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ABSTRACT

Diffusion models generate samples by reversing a fixed forward diffusion process.
Despite already providing impressive empirical results, these diffusion models
algorithms can be further improved by reducing the variance of the training targets
in their denoising score-matching objective. We argue that the source of such
variance lies in the handling of intermediate noise-variance scales, where multiple
modes in the data affect the direction of reverse paths. We propose to remedy the
problem by incorporating a reference batch which we use to calculate weighted
conditional scores as more stable training targets. We show that the procedure
indeed helps in the challenging intermediate regime by reducing (the trace of) the
covariance of training targets. The new stable targets can be seen as trading bias
for reduced variance, where the bias vanishes with increasing reference batch size.
Empirically, we show that the new objective improves the image quality, stability,
and training speed of various popular diffusion models across datasets with both
general ODE and SDE solvers. When used in combination with EDM (Karras
et al., 2022), our method yields a current SOTA FID of 1.90 with 35 network
evaluations on the unconditional CIFAR-10 generation task. The code is available
at https://github.com/Newbeeer/stf

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020) have recently
achieved impressive results on a wide spectrum of generative tasks, such as image generation (Nichol
et al., 2022; Song et al., 2021b), 3D point cloud generation (Luo & Hu, 2021) and molecular
conformer generation (Shi et al., 2021; Xu et al., 2022a). These models can be subsumed under a
unified framework in the form of Itô stochastic differential equations (SDE) (Song et al., 2021b). The
models learn time-dependent score fields via score-matching (Hyvärinen & Dayan, 2005), which then
guides the reverse SDE during generative sampling. Popular instances of diffusion models include
variance-exploding (VE) and variance-preserving (VP) SDE (Song et al., 2021b). Building on these
formulations, EDM (Karras et al., 2022) provides the best performance to date.

We argue that, despite achieving impressive empirical results, the current training scheme of diffusion
models can be further improved. In particular, the variance of training targets in the denoising score-
matching (DSM) objective can be large and lead to suboptimal performance. To better understand
the origin of this instability, we decompose the score field into three regimes. Our analysis shows
that the phenomenon arises primarily in the intermediate regime, which is characterized by multiple
modes or data points exerting comparable influences on the scores. In other words, in this regime, the
sources of the noisy examples generated in the course of the forward process become ambiguous. We
illustrate the problem in Figure 1(a), where each stochastic update of the score model is based on
disparate targets.

We propose a generalized version of the denoising score-matching objective, termed the Stable Target

Field (STF) objective. The idea is to include an additional reference batch of examples that are used
to calculate weighted conditional scores as targets. We apply self-normalized importance sampling
to aggregate the contribution of each example in the reference batch. Although this process can
substantially reduce the variance of training targets (Figure 1(b)), especially in the intermediate regime,

⇤Equal Contribution.

1

https://github.com/Newbeeer/stf


Published as a conference paper at ICLR 2023

v1

v2

v3

(a) DSM

v1
v2

v3

(b) STF

Figure 1: Illustration of differences between the DSM objective and our proposed STF objective.
The “destroyed” images (in blue box) are close to each other while their sources (in red box) are
not. Although the true score in expectation is the weighted average of vi, the individual training
updates of the DSM objective have a high variance, which our STF objective reduces significantly by
including a large reference batch (yellow box).

it does introduce some bias. However, we show that the bias together with the trace-of-covariance of
the STF training targets shrinks to zero as we increase the size of the reference batch.

Experimentally, we show that our STF objective achieves new state-of-the-art performance on CIFAR-
10 unconditional generation when incorporated into EDM (Karras et al., 2022). The resulting FID
score (Heusel et al., 2017) is 1.90 with 35 network evaluations. STF also improves the FID/Inception
scores for other variants of score-based models, i.e., VE and VP SDEs (Song et al., 2021b), in most
cases. In addition, it enhances the stability of converged score-based models on CIFAR-10 and
CelebA 642 across random seeds, and helps avoid generating noisy images in VE. STF accelerates
the training of score-based models (3.6⇥ speed-up for VE on CIFAR-10) while obtaining comparable
or better FID scores. To the best of our knowledge, STF is the first technique to accelerate the training
process of diffusion models. We further demonstrate the performance gain with increasing reference
batch size, highlighting the negative effect of large variance.

Our contributions are summarized as follows: (1) We detail the instability of the current diffusion mod-
els training objective in a principled and quantitative manner, characterizing a region in the forward
process, termed the intermediate phase, where the score-learning targets are most variable (Section 3).
(2) We propose a generalized score-matching objective, stable target field, which provides more
stable training targets (Section 4). (3) We analyze the behavior of the new objective and prove that
it is asymptotically unbiased and reduces the trace-of-covariance of the training targets by a factor
pertaining to the reference batch size in the intermediate phase under mild conditions (Section 5).
(4) We illustrate the theoretical arguments empirically and show that the proposed STF objective
improves the performance, stability, and training speed of score-based methods. In particular, it
achieves the current state-of-the-art FID score on the CIFAR-10 benchmark when combined with
EDM (Section 6).

2 BACKGROUND ON DIFFUSION MODELS

In diffusion models, the forward process1 is an SDE with no learned parameter, in the form of:

dx = f(x, t)dt+ g(t)dw,

where x 2 Rd with x(0) ⇠ p0 being the data distribution, t 2 [0, 1], f : Rd ⇥ [0, 1] ! Rd,
g : [0, 1] ! R, and w 2 Rd is the standard Wiener process. It gradually transforms the data
distribution to a known prior as time goes from 0 to 1. Sampling of diffusion models is done via a
corresponding reverse-time SDE (Anderson, 1982):

dx =
⇥
f(x, t)� g(t)2rx log pt(x)

⇤
dt̄+ g(t)dw̄,

where ·̄ denotes time traveling backward from 1 to 0. Song et al. (2021b) proposes a
probability flow ODE that induces the same marginal distribution pt(x) as the SDE: dx =

1For simplicity, we focus on the version where the diffusion coefficient g(t) is independent of x(t).
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⇥
f(x, t)� 1

2g(t)
2rx log pt(x)

⇤
dt̄. Both formulations progressively recover p0 from the prior p1. We

estimate the score of the transformed data distribution at time t, rx log pt(x), via a neural network,
s✓(x, t). Specifically, the training objective is a weighted sum of the denoising score-matching (Vin-
cent, 2011):

min
✓

Et⇠qt(t)�(t)Ex⇠p0Ex(t)⇠pt|0(·|x)
⇥
ks✓(x(t), t)�rx(t) log pt|0(x(t)|x)k22

⇤
, (1)

where qt is the distribution for time variable, e.g., U [0, 1] for VE/VP (Song et al., 2021b) and a
log-normal distribution for EDM Karras et al. (2022), and �(t) = �

2
t is the positive weighting

function to keep the time-dependent loss at the same magnitude (Song et al., 2021b), and pt|0(x(t)|x)
is the transition kernel denoting the conditional distribution of x(t) given x2. Specifically, diffusion
models “destroy” data according to a diffusion process utilizing Gaussian transition kernels, which
result in pt|0(x(t)|x) = N (µt,�

2
t I). Recent works (Xu et al., 2022b; Rissanen et al., 2022) have

also extended the underlying principle from the diffusion process to more general physical processes
where the training objective is not necessarily score-related.

3 UNDERSTANDING THE TRAINING TARGET IN SCORE-MATCHING OBJECTIVE

The vanilla denoising score-matching objective at time t is:

`DSM(✓, t) = Ep0(x)Ept|0(x(t)|x)[ks✓(x(t), t)�rx(t) log pt|0(x(t)|x)k22], (2)

where the network is trained to fit the individual targets rx(t) log pt|0(x(t)|x) at (x(t), t) – the
“influence” exerted by clean data x on x(t). We can swap the order of the sampling process by first
sampling x(t) from pt and then x from p0|t(·|x(t)). Thus, s✓ has a closed form minimizer:

s⇤DSM(x(t), t) = Ep0|t(x|x(t))[rx(t) log pt|0(x(t)|x)] = rx(t) log pt(x(t)). (3)

The score field is a conditional expectation of rx(t) log pt|0(x(t)|x) with respect to the posterior
distribution p0|t. In practice, a Monte Carlo estimate of this target can have high variance (Owen,
2013; Elvira & Martino, 2021). In particular, when multiple modes of the data distribution have
comparable influences on x(t), p0|t(·|x(t)) is a multi-mode distribution, as also observed in Xiao
et al. (2022). Thus the targets rx(t) log pt|0(x(t)|x) vary considerably across different x and this can
strongly affect the estimated score at (x(t), t), resulting in slower convergence and worse performance
in practical stochastic gradient optimization (Wang et al., 2013).

To quantitatively characterize the variations of individual targets at different time, we propose a
metric – the average trace-of-covariance of training targets at time t:

VDSM(t) = Ept(x(t))

h
Tr(Covp0|t(x|x(t))(rx(t) log pt|0(x(t)|x)))

i

= Ept(x(t))Ep0|t(x|x(t))
⇥
krx(t) log pt|0(x(t)|x))�rx(t) log pt(x(t))k22

⇤
. (4)

Phases: 1 2 3

(a) ODE Sampling (b) VDSM(t) versus t

Figure 2: (a): Illustration of the three phases in
a two-mode distribution. (b): Estimated VDSM(t)
for two distributions. We normalize the maximum
value to 1 for illustration purposes.

We use VDSM(t) to define three successive
phases relating to the behavior of training tar-
gets. As shown in Figure 2(a), the three phases
partition the score field into near, intermediate,
and far regimes (Phase 1⇠3 respectively). Intu-
itively, VDSM(t) peaks in the intermediate phase
(Phase 2), where multiple distant modes in the
data distribution have comparable influences on
the same noisy perturbations, resulting in un-
stable targets. In Phase 1, the posterior p0|t
concentrates around one single mode, thus low
variation. In Phase 3, the targets remain similar
across modes since limt!1 pt|0(x(t)|x) ⇡ p1
for commonly used transition kernels.

We validate this argument empirically in Figure 2(b), which shows the estimated VDSM(t) for a
mixture of two Gaussians as well as a subset of CIFAR-10 dataset (Krizhevsky et al., 2009) for a more

2We omit “(0)” from x(0) when there is no ambiguity.
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realistic setting. Here we use VE SDE, i.e., pt|0(x(t)|x) = N
⇣
x,�2

m(�M
�m

)2tI
⌘

for some �m and
�M (Song et al., 2021b). VDSM(t) exhibits similar phase behavior across t in both toy and realistic
cases. Moreover, VDSM(t) reaches its maximum value in the intermediate phase, demonstrating the
large variations of individual targets. We defer more details to Appendix C.

4 TREATING SCORE AS A FIELD

The vanilla denoising score-matching approach (Equation 3) can be viewed as a Monte Carlo estimator,
i.e., rx(t) log pt(x(t)) = Ep0|t(x|x(t))[rx(t) log pt|0(x(t)|x)] ⇡ 1

n

Pn
i=1 rx(t) log pt|0(x(t)|xi)

where xi is sampled from p0|t(·|x(t)) and n = 1. The variance of a Monte Carlo estimator is
proportional to 1

n , so we propose to use a larger batch (n) to counter the high variance problem
described in Section 3. Since sampling directly from the posterior p0|t is not practical, we first apply
importance sampling with the proposal distribution p0. Specifically, we sample a large reference
batch BL = {xi}ni=1 ⇠ p

n
0 and get the following approximation:

rx(t) log pt(x(t)) ⇡
1

n

nX

i=1

p0|t(xi|x(t))
p0(xi)

rx(t) log pt|0(x(t)|xi).

The importance weights can be rewritten as p0|t(x|x(t))/p0(x) = pt|0(x(t)|x)/pt(x(t)). However,
this basic importance sampling estimator has two issues. The weights now involve an unknown
normalization factor pt(x(t)) and the ratio between the prior and posterior distribution can be
large in high dimensional spaces. To remedy these problems, we appeal to self-normalization
techniques (Hesterberg, 1995) to further stabilize the training targets:

rx(t) log pt(x(t)) ⇡
nX

i=1

pt|0(x(t)|xi)Pn
j=1 pt|0(x(t)|xj)

rx(t) log pt|0(x(t)|xi). (5)

We term this new training target in Equation 5 as Stable Target Field (STF). In practice, we sample
the reference batch BL = {xi}ni=1 from p

n
0 and obtain x(t) by applying the transition kernel to the

“first” training data x1. Taken together, the new STF objective becomes:

`STF(✓, t) = E{xi}n
i=1⇠pn

0
Ex(t)⇠pt|0(·|x1)"���s✓(x(t), t)�

nX

k=1

pt|0(x(t)|xk)Pn
j=1 pt|0(x(t)|xj)

rx(t) log pt|0(x(t)|xk)
���
2

2

#
. (6)

When n = 1, STF reduces to the vanilla denoising score-matching (Equation 2). When n > 1,
STF incorporates a reference batch to stabilize training targets. Intuitively, the new weighted target
assigns larger weights to clean data with higher influence on x(t), i.e., higher transition probability
pt|0(x(t)|x).
Similar to our analysis in Section 3, we can again swap the sampling process in Equation 6 so that,
for a perturbation x(t), we sample the reference batch BL = {xi}ni=1 from p0|t(·|x(t))pn�1

0 , where
the first element involves the posterior, and the rest follow the data distribution. Thus, the minimizer
of the new objective (Equation 6) is (derivation can be found in Appendix B.1)

s⇤STF(x(t), t) = Ex1⇠p0|t(·|x(t))E{xi}n
i=2⇠pn�1

0

"
nX

k=1

pt|0(x(t)|xk)P
j pt|0(x(t)|xj)

rx(t) log pt|0(x(t)|xk)

#
.

(7)

Note that although STF significantly reduces the variance, it introduces bias: the minimizer is
no longer the true score. Nevertheless, in Section 5, we show that the bias converges to 0 as
n ! 1, while reducing the trace-of-covariance of the training targets by a factor of n when
p0|t ⇡ p0. We further instantiate the STF objective (Equation 6) with transition kernels in the form of
pt|0(x(t)|x) = N (x,�2

t I), which includes EDM (Karras et al., 2022), VP (through reparameteriza-
tion) and VE (Song et al., 2021b):

Ex1⇠p0|t(·|x(t))E{xi}n
i=2⇠pn�1

0

2

4
����s✓(x(t), t)�

1

�2
t

nX

k=1

exp
⇣
�kx(t)�xkk2

2

2�2
t

⌘

P
j exp

⇣
�kx(t)�xjk2

2

2�2
t

⌘ (xk � x(t))

����
2

2

3

5 .

4



Published as a conference paper at ICLR 2023

To aggregate the time-dependent STF objective over t, we sample the time variable t from the training
distribution qt and apply the weighting function �(t). Together, the final training objective for STF is
Et⇠qt(t) [�(t)`STF(✓, t)]. We summarize the training process in Algorithm 1. The small batch size
|B| is the same as the normal batch size in the vanilla training process. We defer specific use cases of
STF objectives combined with various popular diffusion models to Appendix A.

Algorithm 1 Learning the stable target field
Input: Training iteration T , Initial model s✓, dataset D, learning rate ⌘.
for t = 1 . . . T do

Sample a large reference batch BL from D, and subsample a small batch B = {xi}|B|
i=1 from BL

Uniformly sample the time {ti}|B|
i=1 ⇠ qt(t)|B|

Obtain the batch of perturbed samples {xi(ti)}|B|
i=1 by applying the transition kernel pt|0 on B

Calculate the stable target field of BL for all xi(ti):
vBL(xi(ti)) =

P
x2BL

pti|0(xi(ti)|x)P
y2BL

pti|0(xi(ti)|y)rxi(ti) log pti|0(xi(ti)|x)

Calculate the loss: L(✓) = 1
|B|
P|B|

i=1 �(ti)ks✓(xi(ti), ti)� vBL(xi(ti))k22
Update the model parameter: ✓ = ✓ � ⌘rL(✓)

end for
return s✓

5 ANALYSIS

In this section, we analyze the theoretical properties of our approach. In particular, we show that the
new minimizer s⇤STF(x(t), t) (Equation 7) converges to the true score asymptotically (Section 5.1).
Then, we show that the proposed STF reduces the trace-of-covariance of training targets propositional
to the reference batch size in the intermediate phase, with mild conditions (Section 5.2).

5.1 ASYMPTOTIC BEHAVIOR

Although in general s⇤STF(x(t), t) 6= rx(t) log pt(x(t)), the bias shrinks toward 0 with a increasing n.
In the following theorem we show that the minimizer of STF objective at (x(t), t), i.e., s⇤STF(x(t), t),
is asymptotically normal when n ! 1.
Theorem 1. Suppose 8t 2 [0, 1], 0 < �t < 1, then

p
n
�
s⇤

STF
(x(t), t)�rx(t) log pt(x(t))

� d�! N
✓
0,

Cov(rx(t)pt|0(x(t)|x))
pt(x(t))2

◆
(8)

We defer the proof to Appendix B.2. The theorem states that, for commonly used transition kernels,
s⇤STF(x(t), t) � rx(t) log pt(x(t)) converges to a zero mean normal, and larger reference batch
size (n) will lead to smaller asymptotic variance. As can be seen in Equation 8, when n ! 1,
s⇤STF(x(t), t) highly concentrates around the true score rx(t) log pt(x(t)).

5.2 TRACE OF COVARIANCE

We now highlight the small variations of the training targets in the STF objective compared to the
DSM. As done in Section 3, we study the trace-of-covariance of training targets in STF:

VSTF(t) = Ept(x(t))

"
Tr

 
Covp0|t(·|x(t))pn�1

0

 
nX

k=1

pt|0(x(t)|xk)P
j pt|0(x(t)|xj)

rx(t) log pt|0(x(t)|xk)

!!#
.

In the following theorem we compare VSTF with VDSM. In particular, we can upper bound VSTF(t) by
Theorem 2. Suppose 8t 2 [0, 1], 0 < �t < 1, then

VSTF(t) 
1

n� 1

 
VDSM(t) +

p
3d

�2
t

q
Ept(x(t))Df

�
p0(x) k p0|t(x|x(t))

�
!

+O

✓
1

n2

◆
,
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where Df is an f-divergence with f(y) =

⇢
(1/y � 1)2 (y < 1.5)
8y/27� 1/3 (y � 1.5)

. Further, when n � d and

p0|t(x|x(t)) ⇡ p0(x) for all x(t), VSTF(t) / VDSM(t)
n�1 .

We defer the proof to Appendix B.3. The second term that involves f -divergence Df is necessary
to capture how the coefficients, i.e., pt|0(x(t)|xk)/

P
j pt|0(x(t)|xj) used to calculate the weighted

score target, vary across different samples x(t). This term decreases monotonically as a function of t.
In Phase 1, p0|t(x|x(t)) differs substantially from p0(x) and the divergence term Df dominates. In
contrast to the upper bound, both VSTF(t) and VDSM(t) have minimal variance at small values of t
since the training target is always dominated by one x. The theorem has more relevance in Phase 2,
where the divergence term decreases to a value comparable to VDSM(t). In this phase, we empirically
observe that the ratio of the two terms in the upper bound ranges from 10 to 100. Thus, when we
use a large reference batch size (in thousands), the theorem implies that STF offers a considerably
lower variance (by a factor of 10 or more) relative to the DSM objective. In Phase 3, the second
term vanishes to 0, as pt ⇡ pt|0 with large �t for commonly used transition kernels. As a result, STF
reduces the average trace-of-covariance of the training targets by at least n� 1 times in the far field.

Together, we demonstrate that the STF targets have diminishing bias (Theorem 1) and are much more
stable during training (Theorem 2). These properties make the STF objective more favorable for
diffusion models training with stochastic gradient optimization.

6 EXPERIMENTS

In this section, we first empirically validate our theoretical analysis in Section 5, especially for
variance reduction in the intermediate phase (Section 6.1). Next, we show that the STF objective
improves various diffusion models on image generation tasks in terms of image quality (Section 6.2).
In particular, STF achieves state-of-the-art performance on top of EDM. In addition, we demonstrate
that STF accelerates the training of diffusion models (Section 6.3), and improves the convergence
speed and final performance with an increasing reference batch size (Section 6.3).

6.1 VARIANCE REDUCTION IN THE INTERMEDIATE PHASE

Phase ! Phase 2 Phase 3

(a)

Phase ! Phase 2 Phase 3

(b) (c) (d)

Figure 3: (a, b): VDSM(t) and D(t) versus t. We normalize the maximum values to 1 for illustration
purposes. (c, d): VSTF(t) with a varying reference batch size n.

The proposed Algorithm 1 utilizes a large reference batch to calculate the stable target field instead of
the individual target. In addition to the theoretical analysis in Section 5, we provide further empirical
study to characterize the intermediate phase and verify the variance reduction effects by STF. Apart
from V (t), we also quantify the average divergence between the posterior p0|t(·|x(t)) and the data
distribution p0 at time t (introduced in Theorem 2): D(t) = Ept(x(t))

⇥
Df

�
p0|t(x|x(t)) k p0(x)

�⇤
.

Intuitively, the number of high-density modes in p0|t(·|x(t)) grows as D(t) decreases. To investigate
their behaviors, we construct two synthetic datasets: (1) a 64-dimensional mixture of two Gaussian
components (Two Gaussians), and (2) a subset of 1024 images of CIFAR-10 (CIFAR-10-4096).

Figure 3(a) and Figure 3(b) show the behaviors of VDSM(t) and D(t) on Two Gaussian and CIFAR-
10-4096. In both settings, VDSM(t) reaches its peak in the intermediate phase (Phase 2), while D(t)
gradually decreases over time. These results agree with our theoretical understanding from Section 3.
In Phase 2 and 3, several modes of the data distribution have noticeable influences on the scores, but
only in Phase 2 are the influences much more distinct, leading to high variations of the individual
target rx(t) log pt|0(x(t)|x),x ⇠ p0|t(·|x(t)).
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Figure 3(c) and Figure 3(d) further show the relationship between VSTF(t) and the reference batch
size n. Recall that when n = 1, STF degenerates to individual target and VSTF(t) = VDSM(t). We
observe that VSTF(t) decreases when enlarging n. In particular, the predicted relation VSTF(t) /
VDSM(t)/(n� 1) in Theorem 2 holds for the two Gaussian datasets where Df is small. On the high
dimensional dataset CIFAR-10-4096, the stable target field can still greatly reduce the training target
variance with large reference batch sizes n.

6.2 IMAGE GENERATION

Table 1: CIFAR-10 sample quality (FID, Inception) and number of function evaluation (NFE).

Methods Inception " FID # NFE #
StyleGAN2-ADA (Karras et al., 2020) 9.83 2.92 1
DDPM (Ho et al., 2020) 9.46 3.17 1000
NCSNv2 (Song & Ermon, 2020) 8.40 10.87 1161
PFGM (Xu et al., 2022b) 9.68 2.48 104

VE (Song et al., 2021b)

DSM - RK45 9.27 8.90 264
STF (ours) - RK45 9.52 " 5.51 # 200
DSM - PC 9.68 2.75 2000
STF (ours) - PC 9.86 " 2.66 # 2000

VP (Song et al., 2021b)

DSM - DDIM 9.20 5.16 100
STF (ours) - DDIM 9.28 " 5.06 # 100
DSM - RK45 9.46 2.90 140
STF (ours) - RK45 9.43 # 2.99 " 140

EDM (Karras et al., 2022)

DSM - Heun, NCSN++ 9.82 1.98 35
STF (ours) - Heun, NCSN++ 9.93 " 1.90 # 35
DSM - Heun, DDPM++ 9.78 1.97 35
STF (ours) - Heun, DDPM++ 9.79 " 1.92 # 35

We demonstrate the effectiveness of the new objective on image generation tasks. We consider
CIFAR-10 (Krizhevsky et al., 2009) and CelebA 64 ⇥ 64 (Yang et al., 2015) datasets. We set the
reference batch size n to 4096 (CIFAR-10) and 1024 (CelebA 642). We choose the current state-of-
the-art score-based method EDM (Karras et al., 2022) as the baseline, and replace the DSM objective
with our STF objective during training. We also apply STF to two other popular diffusion models,
VE/VP SDEs (Song et al., 2021b). For a fair comparison, we directly adopt the architectures and the
hyper-parameters in Karras et al. (2018) and Song et al. (2021b) for EDM and VE/VP respectively. In
particular, we use the improved NCSN++/DDPM++ models (Karras et al., 2022) in the EDM scheme.
To highlight the stability issue, we train three models with different seeds for VE on CIFAR-10. We
provide more experimental details in Appendix D.1.

Numerical Solver. The reverse-time ODE and SDE in scored-based models are compatible with
any general-purpose solvers. We use the adaptive solver RK45 method (Dormand & Prince, 1980;
Song et al., 2021b) (RK45) for VE/VP and the popular DDIM solver (Song et al., 2021a) for VP. We
adopt Heun’s 2nd order method (Heun) and the time discretization proposed by Karras et al. (2022)
for EDM. For SDEs, we apply the predictor-corrector (PC) sampler used in (Song et al., 2021b).
We denote the methods in a objective-sampler format, i.e., A-B, where A 2 {DSM, STF} and B 2
{RK45, PC, DDIM, Heun}. We defer more details to Appendix D.2.

Results. For quantitative evaluation of the generated samples, we report the FID scores (Heusel
et al., 2017) (lower is better) and Inception (Salimans et al., 2016) (higher is better). We measure the
sampling speed by the average NFE (number of function evaluations). We also include the results of
several popular generative models (Karras et al., 2020; Ho et al., 2020; Song & Ermon, 2019; Xu
et al., 2022b) for reference.

Table 1 and Table 2 report the sample quality and the sampling speed on unconditional gener-
ation of CIFAR-10 and CelebA 642. Our main findings are: (1) STF achieves new state-of-
the-art FID scores for unconditional generation on CIFAR-10 benchmark. As shown in Ta-
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ble 1, The STF objective obtains a FID of 1.90 when incorporated with the EDM scheme. To
the best of our knowledge, this is the lowest FID score on the unconditional CIFAR-10 gener-
ation task. In addition, the STF objective consistently improves the EDM across the two ar-
chitectures. (2) The STF objective improves the performance of different diffusion mod-
els. We observe that the STF objective improves the FID/Inception scores of VE/VP/EDM on
CIFAR-10, for most ODE and SDE samplers. STF consistently provides performance gains
for VE across datasets. Remarkably, our objective achieves much better sample quality using
ODE samplers for VE, with an FID score gain of 3.39 on CIFAR-10, and 2.22 on Celeba 642.

Table 2: FID and NFE on CelebA
642

Methods/NFEs FID # NFE #

CelebA 642 - RK45

VE (DSM) 7.56 260
VE (STF) 5.34 266

CelebA 642 - PC

VE (DSM) 9.13 2000
VE (STF) 8.28 2000

For VP, STF provides better results on the popular DDIM sampler,
while suffering from a slight performance drop when using the
RK45 sampler. (3) The STF objective stabilizes the converged
VE model with the RK45 sampler. In Appendix E.1, we report
the standard deviations of performance metrics for converged
models with different seeds on CIFAR-10 with VE. We observe
that models trained with the STF objective give more consistent
results, with a smaller standard deviation of used metrics.

We further provide generated samples in Appendix F. One inter-
esting observation is that when using the RK45 sampler for VE
on CIFAR-10, the generated samples from the STF objective do
not contain noisy images, unlike the vanilla DSM objective.

6.3 ACCELERATING TRAINING OF DIFFUSION MODELS

(a) CIFAR-10 (b) CelebA 64⇥ 64

Figure 4: FID and generated samples throughout training on (a) CIFAR-10 and (b) CelebA 642.

The variance-reduction techniques in neural network training can help to find better optima and
achieve faster convergence rate (Wang et al., 2013; Defazio et al., 2014; Johnson & Zhang, 2013). In
Figure 4, we demonstrate the FID scores every 50k iterations during the course of training. Since our
goal is to investigate relative performance during the training process, and because the FID scores
computed on 1k samples are strongly correlated with the full FID scores on 50k sample (Song &
Ermon, 2020), we report FID scores on 1k samples for faster evaluations. We apply ODE samplers for
FID evaluation, and measure the training time on two NVIDIA A100 GPUs. For a fair comparison,
we report the average FID scores of models trained by the DSM and STF objective on VE versus the
wall-clock training time (h).

Figure 5: FID scores in the training
course with varying reference batch size.

The STF objective achieves better FID scores with the
same training time, although the calculation of the target
field by the reference batch introduces slight overhead (Al-
gorithm 1). In Figure 4(a), we show that the STF objective
drastically accelerates the training of diffusion models
on CIFAR-10. The STF objective achieves comparable
FID scores with 3.6⇥ less training time (25h versus 90h).
For CelebA 642 datasets, the training time improvement
is less significant than on CIFAR-10. Our hypothesis is
that the STF objective is more effective when there are
multiple well-separated modes in data distribution, e.g.,
the ten classes in CIFAR-10, where the DSM objective
suffer from relatively larger variations in the intermediate
phase. In addition, the converged models have better final
performance when pairing with the STF on both datasets.
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6.4 EFFECTS OF THE REFERENCE BATCH SIZE

According to our theory (Theorem 2), the upper bound of the trace-of-covariance of the STF target
decreases proportionally to the reference batch size. Here we study the effects of the reference batch
size (n) on model performances during training. The FID scores are evaluated on 1k samples using
the RK45 sampler. As shown in Figure 5, models converge faster and produce better samples when
increasing n. It suggests that smaller variations of the training targets can indeed speed up training
and improve the final performances of diffusion models.

7 RELATED WORK

Different phases of diffusion models. The idea of diffusion models having different phases has
been explored in prior works though the motivations and definitions vary (Karras et al., 2022; Choi
et al., 2022). Karras et al. (2022) argues that the training targets are difficult and unnecessary to learn
in the very near field (small t in our Phase 1), whereas the training targets are always dissimilar to
the true targets in the intermediate and far field (our Phase 2 and Phase 3). As a result, their solution
is sampling t with a log-normal distribution to emphasize the relevant region (relatively large t in
our Phase 1). In contrast, we focus on reducing large training target variance in the intermediate
and far field, and propose STF to better estimate the true target (cf. Karras et al. (2022)). Choi et al.
(2022) identifies a key region where the model learns perceptually rich contents, and determines the
training weights �(t) based on the signal-to-noise ratio (SNR) at different t. As SNR is monotonically
decreasing over time, the resulting up-weighted region does not match our Phase 2 characterization.
In general, our proposed STF method reduces the training target variance in the intermediate field
and is complementary to previous improvements of diffusion models.

Importance sampling. The technique of importance sampling has been widely adopted in machine
learning community, such as debiasing generative models (Grover et al., 2019), counterfactual
learning (Swaminathan & Joachims, 2015) and reinforcement learning (Metelli et al., 2018). Prior
works using importance sampling to improve generative model training include reweighted wake-
sleep (RWS) (Bornschein & Bengio, 2014) and importance weighted autoencoders (IWAE) (Burda
et al., 2015). RWS views the original wake-sleep algorithm (Hinton et al., 1995) as importance
sampling with one latent variable, and proposes to sample multiple latents to obtain gradient estimates
with lower bias and variance. IWAE utilizes importance sampling with multiple latents to achieve
greater flexibility of encoder training and tighter log-likelihood lower bound compared to the standard
variational autoencoder (Kingma & Welling, 2013; Rezende et al., 2014).

Variance reduction for Fisher divergence. One popular approach to score-matching is to minimize
the Fisher divergence between true and predicted scores (Hyvärinen & Dayan, 2005). Wang et al.
(2020) links the Fisher divergence to denoising score-matching (Vincent, 2011) and studies the large
variance problem (in O(1/�4

t )) of the Fisher divergence when t ! 0. They utilize a control variate
to reduce the variance. However, this is typically not a concern for current diffusion models as the
time-dependent objective can be viewed as multiplying the Fisher divergence by �(t) = �

2
t , resulting

in a finite-variance objective even when t ! 0.

8 CONCLUSION

We identify large target variance as a significant training issue affecting diffusion models. We define
three phases with distinct behaviors, and show that the high-variance targets appear in the intermediate
phase. As a remedy, we present a generalized score-matching objective, Stable Target Field (STF),
whose formulation is analogous to the self-normalized importance sampling via a large reference batch.
Albeit no longer an unbiased estimator, our proposed objective is asymptotically unbiased and reduces
the trace-of-covariance of the training targets, which we demonstrate theoretically and empirically.
We show the effectiveness of our method on image generation tasks, and show that STF improves
the performance, stability, and training speed over various state-of-the-art diffusion models. Future
directions include a principled study on the effect of different reference batch sampling procedures.
Our presented approach is uniformly sampling from the whole dataset {xi}ni=2 ⇠ p

n�1
0 , so we expect

that training diffusion models with a reference batch of more samples in the neighborhood of x1
(the sample from which x(t) is perturbed) would lead to an even better estimation of the score field.
Moreover, the three-phase analysis can effectively capture the behaviors of other physics-inspired
generative models, such as PFGM (Xu et al., 2022b) or the more advanced PFGM++ (Xu et al., 2023).
Therefore, we anticipate that STF can enhance the performance and stability of these models further.
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