506

existing open evaluator LMs that cannot effectively 507

process both direct assessment and pairwise rank- 508

ing—the two most prevalent evaluation schemes— 509

the PROMETHEUS 2 models demonstrate superior 510

performance on both schemes, significantly narrow- 511

ing the gap with proprietary LM-based evaluations. 512

To train the PROMETHEUS 2 models, we develop 513

the PREFERENCE COLLECTION, the first pairwise 514

ranking dataset that includes over 1,000 instance- 515

wise evaluation criteria beyond basic qualities such 516

as helpfulness and harmlessness. Notably, we find 517

that merging evaluator LMs trained on either direct 518

assessment or pairwise ranking formats can lead 519

to a unified evaluator LM with strong performance. 520

We hope that our work encourages more research 521

on using open-source LMs as evaluators. 522
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Limitations523

Evaluation is fundamentally a very multi-faceted524

task. In this paper, we used an indirect method to525

assess the evaluation capability of evaluator LMs526

by measuring if they perform evaluations similar to527

human evaluators or proprietary LMs, such as GPT-528

4-1106 and Claude-3-Opus. However, this may529

not necessarily be the best approach. Future work530

could explore meta-evaluation pipelines that reeval-531

uate the results of evaluator LMs or methodologies532

that allow humans to efficiently review evaluation533

results. Also note that it is crucial to use model-534

based evaluations in conjunction with human eval-535

uation instead of solely relying on it.536

Additionally, the degree to which evaluator LMs537

can generalize was based on an analysis by Kim538

et al. (2023), which checked for overlap between539

the data used to train the evaluator LMs and the540

data used to evaluate them. This study extended the541

evaluation to eight different datasets with human542

judgments to check the generalization capability543

of evaluation under various circumstances. How-544

ever, this may not be sufficient. One of the major545

challenges in evaluating evaluator LMs is obtain-546

ing the “evaluation results” (e.g., human judgment).547

Automating evaluations with LMs could greatly548

benefit many areas of NLP research, hence the role549

of future work in creating feedback benchmarks550

that include human judgment or data for training551

evaluator LMs is crucial.552

One downside of the PROMETHEUS 2 is that it553

operates only on a 1-5 point Likert scale for abso-554

lute evaluation or a comparative evaluation style555

of ‘A is better & B is better’. Depending on the556

use case, people may need a 1-10 point absolute557

evaluation, a ranking method for five responses at558

once, or a checklist-based evaluation not covered in559

the paper. While proprietary LMs can flexibly con-560

duct evaluations in any format if a well-described561

prompt is devised, open-source LMs cannot pro-562

duce good evaluation results without training, and563

conversely, if trained in one or two formats, they564

lose the flexibility to conduct different evaluations.565

Future work could examine whether evaluator LMs566

trained in each format, as done in this paper, can567

handle evaluations for added formats well when568

weight merging is employed.569

Lastly, the paper presents an evaluation model570

that can handle both absolute and comparative571

evaluation formats well through weight merging572

based on empirical experiments. However, funda-573

mentally explaining why weight merging works 574

well remains a challenging task. To address this, 575

Section 6 indirectly analyzes the effectiveness of 576

weight merging by comparing it with joint training, 577

demonstrating that the improvement in evaluation 578

performance is not due to model ensembling, and 579

showing that the impact of comparative evaluation 580

on absolute evaluation is greater than the reverse. 581

Our best current interpretation is that "absolute and 582

comparative evaluations are not completely differ- 583

ent tasks, so weight merging could handle both 584

without degeneration, and conversely, because they 585

are not too similar, weight merging performed bet- 586

ter than joint training." Future work could theoreti- 587

cally analyze this or further explore whether weight 588

merging can effectively work in fields other than 589

LLM evaluation. 590
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Verification Standards RESULTS

Coherence 99.5 % (Passed)
Suitability 98.5 % (Passed)
Criticality 88% (Win rate)

Table 7: Human verification results to assess the quality of
the PREFERENCE COLLECTION. We use three standards to
assess the quality of verbal feedback vrm,rn .

Temperature 1.0
Top_p 0.9

Max New Tokens 1024
Repetition Penalty 1.03

Table 8: Hyperparameters used to inference different evalua-
tor LM baselines.

Base Model mistralai/Mistral-7B-Instruct-v0.2
Torch dtype bfloat16

Epoch 1
Train Data 1 FEEDBACK COLLECTION

Train Data 2 PREFERENCE COLLECTION

Max Seq Length 4096
Learning Rate 1e-5

Train Batch Size 4
Random Seed 42

Merging Strategy Linear (α = 0.5)
Training Method Supervised Fine-tuning

Table 9: Hyperparameters used to train PROMETHEUS 2 7B.

Base Model mistralai/Mixtral-8x7B-Instruct-v0.1
Torch dtype bfloat16

Epoch 1
Train Data 1 FEEDBACK COLLECTION

Train Data 2 PREFERENCE COLLECTION

Max Seq Length 4096
Learning Rate 1e-5

Train Batch Size 8
PEFT True
Lora_r 256

Lora_alpha 512
Lora_Dropout 0.1

Lora Target Module Q proj,K proj,V proj,O proj,W proj,LM_Head
Random Seed 42

Merging Strategy DARE Merging
Merging p 0.1

Merging Lambda 1.95
Training Method Supervised Fine-tuning

Table 10: Hyperparameters used to train PROMETHEUS 2
8x7B.

A Quality Verification of the849

PREFERENCE COLLECTION850

To ensure the quality of the PREFERENCE COL-851

LECTION, particularly the generated verbal feed-852

back vrm,rn , we employ five annotators with back-853

grounds in natural language processing. The an-854

notation study was designed and administered in855

accordance with [Affiliation X]’s ethical guidelines.856

Crowd workers were informed of the potential risks857

of participation and researcher contact information 858

before hand in the study consent form. The hourly 859

wage and expected study time were informed in the 860

Prolific platform. We compensated workers 9 GBP 861

per hour. 3 were from USA and 2 were from Asian 862

demographics. 863

We randomly sample 200 instances with differ- 864

ent instructions and conduct a three-part verifica- 865

tion process. First, we assess the coherence of 866

vrm,rn with the scoring decision (i.e., ’A is better’ 867

or ’B is better’). Second, we evaluate the suit- 868

ability of vrm,rn against the evaluation criteria e. 869

Lastly, to determine the criticality of the feedback, 870

we compare the newly generated vrm,rn with a con- 871

catenation of vrm and vrn . This aims to determine 872

if vrm,rn effectively leverages the mutual informa- 873

tion between rm and rn. Annotators then vote on 874

whether vrm,rn or the concatenation of rm and rn 875

is more critical. The results are shown in Table 7. 876

Note that the Preference Collection only includes 877

English instances. 878

B Training and Inference Details 879

The configurations we used for prompting and train- 880

ing evaluator LMs are shown in Table 8, 9, 10. 881

For Auto-J, PairRM and UltraRM, we utilize their 882

prompt template, inference hyperparameter men- 883

tioned in the model cards or github repositories in 884

order to ensure the configuration is optimal for a 885

fair performance comparison. For proprietary LMs, 886

PROMETHEUS 1, and PROMETHEUS 2 models, we 887

use the same prompt template and evaluation con- 888

figurations. 889

For both training and inference, we utilized eight 890

40GB NVIDIA A100 GPUs. Training required ap- 891

proximately 800 GPU hours, using the implemen- 892

tation from the Alignment Handbook repository2. 893

For inference, we used the vllm framework3. 894

The results from Direct Assessment are aver- 895

aged after three multiple runs, and pairwise grad- 896

ing is conducted in a single run. Instead of using 897

error bars, we report the consistency in assessment 898

formats, Krippendorff’s alpha for consistency in 899

direct assessment, and transitivity statistics for con- 900

sistency in pairwise ranking. 901

C Direct Assessment Results: Extended 902

Table 11 and 12 (on the next page) shows the ex- 903

tended results Table 3. Even when changing the 904

2https://github.com/huggingface/alignment-handbook
3https://github.com/vllm-project/vllm
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metrics to either Kendall-Tau and Spearman, the905

overall trends are maintained. PROMETHEUS 2906

shows superior evaluation performances among the907

open evaluator LMs, achieving high correlations908

with humans and proprietary LMs.909

D License910

Our models are released under the Apache 2.0 li-911

cense. The Preference Collection dataset is sub-912

ject to OpenAI’s Terms of Use for generated data.913

The model could be used for commercial purposes914

while the dataset is intended for research purposes.915

We used perspective API to ensure that the train-916

ing data or evaluation datasets do not include PII-917

included instances.918
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Evaluator LM
VICUNA BENCH MT BENCH FLASK Feedback Bench

GPT-4-1106 Claude-3-Opus GPT-4-1106 Claude-3-Opus GPT-4-1106 Claude-3-Opus Humans GPT-4-0613

LLAMA2-CHAT 7B 0.183 0.203 0.065 0.070 0.229 0.186 0.211 0.419

LLAMA2-CHAT 13B 0.145 0.146 -0.019 0.037 0.160 0.174 0.174 0.453

LLAMA2-CHAT 70B 0.282 0.382 0.150 0.196 0.310 0.310 0.231 0.487

MISTRAL-INSTRUCT-7B 0.314 0.391 0.208 0.281 0.395 0.384 0.287 0.454

MIXTRAL-INSTRUCT-8X7B 0.395 0.468 0.433 0.419 0.410 0.408 0.304 0.551

PROMETHEUS-7B 0.405 0.425 0.290 0.263 0.282 0.251 0.236 0.770

PROMETHEUS-13B 0.397 0.434 0.299 0.352 0.365 0.352 0.299 0.793

AUTO-J (13B) 0.282 0.242 0.303 0.272 0.312 0.282 0.312 0.515

PROMETHEUS-2-7B 0.543 0.476 0.390 0.372 0.476 0.446 0.377 0.784

PROMETHEUS-2-8X7B 0.559 0.515 0.535 0.483 0.526 0.507 0.388 0.800

GPT-3.5-TURBO-0613 0.255 0.287 0.148 0.157 0.360 0.315 0.298 0.489

GPT-4-1106 / 0.553 / 0.590 / 0.609 0.517 0.662

CLAUDE-3-OPUS 0.553 / 0.590 / 0.609 / 0.453 0.693

Table 11: Kendall-Tau correlations between reference evaluators (listed on top) and evaluator LMs. The best comparable
statistics are bolded and second best underlined except proprietary LMs.

Evaluator LM
VICUNA BENCH MT BENCH FLASK Feedback Bench

GPT-4-1106 Claude-3-Opus GPT-4-1106 Claude-3-Opus GPT-4-1106 Claude-3-Opus Humans GPT-4-0613

LLAMA2-CHAT 7B 0.236 0.255 0.084 0.089 0.301 0.244 0.279 0.511

LLAMA2-CHAT 13B 0.178 0.179 -0.025 0.044 0.206 0.222 0.224 0.543

LLAMA2-CHAT 70B 0.348 0.466 0.197 0.252 0.391 0.389 0.298 0.585

MISTRAL-INSTRUCT-7B 0.389 0.480 0.266 0.358 0.499 0.478 0.374 0.563

MIXTRAL-INSTRUCT-8X7B 0.476 0.556 0.545 0.517 0.505 0.500 0.386 0.659

PROMETHEUS-7B 0.508 0.528 0.385 0.349 0.367 0.326 0.317 0.876

PROMETHEUS-13B 0.492 0.534 0.401 0.470 0.474 0.454 0.398 0.893

AUTO-J (13B) 0.337 0.297 0.408 0.365 0.402 0.358 0.408 0.623

PROMETHEUS-2-7B 0.664 0.591 0.509 0.482 0.597 0.555 0.491 0.885

PROMETHEUS-2-8X7B 0.660 0.615 0.669 0.605 0.642 0.618 0.496 0.912

GPT-3.5-TURBO-0613 0.319 0.354 0.192 0.198 0.446 0.390 0.374 0.565

GPT-4-1106 / 0.659 / 0.721 / 0.729 0.650 0.753

CLAUDE-3-OPUS 0.659 / 0.721 / 0.729 / 0.567 0.784

Table 12: Spearman correlations between reference evaluators (listed on top) and evaluator LMs. The best comparable statistics
are bolded and second best underlined except proprietary LMs.

Evaluator LM
HHH ALIGNMENT MT BENCH HUMAN JUDG. AUTO-J EVAL

Direct2Pair(↑) Pair2Pair(↑) ∆(↓) Direct2Pair(↑) Pair2Pair(↑) ∆(↓) Direct2Pair(↑) Pair2Pair(↑) ∆(↓)

AUTO-J (13B) 46.61 75.57 28.96 48.14 69.12 20.98 47.40 76.64 29.24
PROMETHEUS-2-7B 74.21 74.66 0.45 63.24 70.78 7.54 68.11 75.07 6.96
PROMETHEUS-2-8X7B 81.45 85.52 4.07 61.67 71.96 10.29 66.54 79.98 13.44

GPT-4-1106-PREVIEW 83.71 90.95 7.24 68.04 79.90 11.86 54.27 83.12 28.85
CLAUDE-3-OPUS 84.62 94.57 9.95 62.65 77.65 15.00 61.04 82.90 21.86

Table 13: Consistency across Evaluation Formats Pairwise ranking accuracy when assessing in direct assessment formats
(denoted as ‘Direct2Pair’) and pairwise ranking formats (denoted as ‘Pair2Pair’). Smaller ∆ values indicate that evaluator LMs
can robustly evaluate across the two different formats.

14



Evaluator LM Vicuna Ben. MT Ben. FLASK

LLAMA2-CHAT 7B 0.3558 0.2565 0.4379
LLAMA2-CHAT 13B 0.2017 0.2998 0.4038
LLAMA2-CHAT 70B 0.5212 0.4559 0.6204
MISTRAL-INSTRUCT-7B 0.5157 0.4393 0.5884
MIXTRAL-INSTRUCT-8X7B 0.5459 0.6229 0.6976
PROMETHEUS-7B 0.6049 0.5363 0.5970
PROMETHEUS-13B 0.5734 0.5181 0.5624
AUTO-J (13B) 0.4976 0.5069 0.6160
PROMETHEUS-2-7B 0.6018 0.5340 0.5991
PROMETHEUS-2-8X7B 0.6383 0.6862 0.7874

GPT-3.5-TURBO-0613 0.7108 0.4800 0.6389
GPT-4-1106-PREVIEW 0.7366 0.8271 0.8355
CLAUDE-3-OPUS 0.8284 0.8601 0.8976

Table 14: Krippendorff’s alpha statistics for evaluator LMs
when prompted 3 times via non-deterministic decoding.

Evaluator LM PREFERENCE COLLECTION

Transitivity

MISTRAL-INSTRUCT-7B 87.10
MIXTRAL-INSTRUCT-8X7B 90.45
PAIR RM 91.40
ULTRA RM 94.25
AUTO-J (13B) 89.65
PROMETHEUS-2-7B 97.60
PROMETHEUS-2-8X7B 96.75

GPT-3.5-TURBO-0613 84.35
GPT-4-1106-PREVIEW 95.70
CLAUDE-3-OPUS 96.20

Table 15: Transitivity statistics to measure consistency in
pairwise ranking evaluation settings.

E Consistency of Evaluator LMs919

In addition to obtaining high correlation and accu-920

racy, achieving high consistency is another impor-921

tant aspect for evaluator LMs. We first test if evalu-922

ator LMs could give consistent scoring decisions in923

direct assessment formats. We inferencing multiple924

times with non-deterministic decoding (e.g., using925

temperature 1.0). Following the experimental de-926

sign from Ye et al. (2023), we choose to inference927

3 times and report the Krippendorff’s alpha value.928

As shown in Table 14, the results indicate that train-929

ing on feedback data only slightly improves consis-930

tency. On the other hand, we find that the LMs with931

a large number of parameters achieve high consis-932

tency. This indicates the importance of selecting a933

large LM as the base model when training an evalu-934

ator LM. Notably, PROMETHEUS-2-8X7B obtains935

the highest correlation among open evaluator LMs.936

Moreover, to evaluate consistency in pairwise937

ranking settings (Table 15), we measure transitivity938

(i.e., a higher score for response B over A, and939

for C over B, results in a higher score for C over940

A). As shown in Table 15, the PROMETHEUS 2941

models achieve performances on par with GPT-4, 942

showing that they could provide robust judgments 943

in pairwise ranking schemes. 944

Lastly, we conduct an experiment to test if eval- 945

uator LMs could achieve consistent scores across 946

different evaluation formats. To do this, we use 947

pairwise ranking benchmarks and measure the per- 948

formance differences when prompted with direct 949

assessment formats and pairwise ranking formats. 950

Specifically, following Kim et al. (2023), to pro- 951

cess pairwise ranking datasets in a direct assess- 952

ment scheme, we evaluate each response separately 953

and compare the scoring decisions. We mark it as 954

correct if the evaluator LM provides a higher score 955

for the human-chosen response over the rejected 956

one. As shown in Table 13 (on the previous page), 957

the results show that PROMETHEUS 2 models show 958

lower performance differences across evaluation 959

formats, indicating their robustness. 960
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Evaluator LM BIGGEN BENCH FLASK

Reference-free Reference-based ∆ Reference-free Reference-based ∆

MISTRAL-INSTRUCT 0.305 0.310 0.005 0.331 0.374 0.043
MIXTRAL-INSTRUCT 0.320 0.322 0.002 0.377 0.386 0.009
PROMETHEUS-2-7B 0.403 0.455 0.052 0.425 0.545 0.120
PROMETHEUS-2-8X7B 0.424 0.472 0.048 0.411 0.555 0.144

GPT-3.5-TURBO-0613 0.236 0.252 0.016 0.354 0.374 0.020
GPT-4-1106 0.554 0.599 0.045 0.616 0.679 0.063

Table 16: Pearson correlations between different evaluator models with and without the reference answer and Human. Reference-
based evaluations outperform reference-free evaluations across all evaluator LMs.

Merging Method
DIRECT ASSESSMENT BENCHMARKS PAIRWISE RANKING BENCHMARKS

Average
VICUNA BEN. MT BEN. FLASK (HUMAN) Feedback Ben. Average HHH ALIGN. MT BEN. H.J. AUTO-J Pref. Ben. Average

LINEAR 0.642 0.543 0.544 0.878 0.652 78.73 67.25 73.80 92.45 78.06 82.93
SLERP 0.648 0.532 0.536 0.879 0.649 74.66 70.2 72.33 92.60 77.44 82.67
TASK ARITHMETIC 0.518 0.497 0.482 0.831 0.582 80.09 69.80 72.82 93.00 78.93 81.01
TIES 0.534 0.567 0.529 0.826 0.614 79.64 67.75 72.91 93.95 78.56 80.58
DARE-TIES 0.653 0.545 0.543 0.880 0.655 79.64 66.57 74.68 93.30 78.55 83.27
DARE-LINEAR 0.666 0.548 0.545 0.882 0.660 74.66 70.78 75.07 93.25 78.44 83.32

Table 17: Pearson correlations and accuracy measurements across various benchmarks for different merging methods. The best
comparable statistics are bolded and second best underlined.
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F Reference-free Evaluation in Direct961

Assessment Formats962

In this section, we assess the impact of excluding a963

reference answer in evaluations conducted using di-964

rect assessment formats. The results are presented965

in Table 16 (on the previous page). For this experi-966

ment, we employ FLASK (Ye et al., 2023) which967

includes human judgments and additionally the968

BiGGen Bench (Kim et al., 2024). The BiGGen969

Bench is a generation benchmark which includes970

a evaluation criteria tailored to each instance and971

provides 2840 human judgments (excluding the972

multilingual tasks) in direct assessment formats.973

Across both benchmarks and different evalua-974

tor LM variants, the correlation with humans di-975

minishes when the reference answer is discarded.976

Even for GPT-4-1106, there is a significant perfor-977

mance degradation (0.045, 0.063). This suggests978

that including a reference answer is crucial for con-979

ducting effective evaluations with LMs. Interest-980

ingly, PROMETHEUS-2-7B achieves better perfor-981

mance in a reference-free setting (0.403, 0.425)982

than Mistral-7B-Instruct-v0.2 (0.310, 0.374). Sim-983

ilar trends are observed for PROMETHEUS-2-984

8X7B (0.424, 0.411) and Mixtral-8x7B-Instruct-985

v0.1 (0.322, 0.386). This implies that one effect986

of training an evaluator LM with a reference an-987

swer included is to induce the ability to ground988

judgments to the given reference answer.989

G Merging Method Ablation990

In this section, in addition to linear merging, we991

also test different merging techniques including:992

• Slerp merging (Goddard et al., 2024) oper-993

ates by interpolating two weights θd and θp994

while preserving the geometric properties of995

the spherical space in which θd and θp reside.996

Specifically, this is conducted by normalizing997

θd and θp into unit length and then merging998

the two weights based on the coefficient α999

such as:1000

θfinal = α× θd
||θd||

+ (1− α)× θp
||θp||

(4)1001

• Task Arithmetic merging (Ilharco et al.,1002

2022) which can be expressed as follows:1003

θfinal = θinit + α× (θd − θinit)+

(1− α)× (θp − θinit)
(5)1004

where θinit is the weight of the base model. 1005

However, we empirically find that the result- 1006

ing evaluator LM θfinal often does not gener- 1007

ate valid scoring decisions (e.g., generating an 1008

integer during pairwise ranking). 1009

• TIES merging (Yadav et al., 2024), while 1010

similar to Task Arithmetic merging, adds (1) a 1011

Trim operation to remove redundant weights 1012

in the task vector θd − θinit and θp − θinit 1013

and (2) Elect and Disjoint operations to 1014

resolve disagreement (i.e., opposite directed 1015

weights) between θd − θinit and θp − θinit. 1016

• DARE merging (Yu et al., 2023), while also 1017

similar to Task Arithmetic and TIES merging, 1018

performs a Random Drop and Re-scale 1019

operations in the task vector θd − θinit and 1020

θp − θinit to remove redundant weights. We 1021

find that DARE merging work best when 1022

we choose Mixtral-8x7B as our base model. 1023

DARE-linear merging is what was originally 1024

proposed by Yu et al. (2023). In DARE-TIES 1025

merging, the Elect operation from Yadav 1026

et al. (2024) is additionally added after the 1027

Re-scale operation. 1028

We conduct our experiments based on the imple- 1029

mentation from MergeKit (Goddard et al., 2024). 4 1030

In Table 17 (on the previous page), we mea- 1031

sure the performance of evaluator LMs employing 1032

different merging methods. In direct assessment 1033

benchmarks, DARE-Linear achieves the best per- 1034

formance, followed by DARE-TIES and Linear 1035

merging. In pairwise ranking benchmarks, Task 1036

Arithmetics achieves the best performance, with 1037

only a minimal difference compared to other meth- 1038

ods. On average, DARE-Linear performs best. 1039

Based on these results, we have trained Prometheus- 1040

2-7B with DARE-Linear merging. We also opted 1041

to train Prometheus-2-8x7B using DARE-Linear 1042

merging. Although the optimal merging method 1043

might differ, we have not conducted additional ex- 1044

periments due to computational limitations. Future 1045

work could explore whether these findings hold 1046

true. 1047

4https://github.com/arcee-ai/mergekit
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H PREFERENCE COLLECTION1048

Augmentation Prompt1049

Prompt for Generating Verbal Feedback
in Pairwise Ranking

###Task Description:
An instruction (might include an Input in-
side it), two responses to evaluate (denoted
as Response A and Response B), a refer-
ence answer, and a score rubric representing
a evaluation criteria are given.
1. Write a detailed feedback explaining why
{sub_str}, focusing strictly on the aspects
highlighted in the evaluation criteria.
2. While writing the feedback, make com-
parisons between Response A, Response B,
and Reference Answer. Instead of examin-
ing Response A and Response B separately,
go straight to the point and mention about
the commonalities and differences between
them.
3. While writing the feedback, do not start
by mentioning {sub_str} in the first sen-
tence. Instead, try to write a reasoning pro-
cess that delves into the commonalities and
differences of the two responses and men-
tion {sub_str} at the last part of your justifi-
cation.
4. Within the feedback, do not explicitly
mention about the reference answer. For in-
stance, do not use phrases like "Compared
to the reference answer". Assume that you
inherently know the reference answer which
could be used to determine details that are
not present in both responses under assess-
ment.
5. Please do not generate any other opening,
closing, and explanations. Just write the
feedback.
6. Within the feedback, generate a string
phrase "[END]" after you are finished.
###Instruction: {instruction}
###Response A: {response_A}
###Response B: {response_B}
###Reference Answer: {reference_answer}
###Score Rubric: {criteria}
###Feedback:

1050

I Direct Assessment Prompt 1051

Direct Assessment System Prompt

You are a fair judge assistant tasked with
providing clear, objective feedback based
on specific criteria, ensuring each assess-
ment reflects the absolute standards set for
performance.

1052

Direct Assessment Prompt Template

###Task Description:
An instruction (might include an Input in-
side it), a response to evaluate, and a score
rubric representing a evaluation criteria are
given.
1. Write a detailed feedback that assess the
quality of the response strictly based on the
given score rubric, not evaluating in general.
2. After writing a feedback, write a score
that is an integer between 1 and 5. You
should refer to the score rubric.
3. The output format should look as follows:
"Feedback: (write a feedback for criteria)
[RESULT] (an integer number between 1
and 5)"
4. Please do not generate any other opening,
closing, and explanations.
###The instruction to evaluate:
{orig_instruction}
###Response to evaluate:
{orig_response}
###Score Rubrics:
{score_rubric}
###Feedback:

1053

J Pairwise Ranking Prompt 1054

Pairwise Ranking System Prompt

You are a fair judge assistant assigned to de-
liver insightful feedback that compares indi-
vidual performances, highlighting how each
stands relative to others within the same co-
hort.

1055
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Pairwise Ranking Prompt Template

###Task Description:
An instruction (might include an Input in-
side it), a response to evaluate, and a score
rubric representing a evaluation criteria are
given.
1. Write a detailed feedback that assess
the quality of two responses strictly based
on the given score rubric, not evaluating in
general.
2. After writing a feedback, choose a bet-
ter response between Response A and Re-
sponse B. You should refer to the score
rubric.
3. The output format should look as follows:
"Feedback: (write a feedback for criteria)
[RESULT] (A or B)"
4. Please do not generate any other opening,
closing, and explanations.
###Instruction:
{orig_instruction}
###Response A:
{response_A}
###Response B:
{response_B}
###Score Rubric:
{score_rubric}
###Feedback:

1056
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